Lezione 12. Regolatori PID

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione 12. Regolatori PID"

Transcript

1 Lezione 1 Regolatori PD

2 Legge di controllo PD Conideriamo un regolatore che eercita un azione di controllo dipendente dall errore attravero la eguente legge: t ut = K et K e d K de t P + τ τ+ D. dt La legge di controllo è quindi compota da: un azione Proporzionale all errore; un azione ntegrale ull errore; un azione Derivativa ull errore. Queto tipo di regolatori prende quindi il nome di PD. tre guadagni che compaiono nella legge di controllo vengono chiamati: K P : guadagno proporzionale; K : guadagno integrale; K D : guadagno derivativo. Alternativamente, la legge di controllo i può crivere come egue: t 1 ut K et e d de t = P + τ τ + D, dt dove: D KP = : tempo integrale K KD = : tempo derivativo K P ra le ragioni del vatiimo utilizzo dei regolatori PD nella pratica dell automazione indutriale (i PD ono anche detti regolatori indutriali), ricordiamo: emplicità di realizzazione in divere tecnologie (elettronica, idraulica, pneumatica); efficacia per la regolazione di un ampia gamma di procei indutriali; tandardizzazione con i relativi vantaggi in termini di affidabilità e economicità; emplicità di taratura dei parametri; poibilità di taratura automatica dei parametri, per mezzo di emplici eperimenti. Dal cao generale della legge di controllo PD è poi poibile derivare altre leggi di controllo, annullando una o più delle azioni di controllo. Sono in particolare di interee le leggi di controllo: P. Rocco - Dipene di Automatica Lez. 1-1

3 P (proporzionale); PD (proporzionale-derivativa); P (proporzionale-integrale). Eendo un itema dinamico lineare e invariante, il regolatore PD può eere rappreentato da una funzione di traferimento: e R() u R Fig. 1 : Funzione di traferimento del regolatore PD K 1 KP 1+ + = KP + + KD= KP 1+ + D = l numeratore di R() è di grado uperiore al numeratore: pertanto, coì come critta, la funzione di traferimento non è fiicamente realizzabile. Ciò corriponde all impoibilità di ottenere dall errore un egnale che ne cotituica in ogni itante la derivata. Per rendere realizzabile l azione derivativa occorrerà in effetti aggiungere un polo in alta frequenza, per altro di norma irrilevante ai fini della valutazione delle pretazioni del regolatore PD. Dall ultima epreione critta per R() i riconoce che al variare di e D gli zeri del regolatore poono eere reali o complei e coniugati. mponendo la preenza di due zeri reali e ditinti, naturalmente nel emipiano initro, il diagramma di Bode del modulo di R aumerà l andamento tipico riportato in figura: 5 D db ω (rad/) Fig. : ipico andamento del diagramma di R l progetto del regolatore PD i riduce quindi alla celta del guadagno e della poizione degli zeri. P. Rocco - Dipene di Automatica Lez. 1 -

4 aratura analitica dei regolatori PD Come tutti i controllori, anche il controllore PD può eere progettato ulla bae delle tecniche analitiche vite in precedenza, che fanno uo del modello matematico del itema otto controllo critto in forma di funzione di traferimento. uttavia, nel cao del controllore PD, i gradi di libertà nel progetto ono limitati a 3 (il guadagno e due zeri): è allora opportuno procedere in modo più diretto ripetto alla intei per tentativi della funzione di traferimento d'anello già illutrata, elezionando direttamente la poizione degli zeri (tipicamente in modo da cancellare i poli del proceo) e cegliendo il guadagno in modo da oddifare le pecifiche dinamiche. Eempio Si conideri lo chema di controllo in figura: y + e y R() G() dove: G () =.1 e 3 ( 1+ 5)( 1+ ). Fig. 3 : Sitema di controllo per l eempio Si vuole progettare il regolatore R() nella clae dei regolatori PD in modo tale che: e = per y (t) = ca(t); ϕ m 4 ω c ia la maima poibile. La pecifica tatica impone un regolatore di tipo 1, oia la preenza dell'azione integrale nel regolatore PD. Scritta la funzione di traferimento come R () ( 1 + )( + ) 1 1 = µ R, dove µ R > è il guadagno, 1 e ono le cotanti di tempo degli zeri e i è ottintea la preenza di un polo in alta frequenza introdotto per rendere realizzabile l'azione derivativa, potremo porre:, 1 = 5, = in modo da cancellare con gli zeri del regolatore i poli del proceo. Si ottiene quindi la funzione di traferimento d'anello: P. Rocco - Dipene di Automatica Lez. 1-3

5 .1µ =. () () () R 3 R G = e L Come è noto, il diagramma di Bode del modulo aociato a L ha pendenza 1 u tutto l'ae delle pulazioni, e taglia l'ae in corripondenza della eguente pulazione: ω =. 1. c µ R La fae critica riulta quindi: ϕ = 9 ωc τ = 9.3µ R π π c. mponiamo il vincolo ul margine di fae: ϕ 18 5π = 9.3µ R 4 µ R =.91 π.3 18 m. Scegliendo µ R =.9 i ottiene il regolatore: R () con =.9 ( 1+ 5)( 1+ ) K 7.5, K =.9, K = 9. P = D K =.9 = K P + + KD, Queto regolatore conferice al itema di controllo un margine di fae di circa 4 ed una pulazione critica di.9 rad/. P. Rocco - Dipene di Automatica Lez. 1-4

6 aratura automatica dei regolatori PD Uno dei vantaggi connei all utilizzo dei regolatori PD conite nella poibilità di effettuare la taratura dei parametri ulla bae di emplici prove perimentali, precindendo dalla formulazione matematica, non empre agevole, del itema otto controllo. ra i numeroi metodi empirici per la intonizzazione dei regolatori PD, ci limitiamo ad accennare ai due tradizionalmente più noti. Metodo di Ziegler e Nichol in anello chiuo l metodo i articola nei eguenti pai: 1. Si chiude l anello di controllo con il regolatore PD (i cui parametri devono eere intonizzati), imponendo nulle le azioni integrale e derivativa: K =, K D =. y + e y PD S Fig.4 : Sitema in anello chiuo con regolatore PD. Partendo da valori molto piccoli di K P i effettua un emplice eperimento, conitente nell applicare un piccolo gradino al egnale di riferimento. 3. Si aumenta progreivamente K P ripetendo di volta in volta l eperimento finché non i intaura nell anello un ocillazione permanente. y t Fig.5 : Ocillazione permanente 4. Detto K P il valore del guadagno proporzionale corripondente all ocillazione permanente (guadagno critico) e il periodo di tale ocillazione, i tarano i parametri di un regolatore P, P o PD ulla bae della eguente tabella: P. Rocco - Dipene di Automatica Lez. 1-5

7 K P D P.5K P P.45K P 1. PD.6K P 8 l metodo non è empre applicabile: ci ono infatti itemi che non generano ocillazioni, anche con guadagni proporzionali elevati. Altre volte può eere pericoloo, o comunque conigliabile, portare il itema al limite di tabilità. Metodo di Ziegler e Nichol in anello aperto l metodo i articola nei eguenti pai: 1. Si applica una variazione a calino all ingreo del itema otto controllo. u S y Fig.6 : Perturbazione a calino. Si traccia la tangente alla ripota nel punto di fleo: y Y τ t Fig.7 : Metodo della tangente nel punto di fleo 3. Si individuano graficamente le intercette τ e Y della tangente ugli ai t e y, ripettivamente. 4. Si tarano i parametri di un regolatore P, P o PD ulla bae della eguente tabella: P. Rocco - Dipene di Automatica Lez. 1-6

8 K P D P 1 Y P 9. Y 3τ PD 1. Y τ.5τ l metodo non è ovviamente applicabile e la ripota allo calino non preenta fleo o e la ripota preenta ocillazioni. noltre non empre è poibile operare ul proceo in anello aperto, o perturbare brucamente il uo ingreo. P. Rocco - Dipene di Automatica Lez. 1-7

9 Eercizio 1.1 Eercizi Si criva la legge di controllo nel dominio del tempo del regolatore PD decritto dalla eguente funzione di traferimento: () R con: ( + )( + ) = µ µ = 5, 1 =, = 3. Eercizio 1. Si upponga di dover intonizzare un regolatore PD per il controllo di un proceo decritto dalla funzione di traferimento (non nota): () G = 1 ( 1+ ) 3. Si determini a quale taratura dei parametri condurrebbero le regole di Ziegler e Nichol in anello chiuo. Succeivamente, i tracci il diagramma di Bode della funzione di traferimento d anello riultante dall applicazione del regolatore PD al proceo. Eercizio 1.3 A partire dalla ripota allo calino in anello aperto di un proceo, riportata in figura, i tarino i parametri di un regolatore PD utilizzando le regole di Ziegler e Nichol in anello aperto t () Succeivamente, apendo che la funzione di traferimento del proceo è la tea dell eercizio precedente, i tracci il diagramma di Bode della funzione di traferimento d anello riultante dall applicazione del regolatore PD al proceo. P. Rocco - Dipene di Automatica Lez. 1-8

10 Eercizio 1.1 Si ha: () R ( + )( + ) = = raccia delle oluzioni da cui K = 5, K P = 5, K D = 3. La legge di controllo nel dominio del tempo è quindi data da: () t de t ut () = 5et () + 5 e( τ) dτ + 3. dt Eercizio 1. Si tratta di individuare il valore K P che rende nullo il margine di fae del itema di controllo avente funzione di traferimento d anello L K G =. l periodo dell ocillazione i ottiene poi come = π ω c, eendo ω c la pulazione critica in queta condizione particolare. l problema i può facilmente riolvere determinando, ad eempio con il regolo delle fai, il valore della pulazione critica tale che ciacuno dei tre poli di G (coincidenti alla pulazione 1 rad/) dia un contributo di fae di 6, in modo che la fae critica valga 18. Si ottiene ω c = 17., e quindi = πω c = 37.. l guadagno proporzionale critico i ricava valutando di quanto va tralato in alto il diagramma di Bode del modulo di G per farlo tagliare alla pulazione ω c. Si ottiene KP 15 db, oia K P 56.. Si oervi che il calcolo di K P equivale alla determinazione del margine di guadagno aociato a G. Dalle tabelle i ricava: K = 6. K = 336., = = 185., = 8= 46.. P P D La funzione di traferimento del PD è quindi (tracurando il polo ad alta frequenza del derivatore): R = K P 1+ + P ( 1+ ( 4) ) ( +. ) KP = 6. KP = 1. = D La funzione d anello riultante: L ( +. ) 3 ( 1+ ) = ha il diagramma di Bode riportato in figura. P. Rocco - Dipene di Automatica Lez. 1-9

11 3 K p ω c 1 - db -4 db w (rad/) w (rad/) Eercizio 1.3 Occorre tracciare la tangente nel punto di fleo alla ripota allo calino ed individuare le intercette con gli ai. Graficamente i ottiene Y =.1, τ =.81. Dalle tabelle i ricava: K = 1. Y = 571., = τ = 16., = 5. τ = 4. P D La funzione di traferimento del PD è quindi (tracurando il polo ad alta frequenza del derivatore): R = K P 1+ + D τ+ τ 6. 1 = = Y τ τy La funzione d anello riultante: L ( +. ) 3 ( 1+ ) = ( + τ) ( +. ) ha il diagramma di Bode riportato in figura. = db Y τ t () w (rad/) P. Rocco - Dipene di Automatica Lez. 1-1

Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine

Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine Lezione 4 Ripoe canoniche dei iemi del primo e del econdo ordine Parameri caraeriici della ripoa allo calino Per ripoe canoniche i inendono le ripoe dei iemi dinamici ai egnali coiddei canonici (impulo,

Dettagli

CHAPTER 1 CINEMATICA. 1.1. Moto Rettilineo

CHAPTER 1 CINEMATICA. 1.1. Moto Rettilineo ESERCIZI DI FISICA CHAPTER 1 CINEMATICA 1.1. Moto Rettilineo Velocità media: vettoriale e calare. Exercie 1. Carl Lewi ha coro i 100m piani in circa 10, e Bill Rodger ha vinto la maratona (circa 4km)

Dettagli

BOZZA. Lezione n. 20. Stati limite nel cemento armato Stato limite ultimo per tensioni normali

BOZZA. Lezione n. 20. Stati limite nel cemento armato Stato limite ultimo per tensioni normali Lezione n. Stati limite nel cemento armato Stato limite ultimo per tenioni normali Determinazione elle configurazioni i rottura per la ezione Una volta introotti i legami cotitutivi, è poibile eterminare

Dettagli

Messa a punto avanzata più semplice utilizzando Funzione Load Observer

Messa a punto avanzata più semplice utilizzando Funzione Load Observer Mea a punto avanzata più emplice utilizzando Funzione Load Oberver EMEA Speed & Poition CE Team AUL 34 Copyright 0 Rockwell Automation, Inc. All right reerved. Co è l inerzia? Tutti comprendiamo il concetto

Dettagli

Impianti VAV di ultima generazione

Impianti VAV di ultima generazione PANORAMICA Impianti VAV di ultima generazione Prodotti all'avanguardia per la ventilazione regolabile u richieta! www.wegon.com La ventilazione regolabile u richieta garantice grande comfort e coti di

Dettagli

ONDE ESERCIZI SVOLTI DAL PROF. TRIVIA GIANLUIGI

ONDE ESERCIZI SVOLTI DAL PROF. TRIVIA GIANLUIGI ONDE ESERCIZI SVOLTI DAL PROF. TRIVIA GIANLUIGI 1. Tipi di Onde Exercie 1. Un onda viaggia lungo una corda tea. La ditanza verticale dalla creta al ventre è di 13 c e la ditanza orizzontale dalla creta

Dettagli

Problema 1: Una collisione tra meteoriti

Problema 1: Una collisione tra meteoriti Problema : Una colliione ra meeorii Problemi di imulazione della econda prova di maemaica Eami di ao liceo cienifico 5 febbraio 05 Lo udene deve volgere un olo problema a ua cela Tempo maimo aegnao alla

Dettagli

ALU STAFFE IN ALLUMINIO SENZA FORI

ALU STAFFE IN ALLUMINIO SENZA FORI ALU STAFFE IN ALLUMINIO SENZA FORI Giunzione a compara in lega di alluminio per utilizzo in ambienti interni ed eterni (cl. di erv. 2) Preforata con ditanze ottimizzate per giunzioni ia u legno (chiodi

Dettagli

ASSOCIAZIONE ITALIANA PSICOGERIATRIA. anni di AIP. Relazione del Presidente in occasione del 10 Congresso Nazionale

ASSOCIAZIONE ITALIANA PSICOGERIATRIA. anni di AIP. Relazione del Presidente in occasione del 10 Congresso Nazionale ASSOCIAZIONE ITALIANA PSICOGERIATRIA anni di AIP Relazione del Preidente in occaione del 10 Congreo Nazionale Gardone Riviera (BS), 15 aprile 2010 Preidenti Onorari Mario Barucci Lodovico Frattola Pat

Dettagli

Errori di misura. è ragionevole assumere che una buona stima del valore vero sia la media

Errori di misura. è ragionevole assumere che una buona stima del valore vero sia la media Errori di miura Se lo trumento di miura è abbatanza enibile, la miura rietuta della tea grandezza fiica darà riultati diveri fra loro e fluttuanti in modo caratteritico. E l effetto di errori cauali, o

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

Progetto di un sistema di controllo di sospensioni attive in ambiente Matlab

Progetto di un sistema di controllo di sospensioni attive in ambiente Matlab Università di Padova FACOLTÀ DI INGEGNERIA Corso di Laurea in Ing. dell' Informazione Progetto di un sistema di controllo di sospensioni attive in ambiente Matlab Relatore: Prof. Alessandro Beghi Presentata

Dettagli

Il luogo delle radici (ver. 1.0)

Il luogo delle radici (ver. 1.0) Il luogo delle radici (ver. 1.0) 1 Sia dato il sistema in retroazione riportato in Fig. 1.1. Il luogo delle radici è uno strumento mediante il quale è possibile valutare la posizione dei poli della funzione

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboraorio di Algorimi e Sruure Dai Aniello Murano hp://people.na.infn.i people.na.infn.i/ ~murano/ 1 Algorimi per il calcolo di percori minimi u un grafo 1 Un emplice problema Pr oblema: Supponiamo che

Dettagli

Analisi in regime sinusoidale (parte V)

Analisi in regime sinusoidale (parte V) Appunti di Elettrotecnica Analisi in regime sinusoidale (parte ) Teorema sul massimo trasferimento di potenza attiva... alore della massima potenza attiva assorbita: rendimento del circuito3 Esempio...3

Dettagli

EQUAZIONI CON VALORE ASSOLUTO

EQUAZIONI CON VALORE ASSOLUTO VALORE AOLUTO EQUAZIONI CON VALORE AOLUTO Esercizi DIEQUAZIONI CON VALORE AOLUTO Esercizi Prof. Giulia Cagnetta ITI Marconi Domodossola (VB) *EQUAZIONI CON VALORE AOLUTO Data una qualsiasi espressione

Dettagli

Liste di specie e misure di diversità

Liste di specie e misure di diversità Lte d pece e mure d dvertà Carattertche delle lte d pece I dat ono par, coè hanno molt valor null (a volte la maggoranza!) La gran parte delle pece preent è rara. I fattor ambental che nfluenzano la dtrbuzone

Dettagli

LA TRASFORMATA DI LAPLACE

LA TRASFORMATA DI LAPLACE LA RASFORMAA DI LAPLACE Pr dcrivr l voluzion di un itma in rgim tranitorio, oia durant il paaggio dll ucit da un rgim tazionario ad un altro, è ncario ricorrr ad un modllo più gnral riptto al modllo tatico,

Dettagli

Introduzione. Classificazione delle non linearità

Introduzione. Classificazione delle non linearità Introduzione Accade spesso di dover studiare un sistema di controllo in cui sono presenti sottosistemi non lineari. Alcuni di tali sottosistemi sono descritti da equazioni differenziali non lineari, ad

Dettagli

Raffinamenti dell equilibrio di Nash

Raffinamenti dell equilibrio di Nash Raffinamenti dell equilibrio di Nah equilibri perfetti nei ottogiohi (SPE) ed altro Appunti a ura di Fioravante PATRONE verione del: maggio ndie Equilibri perfetti nei ottogiohi (SPE) SPE problematii 4

Dettagli

Sistemi e modelli matematici

Sistemi e modelli matematici 0.0.. Sistemi e modelli matematici L automazione è un complesso di tecniche volte a sostituire l intervento umano, o a migliorarne l efficienza, nell esercizio di dispositivi e impianti. Un importante

Dettagli

Filtri attivi del primo ordine

Filtri attivi del primo ordine Filtri attivi del primo ordine Una sintesi non esaustiva degli aspetti essenziali (*) per gli allievi della 4 A A T.I.E. 08-09 (pillole per il ripasso dell argomento, da assumere in forti dosi) (*) La

Dettagli

PROBLEMI. 1) Calcolare il tempo impiegato dal suono per percorrere 8 Km. La velocità del suono nell aria è v = 340 m/s.

PROBLEMI. 1) Calcolare il tempo impiegato dal suono per percorrere 8 Km. La velocità del suono nell aria è v = 340 m/s. PROBLEMI 1) Calcolare il tempo impiegato dal uono per percorrere 8 Km. La velocità del uono nell aria è v = 340 m/. ) Dopo quanto tempo un onda onora emea da un punto ditante 400 m da una uperficie ripaa

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Risposte canoniche e sistemi elementari Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

Risposta temporale: esercizi

Risposta temporale: esercizi ...4 Risposta temporale: esercizi Esercizio. Calcolare la risposta al gradino del seguente sistema: G(s) X(s) = s (s+)(s+) Y(s) Per ottenere la risposta al gradino occorre antitrasformare la seguente funzione:

Dettagli

SPECIFICHE DI UN SISTEMA IN ANELLO CHIUSO

SPECIFICHE DI UN SISTEMA IN ANELLO CHIUSO SPECIFICHE DI UN SISTEMA IN ANELLO CHIUSO Consideriamo il classico esempio di compensazione in cascata riportato in figura, comprendente il plant o sistema controllato con funzione di trasferimento G P

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca Trascrizione del testo e redazione delle soluzioni di Paolo Cavallo. La prova Il candidato svolga una relazione

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 Controlli Digitali Laurea Magistrale in Ingegneria Meccatronica CONTROLLORI PID Tel. 0522 522235 e-mail: secchi.cristian@unimore.it Introduzione regolatore Proorzionale, Integrale, Derivativo PID regolatori

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente 1.1 Il motore a corrente continua Il motore a corrente continua, chiamato così perché per funzionare deve essere alimentato con tensione e corrente costante, è costituito, come gli altri motori da due

Dettagli

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Microeconomia venerdì 29 febbraio 2008 La struttura della lezione

Dettagli

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione METODO DELLE FORZE CORSO DI PROGETTZIONE STRUTTURLE a.a. 010/011 Prof. G. Salerno ppunti elaborati da rch. C. Provenzano 1. METODO DELLE FORZE PER L SOLUZIONE DI STRUTTURE IPERSTTICHE 1.1 Introduzione

Dettagli

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE a cura di G. SIMONELLI Nel motore a corrente continua si distinguono un sistema di eccitazione o sistema induttore che è fisicamente

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Perché il Controllo Fuzzy?

Perché il Controllo Fuzzy? Pregi - Non è necessario un modello matematico dettagliato 2 - Può incorporare facilmente esperienza umana espressa in termini "qualitativi" 3 - E' robusto 4 - E' adattabile alle modifiche del processo

Dettagli

Richiami: funzione di trasferimento e risposta al gradino

Richiami: funzione di trasferimento e risposta al gradino Richiami: funzione di trasferimento e risposta al gradino 1 Funzione di trasferimento La funzione di trasferimento di un sistema lineare è il rapporto di due polinomi della variabile complessa s. Essa

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

aleatoria; se è nota la sua densità di probabilità ad essa si può associare una valore medio statistico. La grandezza così definita: (III.1.

aleatoria; se è nota la sua densità di probabilità ad essa si può associare una valore medio statistico. La grandezza così definita: (III.1. Caitolo III VALORI MEDI. SAZIONARIEÀ ED ERGODICIÀ III. - Mdi tatitich dl rimo ordi. Sia f( ) ua fuzio cotiua i aoci al gal alatorio (, t ζ ) la uatità dfiita dalla y f[(, t ζ )]. Ea idividua, a ua volta,

Dettagli

GRANDEZZE SINUSOIDALI

GRANDEZZE SINUSOIDALI GRANDEE SINUSOIDALI INDICE -Grandezze variabili. -Grandezze periodiche. 3-Parametri delle grandezze periodiche. 4-Grandezze alternate. 5-Grandezze sinusoidali. 6-Parametri delle grandezze sinusoidali.

Dettagli

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys.

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys. METODO DEI MINIMI QUADRATI GIUSEPPE GIUDICE Sommario Il metodo dei minimi quadrati è trattato in tutti i testi di statistica e di elaborazione dei dati sperimentali, ma non sempre col rigore necessario

Dettagli

INDURIMENTO SUPERFICIALE DI LEGHE DI TITANIO MEDIANTE TRATTAMENTI TERMICI DI DIFFUSIONE DI Ni

INDURIMENTO SUPERFICIALE DI LEGHE DI TITANIO MEDIANTE TRATTAMENTI TERMICI DI DIFFUSIONE DI Ni Memorie >> Titnio e ue leghe INDURIMENTO SUPERFICIALE DI LEGHE DI TITANIO MEDIANTE TRATTAMENTI TERMICI DI DIFFUSIONE DI Ni I. Rmpin, K. Brunelli, M. Dlà In queto lvoro ono tti ottenuti rivetimenti di Ni

Dettagli

Laboratorio di Elettrotecnica

Laboratorio di Elettrotecnica 1 Laboratorio di Elettrotecnica Rappresentazione armonica dei Segnali Prof. Pietro Burrascano - Università degli Studi di Perugia Polo Scientifico Didattico di Terni 2 SEGNALI: ANDAMENTI ( NEL TEMPO, NELLO

Dettagli

Corso di Informatica Industriale

Corso di Informatica Industriale Corso di Informatica Industriale Prof. Giorgio Buttazzo Dipartimento di Informatica e Sistemistica Università di Pavia E-mail: buttazzo@unipv.it Informazioni varie Telefono: 0382-505.755 Email: Dispense:

Dettagli

Analisi e controllo di uno scambiatore di calore

Analisi e controllo di uno scambiatore di calore Università degli Studi di Roma Tor Vergata FACOLTÀ DI INGNEGNERIA Corso di Laurea Magistrale in Ingegneria dell automazione Progetto per il corso di controllo dei processi Analisi e controllo di uno scambiatore

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

I n d i c e. 163 Appendice B Questionari su utilità e uso delle Strategie di Studio (QS1 e QS2)

I n d i c e. 163 Appendice B Questionari su utilità e uso delle Strategie di Studio (QS1 e QS2) I n d i c e 9 Introduzione 11 CAP. 1 I test di intelligenza potenziale 17 CAP. 2 La misura dell intelligenza potenziale nella scuola dell infanzia 31 CAP. 3 La misura dell intelligenza potenziale nella

Dettagli

Curve di risonanza di un circuito

Curve di risonanza di un circuito Zuccarello Francesco Laboratorio di Fisica II Curve di risonanza di un circuito I [ma] 9 8 7 6 5 4 3 0 C = 00 nf 0 5 0 5 w [KHz] RLC - Serie A.A.003-004 Indice Introduzione pag. 3 Presupposti Teorici 5

Dettagli

Elettronica delle Telecomunicazioni Esercizi cap 2: Circuiti con Ampl. Oper. 2.1 Analisi di amplificatore AC con Amplificatore Operazionale reale

Elettronica delle Telecomunicazioni Esercizi cap 2: Circuiti con Ampl. Oper. 2.1 Analisi di amplificatore AC con Amplificatore Operazionale reale 2. Analisi di amplificatore AC con Amplificatore Operazionale reale Un amplificatore è realizzato con un LM74, con Ad = 00 db, polo di Ad a 0 Hz. La controreazione determina un guadagno ideale pari a 00.

Dettagli

Quando troncare uno sviluppo in serie di Taylor

Quando troncare uno sviluppo in serie di Taylor Quando troncare uno sviluppo in serie di Taylor Marco Robutti October 13, 2014 Lo sviluppo in serie di Taylor di una funzione è uno strumento matematico davvero molto utile, e viene spesso utilizzato in

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO Capitolo 14 EORIA PERURBAIVA DIPENDENE DAL EMPO Nel Cap.11 abbiamo trattato metodi di risoluzione dell equazione di Schrödinger in presenza di perturbazioni indipendenti dal tempo; in questo capitolo trattiamo

Dettagli

CINEMATICA DEL CORPO RIGIDO

CINEMATICA DEL CORPO RIGIDO INEMTI DE ORPO RIGIDO o tudo della geometra degl potament de punt d un tema materale potzzato come rgdo rentra n quella parte della Meccanca laca che è la nematca. a cnematca tuda pobl movment d un corpo

Dettagli

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas.8.6.. - -.5.5 -. In questa dispensa ricordiamo la classificazione delle funzioni elementari e il dominio di esistenza delle stesse. Inoltre

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

GIRO DELLA MORTE PER UN CORPO CHE ROTOLA

GIRO DELLA MORTE PER UN CORPO CHE ROTOLA 0. IL OETO D IERZIA GIRO DELLA ORTE ER U CORO CHE ROTOLA ell approfondimento «Giro della morte per un corpo che scivola» si esamina il comportamento di un punto materiale che supera il giro della morte

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

Università degli Studi di Firenze Facoltà di Scienze Mat., Fis. e Nat. Corso di Laurea in Fisica. Corso di Esperimentazioni I

Università degli Studi di Firenze Facoltà di Scienze Mat., Fis. e Nat. Corso di Laurea in Fisica. Corso di Esperimentazioni I Università deli Studi di Firenze Facoltà di Scienze Mat., Fis. e Nat. Corso di Laurea in Fisica Corso di Esperimentazioni I Prof. R. Falciani Prof. A. Stefanini Appunti su: PROPAGAZIONE DEGLI ERRORI NELLE

Dettagli

ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione.

ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione. ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione. COMPETENZE MINIME- INDIRIZZO : ELETTROTECNICA ED AUTOMAZIONE 1) CORSO ORDINARIO Disciplina: ELETTROTECNICA

Dettagli

Elettronica I Grandezze elettriche e unità di misura

Elettronica I Grandezze elettriche e unità di misura Elettronica I Grandezze elettriche e unità di misura Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

LEZIONE 5 Interazione Particelle Cariche-Materia

LEZIONE 5 Interazione Particelle Cariche-Materia LEZIONE 5 Interazione Particelle Cariche-Materia Particelle alfa Le particelle alfa interagiscono intensamente con la materia attraverso collisioni/interazioni che producono lungo la traccia una elevata

Dettagli

ED. Equazioni cardinali della dinamica

ED. Equazioni cardinali della dinamica ED. Equazioni cardinali della dinamica Dinamica dei sistemi La dinamica dei sistemi di punti materiali si può trattare, rispetto ad un osservatore inerziale, scrivendo l equazione fondamentale della dinamica

Dettagli

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

PROGRAMMAZIONE DIDATTICA DISCIPLINARE

PROGRAMMAZIONE DIDATTICA DISCIPLINARE MOD PROGRAMMAZIONEDISCIPLINARE REV.00del27.09.13 Pag1di5 PROGRAMMAZIONEDIDATTICADISCIPLINARE Disciplina:_SISTEMIELETTRONICIAUTOMATICIa.s.2013/2014 Classe:5 Sez.A INDIRIZZO:ELETTRONICAPERTELECOMUNICAZIONI

Dettagli

Capitolo 12 Il monopolio. Robert H. Frank Microeconomia - 5 a Edizione Copyright 2010 - The McGraw-Hill Companies, srl

Capitolo 12 Il monopolio. Robert H. Frank Microeconomia - 5 a Edizione Copyright 2010 - The McGraw-Hill Companies, srl Capitolo 12 Il monopolio IL MONOPOLIO Il monopolio è una forma di mercato in cui un unico venditore offre un bene che non ha stretti sostituti, ad una moltitudine di consumatori La differenza fondamentale

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

1 LA CORRENTE ELETTRICA CONTINUA

1 LA CORRENTE ELETTRICA CONTINUA 1 LA CORRENTE ELETTRICA CONTINUA Un conduttore ideale all equilibrio elettrostatico ha un campo elettrico nullo al suo interno. Cosa succede se viene generato un campo elettrico diverso da zero al suo

Dettagli

LA FUNZIONE INTEGRALE

LA FUNZIONE INTEGRALE LA FUNZIONE INTEGRALE MAGLIOCURIOSO & CAMILLO magliocurioso@hotmail.it Sommario. In questa breve dispensa ho semplicementrascritto in L A TEX il contenuto di questa discussione: http://www.matematicamente.it/forum/

Dettagli

U.D. 6.2 CONTROLLO DI VELOCITÀ DI UN MOTORE IN CORRENTE ALTERNATA

U.D. 6.2 CONTROLLO DI VELOCITÀ DI UN MOTORE IN CORRENTE ALTERNATA U.D. 6.2 CONTROLLO DI VELOCITÀ DI UN MOTORE IN CORRENTE ALTERNATA Mod. 6 Applicazioni dei sistemi di controllo 6.2.1 - Generalità 6.2.2 - Scelta del convertitore di frequenza (Inverter) 6.2.3 - Confronto

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Capitolo 2 Equazioni differenziali ordinarie 2.1 Formulazione del problema In questa sezione formuleremo matematicamente il problema delle equazioni differenziali ordinarie e faremo alcune osservazioni

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

ELABORAZIONE DEL VALORE MEDIO NELLE MISURE ELETTRONICHE

ELABORAZIONE DEL VALORE MEDIO NELLE MISURE ELETTRONICHE NOTE PER IL TECNICO ELABORAZIONE DEL VALORE MEDIO NELLE MISURE ELETTRONICHE da BRUEL & KJAER Le cosiddette «application notes» pubblicate a cura della Bruel & Kjaer, nota Fabbrica danese specializzata

Dettagli

Elettronica Circuiti nel dominio del tempo

Elettronica Circuiti nel dominio del tempo Elettronica Circuiti nel dominio del tempo Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Circuiti nel dominio del tempo 14 aprile 211

Dettagli

Biblioteca Tecnica Knauf 05/2006. L acustica con Knauf. Soluzioni tecniche per l edilizia civile e industriale

Biblioteca Tecnica Knauf 05/2006. L acustica con Knauf. Soluzioni tecniche per l edilizia civile e industriale Biliotec Tecnic Knuf 05/2006 L cutic con Knuf Indice 1. Introduzione...4 2. Suoni e rumori...5 Glorio...5 Rumori erei...5 Rumori impttivi...6 Tempo di rivererzione (T60)...6 Fonoiolmento e fonoorimento...7

Dettagli

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A.

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A. Travature reticolari piane : esercizi svolti e omenico., Fuschi., isano., Sofi. SRZO n. ata la travatura reticolare piana triangolata semplice illustrata in Figura, determinare gli sforzi normali nelle

Dettagli

Esempi introduttivi Variabili casuali Eventi casuali e probabilità

Esempi introduttivi Variabili casuali Eventi casuali e probabilità Esempi introduttivi Esempio tipico di problema della meccanica razionale: traiettoria di un proiettile. Esempio tipico di problema idraulico: altezza d'acqua corrispondente a una portata assegnata. Come

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

Esperimentatori: Durata dell esperimento: Data di effettuazione: Materiale a disposizione:

Esperimentatori: Durata dell esperimento: Data di effettuazione: Materiale a disposizione: Misura di resistenza con il metodo voltamperometrico. Esperimentatori: Marco Erculiani (n matricola 454922 v.o.) Noro Ivan (n matricola 458656 v.o.) Durata dell esperimento: 3 ore (dalle ore 9:00 alle

Dettagli

Applicazioni dell'analisi in più variabili a problemi di economia

Applicazioni dell'analisi in più variabili a problemi di economia Applicazioni dell'analisi in più variabili a problemi di economia La diversità tra gli agenti economici è alla base della nascita dell attività economica e, in generale, lo scambio di beni e servizi ha

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

2capitolo. Alimentazione elettrica

2capitolo. Alimentazione elettrica 2capitolo Alimentazione elettrica Regole fondamentali, norme e condotte da seguire per gestire l'interfaccia tra la distribuzione elettrica e la macchina. Presentazione delle funzioni di alimentazione,

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

Dinamica e Misura delle Vibrazioni

Dinamica e Misura delle Vibrazioni Dinamica e Misura delle Vibrazioni Prof. Giovanni Moschioni Politecnico di Milano, Dipartimento di Meccanica Sezione di Misure e Tecniche Sperimentali giovanni.moschioni@polimi.it VibrazionI 2 Il termine

Dettagli

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento:

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento: Capitolo 3 Serie 3. Definizione Sia { } una successione di numeri reali. Ci proponiamo di dare significato, quando possibile, alla somma a + a 2 +... + +... di tutti i termini della successione. Questa

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

MACCHINE ELETTRICHE. Stefano Pastore. Macchine in Corrente Continua

MACCHINE ELETTRICHE. Stefano Pastore. Macchine in Corrente Continua MACCHINE ELETTRICHE Mahine in Corrente Continua Stefano Pastore Dipartiento di Ingegneria e Arhitettura Corso di Elettrotenia (IN 043) a.a. 2012-13 Statore Sistea induttore (Statore): anello in ghisa o

Dettagli

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc.

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. Classi Numeriche 1 1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. In questo breve capitolo richiamiamo le definizioni delle classi numeriche fondamentali, già note al lettore,

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Lo studio di unzione Ing. Alessandro Pochì Appunti di analisi Matematica per la Classe VD (a.s. 011/01) Schema generale per lo studio di una unzione Premessa Per Studio unzione si intende, generalmente,

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli