Capitolo III: I Regolatori

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Capitolo III: I Regolatori"

Transcript

1 SCC Cap. III: Regolaor Capolo III: I Regolaor III-1: Inrouzone Il regolaore ha l ompo sablre l azone orreva a apporare n ngresso al proesso, per mezzo ell auaore; l segnale n usa al regolaore (s) è funzone ell ngresso (e) [sf(e)], seono la legge onrollo el regolaore. S hanno ue p fonamenal regolaor: a algormo sanar (ID) e a algormo avanzao. I regolaor ID sono fao pù usa ne proess nusral (olre l 95% e as, on presazon he sono onserae n genere aeabl), menre le applazon egl alr sono rserva a poh as proess relavamene ompless e ffl a onrollare. Ne regolaor avanza, la legge onrollo può essere esremamene sofsaa e ueso, n eora, permee oenere presazon molo superor; eagl sul progeo e l onfrono presazon, verranno a nella seona pare el orso. Ne prm la legge onrollo è relavamene semple on re omponen fonamenal (roporzonale, Inegrale, Dervava) e sarà llusraa seguo, on rfermeno al loro funzonameno nelle onzon : - Anello Apero, (OL Fgura 3-1a): l ngresso (e) al regolaore è la varable npenene, - Anello Chuso, (CL: Fgura 3-1b): l ngresso (e) pene all azone onrollo, ao he l usa (y) rsene el surbo (), ell azone onrollo (s), o ella varable manpolaa (u) a essa reamene ollegaa. a) b) Fg.3-1: Shema onrollo n anello apero (OL: a) e n anello huso (CL: b) III-2: Il regolaore On-Off Queso è un aso parolare regolaore sanar, on una legge onrollo esremamene semple; l usa vara ra ue valor, a seona el segno ell errore: s(), per e < ; s()1, per e >, (o veversa). Con rfermeno alla Fgura 3-2, l funzonameno OL è mmeao; n onzon CL, nell poes he l azone onrollo sponble sa suffenemene grane a far ambare segno l errore, s osserva he l usa el proesso ha un anameno osllane (araersa ueso po regolaore). Le presazon sono puoso sarse; n ompenso è molo semple e eonomo; è ulzzao n applazon basso lvello (es: onrollo emperaura salabagno), uano è aeable un nervallo errore norno al valore eserao. Una varane ueso regolaore, è l Relè he rova applazon nella enfazone el proesso, poranolo n onzon osllazone onrollaa (sablà margnale). III-1

2 SCC Cap. III: Regolaor Fg.3-2: Anamen nel empo errore (e) e segnale (s) per l regolaore On-Off n shem OL e CL III-3: Il regolaore roporzonale () Il proporzonale osuse la omponene base ell azone onrollo; la varazone el segnale (s) è reamene proporzonale a uelle ell errore (e): s() e(). È araerzzao a un uno paramero (osane azone proporzonale o guaagno). Ne regolaor nusral a vole s parla bana proporzonalà (B), efna ome: B 1% / Con rfermeno alla Fgura 3-3, l funzonameno OL è mmeao anhe n ueso aso; l anameno el segnale onrollo è proporzonale all errore n usa: a errore osane orrspone segnale osane, a errore resene segnale resene. Nel aso CL, s osserva he l usa (y) al proesso rsene ell azone onrollo (s) e onseguenza anhe l errore (er-y) mnuse, rspeo al aso Senza Conrollo (SC). Nell poes he per un ero peroo empo l errore sa osane, anhe l azone onrollo rmane osane: s raggunge osì una suazone nella uale l ssema s manene bloao su una poszone sane a uella eseraa, on uno sosameno resuo (offse), he è la peularà ell azone onrollo (nella rsposa a un ngresso po grano). Un esempo alolo e la mosrazone anala verranno effeua pù avan. er elmnare ueso sosameno è neessaro he l azone onrollo aumen nel aso errore osane: ueso pora alla nrouzone ella omponene Inegrale. SC Fg.3-3: Anamen nel empo errore (e) e segnale (s) per l regolaore n shem OL e CL (SC: Senza Conrollo, : on Conrollo roporzonale) SC III-2

3 SCC Cap. III: Regolaor III-4: Il regolaore roporzonale Inegrale (I) Il regolaore roporzonale Inegrale è l po pù ffuso nelle applazon nusral. In ueso aso nella varazone el segnale (s), alla omponene proporzonale all errore, s aggunge la omponene proporzonale all negrale ell errore (e) nel empo: s( ) e( ) e( ) Olre al guaagno, è araerzzao a un alro paramero, la osane azone negrale, he s msura n unà empo e rappresena l empo al uale la omponene negrale vene uguale alla omponene proporzonale, nel aso errore osane. Il funzonameno OL el regolaore I è rporao n Fgura 3-4, evenzano l onrbuo elle ue omponen; n parolare la omponene Inegrale eermna un aumeno el segnale onrollo a errore osane. Nella rsposa n CL vene llusrao ome la omponene Inegrale permee elmnare l offse (nel aso ngresso a grano); vene messo n evenza anhe l anameno osllane nella rsposa, ovuo all negrale. I Fg.3-4: Anamen nel empo errore (e) e segnale (s) per l regolaore I n shem OL e CL III-5: Il regolaore roporzonale Dervavo (D) La omponene ervava nroue nell azone onrollo un elemeno proporzonale alla ervaa ell errore: e( ) s( ) e( ) Olre al guaagno, è araerzzao a un alro paramero, la osane azone ervava, anh essa msuraa n unà empo. Il vanaggo ella omponene ervava è he la rsposa è pù prona rspeo al regolaore o al I, ual anno un onrbuo nzale polo nel aso errore polo; lo svanaggo è osuo alla sensblà a rumor (surb on mea nulla e srbuzone ausale, ual spesso hanno una ervaa he amba segno nel empo on freuenza elevaa): l usa al regolaore vara brusamene, solleano nulmene l ssema auazone. er l regolaore D (Fgura 3-5), rmane l problema ello sosameno resuo (offse), perhé a errore osane la omponene ervava à un onrbuo nullo; per uese ragon, l D non s usa uas ma a solo; la omponene ervava è agguna al I per are l regolaore ID. III-3

4 SCC Cap. III: Regolaor a) b) ) Fg.3-5: Anamen nel empo errore (e) e segnale (s) n shem OL e CL per l regolaore D; a) rsposa a un segnale a grano n OL, b) rsposa a una rampa n OL, ) rsposa a un grano n CL III-6: Il regolaore roporzonale Inegrale Dervavo (ID) In ueso aso l algormo vene: e( ) s( ) e( ) e( ) Il regolaore è araerzzao a re paramer (,, ), ual, on una opporuna snonzzazone, permeono realzzare vanagg elle re omponen; spesso è possble ronurre anhe algorm pù avanza a una sruura base po I o ID, on agguna uleror omponen (flr) o ompensaor. A olo esempo s rporano n Fgura 3-6 le rspose n anello huso regolaor po verso, I, ID a ngress a grano: a) varazon el rfermeno, b) abbameno el surbo. In esrema snes, per rbare le araershe fonamenal: l regolaore presena offse, l I permee elmnare l offse e nroue osllazon nella rsposa, l ID rsula pù rapo el I (ma può amplfare rumor). Fg.3-6: Rspose ualave regolaor, I, ID per varazone el rfermeno (a) e soppressone el surbo (b). Nella Fgura 3-7 sono anhe rpora gl anamen ella rsposa un regolaore I al varare el guaagno; s osserva ome un aumeno el guaagno pora a rspose pù velo e osllan, fno a eermnare nsablà olre un ero valore el guaagno massmo. III-4

5 SCC Cap. III: Regolaor Fg.3-7: Rspose ualave un regolaore I all aumenare el guaagno III-7: Suo ella Rsposa un Ssema on Regolaor vers III-7.1: Imposazone el problema S fa rfermeno al ssema shemazzao n Fgura 3-8; una poraa luo n ngresso F, a emperaura, vene rsalaa a una emperaura u per mezzo un serpenno perorso a vapore. Sono prevs surb sulla ; s aoa uno shema onrollo n reroazone: la msura emperaura è rasmessa al regolaore, ove è onfronaa on l valore eserao n funzone ell errore vene sabla l enà ell azone orreva he s aua per mezzo ella valvola regolazone ella poraa vapore. S vuole moellare l ssema e valuare uanavamene l anameno ella emperaura nel empo on vers p regolaore. D REGOLAORE u AUAORE v ROCESSO u MISURAORE Fg.3-8: Il serbaoo rsalao e lo shema onrollo n reroazone ella emperaura III-5

6 SCC Cap. III: Regolaor Ipoes: erfeo mselameno u ropreà D osan: ρ, C p ; Volume osane: F F u F Msuraore perfeo m Auaore e sambaore eal; l alore rasfero al proesso può essere espresso reamene ome una funzone ell errore: Qf(e) Blano energeo sul serbaoo rsalao: Allo Sao Sazonaro Inzale: F C Q Q F C F C ( ) W λ 1 F C Q F C VρC p In regme namo: F C ( ) Vρ Q : on ; F FC p In ermn varable sosameno s ha: ove,,, sono le varabl evazone allo sao sazonaro,,. La formulazone el problema n ermn general per enere ono ngress vers (surb e azon onrollo ) è la seguene: () f ( ) on : () f ( ); ( ) ( ) 1 f 2 III-7.2: Rspose per ngress e azon onrollo verse Dsurbo su, senza onrollo In ueso aso l una varazone nel empo rspeo allo sazonaro nzale è sulla emperaura ngresso, menre l azone onrollo (e un l alore forno non varano); s ha: L euazone rsolvene vene allora: ( ) La u soluzone è: III-6

7 SCC Cap. III: Regolaor 1 e S oene la sola rsposa po esponenzale el ssema el prmo orne (Fgura 3-9): una perurbazone a grano ampezza sulla emperaura ngresso s rsene (nelle poes assune) ome una perurbazone uguale ampezza sulla al nuovo sazonaro (per ). Dsurbo su e onrollo proporzonale In ueso aso le varazon nel empo rspeo allo sazonaro nzale s hanno sa sulla emperaura ngresso he sull azone onrollo, he vara on legge ; un: e ( ) L euazone rsolvene vene allora: ( ) La u soluzone è: 1 1 e (1 ) La rsposa è anora po esponenzale (Fgura 3-9), on alune fferenze: - la ervaa nell orgne vale () / non amba, ao he al empo zero l ssema non rsene ell azone onrollo; - al nuovo sazonaro (per ), lo sosameno ella emperaura ene al valore: /(1 ); resa un uno sosameno resuo (offse) rspeo al valore eserao (ovvero ). - Il valore ell offse può essere mnuo aumenano l guaagno el regolaore, oè l azone onrollo; ueso è vero (maemaamene) per ssem orne basso (n<2); n realà (per ssem orne superore e n presenza raro), all aumenare el guaagno el regolaore la rsposa può venre nsable (ve sablà). Fg.3-9: Anameno ella emperaura nel empo: senza onrollo (SC), on regolaore proporzonale, all aumenare el guaagno el regolaore III-7

8 SCC Cap. III: Regolaor Dsurbo su e onrollo roporzonale-inegrale (I) In ueso aso le varazon nel empo rspeo allo sazonaro nzale s hanno sa sulla emperaura ngresso he sull azone onrollo, he vara on legge I; un: ( ) I I I e e, ) ( ) ( L euazone rsolvene vene allora: ( ) ) ( I In ueso aso abbamo un euazone negro-fferenzale, la u soluzone non è mmeaa, ne as pù general, operano nel omno empo. Quesa è una elle movazon per rformulare l problema nel omno s, araverso la rasformaa Laplae. III-8

PROCESSI CASUALI. Segnali deterministici e casuali

PROCESSI CASUALI. Segnali deterministici e casuali POCESSI CASUALI POCESSI CASUALI Segnal deermnsc e casual Un segnale () s dce DEEMIISICO se è una funzone noa d, coè se, fssao un qualunque sane d empo o, l valore ( o ) assuno dal segnale è noo con esaezza

Dettagli

DIODO E RADDRIZZATORI DI PRECISIONE

DIODO E RADDRIZZATORI DI PRECISIONE OO E AZZATO PECSONE raddrzzar ( refcar) sn crcu mpega per la rasfrmazne d segnal bdreznal n segnal undreznal. Usand, però, dd per raddrzzare segnal, s avrà l svanagg d nn per raddrzzare segnal la cu ampezza

Dettagli

Lezione n.7. Variabili di stato

Lezione n.7. Variabili di stato Lezione n.7 Variabili di sao 1. Variabili di sao 2. Funzione impulsiva di Dirac 3. Generaori impulsivi per variabili di sao disconinue 3.1 ondizioni iniziali e generaori impulsivi In quesa lezione inrodurremo

Dettagli

Struttura dei tassi per scadenza

Struttura dei tassi per scadenza Sruura dei assi per scadenza /45-Unià 7. Definizione del modello ramie gli -coupon bonds preseni sul mercao Ipoesi di parenza Sul mercao sono preseni all isane ZCB che scadono fra,2,,n periodi Periodo:

Dettagli

TELEGESTIONE E CONTROLLO DI QUALUNQUE TIPO DI CALDAIE E BRUCIATORI PER QUALUNQUE TIPO DI IMPIANTO

TELEGESTIONE E CONTROLLO DI QUALUNQUE TIPO DI CALDAIE E BRUCIATORI PER QUALUNQUE TIPO DI IMPIANTO NUMERO 2 del 23.04.08 COSER COSER IME Applicazioni Apparecchiature Numero 2 del 23-04-08 APPLICAZIONI APPARECCHIAURE E IMPIANI LE VARIE SOLUZIONI SARANNO ELENCAE NEL MODO PIÙ SINEICO POSSIBILE. ROVAA LA

Dettagli

Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine

Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine Lezione 4 Ripoe canoniche dei iemi del primo e del econdo ordine Parameri caraeriici della ripoa allo calino Per ripoe canoniche i inendono le ripoe dei iemi dinamici ai egnali coiddei canonici (impulo,

Dettagli

Il condensatore. Carica del condensatore: tempo caratteristico

Il condensatore. Carica del condensatore: tempo caratteristico Il condensaore IASSUNTO: apacia ondensaori a geomeria piana, cilindrica, sferica La cosane dielerica ε r ondensaore ceramico, a cara, eleroliico Il condensaore come elemeno di circuio: ondensaori in serie

Dettagli

VALORE EFFICACE DEL VOLTAGGIO

VALORE EFFICACE DEL VOLTAGGIO Fisica generale, a.a. /4 TUTOATO 8: ALO EFFC &CCUT N A.C. ALOE EFFCE DEL OLTAGGO 8.. La leura con un mulimero digiale del volaggio ai morsei di un generaore fornisce + in coninua e 5.5 in alernaa. Tra

Dettagli

7 I convertitori Analogico/Digitali.

7 I convertitori Analogico/Digitali. 7 I converiori Analogico/Digiali. 7 1. Generalià Un volmero numerico, come si evince dal nome, è uno srumeno che effeua misure di ensione mediane una conversione analogicodigiale della grandezza in ingresso

Dettagli

Lezione 11. Inflazione, produzione e crescita della moneta

Lezione 11. Inflazione, produzione e crescita della moneta Lezione 11 (BAG cap. 10) Inflazione, produzione e crescia della monea Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia Tre relazioni ra produzione, disoccupazione e inflazione Legge di Okun

Dettagli

Corrente elettrica e circuiti

Corrente elettrica e circuiti Corrente elettrca e crcut Generator d forza elettromotrce Intenstà d corrente Legg d Ohm esstenza e resstvtà esstenze n sere e n parallelo Effetto termco della corrente Legg d Krchhoff Corrente elettrca

Dettagli

come si tiene conto della limitazione d ampiezza e di velocità come si tiene conto della limitazione di frequenza come si tiene conto degli offset

come si tiene conto della limitazione d ampiezza e di velocità come si tiene conto della limitazione di frequenza come si tiene conto degli offset 8a resentazone della lezone 8 /6 Obettv come s tene conto della lmtazone d ampezza e d veloctà come s tene conto della lmtazone d reqenza come s tene conto degl oset 8a saper preved. col calcolo l nlenza

Dettagli

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p =

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p = 5. Rette e piani in R 3 ; sfere. In questo paragrafo studiamo le rette, i piani e le sfere in R 3. Ci sono due modi per desrivere piani e rette in R 3 : mediante equazioni artesiane oppure mediante equazioni

Dettagli

TEMPORIZZATORE CON Ic NE 555 ( a cura del prof A. GARRO ) SCHEMA A BLOCCHI : NE555 1 T. reset (4) VCC R6 10K. C5 10uF

TEMPORIZZATORE CON Ic NE 555 ( a cura del prof A. GARRO ) SCHEMA A BLOCCHI : NE555 1 T. reset (4) VCC R6 10K. C5 10uF TEMPOIZZATOE CON Ic NE 555 ( a cura del prof A GAO ) SCHEMA A BLOCCHI : M (8) NE555 00K C7 00uF STAT S 4 K C6 0uF (6) (5) () TH C T A B 0 0 Q S Q rese T DIS (7) OUT () 0 T T09*()*C7 (sec) GND () (4) 6

Dettagli

Unità Didattica N 25. La corrente elettrica

Unità Didattica N 25. La corrente elettrica Untà Ddattca N 5 : La corrente elettrca 1 Untà Ddattca N 5 La corrente elettrca 01) Il problema dell elettrocnetca 0) La corrente elettrca ne conduttor metallc 03) Crcuto elettrco elementare 04) La prma

Dettagli

ALCUNI ELEMENTI DI TEORIA DELLA STIMA

ALCUNI ELEMENTI DI TEORIA DELLA STIMA ALCUNI ELEMENTI DI TEORIA DELLA STIMA Quado s vuole valutare u parametro θ ad esempo: meda, varaza, proporzoe, oeffete d regressoe leare, oeffete d orrelazoe leare, e) d ua popolazoe medate u ampoe asuale,

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

Problema 1: Una collisione tra meteoriti

Problema 1: Una collisione tra meteoriti Problema : Una colliione ra meeorii Problemi di imulazione della econda prova di maemaica Eami di ao liceo cienifico 5 febbraio 05 Lo udene deve volgere un olo problema a ua cela Tempo maimo aegnao alla

Dettagli

MODELLI PER LA STRUTTURA A TERMINE DEI TASSI

MODELLI PER LA STRUTTURA A TERMINE DEI TASSI Alma Maer Sudiorum Universià di Bologna FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Maemaica Maeria di Tesi: Maemaica per le applicazioni economiche e finanziarie MODELLI PER

Dettagli

Capitolo 3 Il trattamento statistico dei dati

Capitolo 3 Il trattamento statistico dei dati Capolo 3 Il raameo sasco de da 3. - Geeralà Nel descrere feome, occorre da u lao elaborare de modell (coè delle relazo maemache fra le gradezze, che coseao d descrere e preedere l feomeo) e dall alro dars

Dettagli

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO.

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO. elazoe d laboratoro d Fsca corso M-Z Laboratoro d Fsca del Dpartmeto d Fsca e Astrooma dell Uverstà degl Stud d Cataa. Scala Stefaa. AGOMENTO: MSUA DELLA ESSTENZA ELETTCA CON L METODO OLT-AMPEOMETCO. NTODUZONE:

Dettagli

NOTA METODOLOGICA SUL MODELLO PREVISIVO EXCELSIOR PER GLI ANNI 2013-2017

NOTA METODOLOGICA SUL MODELLO PREVISIVO EXCELSIOR PER GLI ANNI 2013-2017 NOTA METODOLOGICA SUL MODELLO PREVISIVO EXCELSIOR PER GLI ANNI 2013-2017 1 SOMMARIO PREMESSA... 3 1. IL MODELLO ECONOMETRICO PER LA STIMA DEGLI STOCK SETTORIALI... 3 Foni... 3 Meodologia... 3 La formulazione

Dettagli

Il villaggio delle fiabe

Il villaggio delle fiabe Il villaggio delle fiabe Idea Progetto bambini 2^ A A. Mei Costruzione Direzione dei lavori maestre L idea di partenza Il DADO è un cubo. Noi siamo molto curiosi e ci siamo posti questa domanda: Come sono

Dettagli

Esercizio 1 ( es 1 lez 11) La matrice è diagonalizzabile: verificare, trovando la matrice diagonalizzante, che A è simile a A.

Esercizio 1 ( es 1 lez 11) La matrice è diagonalizzabile: verificare, trovando la matrice diagonalizzante, che A è simile a A. Eserciio ( es le La marice è diagonaliabile: verificare, rovando la marice diagonaliane, che è simile a. Esisono re auovalori: mol.alg(- dim V - ; mol.alg( dim V ; mol.alg(- dim V -. Esise una marice simile

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

1 2-6 7-74 Commento * Continuazione riga! Viene ignorato tutto quello che viene scritto dopo questo carattere [etichett a]

1 2-6 7-74 Commento * Continuazione riga! Viene ignorato tutto quello che viene scritto dopo questo carattere [etichett a] La programmazione è l'arte di far ompiere al omputer una suessione di operazioni atte ad ottenere il risultato voluto. Srivere un programma è un po' ome dialogare ol omputer, dobbiamo fornirgli delle informazioni

Dettagli

COMPORTAMENTO SISMICO DELLE STRUTTURE

COMPORTAMENTO SISMICO DELLE STRUTTURE COMPORTAMENTO SISMICO DELLE STRUTTURE Durane un erreoo, le oscillazioni del erreno di fondazione provocano nelle sovrasani sruure delle oscillazioni forzae. Quando il erreoo si arresa, i ovieni della sruura

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboraorio di Algorimi e Sruure Dai Aniello Murano hp://people.na.infn.i people.na.infn.i/ ~murano/ 1 Algorimi per il calcolo di percori minimi u un grafo 1 Un emplice problema Pr oblema: Supponiamo che

Dettagli

Leggere i dati da file

Leggere i dati da file Esempo %soluzon d una equazone d secondo grado dsp('soluzon d a^+b+c') anput('damm l coeffcente a '); bnput('damm l coeffcente b '); cnput('damm l coeffcente c '); deltab^-4*a*c; f delta0 dsp('soluzon

Dettagli

Gestione della produzione MRP e MRPII

Gestione della produzione MRP e MRPII Sommario Gesione della produzione e Inroduzione Classificazione Misure di presazione La Disina Base Logica Lo Sizing in II Inroduzione Inroduzione Def: Gesire la produzione significa generare e sfruare

Dettagli

Strutture deformabili torsionalmente: analisi in FaTA-E

Strutture deformabili torsionalmente: analisi in FaTA-E Strutture deformabl torsonalmente: anals n FaTA-E Il comportamento dsspatvo deale è negatvamente nfluenzato nel caso d strutture deformabl torsonalmente. Nelle Norme Tecnche cò vene consderato rducendo

Dettagli

Progetto Lauree Scientifiche. La corrente elettrica

Progetto Lauree Scientifiche. La corrente elettrica Progetto Lauree Scentfche La corrente elettrca Conoscenze d base Forza elettromotrce Corrente Elettrca esstenza e resstvtà Legge d Ohm Crcut 2 Una spra d rame n equlbro elettrostatco In un crcuto semplce

Dettagli

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE UNA RASSEGNA SUI METODI DI STIMA DEL VALUE at RISK (VaR) Chara Pederzol - Costanza Torrcell Dpartmento d Economa Poltca - Unverstà degl Stud d Modena e Reggo Emla Marzo 999 INDICE Introduzone. Il concetto

Dettagli

Il linguaggio Pascal. Piero Gallo Fabio Salerno

Il linguaggio Pascal. Piero Gallo Fabio Salerno Il linguaggio Pasal Piero Gallo Fabio Salerno Introduzione alla programmazione in Pasal In ogni momento della nostra vita siamo hiamati a risolvere dei problemi. A volte operiamo senza riflettere, spinti

Dettagli

Circuiti del primo ordine

Circuiti del primo ordine Circuii del primo ordine Un circuio del primo ordine è caraerizzao da un equazione differenziale del primo ordine I circuii del primo ordine sono di due ipi: L o C Teoria dei Circuii Prof. Luca Perregrini

Dettagli

GUIDA DELL UTENTE CARATTERISTICHE PRINCIPALI

GUIDA DELL UTENTE CARATTERISTICHE PRINCIPALI DORO Analisi e verifia di sezioni in.a., preompresso/post-teso e miste aiaio-alestruzzo v. 3.01.29 del 17 marzo 2015 dott. ing. FERRARI Alberto www.ferrarialberto.it GUIDA DELL UTENTE CARATTERISTICHE PRINCIPALI

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

5. Il lavoro di un gas perfetto

5. Il lavoro di un gas perfetto 5. Il lavoro d un gas perfetto ome s esprme l energa nterna d un gas perfetto? Un gas perfetto è l sstema pù semplce che possamo mmagnare: le nterazon a dstanza fra le molecole sono così debol da essere

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Raffinamenti dell equilibrio di Nash

Raffinamenti dell equilibrio di Nash Raffinamenti dell equilibrio di Nah equilibri perfetti nei ottogiohi (SPE) ed altro Appunti a ura di Fioravante PATRONE verione del: maggio ndie Equilibri perfetti nei ottogiohi (SPE) SPE problematii 4

Dettagli

La Valutazione della Ricerca nelle Università Italiane: la SUA-RD e le prospettive future.

La Valutazione della Ricerca nelle Università Italiane: la SUA-RD e le prospettive future. La Valutazione della Ricerca nelle Università Italiane: la SUA-RD e le prospettive future. Massimo Castagnaro Coordinatore AVA - Consiglio Direttivo ANVUR massimo.castagnaro@anvur.org Roma, 11.11.2014

Dettagli

Valore di costo procedimen+ sinte+ci

Valore di costo procedimen+ sinte+ci Corso di valutazione es+ma+va del proge5o Clasa a.a. 2012/13 Valore di costo procedimen+ sinte+ci Docente Collaboratore prof. Stefano Stanghellini arch. Pietro Bonifaci Il mercato delle costruzioni LE

Dettagli

Figura 2.1. A sottoinsieme di B

Figura 2.1. A sottoinsieme di B G Sammito, ernardo, Formulario di matematia Insiemi F Cimolin, L arletta, L Lussardi Insiemi Generalità Un insieme è una ollezione distinguibile di oggetti, detti elementi dell'insieme Quando un elemento

Dettagli

Esercizi svolti di teoria dei segnali

Esercizi svolti di teoria dei segnali Esercizi svoli di eoria dei segnali Alessia De Rosa Mauro Barni Novembre Indice Inroduzione ii Caraerisiche dei segnali deerminai Sviluppo in Serie di Fourier di segnali periodici Trasformaa di Fourier

Dettagli

GIRO DELLA MORTE PER UN CORPO CHE ROTOLA

GIRO DELLA MORTE PER UN CORPO CHE ROTOLA 0. IL OETO D IERZIA GIRO DELLA ORTE ER U CORO CHE ROTOLA ell approfondimento «Giro della morte per un corpo che scivola» si esamina il comportamento di un punto materiale che supera il giro della morte

Dettagli

Principi di ingegneria elettrica. Lezione 19 a. Conversione elettromeccanica dell'energia Trasmissione e distribuzione dell'energia elettrica

Principi di ingegneria elettrica. Lezione 19 a. Conversione elettromeccanica dell'energia Trasmissione e distribuzione dell'energia elettrica Principi di ingegneria elerica Lezione 19 a Conversione eleromeccanica dell'energia Trasmissione e disribuzione dell'energia elerica acchina elerica elemenare Una barra condurice di lunghezza l immersa

Dettagli

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri Artmetca de calcolator Rappresentazone de numer natural e relatv Addzone e sommator: : a propagazone d rporto, veloce, con segno Moltplcazone e moltplcator: senza segno, con segno e algortmo d Booth Rappresentazone

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

Argomenti. Misure di corrente elettrica continua, di differenza di potenziale e di resistenza elettrica.

Argomenti. Misure di corrente elettrica continua, di differenza di potenziale e di resistenza elettrica. ppunt per l corso d Laboratoro d Fsca per le Scuole Superor rgoent Msure d corrente elettrca contnua, d dfferenza d potenzale e d resstenza elettrca. Struent d sura: prncp d funzonaento. Coe s effettuano

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA Capializzazioe semplice e composa MATEMATICA FINANZIARIA Immagiiamo di impiegare 4500 per ai i ua operazioe fiaziaria che frua u asso del, % auo. Quao avremo realizzao alla fie dell operazioe? I u coeso

Dettagli

LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE

LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI Dipartimeto di Sieze Eoomihe Uiversità di Veroa VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE Lezioi di Matematia per

Dettagli

CONSULTAZIONE PUBBLICA IN MATERIA DI REGOLAZIONE TARIFFARIA DEI

CONSULTAZIONE PUBBLICA IN MATERIA DI REGOLAZIONE TARIFFARIA DEI DOCUMENTO PER LA CONSULTAZIONE 356/2013/R/IDR CONSULTAZIONE PUBBLICA IN MATERIA DI REGOLAZIONE TARIFFARIA DEI SERVIZI IDRICI Documeno per la consulazione nell ambio del procedimeno avviao con la deliberazione

Dettagli

seguendo un trend di costante crescita, ciò grazie ad un assiduo impegno nella progettazione, nello sviluppo e nella produzione di motori elettrici

seguendo un trend di costante crescita, ciò grazie ad un assiduo impegno nella progettazione, nello sviluppo e nella produzione di motori elettrici OTORI A ORRENTE ONTINUA OTORIDUTTORI W W W.DAGU.IT cerificazioni Dagu s.r.l. è un azienda che si è sviluppaa negli anni con discrea rapidià, seguendo un rend di cosane crescia, ciò grazie ad un assiduo

Dettagli

Dall atomo di Bohr alla costante di struttura fine

Dall atomo di Bohr alla costante di struttura fine Dall atomo di Bohr alla ostate di struttura fie. INFORMAZIONI SPETTROSCOPICHE SUGLI ATOMI E be oto he ogi sostaza opportuamete eitata emette radiazioi elettromagetihe. Co uo spettrosopio, o strumeti aaloghi,

Dettagli

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio Il Moello elzionle Proposto E. F. o nel 1970 per vorire l inipenenz ei ti e reso isponiile ome moello logio in DM reli nel 1981 si s sul onetto mtemtio i relzione, questo ornise l moello un se teori he

Dettagli

VBA. Il Visual Basic for Application. Funz ioni

VBA. Il Visual Basic for Application. Funz ioni VBA Il Visual Basic for Application Le funz ioni Le procedure Funz ioni µ E pos s ibile (e cons igliato) s comporre un problema i n sotto- problemi e combinar e poi assieme le s oluz i oni per ottenere

Dettagli

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso. I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess

Dettagli

Una proposta per la matematica del Secondo Biennio e per il quinto anno tra contenuti e attività

Una proposta per la matematica del Secondo Biennio e per il quinto anno tra contenuti e attività XXXII CONVEGNO UMI-CIIM IL VALORE FORMATIVO DELLA MATEMATICA NELLA SCUOLA DI OGGI dedicato a Federigo Enriques Livorno, 16-18 ottobre 2014 Una proposta per la matematica del Secondo Biennio e per il quinto

Dettagli

ATTREZZATURE A TEMPERATURA POSITIVA

ATTREZZATURE A TEMPERATURA POSITIVA ANUGA COLONIA 05-09 OTTOBRE 2013 Ragione Sociale Inviare a : all'attenzione di : Padiglione Koelnmesse Srl Giulia Falchetti/Alessandra Cola Viale Sarca 336 F tel. 02/86961336 Stand 20126 Milano fax 02/89095134

Dettagli

Buon appetito 3. comunicazione. grammatica. vocabolario Espresso. bene / buono

Buon appetito 3. comunicazione. grammatica. vocabolario Espresso. bene / buono Buon appeio comunicazione Cosa desidera? Vorrei solo un primo Che cosa avee oggi? Prende un caffè? Scusi, mi pora ancora un po di pane? Il cono, per coresia È possibile prenoare un avolo? grammaica I verbi

Dettagli

Product Overview. ITI Apps Enterprise apps for mobile devices

Product Overview. ITI Apps Enterprise apps for mobile devices Product Overview ITI Apps Enterprise apps for mobile devices ITI idea, proge2a e sviluppa apps per gli uten6 business/enterprise che nell ipad, e nelle altre pia2aforme mobili, possono trovare un device

Dettagli

ARCHITETTI JUNIOR PROVA PRATICA

ARCHITETTI JUNIOR PROVA PRATICA ARCHTETT JUNOR PROVA PRATCA TEMA 1 Stesura grafica di una planimetria catastale Avete ricevuto via fax, da un vostro cliente, la planimetria catastale allegata, riguardante una unità immobiliare residenziale.

Dettagli

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

Controllo di Gestione (CdG)

Controllo di Gestione (CdG) Controllo di Gestione (CdG) Controllo di gestione (CdG) Controllo dei risultati a. Condizioni di fattiilità ed effiaia. Elementi. Grado di rigidità d. Potenzialità e. Svantaggi f. Profili istituzionali

Dettagli

Esercizi Le leggi dei gas. Lo stato gassoso

Esercizi Le leggi dei gas. Lo stato gassoso Esercizi Le lei dei as Lo stato assoso Ua certa quatità di as cloro, alla pressioe di,5 atm, occupa il volume di 0,58 litri. Calcola il volume occupato dal as se la pressioe viee portata a,0 atm e se la

Dettagli

Misura della distanza focale. di una lente convergente. Metodo di Bessel

Misura della distanza focale. di una lente convergente. Metodo di Bessel Zuccarello Francesco Laboratoro d Fsca II Msura della dstanza focale d una lente convergente Metodo d Bessel A.A. 003-004 Indce Introduzone..pag. 3 Presuppost Teorc.pag. 4 Anals de dat.pag. 8. Modo d operare...pag.

Dettagli

COMUNICAZIONE AI GRUPPI DI LAVORO SIDEA (13/09/02) LE CONDIZIONI DI OTTIMALITÀ PER LA DETERMINAZIONE DELLE CATTURE DI PESCE

COMUNICAZIONE AI GRUPPI DI LAVORO SIDEA (13/09/02) LE CONDIZIONI DI OTTIMALITÀ PER LA DETERMINAZIONE DELLE CATTURE DI PESCE COMUNICAZIONE AI GRUPPI DI LAVORO SIDEA (13/9/2) ECONOMIA E POLITICA DEL SETTORE ITTICO 1.INTRODUZIONE. LE CONDIZIONI DI OTTIMALITÀ PER LA DETERMINAZIONE DELLE CATTURE DI PESCE (una applcazone ad un contesto

Dettagli

IL PIANETA TERRA. IL RETICOLATO TERRESTRE POLI: sono i punti di intersezione tra l asse terrestre e la superficie terrestre. s i pia i paralleli

IL PIANETA TERRA. IL RETICOLATO TERRESTRE POLI: sono i punti di intersezione tra l asse terrestre e la superficie terrestre. s i pia i paralleli IL PIANETA TERRA IL RETICOLATO TERRESTRE POLI: sono i punti di intersezione tra l asse terrestre e la superficie terrestre. s i pia i paralleli all a r e a su. EQUATORE: piano perpendic lare all i rotazione,

Dettagli

Procedure di modellazione di capannoni industriali prefabbricati esistenti

Procedure di modellazione di capannoni industriali prefabbricati esistenti Procedure di modellazione di capannoni industriali prefabbricati esistenti Flavio Tartero, Libero Professionista Davide Bellotti, EUCENTRE Roberto Nascimbene, EUCENTRE SOMMARIO Nel presente lavoro vengono

Dettagli

Devi fare una fattura elettronica alla PA? Tu fatturi, al resto ci pensiamo noi. Servizio Fatt PA Lextel

Devi fare una fattura elettronica alla PA? Tu fatturi, al resto ci pensiamo noi. Servizio Fatt PA Lextel Devi fare una fattura elettronica alla PA? Tu fatturi, al resto ci pensiamo noi. Servizio Fatt PA Lextel FATTURAZIONE ELETTRONICA Fa# PA è il servizio online di fa/urazione ele/ronica semplice e sicuro

Dettagli

Analisi funzionale. Riccarda Rossi Lezione 9

Analisi funzionale. Riccarda Rossi Lezione 9 Riarda Rossi Lezione 9 Caratterizzazione della onvergenza debole in L p (Ω) Siano 1 < p < e {f n}, f L p (Ω): allora f n f in L p (Ω) Teorema di ompattezza debole in L p (Ω) Teorema Siano 1 < p < e {f

Dettagli

Il confronto tra DUE campioni indipendenti

Il confronto tra DUE campioni indipendenti Il cofroto tra DUE camioi idiedeti Il cofroto tra DUE camioi idiedeti Cofroto tra due medie I questi casi siamo iteressati a cofrotare il valore medio di due camioi i cui i le osservazioi i u camioe soo

Dettagli

Lampade: MASTER SON-T PIA Plus

Lampade: MASTER SON-T PIA Plus 13, Seembre 10 Lampade: Plus Lampade ai vapori di sodio ad ala pressione di ala qualià realizzae con ecnologia PIA (Philips Inegraed Anenna). Vanaggi La ecnologia PIA aumena l'affidabilià e riduce il asso

Dettagli

1. Integrazione di funzioni razionali fratte

1. Integrazione di funzioni razionali fratte . Integazone d fnzon azonal fatte P S songa d vole calcolae n ntegale del to: d Q ove P e Q sono olno nell ndetenata d gado assegnato. Sonao ce: P a n n a n n a a Q b b b b oleent s etod d ntegazone I

Dettagli

x = AP = AC PC = R (θ sen θ) y = PB = PQ + BQ = R (1 cos θ).

x = AP = AC PC = R (θ sen θ) y = PB = PQ + BQ = R (1 cos θ). L iloide L urv no oggi ome iloide fu onsider per primo d Glileo, he in un primo momeno ongeurò he l re dell figur rhius fosse re vole quell del erhio he l gener Più rdi, forse us di qulhe esperimeno ml

Dettagli

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno Idc d Poszoe Gl dc s poszoe soo msure stetche ( valor caratterstc ) che descrvoo la tedeza cetrale d u feomeo La tedeza cetrale è, prma approssmazoe, la modaltà della varable verso la quale cas tedoo a

Dettagli

AcidSoft. Le nostre soluzioni. Innovazione

AcidSoft. Le nostre soluzioni. Innovazione AiSoft AiSoft ase alla passioe per l'iformatio teology e si oretizza i ua realtà impreitoriale, ua perfetta reazioe imia tra ooseza teia e reatività per realizzare progetti i grae iovazioe. Le ostre soluzioi

Dettagli

CINEMATICA DEL CORPO RIGIDO

CINEMATICA DEL CORPO RIGIDO INEMTI DE ORPO RIGIDO o tudo della geometra degl potament de punt d un tema materale potzzato come rgdo rentra n quella parte della Meccanca laca che è la nematca. a cnematca tuda pobl movment d un corpo

Dettagli

SPERIMENTAZIONE FARMACI - RIPARTO

SPERIMENTAZIONE FARMACI - RIPARTO SPEIMENTAZIONE FAMAI - IPATO - Sperimentazione SOBIHAEM89-001 sper. n. 18/2014 - Medico esponsabile TOSETTO ALBETO 4.160,00 A. (riscosso con fatt. n. Z 1141 del 12/03/2015 ) - FONDO 3.952,00 - SEVIZIO

Dettagli

Curve caratteristiche meccaniche di motori elettrici C.C.

Curve caratteristiche meccaniche di motori elettrici C.C. Motoi 1 Idie ue aatteistihe meaihe di motoi elettii.. osideazioi geeali Motoi ad eitazioe idipedete 1 Opeazioi o oete d eitazioe ostate Opeazioi o oete d eitazioe aiabile e tesioe d amatua ostate Motoi

Dettagli

STATISTICA Lezioni ed esercizi

STATISTICA Lezioni ed esercizi Uverstà d Toro QUADERNI DIDATTICI del Dpartmeto d Matematca MARIA GARETTO STATISTICA Lezo ed esercz Corso d Laurea Botecologe A.A. / Quadero # Novembre M. Garetto - Statstca Prefazoe I questo quadero

Dettagli

LA TEORIA DELLA RELATIVITÀ GENERALE

LA TEORIA DELLA RELATIVITÀ GENERALE Fo h Eglsh so s blow af h Iala o. LA EOIA DELLA ELAIIÀ GENEALE I: Loao bo lobo@ahoo. www.fsa. Maggo 99. Ggo. Agoso. -I. -Ioo. -Caolo : Pss Goa. Pa..: Foalso lgh ah a sf. Pa..: Goa ffal bas. Pa..: Goa ffal

Dettagli

Sportello Unico Immigrazione NORMATI VA I N MATERI A DI I MMI GRAZI ONE

Sportello Unico Immigrazione NORMATI VA I N MATERI A DI I MMI GRAZI ONE Sportello Unico Immigraione NORMATI VA I N MATERI A DI I MMI GRAZI ONE 38172&(175$/('(//$/(**(%266,),1,( &+(1(66812 675$1,(5262**,251,,1,7$/,$6(1=$815(*2/$5( &2175$772',/$9252('81$//2**,2$'(*8$72 '/JV1

Dettagli

Liste di specie e misure di diversità

Liste di specie e misure di diversità Lte d pece e mure d dvertà Carattertche delle lte d pece I dat ono par, coè hanno molt valor null (a volte la maggoranza!) La gran parte delle pece preent è rara. I fattor ambental che nfluenzano la dtrbuzone

Dettagli

Va, pensiero Chorus of Hebrew Slaves from Verdi s Nabucco

Va, pensiero Chorus of Hebrew Slaves from Verdi s Nabucco a, pensiero Chorus of Hebre Slaves from erdi s Nabuo a, pensiero, sull ali dorate; a, ti posa sui livi, sui olli, Ove olezzano tepide e molli L aure doli del suolo natal! Del Giordano le rive saluta, Di

Dettagli

BOZZA. Lezione n. 20. Stati limite nel cemento armato Stato limite ultimo per tensioni normali

BOZZA. Lezione n. 20. Stati limite nel cemento armato Stato limite ultimo per tensioni normali Lezione n. Stati limite nel cemento armato Stato limite ultimo per tenioni normali Determinazione elle configurazioni i rottura per la ezione Una volta introotti i legami cotitutivi, è poibile eterminare

Dettagli

). Per i tre casi indicati sarà allora: 1: L L 2

). Per i tre casi indicati sarà allora: 1: L L 2 apitolo 0 Enegia potenziale elettica Domane. Il lavoo pe spostae una caica ta ue punti è: L 0(! ). Pe i te casi inicati saà alloa: L (50! 00 ) (50 ) : 0 0 : L 0! 0 3: L 0! 0 [5 ( 5 )] (50 ) [ 0 ( 60 )]

Dettagli

Il sistema AVA e la VQR: la Scheda Unica Annuale della Ricerca Dipartimentale (SUA-RD)

Il sistema AVA e la VQR: la Scheda Unica Annuale della Ricerca Dipartimentale (SUA-RD) Il sistema AVA e la VQR: la Scheda Unica Annuale della Ricerca Dipartimentale (SUA-RD) Massimo Castagnaro Coordinatore AVA - Consiglio Direttivo ANVUR massimo.castagnaro@anvur.org Lecce, 19.02.2014 La

Dettagli

Il futuro del controllo degli insetti dannosi è già qui: semplice ed efficace.

Il futuro del controllo degli insetti dannosi è già qui: semplice ed efficace. Il futuro del controllo degli insetti dannosi è già qui: semplice ed efficace. er ulteriori informazioni www.suterra.com 1. os è il uffer? uffer è una tecnologia sviluppata in esclusiva da Suterra costituita

Dettagli

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO Capitolo 14 EORIA PERURBAIVA DIPENDENE DAL EMPO Nel Cap.11 abbiamo trattato metodi di risoluzione dell equazione di Schrödinger in presenza di perturbazioni indipendenti dal tempo; in questo capitolo trattiamo

Dettagli

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE.

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE. FCA D UN CCUTO SSTO CONTNNT PÙ GNATO CON UN TMNAL COMUN SNZA TMNAL COMUN. Si verifino quttro iruiti on due genertori: genertori on polrità onorde e un terminle omune genertori on polrità disorde e un terminle

Dettagli

SCALA DEI PESI ATOMICI RELATIVI E MEDI

SCALA DEI PESI ATOMICI RELATIVI E MEDI SCALA DEI PESI ATOMICI RELATIVI E MEDI La massa dei singoli atomi ha un ordine di grandezza compreso tra 10-22 e 10-24 g. Per evitare di utilizzare numeri così piccoli, essa è espressa relativamente a

Dettagli

Verifica d Ipotesi. Se invece che chiederci quale è il valore di una media in una popolazione (stima. o falsa? o falsa?

Verifica d Ipotesi. Se invece che chiederci quale è il valore di una media in una popolazione (stima. o falsa? o falsa? Verifica d Iotesi Se ivece che chiederci quale è il valore ua mea i ua oolazioe (stima utuale Se ivece e itervallo che chiederci cofideza) quale è il avessimo valore u idea ua mea su quello i ua che oolazioe

Dettagli

MACCHINE ELETTRICHE. Stefano Pastore. Macchine in Corrente Continua

MACCHINE ELETTRICHE. Stefano Pastore. Macchine in Corrente Continua MACCHINE ELETTRICHE Mahine in Corrente Continua Stefano Pastore Dipartiento di Ingegneria e Arhitettura Corso di Elettrotenia (IN 043) a.a. 2012-13 Statore Sistea induttore (Statore): anello in ghisa o

Dettagli

Metodi statistici per l'analisi dei dati

Metodi statistici per l'analisi dei dati Metodi statistici per l aalisi dei dati due Motivazioi Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ) per cui soo stati codotti gli esperimeti. Metodi tatistici per l Aalisi dei Dati due Esempio

Dettagli

Numeri razionali COGNOME... NOME... Classe... Data...

Numeri razionali COGNOME... NOME... Classe... Data... I numeri rzionli Cpitolo Numeri rzionli Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Dov è finita la voglia di studiare?

Dov è finita la voglia di studiare? Dov è finita la voglia di studiare? Demo5vazione, insicurezza, paura di me:ersi alla prova, difficoltà a ges5re gli insuccessi: vissu5 frequen5 del percorso scolas5co di oggi CERCASI VOGLIA DI STUDIARE!!!

Dettagli

Dante Alighieri. Dal Codice Riccardiano 1040 Firenze, Biblioteca Riccardiana

Dante Alighieri. Dal Codice Riccardiano 1040 Firenze, Biblioteca Riccardiana Dante Alighieri Dal Codice Riccardiano 1040 Firenze, Biblioteca Riccardiana 1 Biografia di: Dante Alighieri Nacque a Firenze nel 1265 da una famiglia della piccola nobiltà fiorentina e la sua vita fu profondamente

Dettagli

SCHEDA TECNICA ONLINE. FLOWSIC100 Process DISPOSITIVI DI MISURA DEL FLUSSO DELLA MASSA

SCHEDA TECNICA ONLINE. FLOWSIC100 Process DISPOSITIVI DI MISURA DEL FLUSSO DELLA MASSA SCHE TECNIC ONLINE ISPOSITIVI I MISUR EL FLUSSO ELL MSS B C E F H I J K L M N O P Q R S T ISPOSITIVI I MISUR EL FLUSSO ELL MSS Informazioni per l'ordine FLUSSO VOLUMETRICO FFIBILE N PROCESSI Tipo ulteriori

Dettagli