Capitolo III: I Regolatori

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Capitolo III: I Regolatori"

Transcript

1 SCC Cap. III: Regolaor Capolo III: I Regolaor III-1: Inrouzone Il regolaore ha l ompo sablre l azone orreva a apporare n ngresso al proesso, per mezzo ell auaore; l segnale n usa al regolaore (s) è funzone ell ngresso (e) [sf(e)], seono la legge onrollo el regolaore. S hanno ue p fonamenal regolaor: a algormo sanar (ID) e a algormo avanzao. I regolaor ID sono fao pù usa ne proess nusral (olre l 95% e as, on presazon he sono onserae n genere aeabl), menre le applazon egl alr sono rserva a poh as proess relavamene ompless e ffl a onrollare. Ne regolaor avanza, la legge onrollo può essere esremamene sofsaa e ueso, n eora, permee oenere presazon molo superor; eagl sul progeo e l onfrono presazon, verranno a nella seona pare el orso. Ne prm la legge onrollo è relavamene semple on re omponen fonamenal (roporzonale, Inegrale, Dervava) e sarà llusraa seguo, on rfermeno al loro funzonameno nelle onzon : - Anello Apero, (OL Fgura 3-1a): l ngresso (e) al regolaore è la varable npenene, - Anello Chuso, (CL: Fgura 3-1b): l ngresso (e) pene all azone onrollo, ao he l usa (y) rsene el surbo (), ell azone onrollo (s), o ella varable manpolaa (u) a essa reamene ollegaa. a) b) Fg.3-1: Shema onrollo n anello apero (OL: a) e n anello huso (CL: b) III-2: Il regolaore On-Off Queso è un aso parolare regolaore sanar, on una legge onrollo esremamene semple; l usa vara ra ue valor, a seona el segno ell errore: s(), per e < ; s()1, per e >, (o veversa). Con rfermeno alla Fgura 3-2, l funzonameno OL è mmeao; n onzon CL, nell poes he l azone onrollo sponble sa suffenemene grane a far ambare segno l errore, s osserva he l usa el proesso ha un anameno osllane (araersa ueso po regolaore). Le presazon sono puoso sarse; n ompenso è molo semple e eonomo; è ulzzao n applazon basso lvello (es: onrollo emperaura salabagno), uano è aeable un nervallo errore norno al valore eserao. Una varane ueso regolaore, è l Relè he rova applazon nella enfazone el proesso, poranolo n onzon osllazone onrollaa (sablà margnale). III-1

2 SCC Cap. III: Regolaor Fg.3-2: Anamen nel empo errore (e) e segnale (s) per l regolaore On-Off n shem OL e CL III-3: Il regolaore roporzonale () Il proporzonale osuse la omponene base ell azone onrollo; la varazone el segnale (s) è reamene proporzonale a uelle ell errore (e): s() e(). È araerzzao a un uno paramero (osane azone proporzonale o guaagno). Ne regolaor nusral a vole s parla bana proporzonalà (B), efna ome: B 1% / Con rfermeno alla Fgura 3-3, l funzonameno OL è mmeao anhe n ueso aso; l anameno el segnale onrollo è proporzonale all errore n usa: a errore osane orrspone segnale osane, a errore resene segnale resene. Nel aso CL, s osserva he l usa (y) al proesso rsene ell azone onrollo (s) e onseguenza anhe l errore (er-y) mnuse, rspeo al aso Senza Conrollo (SC). Nell poes he per un ero peroo empo l errore sa osane, anhe l azone onrollo rmane osane: s raggunge osì una suazone nella uale l ssema s manene bloao su una poszone sane a uella eseraa, on uno sosameno resuo (offse), he è la peularà ell azone onrollo (nella rsposa a un ngresso po grano). Un esempo alolo e la mosrazone anala verranno effeua pù avan. er elmnare ueso sosameno è neessaro he l azone onrollo aumen nel aso errore osane: ueso pora alla nrouzone ella omponene Inegrale. SC Fg.3-3: Anamen nel empo errore (e) e segnale (s) per l regolaore n shem OL e CL (SC: Senza Conrollo, : on Conrollo roporzonale) SC III-2

3 SCC Cap. III: Regolaor III-4: Il regolaore roporzonale Inegrale (I) Il regolaore roporzonale Inegrale è l po pù ffuso nelle applazon nusral. In ueso aso nella varazone el segnale (s), alla omponene proporzonale all errore, s aggunge la omponene proporzonale all negrale ell errore (e) nel empo: s( ) e( ) e( ) Olre al guaagno, è araerzzao a un alro paramero, la osane azone negrale, he s msura n unà empo e rappresena l empo al uale la omponene negrale vene uguale alla omponene proporzonale, nel aso errore osane. Il funzonameno OL el regolaore I è rporao n Fgura 3-4, evenzano l onrbuo elle ue omponen; n parolare la omponene Inegrale eermna un aumeno el segnale onrollo a errore osane. Nella rsposa n CL vene llusrao ome la omponene Inegrale permee elmnare l offse (nel aso ngresso a grano); vene messo n evenza anhe l anameno osllane nella rsposa, ovuo all negrale. I Fg.3-4: Anamen nel empo errore (e) e segnale (s) per l regolaore I n shem OL e CL III-5: Il regolaore roporzonale Dervavo (D) La omponene ervava nroue nell azone onrollo un elemeno proporzonale alla ervaa ell errore: e( ) s( ) e( ) Olre al guaagno, è araerzzao a un alro paramero, la osane azone ervava, anh essa msuraa n unà empo. Il vanaggo ella omponene ervava è he la rsposa è pù prona rspeo al regolaore o al I, ual anno un onrbuo nzale polo nel aso errore polo; lo svanaggo è osuo alla sensblà a rumor (surb on mea nulla e srbuzone ausale, ual spesso hanno una ervaa he amba segno nel empo on freuenza elevaa): l usa al regolaore vara brusamene, solleano nulmene l ssema auazone. er l regolaore D (Fgura 3-5), rmane l problema ello sosameno resuo (offse), perhé a errore osane la omponene ervava à un onrbuo nullo; per uese ragon, l D non s usa uas ma a solo; la omponene ervava è agguna al I per are l regolaore ID. III-3

4 SCC Cap. III: Regolaor a) b) ) Fg.3-5: Anamen nel empo errore (e) e segnale (s) n shem OL e CL per l regolaore D; a) rsposa a un segnale a grano n OL, b) rsposa a una rampa n OL, ) rsposa a un grano n CL III-6: Il regolaore roporzonale Inegrale Dervavo (ID) In ueso aso l algormo vene: e( ) s( ) e( ) e( ) Il regolaore è araerzzao a re paramer (,, ), ual, on una opporuna snonzzazone, permeono realzzare vanagg elle re omponen; spesso è possble ronurre anhe algorm pù avanza a una sruura base po I o ID, on agguna uleror omponen (flr) o ompensaor. A olo esempo s rporano n Fgura 3-6 le rspose n anello huso regolaor po verso, I, ID a ngress a grano: a) varazon el rfermeno, b) abbameno el surbo. In esrema snes, per rbare le araershe fonamenal: l regolaore presena offse, l I permee elmnare l offse e nroue osllazon nella rsposa, l ID rsula pù rapo el I (ma può amplfare rumor). Fg.3-6: Rspose ualave regolaor, I, ID per varazone el rfermeno (a) e soppressone el surbo (b). Nella Fgura 3-7 sono anhe rpora gl anamen ella rsposa un regolaore I al varare el guaagno; s osserva ome un aumeno el guaagno pora a rspose pù velo e osllan, fno a eermnare nsablà olre un ero valore el guaagno massmo. III-4

5 SCC Cap. III: Regolaor Fg.3-7: Rspose ualave un regolaore I all aumenare el guaagno III-7: Suo ella Rsposa un Ssema on Regolaor vers III-7.1: Imposazone el problema S fa rfermeno al ssema shemazzao n Fgura 3-8; una poraa luo n ngresso F, a emperaura, vene rsalaa a una emperaura u per mezzo un serpenno perorso a vapore. Sono prevs surb sulla ; s aoa uno shema onrollo n reroazone: la msura emperaura è rasmessa al regolaore, ove è onfronaa on l valore eserao n funzone ell errore vene sabla l enà ell azone orreva he s aua per mezzo ella valvola regolazone ella poraa vapore. S vuole moellare l ssema e valuare uanavamene l anameno ella emperaura nel empo on vers p regolaore. D REGOLAORE u AUAORE v ROCESSO u MISURAORE Fg.3-8: Il serbaoo rsalao e lo shema onrollo n reroazone ella emperaura III-5

6 SCC Cap. III: Regolaor Ipoes: erfeo mselameno u ropreà D osan: ρ, C p ; Volume osane: F F u F Msuraore perfeo m Auaore e sambaore eal; l alore rasfero al proesso può essere espresso reamene ome una funzone ell errore: Qf(e) Blano energeo sul serbaoo rsalao: Allo Sao Sazonaro Inzale: F C Q Q F C F C ( ) W λ 1 F C Q F C VρC p In regme namo: F C ( ) Vρ Q : on ; F FC p In ermn varable sosameno s ha: ove,,, sono le varabl evazone allo sao sazonaro,,. La formulazone el problema n ermn general per enere ono ngress vers (surb e azon onrollo ) è la seguene: () f ( ) on : () f ( ); ( ) ( ) 1 f 2 III-7.2: Rspose per ngress e azon onrollo verse Dsurbo su, senza onrollo In ueso aso l una varazone nel empo rspeo allo sazonaro nzale è sulla emperaura ngresso, menre l azone onrollo (e un l alore forno non varano); s ha: L euazone rsolvene vene allora: ( ) La u soluzone è: III-6

7 SCC Cap. III: Regolaor 1 e S oene la sola rsposa po esponenzale el ssema el prmo orne (Fgura 3-9): una perurbazone a grano ampezza sulla emperaura ngresso s rsene (nelle poes assune) ome una perurbazone uguale ampezza sulla al nuovo sazonaro (per ). Dsurbo su e onrollo proporzonale In ueso aso le varazon nel empo rspeo allo sazonaro nzale s hanno sa sulla emperaura ngresso he sull azone onrollo, he vara on legge ; un: e ( ) L euazone rsolvene vene allora: ( ) La u soluzone è: 1 1 e (1 ) La rsposa è anora po esponenzale (Fgura 3-9), on alune fferenze: - la ervaa nell orgne vale () / non amba, ao he al empo zero l ssema non rsene ell azone onrollo; - al nuovo sazonaro (per ), lo sosameno ella emperaura ene al valore: /(1 ); resa un uno sosameno resuo (offse) rspeo al valore eserao (ovvero ). - Il valore ell offse può essere mnuo aumenano l guaagno el regolaore, oè l azone onrollo; ueso è vero (maemaamene) per ssem orne basso (n<2); n realà (per ssem orne superore e n presenza raro), all aumenare el guaagno el regolaore la rsposa può venre nsable (ve sablà). Fg.3-9: Anameno ella emperaura nel empo: senza onrollo (SC), on regolaore proporzonale, all aumenare el guaagno el regolaore III-7

8 SCC Cap. III: Regolaor Dsurbo su e onrollo roporzonale-inegrale (I) In ueso aso le varazon nel empo rspeo allo sazonaro nzale s hanno sa sulla emperaura ngresso he sull azone onrollo, he vara on legge I; un: ( ) I I I e e, ) ( ) ( L euazone rsolvene vene allora: ( ) ) ( I In ueso aso abbamo un euazone negro-fferenzale, la u soluzone non è mmeaa, ne as pù general, operano nel omno empo. Quesa è una elle movazon per rformulare l problema nel omno s, araverso la rasformaa Laplae. III-8

Elementi di matematica finanziaria

Elementi di matematica finanziaria APPENDICE ATEATICA Elemen d maemaca fnanzara. Il regme dell neresse semplce L neresse è l fruo reso dall nvesmeno del capale. Nel corso dell esposzone s farà rfermeno a due regm o pologe d calcolo dell

Dettagli

Nel caso di un regime di capitalizzazione definiamo, relativamente al periodo [t, t + t] : i t

Nel caso di un regime di capitalizzazione definiamo, relativamente al periodo [t, t + t] : i t 4. Approcco formale E neressane efnre le caraersche e var regm fnanzar n manera pù asraa e generale, n moo a poer suare qualsas regme fnanzaro. A al fne efnamo percò e paramer n grao escrvere qualsas po

Dettagli

Capitolo 2 Le leggi del decadimento radioattivo

Capitolo 2 Le leggi del decadimento radioattivo Capolo Le legg del decadmeno radoavo. Sablà e nsablà nucleare Se analzzamo aenamene la cara de nucld, vedamo che n essa sono rappresena, olre a nucle sabl, anche var nucle nsabl. Con l ermne nsable s nende

Dettagli

CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI 1. LEGGI FINANZIARIE

CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI 1. LEGGI FINANZIARIE CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI SOMMARIO:. Legg fnanzare. - 2. Regme fnanzaro dell neresse semplce e dello scono razonale. - 3. Regme fnanzaro dell neresse e dello scono composo. - 4. Tass equvalen.

Dettagli

DIODO E RADDRIZZATORI DI PRECISIONE

DIODO E RADDRIZZATORI DI PRECISIONE OO E AZZATO PECSONE raddrzzar ( refcar) sn crcu mpega per la rasfrmazne d segnal bdreznal n segnal undreznal. Usand, però, dd per raddrzzare segnal, s avrà l svanagg d nn per raddrzzare segnal la cu ampezza

Dettagli

PROCESSI CASUALI. Segnali deterministici e casuali

PROCESSI CASUALI. Segnali deterministici e casuali POCESSI CASUALI POCESSI CASUALI Segnal deermnsc e casual Un segnale () s dce DEEMIISICO se è una funzone noa d, coè se, fssao un qualunque sane d empo o, l valore ( o ) assuno dal segnale è noo con esaezza

Dettagli

Università di Siena Sede di Grosseto Secondo Semestre 2010-2011. Macroeconomia. Paolo Pin ( pin3@unisi.it ) Lezione 7 2 Maggio 2011

Università di Siena Sede di Grosseto Secondo Semestre 2010-2011. Macroeconomia. Paolo Pin ( pin3@unisi.it ) Lezione 7 2 Maggio 2011 Unversà d Sena Sede d Grosseo Secondo Semesre 200-20 acroeconoma Paolo Pn ( pn3@uns. ) Lezone 7 2 aggo 20 La lezone d ogg Rpasso e conclusone capolo 4 qulbro nel mercao della monea e la relazone L Polca

Dettagli

CARATTERISTICHE DELLE POMPE

CARATTERISTICHE DELLE POMPE CARATTERISTICHE DELLE OME La pompa rappresena l elemeno pù complesso e pù mporane d un crcuo draulco perché ha l compo d rasferre l fludo draulco e realzzare l flusso d poraa che permee la conversone dell

Dettagli

Supplementi al Bollettino Statistico

Supplementi al Bollettino Statistico Supplemen al Bolleno Saso Noe meodologhe e nformazon sashe L ulzzo del Seleve edng per l onrollo d qualà delle sashe banare Nuova sere Anno XIV Numero 29-24 Maggo 2004 BANCA D ITALIA - CENTRO STAMPA -

Dettagli

Controllo predittivo (MPC o MBPC)

Controllo predittivo (MPC o MBPC) Conrollo predvo MPC o MBPC Nella sa formlaone pù enerale, l conrollo predvo consa d re dee d base:. L lo d n modello maemaco ao a prevedere le sce del processo nel san d empo fr l orone. Le sce fre, comprese

Dettagli

Costi della politica: Giudizio positivo per i sindaci, maglia nera per parlamentari e consiglieri regionali

Costi della politica: Giudizio positivo per i sindaci, maglia nera per parlamentari e consiglieri regionali XXVI I IAssembl eaanci-larepubbl cadecomun Au onom apercamb ar e lpaese Lac l assepol c aec ad n Op n onsucos,r esponsab l àe mpegnodch gover nal e s uz on Cos della polca: Gudzo posvo per sndac, magla

Dettagli

1.1 Identificazione del campo di operatività di un motore AC brushless. Sia dato un motore AC brushless isotropo di cui siano noti i seguenti dati:

1.1 Identificazione del campo di operatività di un motore AC brushless. Sia dato un motore AC brushless isotropo di cui siano noti i seguenti dati: Captolo 1 1.1 Ientfcazone el campo operatvtà un motore AC bruhle Sa ato un motore AC bruhle otropo cu ano not eguent at: Vn = 190 V In = 3.5 A Tn =.6 N n pol = R = 1 Ω L = 8 mh Ke = Kt = 0.4 S etermn l

Dettagli

Note su energie e forze del campo elettromagnetico

Note su energie e forze del campo elettromagnetico A. Maffucc: oe su Energe e Forze e campo eeromagneco ver.. /4. Energe e forze n un ssema eerosaco.. Energa n funzone carche e poenza. conser ssema n fgura, uo a conuor ne vuoo o n mezzo eerco omogeneo,

Dettagli

PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI DI DISTRIBUZIONE E MISURA DEL GAS PER IL PERIODO DI REGOLAZIONE 2009-2012 (RTDG)

PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI DI DISTRIBUZIONE E MISURA DEL GAS PER IL PERIODO DI REGOLAZIONE 2009-2012 (RTDG) Allegao A Teso Uno delle dsposzon della regolazone della qualà e delle arffe de servz d dsrbuzone e msura del gas per l perodo d regolazone 2009-2012 (TUDG) PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI

Dettagli

273 CAPITOLO 18: PALI DI FONDAZIONE IN CONDIZIONI DI ESERCIZIO

273 CAPITOLO 18: PALI DI FONDAZIONE IN CONDIZIONI DI ESERCIZIO 27 nrouzione Per i pali si può fare un iscorso analogo a quello viso per le fonazioni superficiali. Si è viso che nel caso elle fonazioni superficiali l analisi ella eformabilià ella sruura non poeva essere

Dettagli

Processi periodici. Capitolo 2. 2.1 Modello. 2.1.1 Simboli. 2.1.2 Grafico dei processi. {τ 1,...,τ n } processi periodici

Processi periodici. Capitolo 2. 2.1 Modello. 2.1.1 Simboli. 2.1.2 Grafico dei processi. {τ 1,...,τ n } processi periodici 3 Capolo 2 Process perodc 2. Modello 2.. Smbol {,...,τ n } process perodc τ,k sanza k-esma del processo φ fase d un processo (prmo empo d avazone) T perodo del processo r,k = φ +(k ) T k-esma avazone D

Dettagli

Regime Permanente. (vedi Vitelli-Petternella par. VI.1,VI.1.1,VI.2)

Regime Permanente. (vedi Vitelli-Petternella par. VI.1,VI.1.1,VI.2) Regme Permanente (ve Vtell-Petternella par. VI.,VI..,VI.) Comportamento a regme permanente Clafcazone n tp Conzon a Cclo Chuo Conzon a Cclo Aperto Rpota a Regme per Dturb Cotant Dturbo ulla mura Rpota

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso di Fondameni di Teleomuniazioni 6 - SEGNALI IN BANDA ASSANTE E MODULAZIONI rof. Mario Barbera [pare 4] 1 Modulazioni digiali binarie Il segnale m() sia un segnale digiale in banda base, rappresenao

Dettagli

Criteri metodologici per la valutazione dei titoli obbligazionari standard e dei contratti derivati non quotati

Criteri metodologici per la valutazione dei titoli obbligazionari standard e dei contratti derivati non quotati Crer meodologc per la valuazone de ol obblgazonar sandard e de conra derva non quoa Adoao con delbera del Consglo d ammnsrazone del /0/20 Modfcao con delbera del Consglo d Ammnsrazone del 28//20 Aggornao

Dettagli

Lezione n.12. Gerarchia di memoria

Lezione n.12. Gerarchia di memoria Lezione n.2 Gerarchia di memoria Sommario: Conceo di gerarchia Principio di localià Definizione di hi raio e miss raio La gerarchia di memoria Il sisema di memoria è molo criico per le presazioni del calcolaore.

Dettagli

PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI DI DISTRIBUZIONE E MISURA DEL GAS PER IL PERIODO DI REGOLAZIONE 2009-2012 (RTDG)

PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI DI DISTRIBUZIONE E MISURA DEL GAS PER IL PERIODO DI REGOLAZIONE 2009-2012 (RTDG) Allegao A Teso Uno delle dsposzon della regolazone della qualà e delle arffe de servz d dsrbuzone e msura del gas per l perodo d regolazone 2009-2012 (TUDG) PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI

Dettagli

Amplificatori operazionali

Amplificatori operazionali mplfcator operazonal Parte www.e.ng.unbo.t/pers/mastr/attca.htm (ersone el 9-5-0) mplfcatore operazonale L amplfcatore operazonale è un sposto, normalmente realzzato come crcuto ntegrato, otato tre termnal

Dettagli

Corso di Economia del Lavoro Daniele Checchi Blanchard-Amighini-Giavazzi cap.4 anno 2014-15

Corso di Economia del Lavoro Daniele Checchi Blanchard-Amighini-Giavazzi cap.4 anno 2014-15 Corso i Economia el Lavoro Daniele Checchi Blanchar-Amighini-Giavazzi cap.4 anno 2014-15 I MERCATI FINANZIARI Esise una grane varieà i aivià finanziarie. Il risparmiaore eve scegliere in quali forme eenere

Dettagli

Operazioni finanziarie. Operazioni finanziarie

Operazioni finanziarie. Operazioni finanziarie Operazioni finanziarie Una operazione finanziaria è uno scambio di flussi finanziari disponibili in isani di empo differeni. Disinguiamo ra: operazioni finanziarie in condizioni di cerezza, quando ui gli

Dettagli

Minicorso Stocks Trading Analisys

Minicorso Stocks Trading Analisys MINICORSO: Soks marke Trading Analisys (pare 1/5) di Andrea Saviano Pare 1 Miniorso Soks Trading Analisys di Andrea Saviano Vedo prevedo sravedo, premessa L analisi enia e l albero di Naale Il bravo sienziao:

Dettagli

Il rendimento globale di una macchina

Il rendimento globale di una macchina 0 Shede d Impant Naval Il rendmento globale d una mahna η g PB m& H ver 1.1 A ura d Frano Quaranta 1 Il rendmento globale d una mahna versone: 1.1 fle orgnale: Il rendmento globale d una mahna 130518 ver

Dettagli

Sensori Segnali Rumore - Prof. S. Cova - appello 22/06/2011 P1-1

Sensori Segnali Rumore - Prof. S. Cova - appello 22/06/2011 P1-1 ensor egnal Rumore - ro.. Cova - appello /06/011 1-1 ROBLEM 1 Quadro de dat egnale otto: rettangolare a durata T 00 µs; otenza ; lunghezza d onda λ 1 800 nm oppure λ 60 nm. p--n otododo n lo: oeente d

Dettagli

UNIVERISITA DEGLI STUDI DI PADOVA. Marketing e Pubblicità: una rassegna

UNIVERISITA DEGLI STUDI DI PADOVA. Marketing e Pubblicità: una rassegna FACOLTA DI SCIENZE STATISTICHE UNIVERISITA DEGLI STUDI DI PADOVA Corso d Laurea n STATISTICA E GESTIONE DELLE IMPRESE Currculum: Anals d Mercao Tes d Laurea d: Eva Luse Markeng e Pubblcà: una rassegna

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

Modelli statistici per caratterizzare canali affetti da multipath

Modelli statistici per caratterizzare canali affetti da multipath Rihiami sul anale di omuniazione radio Modulo di Modulo Tenihe di Avanzae Informazione di Trasmissione e Codifia a.a. a.a. 2009-2010 2007-08 1 Rihiami sul anale di omuniazione radio Modelli saisii per

Dettagli

3.1 Modellistica di un attuatore elettromeccanico

3.1 Modellistica di un attuatore elettromeccanico 3 PRINCIPI DI CONVERSIONE ELETTROMECCANICA DELL ENERGIA 3. Moellsca un auaoe eleomeccanco Pe noue fonamen ella convesone eleomeccanca ell enega conseamo la suua elemenae llusaa n Fg. 3., noa come auaoe

Dettagli

! Una gerarchia ricorsiva deriva dalla presenza di una ricorsione o ciclo (un anello nel caso più semplice) nello schema operazionale.

! Una gerarchia ricorsiva deriva dalla presenza di una ricorsione o ciclo (un anello nel caso più semplice) nello schema operazionale. Gerarhie Riorsive! Una gerarhia riorsiva eriva alla presenza i una riorsione o ilo (un anello nel aso più semplie) nello shema operazionale.! Esempio i shema operazionale on anello:! Rappresentazione sullo

Dettagli

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere DIPRTIMENTO DI SCIENZE POLITICHE Modello di Solow (1) 1 a. a. 2015-2016 ppuni dalle lezioni. Uso riservao Maurizio Zenezini Consideriamo un economia (chiusa e senza inerveno dello sao) in cui viene prodoo

Dettagli

Manutenibilità e Disponibilità

Manutenibilità e Disponibilità produzone servaa ffdablà, Manuenblà e Dsponblà Sefano Ierace Obev Ulzzo dell anals d affdablà come srumeno predvo d comporameno d un ssema Valuazone requs d funzonameno d un componene Confrono d alernave

Dettagli

CAPITOLO 4 Misurazioni nel dominio del tempo Pagina 46 CAPITOLO 4 MISURAZIONI NEL DOMINIO DEL TEMPO CON CONTATORE NUMERICO

CAPITOLO 4 Misurazioni nel dominio del tempo Pagina 46 CAPITOLO 4 MISURAZIONI NEL DOMINIO DEL TEMPO CON CONTATORE NUMERICO CAPIOLO 4 Misurazioni nel dominio del empo Pagina 46 CAPIOLO 4 MISURAZIONI NEL DOMINIO DEL EMPO CON CONAORE NUMERICO Misurare il empo he inerorre ra due eveni signifia onfronare due inervalli di empo,

Dettagli

TECNICA DELLE COSTRUZIONI Effetti Strutturali di Viscosità e Ritiro

TECNICA DELLE COSTRUZIONI Effetti Strutturali di Viscosità e Ritiro TCNIC DLL COSTRUZIONI ffei Sruurali di Visosià e Riiro Prof. G. Manini Polienio di Torino - Diparimeno di Ingegneria Sruurale dile e Geoenia Corso di Tenia delle Cosruzioni 1 1. PRS IN CONTO DL FLUG RLTIVI

Dettagli

PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI DI DISTRIBUZIONE E MISURA DEL GAS PER IL PERIODO DI REGOLAZIONE 2014-2019 (RTDG 2014-2019)

PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI DI DISTRIBUZIONE E MISURA DEL GAS PER IL PERIODO DI REGOLAZIONE 2014-2019 (RTDG 2014-2019) Teso Uno delle dsposzon della regolazone della qualà e delle arffe de servz d dsrbuzone e msura del gas per l perodo d regolazone 2014-2019 (TUDG) PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI DI DISTRIBUZIONE

Dettagli

GURU. Facebook. Gli strumenti avanzati di Facebook ADS WEBLIME

GURU. Facebook. Gli strumenti avanzati di Facebook ADS WEBLIME Facebook GURU Gl srumen avanza d Facebook ADS Un corso ecnco-praco d approfondmeno sugl srumen pù avanza d Facebook ADS. Il Corso s rvolge esclusvamene a ch gà gessce nserzon con Facebook. Ogg mole persone

Dettagli

I COMPONENTI DEGLI IMPIANTI TERMICI 2 parte

I COMPONENTI DEGLI IMPIANTI TERMICI 2 parte I comonen degl man ermc II.8 I COMPONENTI DEGLI IMPIANTI TERMICI are II. Generalà sulle macchne a fludo Per "macchna" s nende normalmene un ssema comao d organ (fss e mobl) n grado d effeuare una rasformazone

Dettagli

UNIVERSITA DEGLI STUDI DI FIRENZE. Facoltà di Ingegneria Corso di Laurea in Ingegneria Informatica! "#$

UNIVERSITA DEGLI STUDI DI FIRENZE. Facoltà di Ingegneria Corso di Laurea in Ingegneria Informatica! #$ UNIVERITA DEGLI TUDI DI FIRENZE Facolà d Ingegnera Corso d Laurea n Ingegnera Informaca! "#$ ##%& ' ommaro OMMARIO... 1 INTRODUZIONE... 2 1.1 I DATI BIOLOGICI COME EQUENZE DI IMBOLI... 3 1.1.1 Qualà delle

Dettagli

Lezione n.7. Variabili di stato

Lezione n.7. Variabili di stato Lezione n.7 Variabili di sao 1. Variabili di sao 2. Funzione impulsiva di Dirac 3. Generaori impulsivi per variabili di sao disconinue 3.1 ondizioni iniziali e generaori impulsivi In quesa lezione inrodurremo

Dettagli

5 Secondo principio della termodinamica... 2 5.1 Motori termici... 2 5.1.1 Rendimenti termici... 3 5.2 Secondo principio della termodinamica secondo

5 Secondo principio della termodinamica... 2 5.1 Motori termici... 2 5.1.1 Rendimenti termici... 3 5.2 Secondo principio della termodinamica secondo 5 eondo rno della termodnama... 5. Motor term... 5.. Rendment term... 3 5. eondo rno della termodnama eondo Ke-Plan... 4 5.3 Mahne frgorfere... 4 5.3. Coeffente d retazone (COP... 4 5.4 Pome d alore...

Dettagli

V AK. Fig.1 Caratteristica del Diodo

V AK. Fig.1 Caratteristica del Diodo 1 Raddrizzaore - Generalià I circuii raddrizzaori uilizzano componeni come i Diodi che presenano la caraerisica di unidirezionalià, cioè permeono il passaggio della correne solo in un verso. In figura

Dettagli

Telecontrollo via internet del processo SBR con tecniche di intelligenza artificiale

Telecontrollo via internet del processo SBR con tecniche di intelligenza artificiale Universià degli Sudi di Firenze Facolà di Ingegneria Tesi di laurea magisrale in Ingegneria per l'ambiene e il Terriorio 20 Aprile 2006 Teleconrollo via inerne del processo SBR con ecniche di inelligenza

Dettagli

Convertitore DC-DC Flyback

Convertitore DC-DC Flyback Conerore C-C Flyback era al buck-boos e al poso ell nuore c è un rasforaore n ala frequenza: Fgura : schea prncpo el flyback conerer Prncpo funzonaeno: TO: la correne ene a enrare al pallno superore el

Dettagli

Condensatore + - Volt

Condensatore + - Volt 1) Defnzone Condensaore Sruura: l condensaore è formao da due o pù superfc condurc, chamae armaure, separae da un maerale solane, chamao delerco. Equazon Caraersche: La ensone ra armaure è dreamene proporzonale

Dettagli

Struttura dei tassi per scadenza

Struttura dei tassi per scadenza Sruura dei assi per scadenza /45-Unià 7. Definizione del modello ramie gli -coupon bonds preseni sul mercao Ipoesi di parenza Sul mercao sono preseni all isane ZCB che scadono fra,2,,n periodi Periodo:

Dettagli

Osservatorio dinamica prezzi dispositivi medici Assobiomedica - CEr. Presentazione. Assobiomedica Centro Studi

Osservatorio dinamica prezzi dispositivi medici Assobiomedica - CEr. Presentazione. Assobiomedica Centro Studi Osservaoro dnamca prezz dsposv medc Assobomedca - CEr Presenazone Assobomedca Cenro Sud L Osservaoro L ndagne è condoa dal CER a cadenza semesrale presso le mprese assocae ad Assobomedca per rlevare la

Dettagli

Teoria delle opzioni e Prodotti strutturati

Teoria delle opzioni e Prodotti strutturati L FIME a.a. 8-9 9 eoria elle opzioni e Prooi sruurai Giorgio onsigli giorgio.consigli@unibg.i Uff 58 ricevimeno merc:.-3. Programma. Mercao elle opzioni e conrai erivai. eoria elle opzioni 3. ecniche i

Dettagli

Appunti del Corso di. Costruzioni In Zona Sismica. Prof. Ing. Camillo Nuti. Università Degli Studi Roma Tre

Appunti del Corso di. Costruzioni In Zona Sismica. Prof. Ing. Camillo Nuti. Università Degli Studi Roma Tre Prof. Camllo Nu Dspense d Cosruzon n Zona Ssmca 7 Appun del Corso d Cosruzon In Zona Ssmca Prof. Ing. Camllo Nu Unversà Degl Sud Roma Tre Prof. Camllo Nu Dspense d Cosruzon n Zona Ssmca 7 RISPOSTA DINAMICA

Dettagli

RISPOSTA NEL DOMINIO DEL TEMPO

RISPOSTA NEL DOMINIO DEL TEMPO RISPOSTA NEL DOMINIO DEL TEMPO Nel dominio del empo le variabili sono esaminae secondo la loro evoluzione emporale. Normalmene si esamina la risposa del sisema a un segnale di prova canonico, cioè si sollecia

Dettagli

Regime dinamico nel dominio del tempo

Regime dinamico nel dominio del tempo egime dinamico nel dominio del empo Appuni a cura dell Ingg. Basoccu Gian Piero e Marras Luca Tuors del corso di LTTOTNIA per meccanici e chimici A. A 3/4 e 4/5 Ulimo aggiornameno // Appuni a cura degli

Dettagli

IL DIMENSIONAMENTO DEGLI IMPIANTI IDROSANITARI Vasi d espansione e accumuli

IL DIMENSIONAMENTO DEGLI IMPIANTI IDROSANITARI Vasi d espansione e accumuli FOCUS TECNICO IL DIMENSIONAMENTO DEGLI IMIANTI IDROSANITARI asi d espansione e accumuli RODUZIONE DI ACQUA CALDA SANITARIA Due sono i sisemi normalmene uilizzai per produrre acqua calda saniaria: quello

Dettagli

Il valore dei titoli azionari. a) DCF Model con TV. I metodi finanziari. I flussi di cassa. Flussidi cassa t

Il valore dei titoli azionari. a) DCF Model con TV. I metodi finanziari. I flussi di cassa. Flussidi cassa t Il valore de ol azoar IL VALORE DEI TITOLI AZIONARI: meod azar Soo possbl dvers approcc: approcco basao su luss d rsulao: meod azar, redduale e del valore (exra pro); approcco d mercao: meodo de mulpl

Dettagli

PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI DI DISTRIBUZIONE E MISURA DEL GAS PER IL PERIODO DI REGOLAZIONE 2014-2019 (RTDG 2014-2019)

PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI DI DISTRIBUZIONE E MISURA DEL GAS PER IL PERIODO DI REGOLAZIONE 2014-2019 (RTDG 2014-2019) Teso Uno delle dsposzon della regolazone della qualà e delle arffe de servz d dsrbuzone e msura del gas per l perodo d regolazone 2014-2019 (TUDG) PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI DI DISTRIBUZIONE

Dettagli

Schemi a blocchi. Sistema in serie

Schemi a blocchi. Sistema in serie Scem a blocc Nel caso ssem semplc, ques possoo essere scemazza meae blocc, ce rappreseao vers compoe, collega ra loro sere o parallelo a secoa ella logca uzoameo. Vl Valvolal solvee Sesore Pompa Pompa

Dettagli

Realizzazione e studio di un oscillatore a denti di sega

Realizzazione e studio di un oscillatore a denti di sega 1 Realzzazone e stuo un oscllatore a ent sega Cenn teorc Lo scopo quest esperenza è quello stuare la cosetta tensone a ent sega, ovvero una tensone alternata, peroo T, che vara lnearmente con l tempo a

Dettagli

Tariffe degli scarichi industriali: riordino in arrivo Laboratorio Servizi Pubblici Locali

Tariffe degli scarichi industriali: riordino in arrivo Laboratorio Servizi Pubblici Locali gennao 2015 laboraoro Tarffe degl scarch ndusral: Laboraoro Servz Pubblc Local Absrac A dsanza d quas quaran'ann sarà preso rvsaa la arffazone degl scarch produv. Le nuove arffe dovranno consderare un

Dettagli

La liberalizzazione delle quote a tariffa ridotta in mercati oligopolistici

La liberalizzazione delle quote a tariffa ridotta in mercati oligopolistici XV Convegno SIDEA 5-7 seemre 008, Por a leralzzazone delle uoe a arffa rdoa n mera olgools Marghera Soola Darmeno d sud sullo svluo eonomo Unversà d Maeraa VERSIONE PROVVISORIA DA NON CIARE Asra: uona

Dettagli

2 Modello IS-LM. 2.1 Gli e etti della politica monetaria

2 Modello IS-LM. 2.1 Gli e etti della politica monetaria 2 Modello IS-LM 2. Gl e ett della poltca monetara S consderun modello IS-LM senzastatocon seguent datc = 0:8, I = 00( ), L d = 0:5 500, M s = 00 e P =. ) S calcolno valor d equlbro del reddto e del tasso

Dettagli

GLI STILI DI INVESTIMENTO NEL MERCATO AZIONARIO EUROPEO

GLI STILI DI INVESTIMENTO NEL MERCATO AZIONARIO EUROPEO GLI STILI DI INVESTIMENTO NEL MERCATO AZIONARIO EUROPEO Monca Bllo Unversà Ca' Foscar e GRETA Veneza Robero Casarn GRETA Veneza Clare Meu CREST Parg Domenco Sarore GLI STILI DI INVESTIMENTO NEL MERCATO

Dettagli

l M DA 03/09/07 Termonovela in 17 puntate

l M DA 03/09/07 Termonovela in 17 puntate a e i a d l a c e n e l o i a z a M s n? e o d n n a o s c n e d n o c e s ì S 1 ermonovela in 17 puntate DAI ERMODINAMICI RELAIVI ALLA CONDENSAZIONE BRUCIANDO 1 m3 DI GAS SI OIENE: 8127 Kcal + 1,55 Kg

Dettagli

Sommario. Introduzione. Progetto di alberi di trasmissione Concentrazione di tensioni

Sommario. Introduzione. Progetto di alberi di trasmissione Concentrazione di tensioni 3 La orsione Sommario Inroduzione Alberi saiamene indeerminai Carihi orsionali su alberi irolari Momeno dovuo a ensioni inerne Deformazioni angenziali parallele all asse Progeo di alberi di rasmissione

Dettagli

MODULO 1 GLI AMPLIFICATORI OPERAZIONALI

MODULO 1 GLI AMPLIFICATORI OPERAZIONALI MODULO GL AMPLFCATO OPEAZONAL. PAAMET CAATTESTC D UN AMPLFCATOE OPEAZONALE Per la corretta utlzzazone un A.O. reale bsogna nterpretare at caratterstc fornt al costruttore e conoscere termn pù comunemente

Dettagli

Trasformazioni di Galileo

Trasformazioni di Galileo Principio di Relaivià Risrea (peciale) e si sceglie un dr rispeo al uale le leggi della fisica sono scrie nella forma più semplice (dr ineriale) allora le sesse leggi valgono in ualunue alro dr in moo

Dettagli

TELEGESTIONE E CONTROLLO DI QUALUNQUE TIPO DI CALDAIE E BRUCIATORI PER QUALUNQUE TIPO DI IMPIANTO

TELEGESTIONE E CONTROLLO DI QUALUNQUE TIPO DI CALDAIE E BRUCIATORI PER QUALUNQUE TIPO DI IMPIANTO NUMERO 2 del 23.04.08 COSER COSER IME Applicazioni Apparecchiature Numero 2 del 23-04-08 APPLICAZIONI APPARECCHIAURE E IMPIANI LE VARIE SOLUZIONI SARANNO ELENCAE NEL MODO PIÙ SINEICO POSSIBILE. ROVAA LA

Dettagli

Modelli elementari in forma di sistemi dinamici. (Fondamenti di Automatica G. Ferrari Trecate)

Modelli elementari in forma di sistemi dinamici. (Fondamenti di Automatica G. Ferrari Trecate) Modell elemenar n forma d ssem dnamc Fondamen d Aomaca G. Ferrar Trecae rc elerc Ressore v : : ngresso sca Ssema dnamco R E n ssema LTI SISO d ordne 0 ssema saco e propro D 0 D R rc elerc Indore v :ngresso

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO

ESAME DI STATO DI LICEO SCIENTIFICO ESAME DI STATO DI LICEO SCIENTIFICO SIMULAZIONE DELLA II PROVA A.S. 014-15 Indirizzo: SCIENTIFICO Tema di: MATEMATICA 1 Nome del candidao Classe Il candidao risolva uno dei due problemi; il problema da

Dettagli

I confronti alla base della conoscenza

I confronti alla base della conoscenza I confroni alla ase della conoscenza Un dao uaniaivo rae significao dal confrono con alri dai Il confrono è la prima e più immediaa forma di analisi dei dai I confroni Daa una grandezza G, due suoi valori

Dettagli

GeoStru Software www.geostru.com geostru@geostru.com SOMMARIO

GeoStru Software www.geostru.com geostru@geostru.com SOMMARIO GeoStru Software www.geostru.om geostru@geostru.om SOMMARIO PORTAZA E CEIMETI I FOAZIOI SUPERFICIALI... CARICO LIMITE I FOAZIOI SU TERREI... Metoo Terzagh (1955)... 3 Formula Meyerhof (1963)... 5 Formula

Dettagli

Teoria delle opzioni e Prodotti strutturati

Teoria delle opzioni e Prodotti strutturati L FIME a.a. 8-9 9 oa ll ozon Poo suua Gogo Consgl gogo.onsgl@unbg. Uff 58 vmno m:.-3. Pogamma. Mao ll ozon ona va. oa ll ozon 3. nh valuazon 4. Hgng 5. Inggna fnanzaa 6. Pou numh 7. Dvavs sass Ozon Pou

Dettagli

Regolamento dell Indice. Banca IMI Protected Basket Index June 2015 A

Regolamento dell Indice. Banca IMI Protected Basket Index June 2015 A Sede legale n Pazzea Gordano Dell Amore 3, 20121 Mlano scra all Albo delle Banche con l n. 5570 Soceà apparenene al Gruppo Bancaro Inesa Sanpaolo scro all Albo de Grupp Bancar Soceà soggea alla drezone

Dettagli

TRASMISSIONI CON FLESSIBILI: LE CINGHIE

TRASMISSIONI CON FLESSIBILI: LE CINGHIE pro. Ing. Nazzareno Corigliano PAG. 1 TRASMISSIONI CON FLESSIBILI: LE CINGHIE GENERALITÀ Neearie per raiioni a lnga ianza; Ieali in ao i raiioni on ri e ibrazioni; Non aae per raeere poenze olo grani;

Dettagli

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice Eserciazione 7: Modelli di crescia: arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Popolazione sabile e sazionaria. Viviana Amai 03/06/200 Modelli di crescia Nella

Dettagli

Cap. 8 Sistemi di controllo

Cap. 8 Sistemi di controllo Cap. 8 Sistemi i ontrollo Come già etto, in generale, un sistema è solo potenialmente in grao i soisfare gli obiettivi per i quali è stato ostruito, e ioè i omportarsi nella maniera esierata. Per onseguire

Dettagli

Il Legislatore Europeo ha quindi puntato alla realizzazione di un mercato unico dell energia, all aumento dell efficienza di trasmissione,

Il Legislatore Europeo ha quindi puntato alla realizzazione di un mercato unico dell energia, all aumento dell efficienza di trasmissione, PREMESSA I merca elerc sanno vvendo un momeno d profondo cambameno dovuo al processo d lberalzzazone che lenamene ha convolo, o sa convolgendo, un po u paes, dalla Gran Breagna alla Spagna, dall Ausrala

Dettagli

Allocazione Statica. n i

Allocazione Statica. n i Esercazon d Sse Inegra d Produzone Allocazone Saca I eod asa sull'allocazone saca scheazzano l processo d assegnazone delle rsorse alle par consderandolo da un lao ndpendene dal epo e rascurando dall'alro

Dettagli

Molle Costruzione di Macchine_ MOLLE

Molle Costruzione di Macchine_ MOLLE OLLE Nella cosruzione di macchine sono uilizzae er: Aenuare gli eei di uri Esalare o ridurre gli eei vibraori Riorare alla osizione iniziale un elemeno di macchina A seconda del io di solleciazione, si

Dettagli

Un po di teoria. cos è un condensatore?

Un po di teoria. cos è un condensatore? Sudio sperimenale del processo di carica e scarica di un condensaore cos è un condensaore? Un po di eoria Un condensaore è un sisema di due conduori affacciai, dei armaure, separai da un isolane. Esso

Dettagli

Argomenti trattati. Rischio e Valutazione degli investimenti. Teoria della Finanza Aziendale. Costo del capitale

Argomenti trattati. Rischio e Valutazione degli investimenti. Teoria della Finanza Aziendale. Costo del capitale Teoria della Finanza Aziendale Rischio e Valuazione degli invesimeni 9 1-2 Argomeni raai Coso del capiale aziendale e di progeo Misura del bea Coso del capiale e imprese diversificae Rischio e flusso di

Dettagli

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo)

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo) V A = AMPIEZZA = lunghezza di V A ALTERNATA Proiezione di V X ISTANTE = velocià angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un inervallo di empo) DEVE ESSERE COSTANTE Angolo

Dettagli

Università di Pisa - Polo della Logistica di Livorno Corso di Laurea in Economia e Legislazione dei Sistemi Logistici. Anno Accademico: 2013/14

Università di Pisa - Polo della Logistica di Livorno Corso di Laurea in Economia e Legislazione dei Sistemi Logistici. Anno Accademico: 2013/14 Universià di isa - olo della Logisica di Livorno Corso di Laurea in Economia e Legislazione dei Sisemi Logisici Anno Accademico: 03/4 CORSO DI SISTEMI DI MOVIMENTAZIONE E STOCCAGGIO Docene: Marino Lupi

Dettagli

L operatività in titoli e in cambi e i servizi bancari

L operatività in titoli e in cambi e i servizi bancari Moulo 8 L operatività in titoli e in ambi e i servizi banari 7 I estinatari el Moulo sono gli stuenti he, opo aver analizzato e appreso le aratteristihe fonamentali ell attività elle aziene i reito, le

Dettagli

CBM a.s. 2012/2013 PROBLEMA DELLE SCORTE

CBM a.s. 2012/2013 PROBLEMA DELLE SCORTE CBM a.s. 212/213 PROBLEMA DELLE SCORTE Chiamiamo SCORTA ogni riserva di materiali presente all interno del sistema produttivo in attesa di essere sottoposto ad un proesso di trasformazione o di distribuzione.

Dettagli

Misura della velocità della luce

Misura della velocità della luce CORSO DI LABORATORIO DI FISICA A Misura dea veoià dea ue Sopo de esperienza è a misura sperimenae dea veoià dea ue, mediane a misura de empo di riardo ra due impusi aser, generai onemporaneamene, he perorrono

Dettagli

f Le trasformazioni e il trattamento dell aria

f Le trasformazioni e il trattamento dell aria f Le trasformazioni e il trattamento dell aria 1 Generalità Risolvendo il sistema (1) rispetto ad m a si ottiene: () Pertanto, il punto di misela sul diagramma psirometrio è situato sulla ongiungente dei

Dettagli

Controllo di Azionamenti Elettrici. Lezione n 8

Controllo di Azionamenti Elettrici. Lezione n 8 Conollo Azonamen Elec ezone n 8 Coo auea n Ingegnea ell Auomazone Facolà Ingegnea Uneà egl Su Palemo Azonamen elec con mooe n coene alenaa Il mooe ancono negl azonamen a elocà aable anagg el mooe n coene

Dettagli

LINEE GUIDA DELLE AUTORIZZAZIONI AL TRASPORTO RIFIUTI

LINEE GUIDA DELLE AUTORIZZAZIONI AL TRASPORTO RIFIUTI CASE STUDY LINEE GUIDA DELLE AUTORIZZAZIONI AL TRASPORTO RIFIUTI Soggetto Destinatario ella Domana i Autorizzazione: Sezione Regionale ell'alo Nazionale ei Gestori Amientali Categorie i isrizione per il

Dettagli

Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine

Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine Lezione 4 Ripoe canoniche dei iemi del primo e del econdo ordine Parameri caraeriici della ripoa allo calino Per ripoe canoniche i inendono le ripoe dei iemi dinamici ai egnali coiddei canonici (impulo,

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2012-2013 Eserctazone: 4 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/41? Aula "Ranzan B" 255 post 1 2 3 4 5 6 7 8 9

Dettagli

Automazione Industriale AA 2002-2003 Prof. Luca Ferrarini

Automazione Industriale AA 2002-2003 Prof. Luca Ferrarini Auomazione Indusriale AA 2002-2003 Prof. Luca Ferrarini Laboraorio 1 Obieivi dell eserciazione Sviluppare modelli per la realizzazione di funzioni di auomazione Comprensione e uilizzo di Ladder Diagrams

Dettagli

DAL DATO ALL INFORMAZIONE GESTIONALE

DAL DATO ALL INFORMAZIONE GESTIONALE DAL DATO ALL INFORMAZIONE GESTIONALE Srumen sasc per supporare ssem d conrollo d gesone e d comuncazone negraa Ducco Sefano Gazze Con l conrbuo d: Gan Pero Cervellera e Gann Be 1 Inroduzone... 4 Capolo

Dettagli

Regolatori switching

Regolatori switching 2 A4 Regolaori swiching I regolaori di ensione lineari hanno il grave difeo di non consenire il raggiungimeno di valori di efficienza paricolarmene elevai. Infai, in quese archieure gli elemeni di regolazione

Dettagli

DI IDROLOGIA TECNICA PARTE III

DI IDROLOGIA TECNICA PARTE III FCOLT DI INGEGNERI Laurea Specialisica in Ingegneria Civile N.O. Giuseppe T. ronica CORSO DI IDROLOGI TECNIC PRTE III Idrologia delle piene Lezione XVII: I meodi indirei per la valuazione delle porae al

Dettagli

L inchiesta ISAE sugli investimenti delle imprese manifatturiere ed estrattive: aspetti metodologici e risultati

L inchiesta ISAE sugli investimenti delle imprese manifatturiere ed estrattive: aspetti metodologici e risultati ISTITUTO DI STUDI E ANALISI ECONOMICA L nchesa ISAE sugl nvesmen delle mprese manfaurere ed esrave: aspe meodologc e rsula d Taana Cesaron ISAE, Pazza dell Indpendenza, 4, 0085 Roma Unversà degl Sud d

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

La vischiosità dei depositi a vista durante la recente crisi finanziaria: implicazioni in una prospettiva di risk management

La vischiosità dei depositi a vista durante la recente crisi finanziaria: implicazioni in una prospettiva di risk management La vischiosià dei deposii a visa durane la recene crisi finanziaria: implicazioni in una prospeiva di risk managemen Igor Gianfrancesco Camillo Gilibero 31/01/1999 31/07/1999 31/01/2000 31/07/2000 31/01/2001

Dettagli

flusso in uscita (FU) Impresa flusso in entrata (FE)

flusso in uscita (FU) Impresa flusso in entrata (FE) Analisi degli invesimeni Il bilancio è una sinesi a poseriori della siuazione di un'azienda. La valuazione degli invesimeni è un enaivo di valuare a priori la validià delle scele dell'azienda. L'invesimeno

Dettagli

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio METODI DECISIONALI PER L'AZIENDA www.lvprojec.com Do. Loi Nevio Generalià sui sisemi dinamici. Variabili di sao, di ingresso, di uscia. Sisemi discrei. Sisemi lineari. Paper: Dynamic Modelling Do. Loi

Dettagli

Osservabilità (1 parte)

Osservabilità (1 parte) eoria dei sisemi - Capiolo 9 sservabilià ( pare) Inroduzione al problema della osservabilià: osservazione e ricosruzione. Sai indisinguibili e sai non osservabili...3 Soospazi di osservabilià e non osservabilià

Dettagli