Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim."

Transcript

1 Esercizi svolti. Calcolare i segueti iti: a log + + c ± ta si π e b + si si e d + f g h 4 + i l ± + log + log 7 log log m o cos + si p + e q si s e ta cos e u siπ cos si r si π t loge + 4 e v +. Verificare che f = e g = soo ifiitesimi dello stesso ordie per 0 e determiare k R tale che g k f.. Cofrotare tra loro gli ifiitesimi,, per. 4. Calcolare l ordie di ifiitesimo α e la parte pricipale p = k α rispetto c 006 Politecico di Torio

2 all ifiitesimo campioe per 0 delle segueti fuzioi: a e 4 b e + e c cos + d logcos e + + f e e e cos g log + log h si + i cos l + si + m + 5 o si π + q + + si + e p + si + r log Determiare l ordie di ifiitesimo α e la parte pricipale p = k rispetto α all ifiitesimo campioe per + delle segueti fuzioi: a + b arcta c + + e e + e f log d Determiare l ordie di ifiitesimo α e la parte pricipale p = k 0 α rispetto all ifiitesimo campioe 0 per che tede al valore 0 idicato delle segueti fuzioi: a log log, b e e, c si, π/ d + cos, π c 006 Politecico di Torio

3 7. Determiare l ordie di ifiito α e la parte pricipale p = k α rispetto all ifiito campioe per + delle segueti fuzioi: a / b Determiare il domiio e gli evetuali asitoti delle segueti fuzioi: a f = + + b f = e + 9. Determiare, per +, l asitoto di f = loge +. Ha seso cercare l asitoto per? 0. Cofrotare fra loro i segueti ifiiti per + mettedoli i ordie crescete di ifiito:,, log 00, log0, 5,, log,. Calcolare i segueti iti: a + b c + d 6 + log + e f 4 + g + + h log 5 + log + i l log m log o p c 006 Politecico di Torio

4 . Verificare che per a +!! +! b log +. Calcolare la parte pricipale per di a b + log 5 + log 4. Dimostrare che è u ifiito di ordie iferiore a! per. c 006 Politecico di Torio 4

5 Svolgimeto. Si ha a Ricordado che log + t = t + ot per t 0, otteiamo log + + o = + + o =. b Si ha si t = t + ot per t 0, quidi + si = o = 6 + o si = 6 + o = 5 + o e duque + si si = 6 + o 5 + o = 6 5. c Essedo ta t = t + ot, t 0, e si = + o, 0, si ha Pertato ta = + o = + o si = o = 5 + o. ta ± si = + o ± 5 + o = ± 5 = ±. d Utilizzado lo sviluppo e t = + t + ot per t 0, si ha e + = + + o + o + o = = 0. + o e Ricordado lo sviluppo a = + log a + o per 0, co a = π e a =, si ha π / + log π / log + o = log π log + o = = log π log = log π. f Ricordado che + t = + t + ot per t 0, e 5 = + log 5 + o, 0, si ha o = + log 5 + o = + o log 5 + o = log 5. c 006 Politecico di Torio 5

6 g Notiamo che 4 + = / + = / + o / per 0 +, duque 6 / = + o / + / + o / =. h Raccogliedo il termie e ricordado lo sviluppo + t = + t+ ot per t 0, si ha + = + + = = =. i Procededo come ell esercizio precedete si ha + = + + = + 5/6 + + = + 5/6 = 0. l Ricordiamo che per + la fuzioe a co a > è u ifiito di ordie superiore a α, qualuque sia α > 0. Si ha allora = = = 0. Aalogamete per si ha t = = + t + t = 0. m Per + la fuzioe log α è u ifiito di ordie iferiore a β α, β > 0, quidi log + log 7 log = log4 + log = + = 0. Ricordado che + α log β = 0, per ogi α, β > 0, si ha log log = + + log 5 + log /4 = =. c 006 Politecico di Torio 6

7 o Si ha cos = +o per +, e log+t = t+ot per t 0, duque p Risulta cos + log cos = + e = log + e +o = + e +o = e /. si + e log + si = = e log+ si = e +o +o = e +o +o = e /. q Risulta e si + + o = + o + o 7 = + o + o = 7. r Essedo = + log + o per 0 e si t = t + ot per t 0, si ha si π = si π + π log + o = si π log + o = π log + o, e quidi si π = π log. s Essedo ta = + o = + o per 0, abbiamo e ta = e +o = + + o = + o cos e = + o + + o = + o. Pertato e ta cos e = + o + o =. c 006 Politecico di Torio 7

8 t Notiamo che loge + = log e = log +, e + = log e + log + e e da cui loge + log = + e = + o e = e. u Usiamo gli sviluppi cos = + o per 0 e si t = t + ot per t 0, e l idetità siπ t = si t. Risulta siπ cos = si π π + o = si π + o = π + o si = + o = + o da cui siπ cos si = π + o + o = π. v Osserviamo che 4 + e = e log 4+ e. Ma, 4 + = + 4 = o da cui Pertato log 4 + e 4 e + = o, = log + + o o = + o 4 + o. 4 +o e = +o = e /4.. Si ha g f = / = / = 5 7, quidi g 5 7 f, 0. c 006 Politecico di Torio 8

9 . Si ha = + = 0, = / = / / = 0. Quidi è u ifiitesimo di ordie superiore a, e è u ifiitesimo di ordie superiore a per per. Possiamo ache calcolare l ordie di ifiitesimo α e la parte pricipale k α per rispetto a l ifiitesimo campioe di ordie. Ifatti si ha =,, 4 =,, + 8 e quidi ha ordie e parte pricipale 4, e ha ordie e parte pricipale a Ricordado che e t t t 0 abbiamo quidi α = 4 e p = 4. e 4 4, 0, b Si ha e + e = e + +o e = e e +o = e + o e, 0. Duque α = e p = e. c Risulta cos = + o + + o /, 0 ; pertato α = / e p = /. d Essedo log + t = t + ot t t 0, si ha logcos = log + o = + o, 0 ; c 006 Politecico di Torio 9

10 quidi α = e p =. e Notiamo che + 0, ma questo o ci permette di cocludere che + + è equivalete a per 0. Ifatti ricordado che + α = α + o α 0, si ha + + = + / + = + o + duque α = 4/ e p = 4/. = 4/ + o 4/ 4/, 0 ; f Per 0 si ha e e e cos = e ++o e +o = e e +o e +o = e + o + + o = e + o e ; pertato α = e p = e. g Si ha log + log = log + quidi α = e p =. = log +, 0, h Essedo si e + 0, si ha si +, 0, pertato α = e p =. i Essedo cos t t t 0, si ha cos = cos / 4 / =, 0 ; pertato α = e p =. l Per 0 si ha + = + + o + o = + o, c 006 Politecico di Torio 0

11 e quidi α = e p =. m Per 0 si ha si = + o e quidi si = / + o / /5 + o /5 / /5 = /5. I defiitiva α = /5 e p = /5. La fuzioe si 0 è u ifiitesimo di ordie, metre e 0 ha ordie, quidi + si + e = + o 0. I coclusioe α = e p =. o Utilizzado l idetità siπ + t = si t abbiamo per 0 si π + si π + π π + o = si + o π. Pertato α = e p = π. p Ricordiamo che = t + ot t 0, quidi si ha +t + si = + + o + + o = + o, 0 ; duque α = e p =. Possiamo ache procedere calcolado prima il deomiatore comue: + si = si + = + o + o, 0. q Risulta + + = = quidi α = e p =. + = + o o, 0 ; + o r Notiamo che 9 + = + 9 = o = o, 0, c 006 Politecico di Torio

12 e quidi 9 log + Pertato α = e p = a Si ha = log o = 6 + o 6, 0. + = + 8/ = + o, essedo u ifiitesimo di ordie superiore a 8/ α = e p =. +, per +. Duque b Essedo arctat t t 0, si ha quidi α = e p =. arcta, +, c Notiamo che + +, ma ciò o ci cosete di dire che la fuzioe + + è equivalete a per +. Ifatti per + si ha + = + + = + e quidi essedo = o per +, si ha Pertato α = e p = = + o., d Essedo + t t t 0, si ha =, + ; duque α = e p =. e Essedo e t t t 0, si ha e + e = e + e = e e e, +. c 006 Politecico di Torio

13 I coclusioe α = e p = e. f Si ha log + t t t 0, quidi + log = log , +. I defiitiva α = e p =. 6. a Posto = t, quado tede a, t tede a 0, e quidi log log = log + t = log + t t =,. Duque α = e p =. b Posto = t, si osservi che per, t 0; duque si ha e e = e e = e e t e t = e,. Quidi α = e p = e. c Posto π/ = t, si osservi che per π/, t 0; quidi si ha π si = si + t = cost t = π pertato α = e p = π., π ; d Poiamo π = t. Ricordado che cosz z z 0, si ha per π + cos = + cos π + t = + cos π + π t + t = cos π t + t I coclusioe α = e p = π π. 7. a Per + si ha πt = π π. / = 5 + o / + o / 5 = / 5/. Pertato α = e p = 5/. b Notiamo che per + si ha 4 + = + = + o = + o, c 006 Politecico di Torio

14 e quidi essedo = o +, sarà = + o + = + o, +. Duque α = e p =. 8. a Si ha + + f = + duque dom f = R \ { }. Essedo se se <, ± f = ± + = 4 0 ± = ±, la retta = è asitoto verticale per f. Essedo f = /, la retta + y = è asitoto orizzotale destro per f. Ifie si verifica facilmete che f =, f =, e quidi la retta y = è asitoto obliquo siistro per f. b Si ha domf = R \ {0}. I iti laterali per 0 ± valgoo f = + e+ + = e e = e + t + f = e e = e 0 e = 0, e t t = +, quidi la retta = 0 è asitoto verticale destro per f. Si ha poi f = ± ± e+ = +, f + = + e+ = e, f e = e e e t = e = e, + + t 0 + t e la retta y = e + e è asitoto obliquo destro per f. I modo aalogo si verifica che la retta y = e e è asitoto obliquo siistro per f. c 006 Politecico di Torio 4

15 9. Notado che loge + = log e + e = + log +, e si verifica facilmete che la retta y = è asitoto obliquo destro per f. No ha seso cercare l asitoto per i quato la fuzioe è defiita su 0, +, per u certo 0 < I ordie crescete di ifiito per + si ha log 0, log 00,,, log,,, 5. Per verificare che 5 è ifiito di ordie superiore a osserviamo che 5 + = + e 5 log log log = = e + = +. e log + e5. a Il ite vale zero perche la successioe è itata metre + è ifiitesima. b Il ite o esiste perché la successioe dei termii di idice pari tede a +, metre quella dei termii di idice dispari tede a. Notiamo che o è sufficiete dire che è oscillate e + tede a + per cocludere + che il ite o esiste. Per esempio la successioe a = + 5 tede a + perché a 4, pur essedo il prodotto di ua successioe oscillate per ua successioe ifiita. c + = + d =. + = =. + e = = 4/ = 0. f 6 + log log 5 = g log log5 = + = + [ = = +. +] + = e. c 006 Politecico di Torio 5

16 h Poiché /e <, si ha [ = ] = e + = 0. i + [ + = = + ] = e 0 =. l Si ha e duque log + log = log[ + ] log = log + log + log log + = + log log log + =., m = 0 + = 0. È facile verificare che per ogi vale log. Moltiplicado per abbiamo che log, e duque log,. Ricordado che e applicado il teorema del doppio cofroto otteiamo log =. o Si ha log = e log = e log log + = e = 0. p Si ha Ma e quidi = e log e log = e log e log log. e log log = e log + log = e = 0, = e log =. c 006 Politecico di Torio 6

17 +!!. a +! log b +. a Si ha = = =. + = log + = log quidi la parte pricipale è 4. b Si ha [ + ] = log e =.! = 4! 4! 6, + log 5 + log = 5 log + log 5 5, duque la parte pricipale è Scrivedo per esteso /! possiamo effettuare la seguete maggiorazioe: 0 <! = = 4 = 7. Passado al ite per e applicado il teorema del doppio cofroto otteiamo! = 0. c 006 Politecico di Torio 7

Esercizi proposti. x 2 + log 3 x e x. lim x + e x sin (e x sin x) f) lim. h) lim x x 4 4 x + 3 x x + ( x 2 + 2x + 3. sin 2 x l) lim 1 log(cosx) x + x

Esercizi proposti. x 2 + log 3 x e x. lim x + e x sin (e x sin x) f) lim. h) lim x x 4 4 x + 3 x x + ( x 2 + 2x + 3. sin 2 x l) lim 1 log(cosx) x + x Esercizi proposti 1. Calcolare i segueti iti: a) ( ) 1 0 + si c) 10 e) 0 + log si 5 + g) h) 4 4 + + b) + log e + e + 5e 10 d) ( + ) 1 + + + e si (e si ) f) + ( + + + 1 i) ( cos ) 1 log (1 + ta 4 ) si l)

Dettagli

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c) SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log

Dettagli

I appello - 11 Dicembre 2006

I appello - 11 Dicembre 2006 Facoltà di Igegeria - Corso di Laurea i Igegeria Civile A.A. 006/007 I appello - Dicembre 006 ) Calcolare il seguete ite: [ ( )] + cos. + ) Data la fuzioe f() = e +, < 0, 0, =, =,,..., log( + ), 0,, =,,...,

Dettagli

1 + 1 ) n ] n. < e nα 1 n

1 + 1 ) n ] n. < e nα 1 n Esercizi preparati e i parte svolti martedì 0.. Calcolare al variare di α > 0 Soluzioe: + ) α Per α il ite è e; se α osserviamo che da + /) < e segue che α + ) α [ + ) ] α < e α Per α > le successioi e

Dettagli

Esercizi proposti. f(x), f(x), f(x), f(x + 1), f(x) + 1. x 2 x 1 se x 1, 4 x se x > 1 2, 2).

Esercizi proposti. f(x), f(x), f(x), f(x + 1), f(x) + 1. x 2 x 1 se x 1, 4 x se x > 1 2, 2). Esercizi proposti 1. Risolvere la disequazioe + 1.. Disegare i grafici di a) y = 1 + + 3 ; b) y = 1 ; c) y = log 10 + 1). 3. Si cosideri la fuzioe f) = ; disegare i grafici di f), f), f), f + 1), f) +

Dettagli

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza ANALISI MATEMATICA Commissioe L. Caravea, V. Casario, S. occate Igegeria Gestioale, Meccaica e Meccatroica, Viceza Nome, Cogome, umero di matricola: Viceza, 6 Settembre 25 TEMA - parte B Esercizio ( puti).

Dettagli

Esercizi di Analisi Matematica 1 utili per la preparazione all esame scritto. File con soluzioni.

Esercizi di Analisi Matematica 1 utili per la preparazione all esame scritto. File con soluzioni. Esercizi di Aalisi Matematica. Paola Gervasio Es. Esercizi di Aalisi Matematica utili per la preparazioe all esame scritto. File co soluzioi. a.5.5.5.5 b 4 3.5 3.5.5.5 5 5 Figura 5 5.5 a 3 b 4 5.5 6 5

Dettagli

Universitá di Roma Tor Vergata

Universitá di Roma Tor Vergata Uiversitá di Roma Tor Vergata Prof. A. Porretta ) Calcolare i segueti iti: ( ) + + 3 ( ) cos π + log 4 log( 3 + ) +! e + log ( ) si 3 + 3 5 e si + 3 4 + 3 log + ( ) 3 ( ) arctg + log ( ) + 5 + 3! si (log

Dettagli

Esercizi di Analisi Matematica A utili per la preparazione all esame scritto. File con soluzioni.

Esercizi di Analisi Matematica A utili per la preparazione all esame scritto. File con soluzioni. Esercizi di Aalisi Matematica A: soluzioi Es. Esercizi di Aalisi Matematica A utili per la preparazioe all esame scritto. File co soluzioi. PSfrag replacemets a.5.5.5.5 PSfrag replacemets 5 5 a b 4 3.5

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

Analisi Matematica Soluzioni prova scritta parziale n. 1

Analisi Matematica Soluzioni prova scritta parziale n. 1 Aalisi Matematica Soluzioi prova scritta parziale. 1 Corso di laurea i Fisica, 018-019 3 dicembre 018 1. Dire per quali valori dei parametri α R, β R, α > 0, β > 0 coverge la serie + (!) α β. ( )! =1 Soluzioe.

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

Esercizi su serie numeriche - svolgimenti

Esercizi su serie numeriche - svolgimenti Esercizi su serie umeriche - svolgimeti Osserviamo che vale la doppia diseguagliaza + si, e quidi la serie è a termii positivi Duque la somma della serie esiste fiita o uguale a + Ioltre valgoo le diseguagliaze

Dettagli

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5.

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5. 60 Roberto Tauraso - Aalisi Calcolare la somma della serie Soluzioi + 3 R La serie può essere riscritta el modo seguete: + 4 3 9 Il umero può essere raccolto fuori dal sego di sommatoria: + 4 3 9 Si tratta

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA 1 Area dell Igegeria dell Iformazioe Appello del 18.9.17 TEMA 1 Esercizio 1 Si cosideri la fuzioe fx) := 3x log x. i) Determiare il domiio D e studiare le evetuali simmetrie ed il sego

Dettagli

SOLUZIONI - FONDAMENTI di ANALISI MATEMATICA 1. Ingegneria per l Ambiente e il Territorio - III appello, 11 luglio 2012 TEMA 3

SOLUZIONI - FONDAMENTI di ANALISI MATEMATICA 1. Ingegneria per l Ambiente e il Territorio - III appello, 11 luglio 2012 TEMA 3 SOLUZIONI - FONDAMENTI di ANALISI MATEMATICA 1 Igegeria per l Ambiete e il Territorio - III appello, 11 luglio 212 Riportiamo lo svolgimeto dei temi 3 e 4 e le sole soluzioi dei temi 1 e 2. I temi pari

Dettagli

1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ;

1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ; . Serie umeriche Esercizio. Studiare il carattere delle segueti serie: ;! ;! ;!. Soluzioe.. Serie a termii positivi; cofrotiamola co la serie +, che è covergete: + + + 0. Pertato, per il criterio del cofroto

Dettagli

SUCCESSIONI SERIE NUMERICHE pag. 1

SUCCESSIONI SERIE NUMERICHE pag. 1 SUCCESSIONI SERIE NUMERICHE pag. Successioi RICHIAMI Ua successioe di elemeti di u isieme X è ua fuzioe f: N X. E covezioe scrivere f( ) = x, e idicare le successioi mediate la ifiitupla ordiata delle

Dettagli

DOMANDE ed ESERCIZI su LIMITI di SUCCESSIONI e FUNZIONI

DOMANDE ed ESERCIZI su LIMITI di SUCCESSIONI e FUNZIONI DOMANDE ed ESERCIZI su LIMITI di SUCCESSIONI e FUNZIONI I questa scheda soo proposte alcue domade teoriche sul cocetto di ite e alcui esercizi sul calcolo di iti proposti a temi d esame egli scorsi ai.

Dettagli

n + 2n 3 ; (1) lim n 2 log n + n (2) lim 2 n + 5 n = (3) lim Soluzione. (1). Riscrivendo oppportunamente la successione, si ha n2 (1 + 1/n 2 ) = n

n + 2n 3 ; (1) lim n 2 log n + n (2) lim 2 n + 5 n = (3) lim Soluzione. (1). Riscrivendo oppportunamente la successione, si ha n2 (1 + 1/n 2 ) = n Limiti di Successioi Ifiiti ed Ifiitesimi Esercizio Calcolare se esistoo i segueti iti: + + ; log + + + 5 ;! + +! Soluzioe Riscrivedo oppportuamete la successioe si ha + a = = + / = + Poichè + = + + =

Dettagli

Analisi Matematica I

Analisi Matematica I Uiversità di Pisa - orso di Laurea i Igegeria Edile-rchitettura alisi Matematica I Pisa, febbraio Domada La derivata della fuzioe f) log ) si è ) log )si B) log )cos ) log ) si cos loglog ) + si ) log

Dettagli

Svolgimento degli esercizi del Capitolo 4

Svolgimento degli esercizi del Capitolo 4 4. Michiel Bertsch, Roberta Dal Passo, Lorezo Giacomelli Aalisi Matematica 2 a edizioe Svolgimeto degli esercizi del Capitolo 4 Il limite segue dal teorema del cofroto: e / 0 per. 4.2 0

Dettagli

Tutorato Analisi 1 Ing. Edile - Architettura 16/17 Tutor: Irene Rocca

Tutorato Analisi 1 Ing. Edile - Architettura 16/17 Tutor: Irene Rocca Tutorato Aalisi Ig Edile - Architettura 6/7 Tutor: Iree Rocca 0//206 - Limiti di successioe e iti di fuzioe Calcolare i segueti iti di successioe: ( ) (a) (b) (c) (d) (e) (f) (g) 3 2 e (d) + 2 log 3 3

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 18 gennaio 2016

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 18 gennaio 2016 omada ) ) 4 cos si = 0 + e 4 C) 0 ) + omada La fuzioe f : (0, + ) R defiita da f() = si ( ) cos ) ha sia massimo che miimo ) è itata ma o ha é massimo é miimo C) o è itata e o ha asitoti ) ha u asitoto

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

Serie numeriche e di funzioni - Esercizi svolti

Serie numeriche e di funzioni - Esercizi svolti Serie umeriche e di fuzioi - Esercizi svolti Serie umeriche Esercizio. Discutere la covergeza delle serie segueti a) 3, b) 5, c) 4! (4), d) ( ) e. Esercizio. Calcolare la somma delle serie segueti a) (

Dettagli

Analisi Matematica I modulo Soluzioni prova scritta preliminare n. 1

Analisi Matematica I modulo Soluzioni prova scritta preliminare n. 1 Aalisi Matematica I modulo Soluzioi prova scritta prelimiare 1 Corso di laurea i Matematica, aa 004-005 9 ovembre 004 1 (a) Calcolare il seguete limite: **A***** Soluzioe Si ha ( + log ) ( + log ) lim

Dettagli

LIMITI DI SUCCESSIONI

LIMITI DI SUCCESSIONI LIMITI DI SUCCESSIONI Formalmete, ua successioe di elemeti di u dato isieme A è u'applicazioe dall'isieme N dei umeri aturali i A: L'elemeto a della successioe è quidi l'immagie a = f) del umero secodo

Dettagli

Esercizi sui limiti di successioni

Esercizi sui limiti di successioni AM0 - AA 03/4 ALFONSO SORRENTINO Esercizi sui iti di successioi Esercizio svolto a) Usado la defiizioe di ite, dimostare che: + 3 si π cos e ) e b) 0 Soluzioe Comiciamo da a) Vogliamo dimostrare che: ε

Dettagli

1. ESERCIZI sui NUMERI REALI. Determinare l estremo superiore e inferiore, il massimo e il minimo, se esistono, dei seguenti insiemi.

1. ESERCIZI sui NUMERI REALI. Determinare l estremo superiore e inferiore, il massimo e il minimo, se esistono, dei seguenti insiemi. . ESERCIZI sui NUMERI REALI Determiare l estremo superiore e iferiore, il massimo e il miimo, se esistoo, dei segueti isiemi.. A = { R }. B = { < }. C = { + N {0}} 4. D = { k k Z} Provare di ciascua delle

Dettagli

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas ESAME DI MATEMATICA I Modulo di Aalisi Matematica Corso Ao Accademico 8/9 Docete: R Argiolas Cogome Matricola Febbraio 9 ore 9 Aula C Nome Corso voto Esercizio Assegata la fuzioe f ( arcta a Si determii

Dettagli

Risoluzione del compito n. 3 (Febbraio 2018/2)

Risoluzione del compito n. 3 (Febbraio 2018/2) Risoluzioe del compito. 3 (Febbraio 08/ PROBLEMA a Determiate le soluzioi τ C dell equazioe τ iτ +=0. { αβ =4 b Determiate le soluzioi (α, β, co α, β C,delsistema α + β =i. c Determiate tutte le soluzioi

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioi di Aalisi Matematica per i corsi di Laurea i Igegeria Chimica e Igegeria per l Ambiete e il Territorio dell Uiversità di Bologa. Ao Accademico

Dettagli

( 1) k+1 x k + R N+1 (x), k. 1 + x 10 2, 5 R N+1 ( 1 3 ) ) )

( 1) k+1 x k + R N+1 (x), k. 1 + x 10 2, 5 R N+1 ( 1 3 ) ) ) Esercizi di Aalisi - Alberto Valli - AA 05/06 - Foglio 8. Fatevi veire u idea per calcolare log48 alla secoda cifra decimale. Lo sviluppo di Taylor di log( + ) è covergete per solo per (,]. Duque bisoga

Dettagli

Prova scritta del 9/1/2003

Prova scritta del 9/1/2003 Prova scritta del 9//00 Soluzioe degli esercizi N. Le quattro serie proposte soo a termii positivi. Per studiare la covergeza delle serie a termii positivi è possibile utilizzare uo dei segueti criteri

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Aalisi e Geometria Politecico di Milao Igegeria Preparazioe al primo compito i itiere. Risolvere el campo complesso l equazioe z z = 4z.. Sia f la fuzioe a valori complessi defiita da f(z = per ogi z D,

Dettagli

(x log x) n2. (14) n + log n

(x log x) n2. (14) n + log n Facoltà di Scieze Matematiche Fisiche e Naturali- Aalisi Matematica A (c.l.t. i Fisica) Prova parziale del 8 Novembre 20 Svolgere gli esercizi segueti. Studiare il domiio ed il comportameto della serie

Dettagli

Soluzioni degli esercizi di Analisi Matematica I

Soluzioni degli esercizi di Analisi Matematica I Soluzioi degli esercizi di Aalisi Matematica I (Prof. Pierpaolo Natalii) Roberta Biachii 6 ovembre 2016 FOGLIO 1 1. Determiare il domiio e il sego della fuzioe ( ) f(x) = arccos x2 1 x + 1 π/3. 2. Dimostrare,

Dettagli

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4 Quarto Compito di Aalisi Matematica Corso di laurea i Iformatica, corso B 5 Luglio 016 Soluzioi Esercizio 1 Determiare tutti i umeri complessi z tali che z = 3 4 i. Soluzioe. Scrivedo z = a + bi, si ottiee

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Uiversità di Treto - Corso di Laurea i Igegeria Civile e Igegeria per l Ambiete e il Territorio - 07/8 Corso di Aalisi Matematica - professore Alberto Valli 8 foglio di esercizi - 5 ovembre 07 Taylor,

Dettagli

Capitolo 5. Successioni numeriche

Capitolo 5. Successioni numeriche Capitolo 5 Successioi umeriche Ua successioe è ua fuzioe avete domiio N o u suo sottoisieme del tipo A = { N > 0, 0 N} e come codomiio R e che associa a ogi umero aturale u umero reale a. La legge di ua

Dettagli

SERIE NUMERICHE. Test di autovalutazione. 1+a 2

SERIE NUMERICHE. Test di autovalutazione. 1+a 2 SERIE NUMERICHE Test di autovalutazioe. E data la serie: dove a R. Allora: ( ) 3a +a (a) se a = la serie coverge a (b) se a = 3 la somma della serie vale 5 (c) se a = 5 la serie diverge a (d) se a 0 la

Dettagli

k=0 f k(x). Un altro tipo di convergenza per le serie è la convergenza totale e si dice che la serie (0.1) converge totalmente in J I se

k=0 f k(x). Un altro tipo di convergenza per le serie è la convergenza totale e si dice che la serie (0.1) converge totalmente in J I se Serie di fuzioi Sia I R, per ogi k N, data la successioe di fuzioi (f k ) k co f k : I R, cosideriamo la serie di fuzioi (0.) f k () k=0 e defiiamo la successioe delle somme parziali s () = k=0 f k().

Dettagli

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto Calcolo I - Corso di Laurea i Fisica - Geaio 08 Soluzioi Scritto Data la fuzioe f = 8 + / a Calcolare il domiio, puti di o derivabilità ed asitoti; b Calcolare, se esistoo, estremi relativi ed assoluti.

Dettagli

Esercizi sulle successioni

Esercizi sulle successioni Esercizi sulle successioi 1 Verificare, attraverso la defiizioe, che la successioe coverge a 2 3. a := 2 + 3 3 7 2 Verificare, attraverso la defiizioe, che la successioe coverge a 0. a := 4 + 3 3 5 + 7

Dettagli

lim x 1 x + *** La forma indeterminata può essere rimossa determinando un fattore razionalizzante. In generale, se ( 1) k+1 N p (x) N k q (x) k 1

lim x 1 x + *** La forma indeterminata può essere rimossa determinando un fattore razionalizzante. In generale, se ( 1) k+1 N p (x) N k q (x) k 1 Esercizio Calcolare: ) Risulta: ) = La forma idetermiata può essere rimossa determiado u fattore razioalizzate. I geerale, se il fattore razioalizzate è: Per f ) = r ) = f ) = N p ) ± N q ), N k= ) k+

Dettagli

Soluzioni foglio 7. Pietro Mercuri. 30 ottobre 2018

Soluzioni foglio 7. Pietro Mercuri. 30 ottobre 2018 Soluzioi foglio 7 Pietro Mercuri 30 ottobre 08 Esercizio Determiare se i segueti iti di successioi esistoo e, quado esistoo, calcolarli... e + e π + π + 3. 4. e + + 3 log5e + 5 5. 4 + 3 3 + 6. e + e +

Dettagli

Elementi della teoria delle serie numeriche

Elementi della teoria delle serie numeriche Elemeti della teoria delle serie umeriche Geeralita Lo studio delle serie costituisce ua sistemazioe rigorosa del cocetto di somma di ua successioe (ifiita) di addedi : sia (a ) N ua successioe i R. Vogliamo

Dettagli

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO. 3 lim

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO. 3 lim Y557 - ESAME DI STATO DI LICEO SCIETIFICO PIAO AZIOALE DI IFORMATICA CORSO SPERIMETALE Tema di: MATEMATICA (Sessioe ordiaria 2002) QUESTIOARIO 1 Se a e b soo umeri positivi assegati quale è la loro media

Dettagli

e 6x = 2(t + 1) 1 + c tan x (funzione razionale) si scompone come: t (log t 1 log t + 1 ) t=9

e 6x = 2(t + 1) 1 + c tan x (funzione razionale) si scompone come: t (log t 1 log t + 1 ) t=9 Esercizi di Aalisi - Alberto Valli - AA 5/6 - Foglio. Calcolate tramite cambiameto di variabile ciascuo dei segueti itegrali : i / six + dx ii log log e 6x e x dx iii / π/ cos 5 xsix cos x dx. Soluzioe.

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova,

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova, Corsi di laurea i fisica ed astroomia Prova scritta di Aalisi Matematica 2 Padova, 28.8.29 Si svolgao i segueti esercizi facedo attezioe a giustificare le risposte. Delle affermazioi o motivate e giustificate

Dettagli

Esercitazione n 3. 1 Successioni di funzioni. Esercizio 1: Studiare la convergenza in (0, 1) della successione {f n } dove f n (x) =

Esercitazione n 3. 1 Successioni di funzioni. Esercizio 1: Studiare la convergenza in (0, 1) della successione {f n } dove f n (x) = Esercitazioe 3 Successioi di fuzioi Esercizio : Studiare la covergeza i (0, ) della successioe {f } dove f (x) = metre Sol.: Si verifica facilmete che lim f (x) = 0 x (0, ) lim sup f (x) = lim = + (0,)

Dettagli

Definizione di intorni Limite finito di una successione Limite infinito di una successione Successioni monotòne Numero di Nepero

Definizione di intorni Limite finito di una successione Limite infinito di una successione Successioni monotòne Numero di Nepero Limiti e cotiuità Defiizioe di itori Limite fiito di ua successioe Limite ifiito di ua successioe Successioi mootòe Numero di Nepero 2 2006 Politecico di Torio 1 Sia x 0 R r>0 Itori u puto della retta

Dettagli

4 - Le serie Soluzioni. n + 3. n + 3. n + 2

4 - Le serie Soluzioni. n + 3. n + 3. n + 2 4 - Le serie Soluzioi Esercizio. Studiare la covergeza delle serie: + + 2 + cos!) 2 cosπ). Per la prima serie si ha 0 + + 2 + = 2. Dal mometo che la serie di termie geerico 2 è covergete serie armoica

Dettagli

Tutoraggio AM1 17/12/2015. sin(x) arctan(x) 2) lim sup / inf x 0 + cos(x) sin( 1 x ) e x2 cos 2 (x 3 ) x 2 + ln(3x + 2) δ(x) δ(x) =

Tutoraggio AM1 17/12/2015. sin(x) arctan(x) 2) lim sup / inf x 0 + cos(x) sin( 1 x ) e x2 cos 2 (x 3 ) x 2 + ln(3x + 2) δ(x) δ(x) = Tutoraggio AM1 17/12/2015 Per la parte teorica sui if e sup vedi le ote su iti iferiori e superiori di fuzioi. A) Date due successioi a },b }, mostrare le segueti proprietà (escludere i casi i cui si abbia

Dettagli

SECONDO ESONERO DI AM1 10/01/ Soluzioni

SECONDO ESONERO DI AM1 10/01/ Soluzioni Esercizio. Calcolare i segueti iti: Razioalizzado si ottiee SECONDO ESONERO DI AM 0/0/2008 - Soluzioi 2 + 2, 2 + 2 = 2 + 2 + 2 + 2 = Per il secodo ite ci soo vari modi, e mostro tre. Ora ( ) ( + si = +

Dettagli

SOLUZIONI COMPITO del 12/01/2017 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A. ; 9 + 4α = 1

SOLUZIONI COMPITO del 12/01/2017 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A. ; 9 + 4α = 1 SOLUZIONI COMPITO del /0/07 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A Esercizio i Osserviamo che effettuado la divisioe si ottiee w = 9+4α iα +iα +iα = i α Poiché 9+4α 9+4α w = 9+4α + α 9+4α =, si

Dettagli

Esercizi svolti su successioni e serie di funzioni

Esercizi svolti su successioni e serie di funzioni Esercizi svolti su successioi e serie di fuzioi Esercizio. Calcolare il limite putuale di f ) = 2 +, [0, + ). Dimostrare che o si ha covergeza uiforme su 0, + ), metre si ha covergeza uiforme su [a, +

Dettagli

Limiti di successioni

Limiti di successioni Limiti di successioi Aalisa Cesaroi, Paola Maucci e Alvise Sommariva Uiversità degli Studi di Padova Dipartimeto di Matematica 20 ottobre 2015 Aalisa Cesaroi, Paola Maucci e Alvise Sommariva Itroduzioe

Dettagli

Definizione 1. Data una successione (a n ) alla scrittura formale. 1) a 1 + a a n +, si dà il nome di serie.

Definizione 1. Data una successione (a n ) alla scrittura formale. 1) a 1 + a a n +, si dà il nome di serie. SERIE NUMERICHE Defiizioe. Data ua successioe (a ) alla scrittura formale ) a + a 2 + + a +, si dà il ome di serie. I umeri a, a 2,, a, rappresetao i termii della serie, i particolare a è il termie geerale

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

2.5 Convergenza assoluta e non

2.5 Convergenza assoluta e non .5 Covergeza assoluta e o Per le serie a termii complessi, o a termii reali di sego o costate, i criteri di covergeza si qui visti o soo applicabili. L uico criterio geerale, rozzo ma efficace, è quello

Dettagli

4 - Le serie. a k = a k. S = k=1

4 - Le serie. a k = a k. S = k=1 4 - Le serie E veiamo ad uo degli argometi più ostici (ma ache più iteressati) dell aalisi: le serie. Ricordiamo brevemete cos è ua serie e cosa vuol dire covergeza per ua serie. Defiizioe 1. Data ua successioe

Dettagli

Successioni e limiti di successioni

Successioni e limiti di successioni Successioi e limiti di successioi Aalisa Cesaroi, Paola Maucci e Alvise Sommariva Uiversità degli Studi di Padova Dipartimeto di Matematica 24 ottobre 2016 Aalisa Cesaroi, Paola Maucci e Alvise Sommariva

Dettagli

SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 2015/16, FOGLIO 2. se x [n, 3n]

SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 2015/16, FOGLIO 2. se x [n, 3n] SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 05/6, FOGLIO Sia f : R R defiita da f x { se x [, 3] 0 altrimeti Studiare la covergeza putuale, uiforme e uiforme sui compatti della successioe f e della

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Igegeria dell Iformazioe Appello del 7.9.8 Esercizio Si cosideri la fuzioe f() := TEMA {e 3 per per =. i) Determiare il domiio D, le evetuali simmetrie e studiare il sego di

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Uiversità degli Studi di Udie Ao Accademico 00/0 Facoltà di Scieze Matematiche Fisiche e Naturali Corso di Laurea i Iformatica Esercizi di Aalisi Matematica Dott. Paolo Baiti Esercizi del 5 Ottobre 00.

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,,, 3, 5, 8, 3,, 34, 55, 89, 44, 33, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi mesi i u allevameto! Si

Dettagli

Analisi Matematica II

Analisi Matematica II Corso di Laurea i Matematica Aalisi Matematica II Esercizi sulla covergeza uiforme e sulle serie di fuzioi/poteze Versioe del 28//206 Esercizi tratti dal Giusti Esercizio Giusti 3. e 3.3) Calcolare il

Dettagli

1 ottobre Foglio di esercizi N. 1

1 ottobre Foglio di esercizi N. 1 1 ottobre 2003 - Foglio di esercizi N. 1 (Il logaritmo si itede i base aturale e dove o specificato. Il risultato comuque o dipede dalla scelta della base) 1. Determiare il domiio della fuzioe 2. Determiare

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57 Tracce di soluzioi di alcui esercizi di matematica - gruppo 42-57 4. Limiti di successioi Soluzioe dell Esercizio 42.. Osserviamo che a = a +6 e duque la successioe prede valori i {a,..., a 6 } e ciascu

Dettagli

11 IL CALCOLO DEI LIMITI

11 IL CALCOLO DEI LIMITI IL CALCOLO DEI LIMITI Il calcolo di u ite spesso si ricodurrà a trattare separatamete iti più semplici, su cui poi si farao operazioi algebriche. Dato che uo o più di questi iti possoo essere ±, bisoga

Dettagli

Esercizi sulle Serie numeriche

Esercizi sulle Serie numeriche AM0 - A.A. 03/4 ALFONSO SORRENTINO Esercizi sulle Serie umeriche Esercizio svolto. Discutere il comportameto delle segueti serie umeriche: a +! b [ ] log c log+ d log + e arcta f g h i l log log! 3! 4

Dettagli

Università degli Studi della Calabria Facoltà di Ingegneria. 26 giugno 2012

Università degli Studi della Calabria Facoltà di Ingegneria. 26 giugno 2012 Uiversità degli Studi della Calabria Facoltà di Igegeria Correzioe della Secoda Prova Scritta di alisi Matematica 2 giugo 202 cura dei Prof. B. Sciuzi e L. Motoro. Secoda Prova Scritta di alisi Matematica

Dettagli

ANALISI VETTORIALE COMPITO IN CLASSE DEL 22/11/2013. = a 24 24! log(1 + x) = ( 1) = (24!) 1 24 = 23!. e x2 dx. x 2n

ANALISI VETTORIALE COMPITO IN CLASSE DEL 22/11/2013. = a 24 24! log(1 + x) = ( 1) = (24!) 1 24 = 23!. e x2 dx. x 2n ANALISI VETTORIALE COMPITO IN CLASSE DEL 22//23 Esercizio Calcolare la 2esima derivata del logaritmo el puto. Risposta Si tratta di calcolare d 2 dx 2 log( + x) x= = a 2 2! dove a 2 è il termie di idice

Dettagli

a n (x x 0 ) n. (1.1) n=0

a n (x x 0 ) n. (1.1) n=0 Serie di poteze. Defiizioi Assegati ua successioe {a } di umeri reali e u puto x dell asse reale si dice serie di poteze u espressioe del tipo a (x x ). (.) Il puto x viee detto cetro della serie e i umeri

Dettagli

15 - Successioni Numeriche e di Funzioni

15 - Successioni Numeriche e di Funzioni Uiversità degli Studi di Palermo Facoltà di Ecoomia CdS Statistica per l Aalisi dei Dati Apputi del corso di Matematica 15 - Successioi Numeriche e di Fuzioi Ao Accademico 2013/2014 M Tummiello, V Lacagia,

Dettagli

Lezione 2. . Gruppi isomorfi. Gruppi S n e A n. Sottogruppi normali. Gruppi quoziente. , ossia, equivalentemente, se x G Hx = xh.

Lezione 2. . Gruppi isomorfi. Gruppi S n e A n. Sottogruppi normali. Gruppi quoziente. , ossia, equivalentemente, se x G Hx = xh. Prerequisiti: Lezioe Gruppi Lezioe 2 Z Gruppi isomorfi Gruppi S e A Riferimeti ai testi: [FdG] Sezioe ; [H] Sezioe 26; [PC] Sezioe 58 Sottogruppi ormali Gruppi quoziete L Esempio 7 giustifica la seguete

Dettagli

Soluzioni degli esercizi del corso di Analisi Matematica I

Soluzioni degli esercizi del corso di Analisi Matematica I Soluzioi degli esercizi del corso di Aalisi Matematica I Prof. Pierpaolo Natalii Roberta Biachii & Marco Pezzulla ovembre 015 FOGLIO 1 1. Determiare il domiio e il sego della fuzioe ( ) f(x) = arccos x

Dettagli

Ingegneria Aerospaziale. Corso di Analisi Matematica 1. Compito del 3 giugno 2008 SOLUZIONE

Ingegneria Aerospaziale. Corso di Analisi Matematica 1. Compito del 3 giugno 2008 SOLUZIONE Igegeria Aerospaziale. Corso di Aalisi Matematica. Compito del 3 giugo 8 SOLUZIONE. Se a := 3 + 3 domada. idicare quali delle segueti affermazioi soo vere puti /- a a a è itata; b a ha ite; c a ha ua sottosuccessioe

Dettagli

Serie di potenze / Esercizi svolti

Serie di potenze / Esercizi svolti MGuida, SRolado, 204 Serie di poteze / Esercizi svolti Si cosideri la serie di poteze (a) Determiare il raggio di covergeza 2 + x (b) Determiare l itervallo I di covergeza putuale (c) Dire se la serie

Dettagli

Serie numeriche. Esercizi

Serie numeriche. Esercizi Serie umeriche. Esercizi Mauro Saita, aprile 204. Idice Serie umeriche.. Serie a termii defiitivamete positivi..............................2 Serie a termii di sego altero.................................

Dettagli

1.10 La funzione esponenziale

1.10 La funzione esponenziale 6. Risolvere le segueti disequazioi: (i) x + x + 3 2; (ii) x + 2 x > ; (iii) 4x 2 < x 3; (iv) 3x 2 > x 2 3; (v) x 2x 2 > 2x 2 ; (vi) x 3 x 2 > x. 7. Provare che per ogi a R si ha maxa, 0} = a + a 2, mia,

Dettagli

I Compendi OpenSource di Giacomo Marciani Analisi Matematica Teoria, Formulario e Suggerimenti Pratici dalle dispense del professor Roberto Tauraso 1

I Compendi OpenSource di Giacomo Marciani Analisi Matematica Teoria, Formulario e Suggerimenti Pratici dalle dispense del professor Roberto Tauraso 1 I Compedi OpeSource di Giacomo Marciai Aalisi Matematica Teoria, Formulario e Suggerimeti Pratici dalle dispese del professor Roberto Tauraso Foglio di esercizi N. 7 ottobre 5. Rappresetare l isieme {

Dettagli

Corsi di Laurea in Ingegneria Edile e Architettura Prova scritta di Analisi Matematica 1 del 6/02/2010. sin( x) log((1 + x 2 ) 1/2 ) = 1 3.

Corsi di Laurea in Ingegneria Edile e Architettura Prova scritta di Analisi Matematica 1 del 6/02/2010. sin( x) log((1 + x 2 ) 1/2 ) = 1 3. Corsi di Laurea i Igegeria Edile e Architettura Prova scritta di Aalisi Matematica del 6// ) Mostrare che + si( ) cos () si( ) log(( + ) / ) = 3. Possibile soluzioe: Cosiderado dapprima il deomiatore otiamo

Dettagli

Analisi Matematica A e B Soluzioni prova scritta n. 4

Analisi Matematica A e B Soluzioni prova scritta n. 4 Aalisi Matematica A e B Soluzioi prova scritta. 4 Corso di laurea i Fisica, 17-18 3 settembre 18 1. Scrivere le soluzioi dell equazioe differeziale ( u u + u = e x si x + 1 ). 1 + x Soluzioe. Si tratta

Dettagli

Universitá degli Studi Roma Tre - Corso di Laurea in Matematica. Tutorato di AM120

Universitá degli Studi Roma Tre - Corso di Laurea in Matematica. Tutorato di AM120 Uiversitá degli Studi Roma Tre - Corso di Laurea i Matematica Tutorato di AM20 A.A. 203-204 - Docete: Prof. G.Macii Tutore: Matteo Bruo ed Emauele Padulao Soluzioi 5-2 Marzo 204. Al solito specificheremo

Dettagli

Correzione del primo compitino di Analisi 1 e 2 A.A. 2014/2015

Correzione del primo compitino di Analisi 1 e 2 A.A. 2014/2015 Correzioe del primo compitio di Aalisi e 2 A.A. 20/205 Luca Ghidelli, Giovai Paolii, Leoardo Tolomeo 5 dicembre 20 Esercizio Testo. Calcolare, se esiste, + 3 + 5 + + (2 ). 2 + + 6 + + 2 Soluzioe. Al deomiatore

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

Esame di Stato di Liceo Scientifico- Sessione ordinaria 2003 Corso Sperimentale P.N.I. Tema di MATEMATICA

Esame di Stato di Liceo Scientifico- Sessione ordinaria 2003 Corso Sperimentale P.N.I. Tema di MATEMATICA L.Lecci\Sol. Problema 2\Esame di Stato di Liceo Scietifico\Sess. Ordiaria\Corso P.N.I.\ao23 Esame di Stato di Liceo Scietifico- Sessioe ordiaria 23 Corso Sperimetale P.N.I. Tema di MATEMATICA Problema

Dettagli

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Successioni cap3b.pdf 1

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Successioni cap3b.pdf 1 SUCCESSIONI e LIMITI DI SUCCESSIONI c Paola Gervasio - Aalisi Matematica 1 - A.A. 2018/19 Successioi cap3b.pdf 1 Successioi Def. Ua successioe è ua fuzioe reale (Y = R) a variabile aturale, ovvero X =

Dettagli

0.1 Esercitazioni V, del 18/11/2008

0.1 Esercitazioni V, del 18/11/2008 1 0.1 Esercitazioi V, del 18/11/2008 Esercizio 0.1.1. Risolvere usado Cramer il seguete sistema lieare x + y + z = 1 kx + y z = 0 x kz = 1 Soluzioe: Il determiate della matrice dei coefficieti è (k 2)(k

Dettagli

16 - Serie Numeriche

16 - Serie Numeriche Uiversità degli Studi di Palermo Facoltà di Ecoomia CdS Statistica per l Aalisi dei Dati Apputi del corso di Matematica 6 - Serie Numeriche Ao Accademico 03/04 M. Tummiello, V. Lacagia, A. Cosiglio, S.

Dettagli

1. Converge. La serie è a segno alterno. Non possiamo usare il criterio di assoluta convergenza, perché

1. Converge. La serie è a segno alterno. Non possiamo usare il criterio di assoluta convergenza, perché Soluzioi.. Coverge. La serie è a sego altero. No possiamo usare il criterio di assoluta covergeza, perché log log a = > + e il fatto che la serie i valore assoluto diverge o permette di trarre coclusioi

Dettagli

Universitá di Roma Tor Vergata Analisi 1, Ingegneria (CIO-FR), Prof. A. Porretta Esame del 19 febbraio 2018

Universitá di Roma Tor Vergata Analisi 1, Ingegneria (CIO-FR), Prof. A. Porretta Esame del 19 febbraio 2018 Uiversitá di Roma Tor Vergata Aalisi, Igegeria CIO-FR), Prof. A. Porretta Esame del 9 febbraio 08 Esame orale : Esercizio [7 puti] Studiare la fuzioe f) = + 4 ) disegadoe u grafico qualitativo e idicado:

Dettagli

ESERCIZI SUI LIMITI DI SUCCESSIONE E DI FUNZIONE TRATTI DA TEMI D ESAME

ESERCIZI SUI LIMITI DI SUCCESSIONE E DI FUNZIONE TRATTI DA TEMI D ESAME ESERCIZI SUI LIMITI DI SUCCESSIONE E DI FUNZIONE TRATTI DA TEMI D ESAME a cura di Michele Scaglia LIMITI NOTEVOLI Ricordiamo i pricipali iti otevoli che utilizzeremo ello svolgimeto degli esercizi: si

Dettagli

Soluzioni di esercizi del secondo esonero di Analisi Matematica /18.

Soluzioni di esercizi del secondo esonero di Analisi Matematica /18. Esercizio. Sia Soluzioi di esercizi del secodo esoero di Aalisi Matematica 207/8. a 3 2 + π si si +. a Determiare, al variare di a > 0, se esiste, lim 0 + u a. b Determiare, al variare di a > 0, se esiste,

Dettagli

ESERCIZI SULLE SERIE NUMERICHE

ESERCIZI SULLE SERIE NUMERICHE ESERCIZI SULLE SERIE NUMERICHE a cura di Michele Scaglia RICHIAMI TEORICI Richiamiamo brevemete i pricipali risultati riguardati le serie umeriche. Teorema (Codizioe Necessaria per la Covergeza) Sia a

Dettagli

n + 1 n + 2 = 1 n + 1 n n n Esercizio. Verificare il seguente limite a partire dalla definizione: n n 2 + n + 1 = 0 lim

n + 1 n + 2 = 1 n + 1 n n n Esercizio. Verificare il seguente limite a partire dalla definizione: n n 2 + n + 1 = 0 lim 3.. Esercizio. Ricoosciuto che determiare i valori ε tali che ε : ANALISI Soluzioi del Foglio 3 + = + ε essedo ε ua prima volta e ua secoda 0.5 ε = 9 ottobre 009 + + disuguagliaza soddisfatta da ogi N,

Dettagli