RSA e PARIGP: POSSIBILI ATTACCHI

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "RSA e PARIGP: POSSIBILI ATTACCHI"

Transcript

1 RSA PARIGP: POSSIBILI ATTACCHI Di Cristiano Armllini, Supponiamo i consirar un problma RSA : p 7, q, n 87 ϕ( n) (7 )( ) 60 7, MCD(, ϕ( n)), mo( ϕ( n)) C M M C,mo( n),mo( n) ov la chiav pubblica è (n, ), la chiav privata è (n, ) mntr C è il tsto cifrato M è il tsto in chiaro. Un mtoo pr attaccar l RSA ovvro pr crittar un tsto cifrato intrcttato a sotto il nom i chosn ciphrtxt consist in qusto procimnto: L intruso intrctta un tsto criptato C 88 7,mo(87) a Alic ch ovviamnt non risc criptar L intruso scgli un intro a caso a smpio R 3 calcola C 3 7 R C *, mo(87) 2 Invia C a Alic chinolo i criptarlo ottin quini M C,mo( n) 77 A qusto punto l intruso calcola C R R C R C R C M M R 88 ottnno quini il tsto in

2 chiaro snza la ncssità i scomporr il numro n /o i trovar la chiav privata alla chiav pubblica. Quini mai applicar la funzion i cifratura o la firma igital a un ocumnto casual: è opportuno applicar la funzion i hash prima i firmar igitalmnt. Un altro tipo i attacco lmntar riva al fatto ch s un intruso cattura u coifich i un mssaggio M miant u chiavi pubblich n, );( n, ) ottin ( 2 2 C M mo( n); C2 M mo( n) In quasi tutti i casi, ) MCD quini sistono r, s tali ch + s ( 2 r (r<0). Allora è 2 r s r s r + s2 facil vrificar ch C C ( C ) C M M,mo( ) 2 2 n quini il mssaggio in chiaro. Sarbb bn ch quini ogni n non v potr ssr usato a più i un utnt. Nl cycling attack invc si prova tutta una sri i valori i k confiano ch s C M mo(n) C k k ( M ) M,mo( n) pr valori i k non troppo grani intri positivi 7 7 ( 88 mo(87), mo(87) 88. Pr vitar qusto tipo i attacchi occorr ch p-, q- abbiano almno un fattor molto gran. Da qust not riva ch crcar i fattorizzar n non è l unico moo pr attaccar l RSA. In tutti i casi è bn ch n sia composto a u fattori primi

3 molto grani, molto istanti tra loro ma smpr lla stssa imnsion tali ch n+, n- non siano formati a soli fattori primi piccoli. Di sguito riporto il coic i u applicativi in PARI/GP, il primo ch implmnta l algoritmo RSA ch può cifrar/cifrar, pr smplicità un carattr alla volta; il scono è l algoritmo i Diffi Hlmann pr la trasmission i una chiav sgrta in un canal insicuro (costruzion a istanza lla chiav sgrta: RSA {rsa p nxtprim(ranom(0^3)); q nxtprim(ranom(0^3)); n p*q; print ("n", n); phin (p-)*(q-); print ("p", p); print ("q", q); print ("phin", phin); ranom(n); whil(gc(, phin)!, +); print ("", ); lift(mo(, phin)^(-)); print ("", ); {cifratura(m, n, ) rturn (lift(mo(m^,n))); {cifratura(c, n, ) rturn (lift(mo(c^,n))); Qusta implmntazion ha il limit ch occorr cifrar/cifrar un carattr alla volta ov ogni carattr è sprsso attravrso un suo valor numrico (s coic ASCII).

4 Diffi Hlmann (scambio lla chiav) {primopasso(a, p, y) alfa lift(mo(y^a, p)); rturn (alfa); {sconopasso(bta, A, p) co lift(mo(bta^a, p)); rturn (co); Nl primo passo ogni soggtto gnra il coic a inviar all altro soggtto, nl scono passo ogni soggtto, ricvuto il coic all altro n gnra uno nuovo ch è un coic comun, ovvro la passwor. E l cart i crito? Ogni carta i crito è formata a 6 cifr ivisa in gruppi i 4 ABCD EFGH IJKL MNOP. L prim 4 cifr sono trminat all nt ch rilascia la carta, la quinta all nt finanziario ch gstisc la carta (VISA, MASTERCARD, cc). I numri ll cart i crito sguono l algoritmo i Luhn ovvro un numro i carta i crito a 6 cifr è corrtto s il oppio lla somma ll cifr ch occupano una posizion ispari più la somma ll cifr ch occupano un valor pari più il numro i cifr in posizioni ispari maggiori i 4, v ssr un multiplo i 0, ovvro 2(A+C+E+G+I+K+M+O)+(B+D+F+H+J+L+N+P) + numro i cifr in posizioni ispari maggiori i 4 0 moulo 0. Qust consirazioni ci suggriscono ch s vngono intrcttati alcuni

5 numri i un carta i crito si può pnsar, attravrso un computr, i ffttuar un attacco a forza bruta sull cifr rimannti pr ogni combinazion trminar s è ammissibil scono l algoritmo i Luhn quini sclur qull combinazioni ch non sono ammissibili. E comunqu a tnr prsnt ch non basta conoscr il numro i una carta i crito pr usarla: occorr sapr il coic a tr cifr posto sul rtro lla carta (000 possibilità) la ata i scanza sprssa nlla forma mm/gg ovvro ms (2 possibilità) anno (vari possibilità, almno 5).

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006 Corso di Laura in Informatica - a.a. 25/6 Calcolo dll Probabilità Statistica Prova scritta dl III appllo - 7/6/26 Il candidato risolva i problmi proposti, motivando opportunamnt l propri rispost.. Sia

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data.

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data. LE FRAZIONI La frazion è un oprator ch opra su una qualsiasi grandzza ch da com risultato una grandzza omogna a qulla data. AB (Il sgmnto AB è stato diviso i tr parti sono stat prs du) Una frazion è scritta

Dettagli

Servizio di Prenotazione Appuntamenti Servizi Demografici

Servizio di Prenotazione Appuntamenti Servizi Demografici Srvizio Srvizi Dmografici Srvizi Dmografici Comun Modna Collgarsi al Srvizio Dalla pagina istituzional di Srvizi Dmografici (http://www.comun.modna.it/anagraf) slzionar link Prnotazion Appuntamnti Far

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Il campione. Il campionamento. Il campionamento. Il campionamento. Il campionamento

Il campione. Il campionamento. Il campionamento. Il campionamento. Il campionamento Il campion I mtodi di campionamnto d accnno all dimnsioni di uno studio Raramnt in uno studio pidmiologico è possibil saminar ogni singolo soggtto di una popolazion sia pr difficoltà oggttiv di indagin

Dettagli

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42 Calcolo di intgrali Supponiamo di dovr calcolar l intgral di una funzion in un intrvallo limitato [ min, ma ], di conoscr il massimo d il minimo dlla funzion in tal intrvallo. S gnriamo n punti uniformmnt

Dettagli

Prova scritta di Algebra 23 settembre 2016

Prova scritta di Algebra 23 settembre 2016 Prova scritta di Algbra 23 sttmbr 2016 1. Si considri la sgunt applicazion: { Z21 Z ϕ : 3 Z 7 [x] 21 ([2x] 3, [x] 7 ) a) Vrificar ch ϕ è bn dfinita. b) Dir s ([1] 3, [5] 7 ) Imϕ in tal caso trovarn la

Dettagli

DERIVATE. h Geometricamente è il coefficiente angolare della retta secante congiungente i punti della curva di ascissa x. y = in un punto x.

DERIVATE. h Geometricamente è il coefficiente angolare della retta secante congiungente i punti della curva di ascissa x. y = in un punto x. DERIVATE OBIETTIVI MINIMI: Conoscr la dinizion di drivata d il suo siniicato omtrico Sapr calcolar smplici drivat applicando la dinizion Conoscr l drivat dll unzioni lmntari Conoscr l rol di drivazion

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti Equazioni di Scondo Grado in Una Variabil, x Complt, Pur Spuri. Tcnich pr risolvrl d Esmpi svolti Francsco Zumbo www.francscozumbo.it http://it.gocitis.com/zumbof/ Qusti appunti vogliono ssr un ultrior

Dettagli

Progetto di cinghie trapezoidali

Progetto di cinghie trapezoidali Progtto i cinghi trapzoiali L cinghi trapzoiali sono utilizzat frquntmnt pr la trasmission i potnza Vantaggi Basso costo Smplicità i installazion Capacità i assorbir vibrazioni torsionali picchi i coppia

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

PROGETTO TESSERA SANITARIA ACQUISIZIONE DATI DI SPESA SANITARIA AI FINI DEL 730 PRECOMPILATO DM 31 LUGLIO 2015 TABELLA ERRORI

PROGETTO TESSERA SANITARIA ACQUISIZIONE DATI DI SPESA SANITARIA AI FINI DEL 730 PRECOMPILATO DM 31 LUGLIO 2015 TABELLA ERRORI PROGTTO TSSRA SANITARIA ACQUISIZION DATI DI SPSA SANITARIA AI FINI DL 730 PRCOMPILATO DM 31 LUGLIO 2015 TABLLA RRORI Pag. 2 di 5 RVISIONI DL DOCUMNTO VRSION DATA MODIFICA DSCRIZION Pag. 3 di 5 1. LNCO

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

La popolazione in età da 0 a 2 anni residente nel comune di Bologna

La popolazione in età da 0 a 2 anni residente nel comune di Bologna Sttor Programmazion, Controlli La popolazion in tà da 0 a 2 anni rsidnt nl comun di Bologna Maggio 2007 La prsnt nota è stata ralizzata da un gruppo di dirignti funzionari dl Sttor Programmazion, Controlli

Dettagli

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica 1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 4 3 Funzion invrsa 6 4 Rstrizion prolungamnto di una funzion 8 5 Soluzioni dgli srcizi

Dettagli

II-1 Funzioni. 1 Il concetto di funzione 1. 2 Funzione composta 5. 3 Funzione inversa 7. 4 Restrizione e prolungamento di una funzione 9

II-1 Funzioni. 1 Il concetto di funzione 1. 2 Funzione composta 5. 3 Funzione inversa 7. 4 Restrizione e prolungamento di una funzione 9 1 IL CONCETTO DI FUNZIONE 1 II-1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 5 3 Funzion invrsa 7 4 Rstrizion prolungamnto di una funzion 9 5 Soluzioni dgli srcizi 9 In qusta dispnsa affrontiamo

Dettagli

Agenzia regionale per il lavoro Unità organizzativa: Osservatorio regionale del mercato del lavo

Agenzia regionale per il lavoro Unità organizzativa: Osservatorio regionale del mercato del lavo Agnzia rgional pr il lavoro Unità organizzativa: Ossrvatorio rgional dl mrcato dl lavo - Guida oprativa all strazion di dati dal SIL Sardgna scondo lo Standard Multirgional di Dati Amministrativi - Sttmbr

Dettagli

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata CURVE DI PROBABILITÀ PLUVIOMETRICA L curv di probabilità pluviomtrica sprimono la rlazion fra l altzz di prcipitazion h la loro durata t, pr un assgnato valor dl priodo di ritorno T. Tal rlazion vin spsso

Dettagli

Corso di Laurea in Ingegneria Informatica. Corso di Reti di Calcolatori (a.a. 2010/11)

Corso di Laurea in Ingegneria Informatica. Corso di Reti di Calcolatori (a.a. 2010/11) orso di Laura in Inggnria Informatica orso di Rti di alcolatori (a.a. /) Robrto anonico (robrto.canonico@unina.it) Giorgio Vntr (giorgio.vntr@unina.it) lgoritmo di ijkstra novmbr I lucidi prsntati al corso

Dettagli

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4 Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. y 5 y Esrcizio no. Soluzion a pag.6 Esrcizio no. Soluzion a pag.8

Dettagli

Appendice A Richiami di matematica

Appendice A Richiami di matematica Appndic A Richiami di matmatica A. Notazion scintifica Uso dgli sponnti I numri ch incontriamo in chimica sono spsso strmamnt grandi (pr s. 8 80 000 000) o strmamnt piccoli (pr s. 0,000 004 63). Quando

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

PROVA DI ARTE E IMMAGINE

PROVA DI ARTE E IMMAGINE ISTITUTO COMPRENSIVO DI MANZANO PROVA DI ARTE E IMMAGINE Scuola Primaria Anno Scolastico Class quinta Alunno/a Scuola Sz. PRIMO COMPITO La tua scuola ha dciso di produrr un opuscolo, pr pubblicizzar diffondr

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

Documento di accompagnamento informatizzato (ruolo : detentore/delegato/ Servizio Veterinario : specie ovina)

Documento di accompagnamento informatizzato (ruolo : detentore/delegato/ Servizio Veterinario : specie ovina) Manual Documnto accompagnamnto informatizzato Documnto di accompagnamnto informatizzato (ruolo : dtntor/dlgato/ Srvizio Vtrinario : spci ovina) Manual utnt Rdatto da: Srna Baiocco approvato da: rvision:

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza):

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza): Nozioni di bas sull conich (lliss (x^2/a^2)+(y^2/b^2)=1, iprbol(x^2/a^2)-(y^2/b^2)=1, parabola circonfrnza): Dlta =0, significa un solo punto di intrszion tra fascio di rtt conica Dlta >=0, significa 2

Dettagli

TABELLA D EFFICACIA ED EFFICIENZA NELLE ATTIVITÀ PRECEDENTEMENTE REALIZZATE FINANZIATE DA FONDI PUBBLICI

TABELLA D EFFICACIA ED EFFICIENZA NELLE ATTIVITÀ PRECEDENTEMENTE REALIZZATE FINANZIATE DA FONDI PUBBLICI TABELLA D EFFICACIA ED EFFICIENZA NELLE ATTIVITÀ PRECEDENTEMENTE REALIZZATE FINANZIATE DA FONDI PUBBLICI Tablla D: EFFICACIA ED EFFICIENZA NELLE ATTIVITÀ PRECEDENTEMENTE REALIZZATE Tipologia di Evidnza

Dettagli

La probabilità di sbagliare tutto

La probabilità di sbagliare tutto La probabilità di sbagliar tutto Umbrto Crruti Univrsità di Torino Quanto scommttrst? Sul tavolo davanti a m c è un mazzo di 50 cart numrat da a 50, accuratamnt mscolat, con il numro coprto. Sulla suprfici

Dettagli

Classe di abilitazione (o classe di concorso) Reclutamento docenti e Graduatorie http://www.istruzione.it/urp/reclutamento.shtml

Classe di abilitazione (o classe di concorso) Reclutamento docenti e Graduatorie http://www.istruzione.it/urp/reclutamento.shtml Class di abilitazion (o class di concorso) La class di concorso è una sigla alfa numrica con la qual si indica l insim di matri ch possono ssr insgnat da un docnt. Indica una particolar cattdra di insgnamnto,

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

ESERCIZI SULLA CONVEZIONE

ESERCIZI SULLA CONVEZIONE Giorgia Mrli matr. 97 Lzion dl 4//0 ora 0:0-:0 ESECIZI SULLA CONVEZIONE Esrcizio n Considriamo un tubo d acciaio analizziamo lo scambio trmico complto, ossia qullo ch avvin sia all intrno sia all strno

Dettagli

R k = I k +Q k. Q k = D k-1 - D k

R k = I k +Q k. Q k = D k-1 - D k 1 AMMORTAMENTO AMMORTAMENTO Dbito inizial D 0 si volv (al tasso fisso t) D k = D k-1 (1+t) R k [D k dbito (rsiduo) al tmpo k, R k pagamnto al tmpo k ] Condizioni [D n =0 : stinzion dl dbito in n priodi

Dettagli

Distanze di sicurezza e prevenzione degli infortuni. Distanze di sicurezza secondo le norme EN 349 e EN ISO 13857

Distanze di sicurezza e prevenzione degli infortuni. Distanze di sicurezza secondo le norme EN 349 e EN ISO 13857 Distanz di sicurzza prvnzion dgli infortuni Distanz di sicurzza scondo l norm EN 349 EN ISO 13857 Suva Tutla dlla salut Caslla postal, 6002 Lucrna Informazioni Tl. 041 419 58 51 Download www.suva.ch/waswo-i/66137

Dettagli

CHIEDE. dichiarazione sostitutiva dell atto di notorietà contenente il rendiconto delle entrate e delle spese;

CHIEDE. dichiarazione sostitutiva dell atto di notorietà contenente il rendiconto delle entrate e delle spese; COMUNE DI BERGAMO AREA SERIVIZI AI CITTADINI SEDE Tramit l Ufficio Protocollo RICHIESTA LIQUIDAZIONE DEL CONTRIBUTO PER L INIZIATIVA: (anno ) Il/la sottoscritto/a nato a il rsidnt a in via cap. tl. C.F.

Dettagli

TABELLA D EFFICACIA ED EFFICIENZA NELLE ATTIVITÀ PRECEDENTEMENTE REALIZZATE

TABELLA D EFFICACIA ED EFFICIENZA NELLE ATTIVITÀ PRECEDENTEMENTE REALIZZATE TABELLA D EFFICACIA ED EFFICIENZA NELLE ATTIVITÀ PRECEDENTEMENTE REALIZZATE D1) Rapporto tra risors conomich invstit pr la comunicazion l innovazion tcnologica volum di affari drivant dall attività di

Dettagli

schema di firma definizione formale

schema di firma definizione formale schema di firma Alice firma un messaggio da mandare a Bob ci sono due componenti: un algoritmo sig per firmare e un algoritmo ver per verificare quello per firmare dev essere privato (solo Alice può firmare)

Dettagli

Unità didattica: Grafici deducibili

Unità didattica: Grafici deducibili Unità didattica: Grafici dducibili Dstinatari: Allivi di una quarta lico scintifico PNI tal ud è insrita nllo studio dll funzioni rali di variabil ral. Programmi ministriali dl PNI: Dal Tma n 3 funzioni

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost

Dettagli

Min. per il conteggio kg. mm PCE-PB 60 60 20 - - 20 ±50-325 x 315 PCE-PB 150 150 50 - - 50 ±100-325 x 315

Min. per il conteggio kg. mm PCE-PB 60 60 20 - - 20 ±50-325 x 315 PCE-PB 150 150 50 - - 50 ±100-325 x 315 Bilanc inustriali Sri PCE-PB Bilancia psapacchi molto conomica con intrfaccia Qusta bilancia psapacchi è ial pr ralizzar spizioni, p.. con la bilancia psapacchi PCE-PB 60 (campo i psata i 0... 60 k), potrà

Dettagli

-LE ASPETTATIVE: NOZIONI DI - MERCATI FINANZIARI E BASE ASPETTATIVE

-LE ASPETTATIVE: NOZIONI DI - MERCATI FINANZIARI E BASE ASPETTATIVE 1 -LE ASPETTATIVE: NOZIONI DI BASE - MERCATI FINANZIARI E ASPETTATIVE DUE DEFINIZIONI PER IL TASSO DI INTERESSE Il tasso di intrss in trmini di monta è chiamato tasso di intrss nominal (i). Il tasso di

Dettagli

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico Misurazion dl valor mdio di una tnsion tramit l uso di un voltmtro numrico La zion si conduc slzionando la funzion dc dllo strumnto collgando i trminali dllo strumnto al gnrator sotto zion: tnndo conto

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

SINDACATO PENSIONATI ITALIANI BERGAMO - via Garibaldi 3 Tel FUNZIONE PUBBLICA BERGAMO - via Garibaldi 3 Tel

SINDACATO PENSIONATI ITALIANI BERGAMO - via Garibaldi 3 Tel FUNZIONE PUBBLICA BERGAMO - via Garibaldi 3 Tel SIACATO PENSIONATI ITALIANI 24122 BERGAMO - via Garibaldi 3 Tl. 035-35.94.150 FUNZIONE PUBBLICA 24122 BERGAMO - via Garibaldi 3 Tl. 035-35.94.310 In una situazion di grav carnza conomica pr i comuni pr

Dettagli

ESERCIZI SULLA DEMODULAZIONE INCOERENTE

ESERCIZI SULLA DEMODULAZIONE INCOERENTE Esrcitazioni dl corso di trasmissioni numrich - Lzion 4 6 Fbbraio 8 ESERCIZI SULLA DEMODULAZIONE INCOERENE I du sgnali passa basso di figura sono utilizzati pr la trasmission di simboli binari quiprobabili

Dettagli

INDICE 1. 1 Triangolazione di matrici Teorema di Cayley-Hamilton Matrici nilpotenti Forma canonica delle matrici 3 3.

INDICE 1. 1 Triangolazione di matrici Teorema di Cayley-Hamilton Matrici nilpotenti Forma canonica delle matrici 3 3. INDICE Torma di Cayly-Hamilton, forma canonica triangolazioni. Vrsion dl Maggio Argomnti sclti sulla triangolazion di matrici, il torma di Cayly-Hamilton sulla forma canonica dll matrici 3 3 pr i corsi

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

SONDAGGIO ONLINE FLASH! PREP IN EUROPE: PRIMI RISULTATI COORDINATION GROUP STUDY GROUP UNAIDS

SONDAGGIO ONLINE FLASH! PREP IN EUROPE: PRIMI RISULTATI COORDINATION GROUP STUDY GROUP UNAIDS PRIMI RISULTATI COORDINATION GROUP STUDY GROUP APPROVED BY SUPPORTED BY UNAIDS 2 COS È LA PREP? PrEP (profilassi pr-sposizion o Pr-Exposur Prohylaxis in ingls) è un trmin ch si rifrisc all uso di farmaci

Dettagli

POTENZE NECESSARIE E DISPONIBILI

POTENZE NECESSARIE E DISPONIBILI POTENZE NECESSARIE E DISPONIBILI In qusto capitolo ci proponiamo di dtrminar l curv dll potnz ncssari pr l vari condizioni di volo. Tali curv dipndranno da divrsi fattori com il pso dl vlivolo, la quota,

Dettagli

Documento di accompagnamento informatizzato (ruolo : detentore/delegato/ Servizio Veterinario : specie suina)

Documento di accompagnamento informatizzato (ruolo : detentore/delegato/ Servizio Veterinario : specie suina) Documnto di accompagnamnto informatizzato (ruolo : dtntor/dlgato/ Srvizio Vtrinario : spci suina) Manual utnt Rdatto da: Srna Baiocco approvato da: rvision: Rvision Sistmi Informativi Cntro data di mission:

Dettagli

Problema 3: CAPACITA ELETTRICA E CONDENSATORI

Problema 3: CAPACITA ELETTRICA E CONDENSATORI Problma 3: CAPACITA ELETTRICA E CONDENSATORI Prmssa Il problma composto da qusiti di carattr torico da una succssiva part applicativa costituisc un validissimo smpio di quilibrio tra l divrs signz ch convrgono

Dettagli

'La Notte dell'addio' (Sanremo )una analisi del testo di Alberto Testa-di MASSIMO CAMARDA Sabato 19 Marzo :24

'La Notte dell'addio' (Sanremo )una analisi del testo di Alberto Testa-di MASSIMO CAMARDA Sabato 19 Marzo :24 LA NOTTE DELL'ADDIO (FESTIVAL DELLA CANZONE ITALIANA DI SANREMO 1966-2011) La nott dll addio, brano scritto da Albrto Tsta musicato da Giuspp Divrio, prsntato al Fstival di Sanrmo dl 66 da una giovanissima

Dettagli

1) La probabilità di ciascun evento elementare è non negativa. 2) La somma delle probabilità di tutti gli eventi elementari vale 1.

1) La probabilità di ciascun evento elementare è non negativa. 2) La somma delle probabilità di tutti gli eventi elementari vale 1. CAPITOLO SECONDO CALCOLO DELLE PROBABILITÀ Spazi di probabilità, vnti smplici d vnti composti Indichiamo con S lo spazio dgli vnti. Esso è un insim, i cui lmnti sono dtti vnti. Nl lancio di un dado, lo

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

MATER NITÀ. La legge recentemente approvata non si limita ad emanare. eciale. congedi parentali. Legge sui congedi parentali. Legge 8 marzo2000 n.

MATER NITÀ. La legge recentemente approvata non si limita ad emanare. eciale. congedi parentali. Legge sui congedi parentali. Legge 8 marzo2000 n. Lcco Sp ciale congdi parntali Lgg 8 marzo2000 n. 53 Lgg sui congdi parntali La lgg rcntmnt approvata non si limita ad manar disposizioni spcifich pr il sostgno dlla matrnità dlla patrnità, pr il diritto

Dettagli

REGRESSIONE LOGISTICA

REGRESSIONE LOGISTICA 0//04 METODI E TECNICHE DELLA RICERCA IN PSICOLOGIA CLINICA E LABORATORIO AA 04/05 PROF. V.P. SENESE Sconda Univrsità di Napoli (SUN) Facoltà di Psicologia Dipartimnto di Psicologia METODI E TECNICHE DELLA

Dettagli

da chi proviene un messaggio?

da chi proviene un messaggio? da chi proviene un messaggio? in un crittosistema simmetrico solo Alice e Bob conoscono la chiave se Bob riceve un messaggio di Alice e la decifratura del messaggio ha senso, il messaggio proviene certamente

Dettagli

UTILIZZO TASTI E FUNZIONI

UTILIZZO TASTI E FUNZIONI wb Grazi pr avr sclto un tlcomando Mliconi. Consrvar il prsnt librtto pr futur consultazioni. Il tlcomando Facil wb è stato studiato pr comandar un tlvisor. Grazi alla sua ampia banca dati è in grado di

Dettagli

Principi ed applicazioni del metodo degli elementi finiti. Formulazione base con approccio agli spostamenti

Principi ed applicazioni del metodo degli elementi finiti. Formulazione base con approccio agli spostamenti Prncp d applcazon dl mtodo dgl lmnt fnt Formulazon bas con approcco agl spostamnt PRINCIPIO DEI LAVORI VIRTALI Data una crta statca: sforz σ j, forz d volum F forz d suprfc f j ; s dmostra ch mporr la

Dettagli

Opuscolo sui sistemi. Totogoal

Opuscolo sui sistemi. Totogoal Opuscolo sui sistmi Totogoal Più info Conoscnz calcistich pr vincr Jackpot alti Informazioni dttagliat costantmnt aggiornat sul Totogoal, sui programmi Toto sui risultati rpribili su Tltxt, a partir dalla

Dettagli

DIODO SCHOTTKY. Si tratta del più semplice dispositivo unipolare, in cui cioè la corrente è legata esclusivamente ai portatori maggioritari.

DIODO SCHOTTKY. Si tratta del più semplice dispositivo unipolare, in cui cioè la corrente è legata esclusivamente ai portatori maggioritari. OO SCHOTTKY Si tratta dl più smplic dispositivo unipolar, in cui cioè la corrnt è lgata sclusivamnt ai portatori maggioritari. livllo dl vuoto q q s E Fm q m E Fs E Fm q( m -) q( m - s )= bi E Fs prima

Dettagli

di disequazioni lineari

di disequazioni lineari Capitolo Disquazioni Esrcizi sistmi di disquazioni linari Toria p. 68 L disquazioni l loro soluzioni Pr ciascuna dll sgunti disquazioni, invnta un problma ch possa ssr risolto con la disquazion stssa.

Dettagli

Istogrammi ad intervalli

Istogrammi ad intervalli Istogrammi ad intrvalli Abbiamo visto com costruir un istogramma pr rapprsntar un insim di misur dlla stssa granda isica. S la snsibilità dllo strumnto di misura è alta, è probabil ch tra gli N valori

Dettagli

Lab Pro ver. 5.0 Gestionale per STRUTTURE SANITARIE

Lab Pro ver. 5.0 Gestionale per STRUTTURE SANITARIE Pag. 1 di 8 Lab Pro ver. 5.0 Gestionale per STRUTTUR SANITARI Guida operativa applicazione LabPro DSS Documento soggetto a copyright (Materiale illustrativo su software Registrato da Proactive sas) Pag.

Dettagli

Funzioni lineari e affini. Funzioni lineari e affini /2

Funzioni lineari e affini. Funzioni lineari e affini /2 Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.

Dettagli

TIPI TIPI DI DI DECADIMENTO RADIOATTIVO --ALFA

TIPI TIPI DI DI DECADIMENTO RADIOATTIVO --ALFA TIPI TIPI DI DI DECDIMENTO RDIOTTIVO --LF LF Dcadimnto alfa: il nuclo instabil mtt una particlla alfa (), ch è composta da du protoni du nutroni (un nuclo di 4 H), quindi una particlla carica positivamnt.

Dettagli

0.06 100 + (100 100)/4 (100 + 2 100)/3

0.06 100 + (100 100)/4 (100 + 2 100)/3 A. Prtti Svolgimnto di tmi d sam di MDEF A.A. 5/ PROVA CONCLUSIVA DI MATEMATICA pr l DECISIONI ECONOMICO-FINANZIARIE Vicnza, 5// ESERCIZIO. Trovar una prima approssimazion dl tasso di rndimnto a scadnza

Dettagli

Progettazione di sistemi distribuiti

Progettazione di sistemi distribuiti Progttazion di sistmi distribuiti Valutazion dll prstazioni: cnni Prformanc Cosa vuol dir ch un sistma è più vloc di un altro? Tmpo di risposta (tmpo di scuzion): diffrnza tra T c, l'istant in cui un task

Dettagli

12. Il rumore negli amplificatori

12. Il rumore negli amplificatori 12. Il rumor ngli ampliicatori Il rumor prsnt ngli ampliicatori può ssr suddiviso in du catgori: rumor causato da sorgnti strn rumor causato da sorgnti intrn. Sorgnti strn. Il rumor provnint dalla lina

Dettagli

Capitolo 1. L insieme dei numeri complessi Introduzione ai numeri complessi

Capitolo 1. L insieme dei numeri complessi Introduzione ai numeri complessi Capitolo 1 L insim di numri complssi 11 Introduzion ai numri complssi Dfinizion 111 Sia assgnata una coppia ordinata (a, b) di numri rali Si dfinisc numro complsso l sprssion z = a + ιb I numri a b sono

Dettagli

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo.

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. 6. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. Funzion sponnzil f ( ) fissto f : ( + ) è l bs dll funzion sponnzil d è fisst è l sponnt dll funzion

Dettagli

Donare ai tempi della crisi

Donare ai tempi della crisi Argomnti Donar ai tmpi dlla crisi Domnico Chirico Non è smplic districarsi all intrno dll numros richist opportunità di donazion ch, soprattutto in tmpi di crisi, provngono da molti fronti. L articolo

Dettagli

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1 Analisi di Sistmi Soluzion dl compito dl 26 Giugno 23 Esrcizio. Pr i du sistmi dscritti dai modlli sgunti, individuar l proprità strutturali ch li carattrizzano: linar o non linar, stazionario o tmpovariant,

Dettagli

CONDIZIONI DI FUNZIONAMENTO

CONDIZIONI DI FUNZIONAMENTO CONDIZIONI DI FUNZIONAMENTO Anch il todolit più sofisticato, di pr sé, non garantisc la corrtta misura dgli angoli. Affinché un todolit possa assolvr al suo compito di misurar corrttamnt gli angoli, è

Dettagli

Collegamenti. Istruzioni Windows per una stampante collegata localmente. Che cos'è la stampa locale? Installazione del software mediante il CD

Collegamenti. Istruzioni Windows per una stampante collegata localmente. Che cos'è la stampa locale? Installazione del software mediante il CD Pagina 1 i 6 Collgamnti Istruzioni Winows pr una stampant ollgata loalmnt Nota: quano si installa una stampant ollgata loalmnt, s il sistma oprativo in uso non è supportato al CD Softwar oumntazion, è

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

( ) ( ) ( ) [ ] 2 ( ) 18 9) DERIVATA DI UNA FUNZIONE COMPOSTA

( ) ( ) ( ) [ ] 2 ( ) 18 9) DERIVATA DI UNA FUNZIONE COMPOSTA 8 9 DERIVATA DI UNA FUNZIONE COMPOSTA La drivata di una funion composta ( funion di funion si ottin (dim all pagin 0 : a drivando la funion principal ( qulla ch si applica pr ultima risptto al suo argomnto

Dettagli

La formazione per i lavoratori colpiti dalla crisi nel quadro dell offerta 2010

La formazione per i lavoratori colpiti dalla crisi nel quadro dell offerta 2010 La formazion pr i lavoratori colpiti dalla crisi nl quadro dll offrta 2010 di Luca Fasolis ARTICOLO 2/2012 Prmssa Sommario Prmssa Anticipazioni sull offrta 2010 L carattristich dgli allivi La FP pr lavoratori

Dettagli

LA NOSTRA AVVENTURA NEL CREARE UN LIBRO

LA NOSTRA AVVENTURA NEL CREARE UN LIBRO LA NOSTRA AVVENTURA NEL CREARE UN LIBRO Abbiamo iniziato a lggr in class Nonno Tano la casa dll strgh. Lo scopo ra ascoltar comprndr. Sguir la mastra ch dava sprssività alla lttura imparar da lla a lggr.

Dettagli

REGIONE DEL VENETO PROVVEDIMENTO

REGIONE DEL VENETO PROVVEDIMENTO REGIONE DEL VENETO AZIENDA UNITA LOCALE SOCIO SANiTARIA N. 6 VICENZA PROVVEDIMENTO DEL DIRIGENTE RESPONSABILE Srvizio Appalti Pubblic E-Procurmnt dlgato dal Dirttor Gnral dll Azinda con dlibra rgolamntar

Dettagli

COMUNE DI BOLOGNA Dipartimento Economia e Promozione della Città

COMUNE DI BOLOGNA Dipartimento Economia e Promozione della Città COMUNE DI BOLOGNA Dipartimnto Economia Promozion dlla Città Allgato C all Avviso pubblico pr la prsntazion di progtti di sviluppo alla Agnda Digital di Bologna Modllo di dichiarazion sul posssso di rquisiti

Dettagli

Bilance da laboratorio

Bilance da laboratorio Bilanc a laboratorio tmpratura umiità Ristratori i tmratura umiità tmp., umi., aria prssion iri vibrazion forza matrial raiazioni Icon automatica (intrna): i prcision con un pso i controllo intrno azionato

Dettagli

G H J. C F: Slot: CF I, CF II, MD G: Slot: XD H: Slot: SMC, SM- RAM. CR in-1 USB2 CARD READER Informazioni sul prodotto

G H J. C F: Slot: CF I, CF II, MD G: Slot: XD H: Slot: SMC, SM- RAM. CR in-1 USB2 CARD READER Informazioni sul prodotto CR-00 6-in- USB CARD READER Informazioni sul prodotto F A B D I G H J E A: Simboli pr l'insrimnto dlla schda B: Pidi in gomma C: Nastro in vlcro D: Indicator di attività E: Indicator di stato Installazion

Dettagli

DIPARTIMENTO CARDIO-TORACO-VASCOLARE U.O. ANGIOLOGIA E MALATTIE DELLA COAGULAZIONE LABORATORIO SPECIALISTICO DI COAGULAZIONE

DIPARTIMENTO CARDIO-TORACO-VASCOLARE U.O. ANGIOLOGIA E MALATTIE DELLA COAGULAZIONE LABORATORIO SPECIALISTICO DI COAGULAZIONE Dnominazion dl protocollo Matrial Tipo di prlivo Rsponsabil ff Dott.ssa Bnild Cosmi l di SOMMARIO Pag 1/18 Consrvazion trasporto Modalità particolari Intrfrnz Stt. di Elnco di sinonimi dll voci corrlat...

Dettagli

Responsabilità del posteggiatore e diritti dell utente

Responsabilità del posteggiatore e diritti dell utente Rsponsabilità dl postggiator diritti dll utnt Danil Monsi Qusto articolo tratta dlla qualificazion giuridica dl contratto atipico di postggio dlla sua assimilabilità al contratto di dposito. La rsponsabilità

Dettagli

Biennio CLEM - Prof. B. Quintieri. Anno Accademico 2012-2013, I Semestre. (Tratto da: Feenstra-Taylor: International Economics)

Biennio CLEM - Prof. B. Quintieri. Anno Accademico 2012-2013, I Semestre. (Tratto da: Feenstra-Taylor: International Economics) CONOMIA INTRNAZIONAL Bnno CLM - Prof. B. Quntr IL TASSO DI CAMBIO Anno Accadmco 2012-2013, I Smstr (Tratto da: Fnstra-Taylor: Intrnatonal conomcs) S propon, d sguto, una brv rassgna d prncp fondamntal

Dettagli

Mercato globale delle materie prime: il caso Ferrero

Mercato globale delle materie prime: il caso Ferrero Mrcato global dll matri prim: il caso Frrro Mauro Fontana In un priodo di fort crisi, com qullo ch attualmnt stiamo vivndo, il vincolo dl potr di acquisto di consumatori assum un importanza fondamntal

Dettagli

ANDAMENTO DELLA MORTALITA': TOSCANA E PROVINCIA DI AREZZO A CONFRONTO

ANDAMENTO DELLA MORTALITA': TOSCANA E PROVINCIA DI AREZZO A CONFRONTO ANDAMENTO DELLA MORTALITA': TOSCANA E PROVINCIA DI AREZZO A CONFRONTO I numri riprtti nll tbll sn TASSI GREZZI, ciè il numr dgli vnti vrifictisi in un nn divis l pplzin mltiplict pr 1 Nl 9 si può ntr ch

Dettagli

DOMANDA DI ISCRIZIONE. l sottoscritt tutore cognome e nome dell alunn C H I E D E

DOMANDA DI ISCRIZIONE. l sottoscritt tutore cognome e nome dell alunn C H I E D E Foto DOMANDA DI ISCRIZIONE Al Dirignt Scolastico dl Lico Classico Vittorio Emanul II PALERMO padr madr l sottoscritt tutor cognom nom dll alunn cognom nom C H I E D E l iscrizion dll_ stss_ alla II III

Dettagli

si presenta G uardiamoci attorno: ci sono case, strade, ponti, canali, ma anche

si presenta G uardiamoci attorno: ci sono case, strade, ponti, canali, ma anche za n i r p s l l a D al tsto Una mattina di fbbraio dll anno in cui pr la prima volta insgnavo in una sconda mdia ho assgnato alla class l srcizio di disgnar un quadrato con l stnsion doppia di qulla di

Dettagli

Crittografia a chiave pubblica

Crittografia a chiave pubblica Crittografia a chiave pubblica Barbara Masucci Dipartimento di Informatica Università di Salerno bmasucci@unisa.it http://www.di.unisa.it/professori/masucci Cifrari simmetrici canale insicuro Bob 1 Distribuzione

Dettagli

IV-3 Derivate delle funzioni di più variabili

IV-3 Derivate delle funzioni di più variabili DERIVATE PARZIALI IV-3 Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma di Schwarz 8 6 Soluzioni dgli srcizi

Dettagli

Grazie per aver scelto un telecomando Meliconi.

Grazie per aver scelto un telecomando Meliconi. IT I Grazi pr avr sclto un tlcomando Mliconi. Consrvar il prsnt librtto pr futur consultazioni. Il tlcomando Facil 1 è stato studiato pr comandar un tlvisor. Grazi alla sua ampia banca dati è in grado

Dettagli

Università di Camerino Corso di Laurea Fisica Indirizzo Tecnologie per l Innovazione Appunti di Calcolo Prof. Angelo Angeletti

Università di Camerino Corso di Laurea Fisica Indirizzo Tecnologie per l Innovazione Appunti di Calcolo Prof. Angelo Angeletti Uivrsità di Camrio Corso di Laura Fisica Idirizzo Tcologi pr l Iovazio Apputi di Calcolo Prof. Aglo Agltti Formula di Taylor Si ricordrà ch l quazio dlla tagt ad ua curva di quazio y f() i u puto è data

Dettagli

FISICA per SCIENZE BIOLOGICHE, A.A. 2005/2006 Prova scritta del 6 settembre 2006

FISICA per SCIENZE BIOLOGICHE, A.A. 2005/2006 Prova scritta del 6 settembre 2006 FISICA pr SCIENZE BIOLOGICHE, A.A. 5/6 Prova scritta 6 sttmbr 6 1 Un corpo i massa m, vincoato a una spao i unhzza 1m si muov i moto circoar uniform su i un piano orizzonta privo i attrito, compino 1 iro

Dettagli