Differenziazione sistemi dinamici

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Differenziazione sistemi dinamici"

Transcript

1 Il controllo di sistemi ad avanzamento temporale si basa sulle tecniche di controllo in retroazione, ovvero, elabora le informazione sullo stato del processo (provenienti dai sensori) in modo sa inviare agli attuatori le informazioni sulle azioni da compiere per imporre ad alcune variabili un andamento desiderato specificato, su un intervallo temporale finito o infinito, con una determinata precisione La teoria classica del controllo, basandosi su una conoscenza del modello del processo sotto forma di equazioni differenziali o alle differenza, propone varie metodologie per effettuare la sintesi del controllore Differenziazione sistemi dinamici Sistemi ibridi Sistemi ad Avanzamento Temporale (SAT) Sistemi ad Eventi Discreti (SED) SAT a tempo continuo SAT a tempo discreto SED logici SED temporizzati 1

2 Modello di sistema automatizzato DISTURBI ANDAMENTO DESIDERATO SISTEMA DI CONTROLLO ATTUATORI PROCESSO FISICO SENSORI Esempi Processo fisico Sensori Attuatori Sist. termici Temperatura: termocoppie termoresistenze Generatori di calore Sist. a fluido Sist. meccanici Sist. elettrici Pressione: manometri a colonna, estensimentri Portata: dischi forati, sensori elettromagnetici Livello: principio idrostatico, capacitivo Sensori di posizione/velocità: encoder Sensori di accelerazione: accelerometri Misure di corrente Misure di tensione Circuiti idraulici Valv. di regolazione Pompe Motori elettrici Attuatori oleodinamici Generatori di corrente/tensione 2

3 Richiami ai problemi di controllo Obiettivo del controllo è quello di portare un sistema a comportarsi in modo desiderato sulla base delle misure del suo stato attuale ed agendo in modo opportuno. L oggetto del controllo è un sistema, detto impianto o processo, del quale si vuole prefissare il comportamento in relazione ad un opportuno insieme di dati di specifica. Richiami ai problemi di controllo Ai fini del controllo di un impianto conviene distinguere le grandezze di ingresso in due classi: ingressi manipolabili sono le grandezze mediante le quali è più agevole influire sull uscita; ingressi non manipolabili sono le grandezze che influenzano l andamento dell uscita, ma non possono essere variate ad arbitrio. Gli ingressi manipolabili sono quelli utilizzabili per il controllo, gli ingressi non manipolabili giocano tipicamente il ruolo di grandezze di disturbo del comportamento del sistema. L obiettivo viene espresso da un insieme di valori di riferimento di certe variabili (variabili da controllare) mentre le azioni si effettuano conferendo certi valori ad altre variabili (variabili di controllo) 3

4 Modelli matematici Il sistema viene descritto con l ausilio di un modello matematico desunto da leggi fisiche che ne esprimono il comportamento (e.g. equazioni differenziali). es. Sistema tempo continuo lineare e stazionario Altrimenti, un modello in forma discreta (e.g. equazioni alle differenze) può essere ottenuto tramite identificazione parametrica a partire da dati misurati es. Sistema tempo discreto lineare e stazionario Modelli matematici Tempo Continuo Modello Implicito Ingresso-Stato-Uscita per un sistema SISO continuo e lineare Modello Implicito Ingresso-Uscita per un sistema SISO continuo e lineare 4

5 Trasformata di Laplace Trasformata di Laplace: permette di passare dal dominio del tempo al dominio della variabile complessa s Tempo Laplace Anti-trasformata di Laplace Laplace Tempo Esempio: trasformata di Laplace della funzione esponenziale Trasformata di Laplace - Proprietà Derivazione in t Integrale in t Il vantaggio più significativo della trasformata di Laplace è che l'integrale e la derivata diventano una moltiplicazione e una divisione rispettivamente Teorema del valor finale 5

6 Trasformata di Laplace-Sistema II ordine Sistema del 2 ordine nel dominio del tempo Sistema del 2 ordine nel dominio di Laplace Evoluzione libera Evoluzione forzata Esempio Sistema massa - molla - smorzamento σ k m f x 6

7 Risposta del sistema- Evoluzione libera Risposta del sistema Evoluzione libera Poli radici del polinomio caratteristico Modi di evoluzione Modi di evoluzione con k = 0: modi aperiodici α >0 Il sistema risulta asintoticamente stabile se tutti i poli hanno parte reale negativa α<0 modi pseudoperiodici α =0 α <0 α >0 α =0 α <0 7

8 Modi di evoluzione Costante di tempo associata al modo Il modo di evoluzione si estingue in un tempo pari a 4-5 volte la sua costante di tempo Risposta del sistema- Evoluzione forzata Risposta del sistema Evoluzione forzata: Risposta ad ingressi standard: Risposta impulsiva Risposta indiciale Risposta ad ingressi polinomiali Risposta ad ingressi sinusoidali (Bode, Nichols, Nyquist) 8

9 Risposta indiciale Risposta indiciale W(s) Risposta indiciale Risposta indiciale 9

10 Caratteristiche della risposta Regime (steady-state): situazione corrispondente all equilibrio del sistema Transitorio: situazione temporanea di passaggio da uno stato di equilibrio all altro Tempo morto: tempo necessario per osservare uno scostamento significativo della variabile da controllare dalla banda di rumore in seguito ad una variazione della variabile di controllo Tempo di salita: tempo necessario perché la variabile da controllare si sposti dal 10% al 90% del valore di regime Tempo di assestamento: tempo necessario perché la variabile da controllare rimanga prossima al set-point Sovraelongazione: scostamento della variabile da controllare dal setpoint Risposta armonica Un generico segnale periodico u(t) di periodo T può essere decomposto in serie di Fourier: in cui è la pulsazione fondamentale Da ciò si evidenzia l importanza di studiare la risposta del sistema ad ingressi sinusoidali con diverse pulsazioni 10

11 Risposta ad ingressi sinuisodali Se il sistema ha tutti modi convergenti a regime permanente l uscita del sistema sarà una sinusoide con la stessa pulsazione della sinusoide di ingresso ma (generalmente) con diversa ampiezza e fase Tale condizione si definisce di regime sinuisodale W(s) Funzione di risposta armonica valido qualunque sia ω Nel caso di sistemi lineari e stazionari con modi di evoluzione convergenti a zero, la funzione W(j ω) caratterizza completamente il legame ingresso-uscita in condizioni di regime sinuisodale e viene definita funzione di risposta armonica 11

12 Diagramma di Bode I diagrammi di Bode sono una coppia di grafici che rappresentano l andamento di modulo e fase in funzione della pulsazione (o frequenze) della funzione di risposta armonica I moduli sono riportati in decibel Le pulsazioni sono in scala logaritmica Diagramma di Bode La banda passante ω b rappresenta l intervallo delle pulsazioni all interno del quale il contenuto spettrale di un segnale si trasmette indistorto all uscita Il modulo di risonanza M r è il valore del picco di risonanza normalizzato rispetto al guadagno statico ω b M r 12

13 Legami globali Banda passante ω b Prontezza del sistema Modulo di risonanza M r Sovraelongazione risposta indiciale ω b M r Obiettivi del sistema di controllo Il controllore deve determinare (istante per istante) il valore da attribuire alle variabili di controllo (u) in modo che l andamento della variabile da controllare (y) sia, malgrado l influenza di disturbi imprevedibili (d), il più possibile simile a quello desiderato (y d ) Un modo di classificare i sistemi di controllo riguarda l andamento dell uscita desiderata y d. Rispetto ad esso si distinguono: sistemi di regolazione: caratterizzati dall avere un uscita desiderata costante sistemi di asservimento: caratterizzati dall avere un uscita desiderata che varia nel tempo 13

14 Obiettivi del sistema di controllo L obiettivo del controllo potrebbe essere conseguito con una semplice azione di compensazione statica in avanti, ma la presenza di una retroazione (feedback) diviene indispensabile per contrastare gli effetti degli ingressi non manipolabili, delle variazioni parametriche sull impianto e delle incertezze di modellazione disturbi Andamento desiderato legge di controllo organi di comando sistema da controllare misura Effetti della retroazione Gli effetti della retroazione riguardano: la sensibilità del sistema di controllo alle variazioni parametriche dei suoi organi componenti la sensibilità dell uscita ai disturbi la larghezza di banda del sistema la capacità di linearizzare un legame ingresso uscita la capacità di condizionare le caratteristiche prestazionali del sistema 14

15 Funzioni di trasferimento Funzioni di trasferimento ingresso/uscita e disturbo/uscita: C(s)P(s) G 1 (s)= G 1+C(s)P(s)H(s) 2 (s)= P(s) 1+C(s)P(s)H(s) d y d - e C(s) u P(s) y H(s) Funzione di trasferimento ad anello aperto F(s)=C(s)P(s)H(s) Prestazioni e specifiche di controllo Lo scopo del sistema di controllo è quello di portare a zero l errore a regime e di ottenere ciò nel minor tempo possibile, limitando gli scostamenti della variabile controllata dal valore di riferimento e cercando di contenere le oscillazioni (che si ripercuotono sugli organi di comando) Il sistema di controllo deve garantire una buona reiezione ai disturbi La robustezza di una legge di controllo è una misura della capacità di far fronte alle diverse condizioni di lavoro garantendo le prestazioni desiderate 15

16 Prestazioni e specifiche di regolazione Prestazioni e specifiche chieste al sistema di controllo: Stabilità: il regolatore deve smorzare le oscillazioni del processo e costituire, insieme con esso, un sistema stabile ad anello chiuso Errore nullo a regime: variabile di processo uguale al setpoint Rapidità di risposta a variazioni di setpoint e disturbi: il regolatore deve abbreviare i tempi di raggiungimento di equilibrio e mantenerlo nonostante l azione di disturbo Limitate sovraelongazioni Robustezza alle nonlinearità Robustezza alle variazioni parametriche Robustezza al rumore Moderazione nelle variabili di controllo Precisione a regime Ingressi canonici e tipo di sistema Tipo di sistema gradino e r = cost e r =0 e r = 0 rampa lineare rampa parabolica e r = e r = cost e r = 0 e r = e r = e r = cost La precisione a regime è determinata dal numero di poli nell origine e dalla costante di guadagno della funzione di trasferimento di andata 16

17 Errore regime: ingresso a gradino k c,k p guadagni statici di controllore e processo y d e C(s) P(s) y - Precisione a regime Ingressi canonici e tipo di sistema Tipo di sistema gradino e r =0 e r = 0 rampa lineare rampa parabolica e r = e r = 0 e r = e r = La precisione a regime è determinata dal numero di poli nell origine e dalla costante di guadagno della funzione di trasferimento di andata 17

18 Errore regime retroazione algebrica R(s)= ; R(s) r - e C(s) P(s) y H 0 Errore regime retroazione algebrica Per ingresso a gradino R e ; Per sistemi di tipo 0 (no poli origine tra C e P), a regime: lim lim! ; lim lim! " # " $ " # " $ r - e C(s) P(s) y H 0 18

19 Errore regime retroazione algebrica Per ingresso a gradino R e ; Per sistemi di tipo 0 (no poli origine tra C e P), a regime: lim lim! ; lim lim! " # " $ " # " $ Per sistemi di tipo 1 (un polo origine tra C e P), a regime: lim lim! % #%$ & = 0 Errore regime retroazione algebrica Per ingresso a gradino R ' ' e ' ; Per sistemi di tipo 1 (un polo origine tra C e P), a regime: lim lim '; lim lim!! ' % (%$ & " ( " $ = % (%$ ' & " ( " $ 19

20 Parametri caratteristici della risposta Tempo morto: tempo necessario per osservare uno scostamento significativo della variabile da controllare dalla banda di rumore in seguito ad una variazione della variabile di controllo Tempo di salita: tempo necessario perché la variabile da controllare si sposti dal 10% al 90% del valore di regime Tempo di assestamento: tempo necessario perché la variabile da controllare rimanga prossima al set-point Sovraelongazione: scostamento della variabile da controllare dal setpoint Risposta a gradino unitario Risposta a gradino unitario 20

21 Criteri di stabilità per sistemi in retroazione Una delle principali proprietà richieste ad un sistema di controllo è la stabilità asintotica; essa infatti è premessa necessaria per il conseguimento di una condizione di funzionamento in regime permanente nella quale valutare la precisione mostrata nell inseguire il riferimento imposto e/o la capacità di reiezione di disturbi permanenti la stabilità del sistema ad anello chiuso dipende dall analisi della funzione razionale fratta 1+F(s) (dove F(s) è la funzione trasferimento ad anello aperto) G 1 (s) = C(s)P(s) = C(s)P(s) 1+C(s)P(s)H(s) 1+F(s) In particolare le soluzioni di 1+F(s)=0 devono essere tutte con parte reale negativa per garantire la stabilità asintotica del sistema in retroazione Criteri di stabilità per sistemi in retroazione Il criterio di Routh consente di analizzare le proprietà di stabilità di un sistema dinamico lineare e stazionario mediante la costruzione di una tabella che fornisce indicazione sul numero di radici a parte reale negativa, nulla, e positiva del polinomio caratteristico senza richiedere la soluzione dell equazione caratteristica. Il criterio di Nyquist è basato sull analisi dell andamento del diagramma di Nyquist della funzione di trasferimento ad anello aperto, F(s), valutata per s=jω. Un sistema in retroazione è asintoticamente stabile se e solo se il vettore rappresentativo del numero complesso 1+F(jω)al variare di ω da - a + compie intorno al proprio punto di applicazione un numero di giri, valutati positivamente in verso antiorario, pari al numero di poli a parte reale positiva della funzione di trasferimento ad anello aperto 21

22 Margini di fase e guadagno Il margine di fase cambiato di segno è il valore della diminuzione di fase che forza il sistema ad anello chiuso ad avere poli immaginari coniugati (limite di stabilità). Il margine di guadagno è l inverso del modulo di F(jω) quando il suo diagramma polare attraversa l asse delle ascisse. Sintesi del controllore C(s) = K (1+α s) s r (1+β s) Guadagno statico (rapidità sistema e precisione a regime e r 0 ) Numero poli nell origine (precisione a regime e r =0) Rete correttrice (stabilità e specifiche del transitorio) d y d - e C(s) u P(s) y H(s) 22

23 Metodi di sintesi del controllore Metodi per tentativi Risposta in frequenza (basati su relazione F(jω) -- W(jω) es. Carte di Nichols ) Luogo delle radici (basati su relazione F(s)--W (s)) Metodi empirici (es. regolatori standard) Metodi diretti cancellazione ed allocazione poli Sintesi del controllore C(s) = K (1+α s) s r (1+β s) Numero poli nell origine in base al tipo di sistema desiderato Guadagno statico in base all errore a regime Rete correttrice in base a specifiche relative al transitorio (spesso espresse tramite legami globali in termini di pulsazione di attraversamento e margini di fase) d y d - e C(s) u P(s) y H(s) 23

24 Formule per reti correttrici Rete anticipatrice Rete ritardatrice 24

PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso

PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso Prof. Bruno Picasso LEZIONI: Introduzione al corso. Introduzione ai sistemi dinamici. I sistemi dinamici come sistemi di equazioni differenziali; variabili

Dettagli

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L. Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Controlli Automatici - A.A. 1/11 Ingegneria Gestionale 13 Settembre 11 - Esercizi Nome: Nr. Mat. Firma: Rispondere alle seguenti domande. a) Calcolare la trasformata di Laplace X(s) dei seguenti segnali

Dettagli

SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO

SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO Ing. Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Prova scritta di Controlli Automatici

Prova scritta di Controlli Automatici Prova scritta di Controlli Automatici Corso di Laurea in Ingegneria Meccatronica, AA 2011 2012 10 Settembre 2012 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare

Dettagli

Sistema dinamico a tempo continuo

Sistema dinamico a tempo continuo Sistema dinamico a tempo continuo Un sistema è un modello matematico di un fenomeno fisico: esso comprende le cause e gli effetti relativi al fenomeno, nonché la relazione matematica che li lega. X INGRESSO

Dettagli

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI FREQUENZIALE E PROGETTO

Dettagli

Differenziazione sistemi dinamici

Differenziazione sistemi dinamici Obiettivo: analisi e sintesi dei sistemi di controllo in retroazione in cui è presente un calcolatore digitale Il controllo digitale è ampiamente usato, grazie alla diffusione di microprocessori e microcalcolatori,

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 7/8 4 Dicembre 7 - Esercizi Compito A Nr. Nome: Nr. Mat. Firma: a) Determinare la trasformata di Laplace X i (s) dei seguenti segnali temporali x i (t): x (t)

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 9- p. /3 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma.it Lucidi tratti dal libro C. Bonivento, C. Melchiorri,

Dettagli

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO Sono stati trattati gli elementi base per l'analisi e il dimensionamento dei sistemi di controllo nei processi continui. E' quindi importante:

Dettagli

Prova scritta di Controlli Automatici - Compito A

Prova scritta di Controlli Automatici - Compito A Prova scritta di Controlli Automatici - Compito A 21 Marzo 27 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare quali sono le affermazioni vere. 1. Si consideri

Dettagli

Prestazioni dei sistemi in retroazione

Prestazioni dei sistemi in retroazione Prestazioni dei sistemi in retroazione (ver..2). Sensitività e sensitività complementare Sia dato il sistema in retroazione riportato in Fig... Vogliamo determinare quanto è sensibile il sistema in anello

Dettagli

Controllo di velocità angolare di un motore in CC

Controllo di velocità angolare di un motore in CC Controllo di velocità angolare di un motore in CC Descrizione generale Il processo è composto da un motore in corrente continua, un sistema di riduzione, una dinamo tachimetrica ed un sistema di visualizzazione.

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Progetto di controllo e reti correttrici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

Richiami: funzione di trasferimento e risposta al gradino

Richiami: funzione di trasferimento e risposta al gradino Richiami: funzione di trasferimento e risposta al gradino 1 Funzione di trasferimento La funzione di trasferimento di un sistema lineare è il rapporto di due polinomi della variabile complessa s. Essa

Dettagli

MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO

MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO PIANO DI LAVORO CLASSE 5 ES A.S. 2014-2015 MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO INS. TECNICO-PRATICO: PROF. BARONI MAURIZIO MODULO 1: ALGEBRA DEGLI SCHEMI A BLOCCHI

Dettagli

LA FUNZIONE DI TRASFERIMENTO

LA FUNZIONE DI TRASFERIMENTO LA FUNZIONE DI TRASFERIMENTO Può essere espressa sia nel dominio della s che nel dominio della j Definizione nel dominio della s. è riferita ai soli sistemi con un ingresso ed un uscita 2. ha per oggetto

Dettagli

Un sistema di controllo può essere progettato fissando le specifiche:

Un sistema di controllo può essere progettato fissando le specifiche: 3. Specifiche dei Sistemi Un sistema di controllo può essere progettato fissando le specifiche: nel dominio del tempo (tempo di salita, tempo di assestamento, sovraelongazione, ecc.); nel dominio della

Dettagli

CONTROLLO NEL DOMINIO DELLA FREQUENZA

CONTROLLO NEL DOMINIO DELLA FREQUENZA SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html CONTROLLO NEL DOMINIO DELLA FREQUENZA Ing. Luigi Biagiotti e-mail: luigi.biagiotti@unimore.it

Dettagli

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo:

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo: .5 Stabilità dei sistemi dinamici 9 Risulta: 3 ( s(s + 4).5 Stabilità dei sistemi dinamici Si è visto come un sistema fisico può essere descritto tramite equazioni differenziali o attraverso una funzione

Dettagli

ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA

ISTITUTO D ISTRUZIONE SUPERIORE L. EINAUDI ALBA ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA CLASSE 5H Docenti: Raviola Giovanni Moreni Riccardo Disciplina: Sistemi elettronici automatici PROGETTAZIONE DIDATTICA ANNUALE COMPETENZE FINALI Al termine

Dettagli

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/ Catene di Misura Corso di Misure Elettriche http://sms.unipv.it/misure/ Piero Malcovati Dipartimento di Ingegneria Industriale e dell Informazione Università di Pavia piero.malcovati@unipv.it Piero Malcovati

Dettagli

Principi di Automazione e Controllo

Principi di Automazione e Controllo Principi di Automazione e Controllo Ing. Fabio Piedimonte Corso IFTS per Tecnico Superiore di Produzione Ver 1.0 Indice 1 Introduzione al problema dell automazione 4 1.1 I processi..................................

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: robustezza e prestazioni Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: stabilità, errore a regime e luogo delle radici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail:

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Risposte canoniche e sistemi elementari Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

Fondamenti di Automatica - I Parte Il progetto del controllore

Fondamenti di Automatica - I Parte Il progetto del controllore Fondamenti di Automatica - I Parte Il progetto del controllore Antonio Bicchi, Giordano Greco Università di Pisa 1 INDICE 2 Indice 1 Introduzione 3 2 Approssimazioni della f.d.t. in anello chiuso 5 3 Metodi

Dettagli

Revisione dei concetti fondamentali

Revisione dei concetti fondamentali Revisione dei concetti fondamentali dell analisi in frequenza Argomenti: trasformazione in frequenza: significato e funzionamento; schemi di rappresentazione; trasformata discreta. 1 Rappresentazione dei

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Funzioni di trasferimento

Dettagli

Orlando Allocca Regolatori standard

Orlando Allocca Regolatori standard A09 159 Orlando Allocca Regolatori standard Copyright MMXII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B 00173 Roma (06) 93781065 ISBN 978-88-548-4882-7

Dettagli

Revisione dei concetti fondamentali dell analisi in frequenza

Revisione dei concetti fondamentali dell analisi in frequenza Revisione dei concetti fondamentali dell analisi in frequenza rgomenti: trasformazione in frequenza: significato e funzionamento; schemi di rappresentazione; trasformata discreta. 1 Rappresentazione dei

Dettagli

SINTESI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO

SINTESI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO SINTESI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO Requisiti e specifiche Approcci alla sintesi Esempi di progetto Principali reti stabilizzatrici Illustrazioni dal Testo di Riferimento per gentile concessione

Dettagli

Una definizione di stabilità più completa di quella precedentemente introdotta fa riferimento ad una sollecitazione impulsiva.

Una definizione di stabilità più completa di quella precedentemente introdotta fa riferimento ad una sollecitazione impulsiva. 2. Stabilità Uno dei requisiti più importanti richiesti ad un sistema di controllo è la stabilità, ossia la capacita del. sistema di raggiungere un stato di equilibrio dopo la fase di regolazione. Per

Dettagli

Progetto di un sistema di controllo nel dominio della frequenza

Progetto di un sistema di controllo nel dominio della frequenza Contents Progetto di un sistema di controllo nel dominio della frequenza 3. Le specifiche del progetto nel dominio della frequenza......... 3.2 Sintesi del controllore........................... 6.3 Determinazione

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi armonica e metodi grafici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. Analisi

Dettagli

FEDELTÀ DELLA RISPOSTA DEI SISTEMI DI CONTROLLO IN RETROAZIONE: ANALISI DELLA PRECISIONE IN REGIME PERMANENTE

FEDELTÀ DELLA RISPOSTA DEI SISTEMI DI CONTROLLO IN RETROAZIONE: ANALISI DELLA PRECISIONE IN REGIME PERMANENTE FEDELTÀ DELLA RISPOSTA DEI SISTEMI DI CONTROLLO IN RETROAZIONE: ANALISI DELLA PRECISIONE IN REGIME PERMANENTE Nello studio dei sistemi di controllo in retroazione spesso si richiede che l uscita segua

Dettagli

LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO

LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO MOD. 1 Sistemi di controllo e di regolazione. Si tratta di un ripasso di una parte di argomenti effettuati l anno scorso. Introduzione. Schemi a blocchi di

Dettagli

Trasformate di Laplace

Trasformate di Laplace TdL 1 TdL 2 Trasformate di Laplace La trasformata di Laplace e un OPERATORE funzionale Importanza dei modelli dinamici Risolvere equazioni differenziali (lineari a coefficienti costanti) Tempo t Dominio

Dettagli

Sistemi di controllo industriali

Sistemi di controllo industriali Sistemi di controllo industriali Regolatori PID: funzionamento e taratura Modello, funzionamento e realizzazione pratica Metodi di taratura in anello chiuso Metodi di taratura in anello aperto Un esempio

Dettagli

FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI

FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI Guida alla soluzione degli esercizi d esame Dott. Ing. Marcello Bonfè Esercizi sulla scomposizione di modelli nello spazio degli stati: Gli esercizi nei

Dettagli

Esercizi proposti di Fondamenti di Automatica - Parte 4

Esercizi proposti di Fondamenti di Automatica - Parte 4 Esercizi proposti di Fondamenti di Automatica - Parte 4 2 Aprile 26 Sia dato il sistema di controllo a controreazione di Fig. 1, in cui il processo ha funzione di trasferimento P (s) = 1 (1 +.1s)(1 +.1s).

Dettagli

Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici

Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici Versione 1.0 Ing. Alessandro Pisano SOMMARIO Introduzione 3 1. Stabilità a ciclo chiuso e teorema del valore

Dettagli

L ERRORE A REGIME NELLE CATENE DI REGOLAZIONE E CONTROLLO

L ERRORE A REGIME NELLE CATENE DI REGOLAZIONE E CONTROLLO L ERRORE A REGIME NELLE CATENE DI REGOLAZIONE E CONTROLLO Per errore a regime si intende quello rilevato dopo un intervallo sufficientemente lungo dal verificarsi di variazioni del riferimento o da eventuali

Dettagli

Capitolo 7 Analisi di Sistemi a Dati Campionati

Capitolo 7 Analisi di Sistemi a Dati Campionati Capitolo 7 Analisi di Sistemi a Dati Campionati Un sistema di controllo digitale è costituito da elementi a tempo continuo (il processo da controllare, l attuatore, il trasduttore analogico, il filtro

Dettagli

Risposta temporale: esercizi

Risposta temporale: esercizi ...4 Risposta temporale: esercizi Esercizio. Calcolare la risposta al gradino del seguente sistema: G(s) X(s) = s (s+)(s+) Y(s) Per ottenere la risposta al gradino occorre antitrasformare la seguente funzione:

Dettagli

Indice. Capitolo 1 Introduzione... 1. Capitolo 2 Rappresentazioni lineari e modelli di sistemi da diverse discipline... 9

Indice. Capitolo 1 Introduzione... 1. Capitolo 2 Rappresentazioni lineari e modelli di sistemi da diverse discipline... 9 Indice Capitolo 1 Introduzione... 1 Capitolo 2 Rappresentazioni lineari e modelli di sistemi da diverse discipline... 9 2.1 Alcuni semplici modelli.............................. 10 2.1.a Un sistema meccanico

Dettagli

Spiegare brevemente il principale beneficio del controllo in cascata (per sistemi a fase non minima).

Spiegare brevemente il principale beneficio del controllo in cascata (per sistemi a fase non minima). Spiegare brevemente il principale beneficio del controllo in cascata (per sistemi a fase non minima). Il controllo in cascata si usa per migliorare la risposta al setpoint, e soprattutto al disturbo di

Dettagli

CONTROLLORI STANDARD PID. Guido Vagliasindi Controlli Automatici A.A. 06/07 Controllori Standard PID

CONTROLLORI STANDARD PID. Guido Vagliasindi Controlli Automatici A.A. 06/07 Controllori Standard PID ONTROLLORI STANDARD PID Guido Vagliasindi ontrolli Automatici A.A. 6/7 ontrollori Standard PID MODELLO DEI REGOLATORI PID Tra le ragioni del vastissimo utilizzo dei regolatori PID nella pratica dell automazione

Dettagli

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione 0.0. 3.2 Diagrammi di Bode Possibili rappresentazioni grafiche della funzione di risposta armonica F (ω) = G(jω) sono: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I Diagrammi

Dettagli

ISTITUTO TECNICO INDUSTRIALE Specializzazioni: Elettronica e Telecomunicazioni Elettrotecnica - Informatica Modesto Panetti

ISTITUTO TECNICO INDUSTRIALE Specializzazioni: Elettronica e Telecomunicazioni Elettrotecnica - Informatica Modesto Panetti ISTITUTO TECNICO INDUSTRIALE Specializzazioni: Elettronica e Telecomunicazioni Elettrotecnica - Informatica Modesto Panetti BARI Via Re David 186 - Tel : 080/5425512 080/5560840 Anno Scolastico : 2009/2010

Dettagli

La funzione di trasferimento

La funzione di trasferimento Sommario La funzione di trasferimento La funzione di trasferimento Poli e zeri della funzione di trasferimento I sistemi del primo ordine Esempi La risposta a sollecitazioni La funzione di trasferimento

Dettagli

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI Fondamenti di Automatica Unità 2 Calcolo del movimento di sistemi dinamici LTI Calcolo del movimento di sistemi dinamici LTI Soluzione delle equazioni di stato per sistemi dinamici LTI a tempo continuo

Dettagli

SPECIFICHE DI UN SISTEMA IN ANELLO CHIUSO

SPECIFICHE DI UN SISTEMA IN ANELLO CHIUSO SPECIFICHE DI UN SISTEMA IN ANELLO CHIUSO Consideriamo il classico esempio di compensazione in cascata riportato in figura, comprendente il plant o sistema controllato con funzione di trasferimento G P

Dettagli

REGOLATORI PID: TECNICHE DI SINTESI E PROBLEMATICHE IMPLEMENTATIVE

REGOLATORI PID: TECNICHE DI SINTESI E PROBLEMATICHE IMPLEMENTATIVE REGOLATORI PID: TECNICHE DI SINTESI E PROBLEMATICHE IMPLEMENTATIVE PID: DESIGN TECHNIQUES AND IMPLEMENTATION ISSUES Relatore: Laureando: Prof.ssa Maria Elena Valcher Davide Meneghel Corso di Laurea in

Dettagli

FONDAMENTI DI AUTOMATICA. Michele Basso, Luigi Chisci e Paola Falugi

FONDAMENTI DI AUTOMATICA. Michele Basso, Luigi Chisci e Paola Falugi FONDAMENTI DI AUTOMATICA Michele Basso, Luigi Chisci e Paola Falugi 22 novembre 26 2 Indice 1 Analisi in frequenza di sistemi LTI 5 1.1 Introduzione............................. 5 1.2 Analisi armonica..........................

Dettagli

REGOLATORI STANDARD O PID

REGOLATORI STANDARD O PID REGOLATORI STANDARD O ID Consideriamo il classico esempio di compensazione in cascata riportato in figura, comprendente il plant o sistema controllato con funzione di trasferimento G (s), il regolatore

Dettagli

Elettronica e Telecomunicazioni Classe Quinta. La trasformata di Laplace

Elettronica e Telecomunicazioni Classe Quinta. La trasformata di Laplace Elettronica e Telecomunicazioni Classe Quinta La trasformata di Laplace ELETTRONICA E TELECOMUNICAZIONI CLASSE QUINTA A INFORMATICA INDICE Segnali canonici Trasformata di Laplace Teoremi sulla trasformata

Dettagli

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale CONTROLLO IN RETROAZIONE

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale CONTROLLO IN RETROAZIONE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale CONTROLLO IN RETROAZIONE Ing. Luigi Biagiotti Tel. 5 29334 / 5 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitá degli Studi ROMA TRE

Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitá degli Studi ROMA TRE Brevi appunti di Fondamenti di Automatica prof. Dipartimento di Informatica e Automazione Universitá degli Studi ROMA RE ROMA RE UNIVERSIÀ DEGLI SUDI 4 marzo 05 Rev. 0. INDICE Indice La rasfomata di Laplace.0.

Dettagli

MATLAB Analisi di Sistemi LTI

MATLAB Analisi di Sistemi LTI Esercitazione 1/30 MATLAB Analisi di Sistemi LTI Vincenzo LIPPIELLO PRISMA Lab Dipartimento di Informatica e Sistemistica Università di Napoli Federico II vincenzo.lippiello@unina.it www.prisma.unina.it

Dettagli

Funzioni di trasferimento. Lezione 14 2

Funzioni di trasferimento. Lezione 14 2 Lezione 14 1 Funzioni di trasferimento Lezione 14 2 Introduzione Lezione 14 3 Cosa c è nell Unità 4 In questa sezione si affronteranno: Introduzione Uso dei decibel e delle scale logaritmiche Diagrammi

Dettagli

Proprieta` dei sistemi in retroazione

Proprieta` dei sistemi in retroazione Proprieta` dei sistemi in retroazione Specifiche di controllo: errore a regime in risposta a disturbi costanti errore di inseguimento a regime quando il segnale di riferimento e` di tipo polinomiale sensibilita`

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Considerazioni sulle specifiche.

Considerazioni sulle specifiche. # SINTESI PER TENTATIVI IN ω PER GLI ASSERVIMENTI # Considerazioni sulle specifiche. Come accennato in precedenza, prima di avviare la prima fase della sintesi di un sistema di asservimento, e cioe la

Dettagli

ITIS J.F. Kennedy prof. Maurilio Bortolussi 1. Indice

ITIS J.F. Kennedy prof. Maurilio Bortolussi 1. Indice ITIS J.F. Kennedy prof. Maurilio Bortolussi 1 Indice 1 I SISTEMI LINEARI E CONTINUI NEL DOMINIO DEL TEMPO 2 1.1 Introduzione........................................ 2 1.2 La funzione di trasferimento...............................

Dettagli

6 Cenni sulla dinamica dei motori in corrente continua

6 Cenni sulla dinamica dei motori in corrente continua 6 Cenni sulla dinamica dei motori in corrente continua L insieme di equazioni riportato di seguito, costituisce un modello matematico per il motore in corrente continua (CC) che può essere rappresentato

Dettagli

La funzione di risposta armonica

La funzione di risposta armonica 0.0. 3.1 1 La funzione di risposta armonica Se ad un sistema lineare stazionario asintoticamente stabile si applica in ingresso un segnale sinusoidale x(t) = sen ωt di pulsazione ω: x(t) = sin ωt (s) =

Dettagli

Indice. 1 Introduzione 1

Indice. 1 Introduzione 1 Indice Prefazione XIII 1 Introduzione 1 2 Elementi di modellistica 9 2.1 Introduzione... 9 2.2 Equazioni di conservazione per processi a fluido... 9 2.2.1 Portata massica e volumetrica... 9 2.2.2 Principio

Dettagli

Analisi dei sistemi di controllo a segnali campionati

Analisi dei sistemi di controllo a segnali campionati Analisi dei sistemi di controllo a segnali campionati Sistemi di controllo (già analizzati) Tempo continuo (trasformata di Laplace / analisi in frequenza) C(s) controllore analogico impianto attuatori

Dettagli

L idea alla base del PID èdi avere un architettura standard per il controllo di processo

L idea alla base del PID èdi avere un architettura standard per il controllo di processo CONTROLLORI PID PID L idea alla base del PID èdi avere un architettura standard per il controllo di processo Può essere applicato ai più svariati ambiti, dal controllo di una portata di fluido alla regolazione

Dettagli

OUT. Domande per Terza prova di Sistemi. Disegnare la struttura generale di un sistema di controllo. retroazionato. (schema a blocchi)

OUT. Domande per Terza prova di Sistemi. Disegnare la struttura generale di un sistema di controllo. retroazionato. (schema a blocchi) Domande per Terza prova di Sistemi Disegnare la struttura generale di un sistema di controllo retroazionato. (schema a blocchi) IN Amp. di Potenza Organo di Regolazione OUT ( ) Regolatore Attuatore Sistema

Dettagli

Sistemi con ritardo. Appunti di Controlli Automatici. Ing. Alessandro Pisano. Versione 1.0

Sistemi con ritardo. Appunti di Controlli Automatici. Ing. Alessandro Pisano. Versione 1.0 Sistemi con ritardo Appunti di Controlli Automatici Versione 1.0 Ing. Alessandro Pisano SOMMARIO 1. Introduzione (3) 2. Funzioni di trasferimento di sistemi con ritardo (4) 3. Stabilità a ciclo chiuso

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Analisi e confronto dei metodi di sintesi in s e nel dominio della frequenza

Analisi e confronto dei metodi di sintesi in s e nel dominio della frequenza Scuola Politecnica e delle Scienze di Base Corso di Laurea in Ingegneria Informatica Elaborato finale in Controlli Automatici Analisi e confronto dei metodi di sintesi in s e nel dominio della frequenza

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stabilità dei sistemi di controllo in retroazione Margini di stabilità Indicatori di robustezza della stabilità Margine di guadagno Margine di fase Stabilità regolare e marginale ed estensioni delle definizioni

Dettagli

PROBLEMI E SISTEMI DI CONTROLLO. Ruolo della modellistica matematica. Sistemi di controllo in anello chiuso. Controllo, supervisione e automazione

PROBLEMI E SISTEMI DI CONTROLLO. Ruolo della modellistica matematica. Sistemi di controllo in anello chiuso. Controllo, supervisione e automazione PROBLEMI E SISTEMI DI CONTROLLO Problemi di controllo Sistemi di controllo Ruolo della modellistica matematica Sistemi di controllo in anello chiuso Controllo, supervisione e automazione Illustrazioni

Dettagli

ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA

ISTITUTO D ISTRUZIONE SUPERIORE L. EINAUDI ALBA ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA CLASSE 5H Docenti: Raviola Giovanni Moreni Riccardo Disciplina: Sistemi elettronici automaticih PROGETTAZIONE DIDATTICA ANNUALE COMPETENZE FINALI Al termine

Dettagli

analisi di sistemi retroazionati (2)

analisi di sistemi retroazionati (2) : analisi di sistemi retroazionati (2) Marco Lovera Dipartimento di Elettronica e Informazione Politecnico di Milano lovera@elet.polimi.it Indice Piccolo guadagno Stabilita ingresso-uscita Guadagno L 2

Dettagli

Capitolo. La funzione di trasferimento. 2.1 Funzione di trasferimento di un sistema. 2.2 L-trasformazione dei componenti R - L - C

Capitolo. La funzione di trasferimento. 2.1 Funzione di trasferimento di un sistema. 2.2 L-trasformazione dei componenti R - L - C Capitolo La funzione di trasferimento. Funzione di trasferimento di un sistema.. L-trasformazione dei componenti R - L - C. Determinazione delle f.d.t. di circuiti elettrici..3 Risposta al gradino . Funzione

Dettagli

CORSO di AUTOMAZIONE INDUSTRIALE

CORSO di AUTOMAZIONE INDUSTRIALE CORSO di AUTOMAZIONE INDUSTRIALE (cod. 8469) APPELLO del 10 Novembre 2010 Prof. Emanuele Carpanzano Soluzioni Esercizio 1 (Domande generali) 1.a) Controllo Modulante Tracciare qualitativamente la risposta

Dettagli

Modellistica e Simulazione del Comportamento Dinamico di Beccheggio di un Trattore Agricolo

Modellistica e Simulazione del Comportamento Dinamico di Beccheggio di un Trattore Agricolo Università degli Studi di Modena e Reggio Emilia Facoltà di Ingegneria Modellistica e Simulazione del Comportamento Dinamico di Beccheggio di un Trattore Agricolo Relatore: Prof. Roberto Zanasi Correlatori:

Dettagli

Sistemi e modelli matematici

Sistemi e modelli matematici 0.0.. Sistemi e modelli matematici L automazione è un complesso di tecniche volte a sostituire l intervento umano, o a migliorarne l efficienza, nell esercizio di dispositivi e impianti. Un importante

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi dei sistemi dinamici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Analisi dei

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli

Sensori e trasduttori. Dispense del corso ELETTRONICA L Luca De Marchi

Sensori e trasduttori. Dispense del corso ELETTRONICA L Luca De Marchi Sensori e trasduttori Dispense del corso ELETTRONICA L Luca De Marchi Gli Obiettivi Struttura generale di sistemi di controllo e misura Sensori, trasduttori, attuatori Prima classificazione dei sistemi-sensori

Dettagli

ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2015/2016

ISTITUTO D ISTRUZIONE SUPERIORE L. EINAUDI ALBA ANNO SCOLASTICO 2015/2016 ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2015/2016 CLASSE 5 I Disciplina: Sistemi automatici Docenti: Linguanti Vincenzo Gasco Giovanni PROGETTAZIONE DIDATTICA ANNUALE COMPETENZE

Dettagli

Analisi della risposta dinamica

Analisi della risposta dinamica Analisi della risposta dinamica Risposta dinamica del trasduttore: descrive, in termini di un modello matematico basato su equazioni differenziali alle derivate parziali, le relazioni, basate su opportune

Dettagli

Specializzazione Elettronica ed Elettrotecnica Articolazione Automazione. Elettronica ed Elettrotecnica - Classe 3^

Specializzazione Elettronica ed Elettrotecnica Articolazione Automazione. Elettronica ed Elettrotecnica - Classe 3^ Specializzazione Elettronica ed Elettrotecnica Articolazione Automazione Elettronica ed Elettrotecnica - Classe 3^ Elettrotecnica Tipologie di segnali Unità di misura delle grandezze elettriche Simbologia

Dettagli

La trasformata Zeta. Marco Marcon

La trasformata Zeta. Marco Marcon La trasformata Zeta Marco Marcon ENS Trasformata zeta E l estensione nel caso discreto della trasformata di Laplace. Applicata all analisi dei sistemi LTI permette di scrivere in modo diretto la relazione

Dettagli

REGOLATORI STANDARD PID

REGOLATORI STANDARD PID SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html Regolatore Proporzionale, Integrale, Derivativo - PID Tre azioni di combinate

Dettagli

Corso di Fondamenti d Automatica

Corso di Fondamenti d Automatica Corso di Fondamenti d Automatica Prof. Giovanni Ulivi Ing. Stefano Panzieri Dipartimento di Informatica ed Automazione Via Vasca Navale 79, Roma e-mail: ulivi@dia.uniroma3.it e-mail: panzieri@dia.uniroma3.it

Dettagli

31/10/2012. Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando

31/10/2012. Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando FUNZIONI MATEMATICHE Introduzione Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando tra le due esiste un legame di tipo matematico. La teoria

Dettagli

Modello fisico. Capitolo 1. 1.1 Descrizione del sistema

Modello fisico. Capitolo 1. 1.1 Descrizione del sistema Introduzione Lo scopo di questa trattazione è quello di analizzare un sistema fisico (veicolo a trazione elettrica) e progettare un adeguato sistema di controllo. Per cercare di ottenere risultati simili

Dettagli

Diagrammi di Bode. delle

Diagrammi di Bode. delle .. 3.2 delle Diagrammi di Bode La funzione di risposta armonica F(ω) = G(jω) può essere rappresentata graficamente in tre modi diversi: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols.

Dettagli

Strumentazione e Controllo dei Processi Chimici I : Introduzione ai Sistemi di Controllo

Strumentazione e Controllo dei Processi Chimici I : Introduzione ai Sistemi di Controllo Strumentazione e Controllo dei Processi Chimici I : Introduzione ai Sistemi di Controllo Claudio Scali Laboratorio di Controllo dei Processi Chimici (CPCLab) Dipartimento di Ingegneria Chimica (DICCISM)

Dettagli

Criteri di stabilità (ver. 1.2)

Criteri di stabilità (ver. 1.2) Criteri di stabilità (ver. 1.2) 1 1.1 Il concetto di stabilità Il concetto di stabilità è piuttosto generale e può essere definito in diversi contesti. Per i problemi di interesse nell area dei controlli

Dettagli

SVILUPPO IN SERIE DI FOURIER

SVILUPPO IN SERIE DI FOURIER SVILUPPO IN SERIE DI FOURIER Cenni Storici (Wikipedia) Jean Baptiste Joseph Fourier ( nato a Auxerre il 21 marzo 1768 e morto a Parigi il 16 maggio 1830 ) è stato un matematico e fisico, ma è conosciuto

Dettagli

Principali comandi MATLAB utili per il corso di Controlli Automatici

Principali comandi MATLAB utili per il corso di Controlli Automatici Principali comandi MATLAB utili per il corso di Controlli Automatici In questo documento sono raccolti i principali comandi Matlab utilizzati nel corso; per maggiore comodità, sono riportati facendo riferimento

Dettagli