Calcolo differenziale Test di autovalutazione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Calcolo differenziale Test di autovalutazione"

Transcript

1 Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = Sia f : R R una funzione derivabile in 0 tale che f(0) = 1, f (0) = 3, e sia g(x) = xf(x) + f( x). Allora, necessariamente (a) g è derivabile in 0 e g (0) = 2 (b) g è derivabile in 0 e g (0) = 2 (c) g non è derivabile in 0 (d) g è derivabile in 0 e g (0) = 0 3. La funzione f(x) = sin(πx) (a) ha periodo 2π (b) ha tre intersezioni con la retta y = x (c) ha immagine [ π, π] (d) ha come tangente in 0 la retta y = x

2 1 0 1 Analisi Matematica I 4. La seguente curva è parte del grafico della funzione: (a) f(x) = ln(1 4 x ) (b) f(x) = x 2 1 (c) f(x) = x x 2 1 (d) f(x) = x e x 5. La funzione f(x) = 3 x(1 + e x ) (a) è dispari (b) è derivabile su R (c) è limitata (d) ha un punto a tangente verticale 6. Sia f : R R una funzione strettamente crescente, che ammette la retta y = 10 come asintoto orizzontale destro. Allora necessariamente (a) il numero degli zeri di f è uguale a 1 (b) il numero degli zeri di f è maggiore di 1 (c) se f( 2) > 0, allora non ci sono zeri (d) f può avere al più uno zero

3 7. Sia f : R R una funzione derivabile in x = 0 e tale che f(0) = 0, f (0) = 0. Allora, necessariamente (a) f(x) ammette un minimo locale in x = 0 (b) f è costante su R (c) f(x) = o(x) per x 0 (d) f(x) x per x 0 8. In x = 0 la funzione f(x) = sin x cosx (a) è continua ma non derivabile (b) è derivabile (c) non è né continua né derivabile (d) ha un punto angoloso 9. Sia f una funzione derivabile e con derivata prima strettamente positiva in tutti i punti interni al suo dominio. Allora (a) f non ha punti di massimo o di minimo (b) f è strettamente crescente nel suo dominio (c) f è suriettiva (d) f non ammette punti di flesso a tangente orizzontale 10. Sia data la funzione f(x) = x 2 e x. Allora (a) non ha asintoti (b) ha minimo assoluto (c) ad essa si può applicare il Teorema di Rolle nell intervallo [ 1, 1] (d) è invertibile 11. Sia data la funzione f(x) = ex x 1. Allora (a) ha un punto di minimo relativo (b) non ha punti a tangente orizzontale (c) ha un punto di max relativo in x 0 = 1 (d) ad essa si può applicare il Teorema di Lagrange in [ 1 2, 1 3 ]

4 12. Sia data la funzione { x per x 2, f(x) = 0 per x = 2. Allora (a) ad essa si può applicare il Teorema di Lagrange in [0, 2] (b) è derivabile su R (c) non è continua in x = 0 (d) ha un punto di minimo assoluto

5 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 RISPOSTA ESATTA: (b) Se f(x 0 ) = y 0 e f (x 0 ) 0, si ha (f 1 ) (y 0 ) = 1 f (x 0 ). Pertanto, poiché f(1) = 3 e f (1) = 2, se ne deduce che (f 1 ) (3) = 1 2, e quindi (b) è vera mentre (a) è falsa. Le risposte (c) e (d) non sono deducibili dai dati del quesito, perché non si conosce per quale valore di x 0 si ha f(x 0 ) = 1.

6 2. Sia f : R R una funzione derivabile in 0 tale che f(0) = 1, f (0) = 3, e sia g(x) = xf(x) + f( x). Allora, necessariamente (a) g è derivabile in 0 e g (0) = 2 (b) g è derivabile in 0 e g (0) = 2 (c) g non è derivabile in 0 (d) g è derivabile in 0 e g (0) = 0 RISPOSTA ESATTA: (a) Applicando le regole di derivazione del prodotto e di composizione di funzioni, si ha che g(x) è derivabile in un intorno di x = 0 e Pertanto si ha g (x) = f(x) + xf (x) f ( x). g (0) = f(0) + 0f (0) f (0) = 1 3 = 2.

7 3. La funzione f(x) = sin(πx) (a) ha periodo 2π (b) ha tre intersezioni con la retta y = x (c) ha immagine [ π, π] (d) ha come tangente in 0 la retta y = x RISPOSTA ESATTA: (b) La funzione f(x) = sin(πx) ha periodo (minimo) T = 2π π immagine [ 1, 1]. Dunque (a) e (c) sono false. = 2, e ha per Poiché, per x 0, si ha sin(πx) πx, la funzione f(x) ha come tangente in x = 0 la retta y = πx, e dunque la (d) è falsa. La funzione f(x) ha sicuramente un intersezione in x 0 = 0 con la retta y = x. Inoltre ne ha un altra x 1, con x 1 ( 1, 1) : infatti f ( ) = 1 > 1, mentre 2 f(1) = 0 < 1. Poiché f è dispari, per simmetria esiste una terza intersezione x 2, con x 2 ( 1, 1 2). Non possono esistere altre intersezioni, perché, per x > 1, la retta y = x assume valori maggiori di 1, mentre la funzione f(x) è sempre minore di 1.

8 1 0 1 Analisi Matematica I 4. La seguente curva è parte del grafico della funzione: (a) f(x) = ln(1 4 x ) (b) f(x) = x 2 1 (c) f(x) = x x 2 1 (d) f(x) = x e x RISPOSTA ESATTA: (a) Dal grafico assegnato si osserva che f(x) è pari; dunque le risposte (c) e (d) sono da scartare (la f(x) della (c) è dispari, mentre quella della (d) non ha simmetrie). Si osserva inoltre che f(x) in x = 0 ha un punto angoloso, e quindi f(x) non è derivabile in x = 0; pertanto la risposta (b) è errata, in quanto f(x) = è derivabile in x = 0. x 2 1 Invece f(x) = ln(1 x ) non è derivabile in x = 0: infatti mentre f f(x) f(0) ln(1 + x) (0) = lim = lim x 0 x 0 x 0 x f + f(x) f(0) ln(1 x) (0) = lim = lim x 0 + x 0 x 0 x = 1, = 1. Dunque il grafico della funzione (a) coincide con quello assegnato.

9 5. La funzione f(x) = 3 x(1 + e x ) (a) è dispari (b) è derivabile su R (c) è limitata (d) ha un punto a tangente verticale RISPOSTA ESATTA: (d) La funzione non è dispari perché f( x) = 3 x(1 + e x ) f(x). La funzione non è limitata perché lim f(x) = +. x + La funzione non è derivabile in x = 0 e quindi su R. Infatti: f (x) = x 2(1 + ex ) + 3 xe x ; poiché lim x 0 f (x) = +, f(x) non è derivabile in x = 0, che è un punto a tangente verticale.

10 6. Sia f : R R una funzione strettamente crescente, che ammette la retta y = 10 come asintoto orizzontale destro. Allora necessariamente (a) il numero degli zeri di f è uguale a 1 (b) il numero degli zeri di f è maggiore di 1 (c) se f( 2) > 0, allora non ci sono zeri (d) f può avere al più uno zero RISPOSTA ESATTA: (d) Essendo f(x) strettamente monotona, se è continua può avere al massimo uno zero (ne ha esattamente uno se assume anche valori negativi). Anche se non è continua vale un ragionamento analogo, a caura della monotonia della funzione. Dunque le risposte (a) e (b) sono false, mentre la risposta (d) è vera. La risposta (c) è falsa: la funzione f(x) potrebbe avere uno zero in un punto x 0 < 2.

11 7. Sia f : R R una funzione derivabile in x = 0 e tale che f(0) = 0, f (0) = 0. Allora, necessariamente (a) f(x) ammette un minimo locale in x = 0 (b) f è costante su R (c) f(x) = o(x) per x 0 (d) f(x) x per x 0 RISPOSTA ESATTA: (c) La funzione f(x) = x 3 fornisce un controesempio che mostra la falsità delle risposte (a) e (b). f(x) Per controllare le risposte (c) e (d), calcoliamo lim x 0 x = f (0) = 0 (si ricordi la definizione di derivata di f(x) nel punto x = 0); quindi (c) è vera mentre (d) è falsa.

12 8. In x = 0 la funzione f(x) = sin x cosx (a) è continua ma non derivabile (b) è derivabile (c) non è né continua né derivabile (d) ha un punto angoloso RISPOSTA ESATTA: (b) In x = 0, la funzione cosx è derivabile: infatti, per x [ π, π ], la funzione 2 2 cosx coincide con la funzione cos x; pertanto f(x) è derivabile in x = 0, in quanto prodotto di due funzioni derivabili in x = 0.

13 9. Sia f una funzione derivabile e con derivata prima strettamente positiva in tutti i punti interni al suo dominio. Allora (a) f non ha punti di massimo o di minimo (b) f è strettamente crescente nel suo dominio (c) f è suriettiva (d) f non ammette punti di flesso a tangente orizzontale RISPOSTA ESATTA: (d) Infatti, se f (x) > 0, necessariamente f (x) 0 e dunque non esistono punti a tangente orizzontale (e quindi neppure flessi a tangente orizzontale). Per il Teorema di Fermat, la funzione f non ha punti di massimo o minimo interni al suo dominio, ma potrebbe averli agli estremi (si pensi, ad esempio alla funzione f(x) = arcsin x). Dunque (a) è falsa. Il fatto che f sia strettamente positiva, non implica che f sia strettamente crescente, se il dominio di f non è un intervallo. Si pensi ad esempio alla funzione f(x) = 1. Pertanto (b) è falsa. x La suriettività di una funzione non è legata al segno della sua derivata. Si consideri come controesempio la funzione f : [ 1, 1] R definita da f(x) = arcsin x. Dunque (c) è falsa.

14 10. Sia data la funzione f(x) = x 2 e x. Allora (a) non ha asintoti (b) ha minimo assoluto (c) ad essa si può applicare il Teorema di Rolle nell intervallo [ 1, 1] (d) è invertibile RISPOSTA ESATTA: (b) Infatti si ha f(x) 0 e f(x) = 0 se e solo se x = 0; dunque il punto x = 0 è un punto di minimo assoluto. La risposta (a) è errata, perché lim f(x) = 0 e quindi f ha un asintoto x orizzontale sinistro. La risposta (c) è falsa, perché f( 1) f(1). Poiché f è continua, f è invertibile se e solo se è strettamente monotona. Dallo studio del segno di f (x) = xe x (x + 2), si ricava che esistono due intervalli in cui f è strettamente crescente e un intervallo in cui è strettamente decrescente. Dunque la risposta (d) è errata.

15 11. Sia data la funzione f(x) = ex x 1. Allora (a) ha un punto di minimo relativo (b) non ha punti a tangente orizzontale (c) ha un punto di max relativo in x 0 = 1 (d) ad essa si può applicare il Teorema di Lagrange in [ 1 2, 1 3 ] RISPOSTA ESATTA: (a) Calcoliamo la derivata di f, tenendo conto che e x, se x < 0, x 1, x 1 f(x) = e x, se x 0, x 1, x 1 e pertanto f (x) = xe x (x + 1) 2, se x < 0, x 1, e x (x 2), se x > 0, x 1. (x 1) 2 Dunque f (x) < 0 se 1 < x < 2, mentre f (x) > 0 se x > 2. Pertanto f è monotona decrescente nell intervallo (1, 2) mentre è crescente in (2, + ). Poiché f (2) = 0, il punto x = 2 risulta un punto di minimo relativo a tangente orizzontale. Dunque la risposta (a) è esatta mentre la risposta (b) è errata. Il punto x 0 = 1 non fa parte del dominio di f (la retta x = 1 è un asintoto verticale), dunque la risposta (c) è errata. Il Teorema di Lagrange non si può applicare a f nell intervallo [ 1 2, 1 3] in quanto f non è derivabile in x 0 = 0.

16 12. Sia data la funzione Allora f(x) = { x per x 2, 0 per x = 2. (a) ad essa si può applicare il Teorema di Lagrange in [0, 2] (b) è derivabile su R (c) non è continua in x = 0 (d) ha un punto di minimo assoluto RISPOSTA ESATTA: (d) La funzione f(x) in x = 2 non è continua (ha un punto di discontinuità eliminabile), pertanto non è derivabile; dunque la risposta (b) è errata. La funzione è continua in x = 0, perché x è continua. Non si può applicare ad f il Teorema di Lagrange in [0, 2] perché f non è continua nel punto x = 2; si può vedere tracciando il grafico di f che non esiste nessun punto x 0 (0, 2) in cui la tangente al grafico di f sia parallela alla congiungente i punti A = (0, 1), B = (2, 0). Il punto x = 2 è un punto di minimo assoluto per f: x R, f(x) f(2) = 0.

Esercizi sullo studio completo di una funzione

Esercizi sullo studio completo di una funzione Esercizi sullo studio completo di una funzione. Disegnare il grafico delle funzioni date, utilizzando ogni informazione utile che si può ricavare dalla funzione e dalle sue derivate prima e seconda. a.

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

PROVA N 1. 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(x) PROVA N 2. è monotona in R?

PROVA N 1. 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(x) PROVA N 2. è monotona in R? PROVA N 1 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(). Studiare la funzione f()= 8+ 7 9 (Sono esclusi i flessi) 3. Data la funzione f()= 1 6 3 - +5-6

Dettagli

SIMULAZIONE TEST ESAME - 1

SIMULAZIONE TEST ESAME - 1 SIMULAZIONE TEST ESAME - 1 1. Il dominio della funzione f(x) = log (x2 + 1)(4 x 2 ) (x 2 2x + 1) è: (a) ( 2, 2) (b) ( 2, 1) (1, 2) (c) (, 2) (2, + ) (d) [ 2, 1) (1, 2] (e) R \{1} 2. La funzione f : R R

Dettagli

FUNZIONI ELEMENTARI Esercizi risolti

FUNZIONI ELEMENTARI Esercizi risolti FUNZIONI ELEMENTARI Esercizi risolti 1 Discutendo graficamente la disequazione x > 3+x, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi Rappresentare nel piano x, y) l insieme

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica

Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica Nome... N. Matricola... Ancona, 29 marzo 2014 1. (7 punti) Studiare la funzione determinandone: f(x) = e x x il dominio;

Dettagli

COGNOME e NOME: FIRMA: MATRICOLA:

COGNOME e NOME: FIRMA: MATRICOLA: Anno Accademico 04/ 05 Corsi di Analisi Matematica I Proff. A. Villani, R. Cirmi e F. Faraci) Prova d Esame del giorno 6 febbraio 05 Prima prova scritta compito A) Non sono consentiti formulari, appunti,

Dettagli

COGNOME e NOME: FIRMA: MATRICOLA:

COGNOME e NOME: FIRMA: MATRICOLA: Anno Accademico 203/ 204 Corsi di Analisi Matematica I (Proff A Villani e F Faraci) Prova d Esame del giorno 6 febbraio 204 Prima prova scritta (compito A) Non sono consentiti formulari, appunti, libri

Dettagli

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R Studio di funzione Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R : allo scopo di determinarne le caratteristiche principali.

Dettagli

7 - Esercitazione sulle derivate

7 - Esercitazione sulle derivate 7 - Esercitazione sulle derivate Luigi Starace gennaio 0 Indice Dimostrare il teorema 5.5.3.a................................................b............................................... Dimostrazioni.a

Dettagli

Grafico qualitativo di una funzione reale di variabile reale

Grafico qualitativo di una funzione reale di variabile reale Grafico qualitativo di una funzione reale di variabile reale Mauro Saita 1 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Dicembre 2014 Indice 1 Qualè il grafico

Dettagli

2 FUNZIONI REALI DI VARIABILE REALE

2 FUNZIONI REALI DI VARIABILE REALE 2 FUNZIONI REALI DI VARIABILE REALE 2.1 CONCETTO DI FUNZIONE Definizione 2.1 Siano A e B due insiemi. Una funzione (o applicazione) f con dominio A a valori in B è una legge che associa ad ogni elemento

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

Applicazioni del calcolo differenziale allo studio delle funzioni

Applicazioni del calcolo differenziale allo studio delle funzioni Capitolo 9 9.1 Crescenza e decrescenza in piccolo; massimi e minimi relativi Sia y = f(x) una funzione definita nell intervallo A; su di essa non facciamo, per ora, alcuna particolare ipotesi (né di continuità,

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t) CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare

Dettagli

Corso di Analisi Matematica. Funzioni reali di variabile reale

Corso di Analisi Matematica. Funzioni reali di variabile reale a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni reali di variabile reale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE. A. A. 2014-2015 L. Doretti

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE. A. A. 2014-2015 L. Doretti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE A. A. 2014-2015 L. Doretti 1 Il concetto di derivata di una funzione è uno dei più importanti e fecondi di tutta la matematica sia per

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio

Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio. Funzioni e insiemi numerici.4 Verificare che (A B) (A B) = (A A ) B. ) Sia (a, b) (A B) (A B). Allora a (A A ) e b B, da cui (a,

Dettagli

Università degli Studi di Trento Facoltà di Scienze Cognitive. Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata

Università degli Studi di Trento Facoltà di Scienze Cognitive. Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata Università degli Studi di Trento Facoltà di Scienze Cognitive Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata Commenti alle lezioni del CORSO DI ANALISI MATEMATICA a.a. 2005/2006

Dettagli

Esercitazione del 16-11-11 Analisi I

Esercitazione del 16-11-11 Analisi I Esercitazione del 6-- Analisi I Dott.ssa Silvia Saoncella silvia.saoncella 3[at]studenti.univr.it a.a. 00-0 Esercizio. Determinare se la funzione f() è continua nel suo dominio sin se 0 f() = 0 se = 0

Dettagli

3. Quale affermazione è falsa?

3. Quale affermazione è falsa? 1. Quale affermazione è falsa? Se la funzione f) è continua e monotona crescente su R e se f) = 1 e f4) =, allora ha un unico zero nell intervallo, 4) f) non si annulla mai in R f ) > nell intervallo,

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

Corso di Laurea in Ingegneria Civile Analisi Matematica I

Corso di Laurea in Ingegneria Civile Analisi Matematica I Corso di Laurea in Ingegneria Civile Analisi Matematica I Lezioni A.A. 2003/2004, prof. G. Stefani primo semiperiodo 22/9/03-8/11/03 Testo consigliato: Robert A. Adams - Calcolo differenziale 1 - Casa

Dettagli

Facoltà di Economia. Anno Accademico 2009-2010 - Programma del Corso. Matematica Generale (PROGRAMMA EFFETTIVAMENTE SVOLTO)

Facoltà di Economia. Anno Accademico 2009-2010 - Programma del Corso. Matematica Generale (PROGRAMMA EFFETTIVAMENTE SVOLTO) Insegnamento Docente Corso di Laurea CFU 8 Lingua di Insegnamento Italiano Semestre di svolgimento Primo Tipologia Fondamentale SSD SECS-S/06 Codice di Ateneo Anno di Corso Primo Matematica Generale (PROGRAMMA

Dettagli

Elenco moduli Argomenti Strumenti / Testi Letture. Tassi equivalenti. Rendite temporanee e perpetue. Rimborso di prestiti.

Elenco moduli Argomenti Strumenti / Testi Letture. Tassi equivalenti. Rendite temporanee e perpetue. Rimborso di prestiti. Pagina 1 di 9 DISCIPLINA: MATEMATICA APPLICATA INDIRIZZO: SISTEMI INFORMATIVI AZIENDALI CLASSE: 4 SI DOCENTE : ENRICA GUIDETTI Elenco moduli Argomenti Strumenti / Testi Letture 1 Ripasso Retta e coniche;

Dettagli

( ) ( ) Verifica di matematica classe 5 a A LST

( ) ( ) Verifica di matematica classe 5 a A LST Verifica di matematica classe 5 a A LST - Dopo aver dato le definizioni di asintoto orizzontale, verticale ed obliquo, determina il Dominio e scrivi le equazioni degli asintoti della seguente funzione.

Dettagli

Quesiti di Analisi Matematica A

Quesiti di Analisi Matematica A Quesiti di Analisi Matematica A Presentiamo una raccolta di quesiti per la preparazione alla prova orale del modulo di Analisi Matematica A. Per una buona preparazione é consigliabile rispondere ad alta

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

CONTINUITÀ E DERIVABILITÀ Esercizi risolti CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare kπ/ [cos] al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della funzione

Dettagli

Studio grafico-analitico delle funzioni reali a variabile reale

Studio grafico-analitico delle funzioni reali a variabile reale Studio grafico-analitico delle funzioni reali a variabile reale Sequenza dei passi Classificazione In pratica Classifica il tipo di funzione: Funzione razionale: intera / fratta Funzione irrazionale: intera

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA I - 11 Febbraio 2011, ore 8.30

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA I - 11 Febbraio 2011, ore 8.30 Esame di ANALISI MATEMATICA I - 11 Febbraio 2011, ore 830 A ESERCIZIO 1 (8 punti) Data la funzione = 1 + sin x 2 2 x (a) determinare lo sviluppo di MacLaurin al terzo ordine della funzione ; (b) determinare

Dettagli

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x).

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x). Esame liceo Scientifico : ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMI Problema. Sia ABCD un quadrato di lato, P un punto di AB e γ la circonferenza

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO PROGRAMMA CONSUNTIVO a.s. 2014/2015 MATERIA MATEMATICA CLASSE DOCENTE 5^ SEZIONE D DI LEO CLELIA Liceo Scientifico delle Scienze Applicate ORE DI LEZIONE 4 **************** OBIETTIVI saper definire e classificare

Dettagli

Le derivate versione 4

Le derivate versione 4 Le derivate versione 4 Roberto Boggiani 2 luglio 2003 Riciami di geometria analitica Dalla geometria analitica sulla retta sappiamo ce dati due punti del piano A(x, y ) e B(x 2, y 2 ) con x x 2 la retta

Dettagli

Esercizi di Analisi Matematica I

Esercizi di Analisi Matematica I Esercizi di Analisi Matematica I Andrea Corli e Alessia Ascanelli gennaio 9 Indice Introduzione iii Nozioni preliminari. Fattoriali e binomiali..................................... Progressioni..........................................

Dettagli

Programma di Matematica

Programma di Matematica Programma di Matematica Modulo 1. Topologia in R 2. Funzioni in R 3. Limite e continuità di una funzione Unità didattiche Struttura algebrica di R Insiemi reali limitati e illimitati Intorno di un punto

Dettagli

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione:

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: Verso l'esame di Stato Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: y ln 5 6 7 8 9 0 Rappresenta il campo di esistenza determinato

Dettagli

PIANO DI LAVORO DEL PROFESSORE

PIANO DI LAVORO DEL PROFESSORE ISTITUTO DI ISTRUZIONE SUPERIORE STATALE IRIS VERSARI - Cesano Maderno (MB) PIANO DI LAVORO DEL PROFESSORE Indirizzo: LICEO SCIENTIFICO MATERIA: MATEMATICA ANNO SCOLASTICO: 2014-2015 PROF: MASSIMO BANFI

Dettagli

G6. Studio di funzione

G6. Studio di funzione G6 Studio di funzione G6 Come tracciare il grafico di una funzione data Nei capitoli precedenti si sono svolti tutti gli argomenti necessari per tracciare il grafico di una funzione In questo capitolo

Dettagli

x ( 3) + Inoltre (essendo il grado del numeratore maggiore del grado del denominatore, d ancora dallo studio del segno),

x ( 3) + Inoltre (essendo il grado del numeratore maggiore del grado del denominatore, d ancora dallo studio del segno), 6 - Grafici di funzioni Soluzioni Esercizio. Studiare il grafico della funzione f(x) = x x + 3. ) La funzione è definita per x 3. ) La funzione non è né pari, né dispari, né periodica. 3) La funzione è

Dettagli

Corso di Analisi Matematica. Funzioni continue

Corso di Analisi Matematica. Funzioni continue a.a. 203/204 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni continue Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti.

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

b) Il luogo degli estremanti in forma cartesiana è:

b) Il luogo degli estremanti in forma cartesiana è: Soluzione della simulazione di prova del 9/5/ PROBLEMA È data la funzione di equazione: k f( ). a) Determinare i valori di k per cui la funzione ammette punti di massimo e minimo relativi. b) Scrivere

Dettagli

Elementi di topologia della retta

Elementi di topologia della retta Elementi di topologia della retta nome insieme definizione l insieme è un concetto primitivo che si accetta come intuitivamente noto secondo George Cantor, il padre della teoria degli insiemi: Per insieme

Dettagli

Funzioni. Capitolo 6. 6.1 Concetto di funzione e definizioni preliminari

Funzioni. Capitolo 6. 6.1 Concetto di funzione e definizioni preliminari Capitolo 6 Funzioni 6. Concetto di funzione e definizioni preliminari Definizione 6. Dati due insiemi non vuoti D e C, si dice applicazione o funzione una qualsiasi legge (relazione) che associa ad ogni

Dettagli

CLASSE terza SEZIONE E A.S. 2014-15 PROGRAMMA SVOLTO

CLASSE terza SEZIONE E A.S. 2014-15 PROGRAMMA SVOLTO CLASSE terza SEZIONE E A.S. 2014-15 L insieme dei numeri razionali. Equazioni e disequazioni di primo grado Sistemi di equazioni e disequazioni di primo grado.. IL PIANO CARTESIANO Il piano cartesiano.

Dettagli

a) Il campo di esistenza di f(x) è dato da 2x 0, ovvero x 0. Il grafico di f(x) è quello di una iperbole -1 1

a) Il campo di esistenza di f(x) è dato da 2x 0, ovvero x 0. Il grafico di f(x) è quello di una iperbole -1 1 LE FUNZIONI EALI DI VAIABILE EALE Soluzioni di quesiti e problemi estratti dal Corso Base Blu di Matematica volume 5 Q[] Sono date le due funzioni: ) = e g() = - se - se = - Determina il campo di esistenza

Dettagli

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012 Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 211/212 Ricordare: una funzione lipschitziana tra spazi metrici manda insiemi limitati in insiemi limitati; se il dominio di una funzione

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria federico.lastaria@polimi.it

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria federico.lastaria@polimi.it Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@poi.it Primi teoremi di caclolo differenziale Ottobre 2010. Indice 1 Funzioni derivabili su un intervallo 1 1.1

Dettagli

Studi di funzione svolti

Studi di funzione svolti Studi di funzione svolti ott. Piermario Schirru 8 novembre 05 Funzioni algebriche intere Tracciare il grafico qualitativo della funzione y = x x x +. ominio. Essendo un polinomio il dominio è R. Int. con

Dettagli

SULLE FUNZIONI REALI DI VARIABILE REALE E LORO GRAFICI

SULLE FUNZIONI REALI DI VARIABILE REALE E LORO GRAFICI SULLE FUNZIONI REALI DI VARIABILE REALE E LORO GRAFICI.Definizioni e insieme di definizione. Una funzione o applicazione f è una legge che ad ogni elemento di un insieme D ( dominio )fa corrispondere un

Dettagli

DUE PROPOSTE ANALISI MATEMATICA. Lorenzo Orio

DUE PROPOSTE ANALISI MATEMATICA. Lorenzo Orio DUE PROPOSTE DI ANALISI MATEMATICA Lorenzo Orio Introduzione Il lavoro propone argomenti di analisi matematica trattati in maniera tale da privilegiare l intuizione e con accorgimenti nuovi. Il tratta

Dettagli

Attenzione: i programmi sono cambiati negli anni. Non tutti gli esercizi nella presente raccolta riguardano argomenti trattati.

Attenzione: i programmi sono cambiati negli anni. Non tutti gli esercizi nella presente raccolta riguardano argomenti trattati. Si raccolgono qui temi d esame, esercizi e domande di teoria dati negli anni 3-4 nei corsi di Analisi Matematica I presso il DTG di Vicenza. Il materiale è stato reso disponibile dai docenti che hanno

Dettagli

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B FUNZIONI Definizione 1 Dati due insiemi A e B, si chiama funzione da A a B una legge che ad ogni elemento di A associa un (solo) elemento di B. L insieme A si chiama dominio della funzione e l insieme

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

PROGRAMMAZIONE DIDATTICA ANNUALE

PROGRAMMAZIONE DIDATTICA ANNUALE PROGRAMMAZIONE DIDATTICA ANNUALE Anno Scolastico: 2013 / 2014 Dipartimento: MATEMATICA Coordinatore: ROVETTA ROBERTA Classe: 5 Indirizzo: TECNICO DEI SERVIZI TURISTICI Ore di insegnamento settimanale:

Dettagli

Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 2012/2013 12 febbraio 2013

Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 2012/2013 12 febbraio 2013 Tempo massimo 2 ore. Consegnare solamente la bella copia. Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 212/213 12 febbraio 213 1. Disegnare il grafico della funzione: [1

Dettagli

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3.

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3. 7 LEZIONE 7 Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2 2 6x, x3 +2x 2 6x, 3x + x2 2, x3 +2x +3. Le derivate sono rispettivamente,

Dettagli

Studio di funzioni ( )

Studio di funzioni ( ) Studio di funzioni Effettuare uno studio qualitativo e tracciare un grafico approssimativo delle seguenti funzioni. Si studi in particolare anche la concavità delle funzioni e si indichino esplicitamente

Dettagli

Determinare estremo superiore ed estremo inferiore dell insieme ( 1) n A = n + 1 : n IN

Determinare estremo superiore ed estremo inferiore dell insieme ( 1) n A = n + 1 : n IN Prima prova di verifica in itinere di ANALISI MATEMATICA Gennaio 00 Determinare estremo superiore ed estremo inferiore dell insieme { } ( ) n A = n + : n IN specificando se si tratta rispettivamente di

Dettagli

Limiti e continuità delle funzioni reali a variabile reale

Limiti e continuità delle funzioni reali a variabile reale Limiti e continuità delle funzioni reali a variabile reale Roberto Boggiani Versione 4.0 9 dicembre 2003 1 Esempi che inducono al concetto di ite Per introdurre il concetto di ite consideriamo i seguenti

Dettagli

CLASSE terza SEZIONE H A.S. 14/ 15 PROGRAMMA SVOLTO

CLASSE terza SEZIONE H A.S. 14/ 15 PROGRAMMA SVOLTO DOCENTE: Laura Marchetto CLASSE terza SEZIONE H A.S. 14/ 15 RIPASSO ARGOMENTI PROPEDEUTICI L insieme dei numeri razionali. Equazioni di primo e di secondo grado Sistemi di disequazioni di primo grado Equazione

Dettagli

Guida pratica per la prova scritta di matematica della maturità scientifica

Guida pratica per la prova scritta di matematica della maturità scientifica Giulio Donato Broccoli Guida pratica per la prova scritta di matematica della maturità scientifica Comprende: Metodi matematici fondamentali per affrontare i temi assegnati Esercizi interamente svolti

Dettagli

1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche

1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche . Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche Per le definizioni e teoremi si fa riferimento ad uno qualsiasi dei libri M.Bertsch - R.Dal Passo Lezioni di Analisi

Dettagli

Anno Scolastico 2011/2012 RELAZIONE FINALE DEL DOCENTE

Anno Scolastico 2011/2012 RELAZIONE FINALE DEL DOCENTE RELAZIONE FINALE DEL DOCENTE Prof. Franca Decolle Materia matematica e fisica N.ro ore settimanali 3+3 N.ro ore complessivamente svolte Classe 3C 1. Presentazione sintetica della classe; L attività didattica

Dettagli

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2015

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2015 SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 015 1. Indicando con i minuti di conversazione effettuati nel mese considerato, la spesa totale mensile in euro è espressa dalla funzione f()

Dettagli

Svolgimento 1 Scriviamo la funzione f(x) che rappresenta la spesa totale in un mese: Figura 2 Il grafico di f(x).

Svolgimento 1 Scriviamo la funzione f(x) che rappresenta la spesa totale in un mese: Figura 2 Il grafico di f(x). Problema 1 Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di euro al mese, più centesimi per ogni minuto di conversazione. Indicando con

Dettagli

ISTITUTO STATALE ISTRUZIONE SUPERIORE ZENALE E BUTINONE

ISTITUTO STATALE ISTRUZIONE SUPERIORE ZENALE E BUTINONE pag.1 ISTITUTO STATALE ISTRUZIONE SUPERIORE ZENALE E BUTINONE Vale la pena di insegnare un argomento solo se si ritiene di poterlo approfondire ad un punto tale da poter formulare domande non banali con

Dettagli

MATEMATICA GENERALE Corsi di laurea EA, ELI, EMIF PROVA INTERMEDIA del 4 novembre 2010 Cognome Nome.................................................... Matricola.......................... Anno di Corso..........................................

Dettagli

Studio di una funzione. Schema esemplificativo

Studio di una funzione. Schema esemplificativo Studio di una funzione Schema esemplificativo Generalità Studiare una funzione significa determinarne le proprietà ovvero Il dominio. Il segno. Gli intervalli in cui cresce o decresce. Minimi e massimi

Dettagli

6) f(x, y) = xy 1 log(5 2x 2y) x + y. 2x x 2 y 2 z 2 x 2 + y 2 + z 2 x Esercizio 2. Studiare gli insiemi di livello delle seguenti funzioni:

6) f(x, y) = xy 1 log(5 2x 2y) x + y. 2x x 2 y 2 z 2 x 2 + y 2 + z 2 x Esercizio 2. Studiare gli insiemi di livello delle seguenti funzioni: FUNZIONI IN PIÙ VARIABILI 1. Esercizi Esercizio 1. Determinare il dominio delle seguenti funzioni, specificando se si tratta di un insieme aperto o chiuso: 1) f(x, ) = log(x x ) ) f(x, ) = x + 3) f(x,

Dettagli

Prof. Gabriele Vezzosi... Settore Inquadramento MAT03...

Prof. Gabriele Vezzosi... Settore Inquadramento MAT03... UNIVERSITÀ DEGLI STUDI Registro dell insegnamento Anno Accademico 2014/2015 Facoltà Ingegneria....................................... Insegnamento Matematica................................ Settore Mat03............................................

Dettagli

UNO STUDIO DI FUNZIONE CON DERIVE a cura del prof. Guida. 4 x

UNO STUDIO DI FUNZIONE CON DERIVE a cura del prof. Guida. 4 x UNO STUDIO DI FUNZIONE CON DERIVE a cura del prof. Guida Con questa guida si vuol proporre un esempio di studio di funzione con Derive. La versione che ho utilizzato per questo studio è la 6.0. Consideriamo

Dettagli

NOME:... MATRICOLA:... Scienza dei Media e della Comunicazione, A.A. 2007/2008 Analisi Matematica 1, Esame scritto del 08.02.2008. x 1.

NOME:... MATRICOLA:... Scienza dei Media e della Comunicazione, A.A. 2007/2008 Analisi Matematica 1, Esame scritto del 08.02.2008. x 1. NOME:... MATRICOLA:.... Scienza dei Media e della Comunicazione, A.A. 007/008 Analisi Matematica, Esame scritto del 08.0.008 Indicare per quali R vale la seguente diseguaglianza : + >. Se y - - è il grafico

Dettagli

Università degli Studi di Catania A.A. 2012-2013. Corso di laurea in Ingegneria Industriale

Università degli Studi di Catania A.A. 2012-2013. Corso di laurea in Ingegneria Industriale Università degli Studi di Catania A.A. 2012-2013 Corso di laurea in Ingegneria Industriale Corso di Analisi Matematica I (A-E) (Prof. A.Villani) Elenco delle dimostrazioni che possono essere richieste

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

l insieme Y è detto codominio (è l insieme di tutti i valori che la funzione può assumere)

l insieme Y è detto codominio (è l insieme di tutti i valori che la funzione può assumere) Che cos è una funzione? Assegnati due insiemi X e Y si ha una funzione elemento di X uno e un solo elemento di Y. f : X Y se esiste una corrispondenza che associa ad ogni Osservazioni: l insieme X è detto

Dettagli

1 Grafico di una funzione reale 1. 2 Funzioni elementari 2 2.1 Funzione potenza... 2 2.2 Funzione esponenziale... 3 2.3 Funzione logaritmica...

1 Grafico di una funzione reale 1. 2 Funzioni elementari 2 2.1 Funzione potenza... 2 2.2 Funzione esponenziale... 3 2.3 Funzione logaritmica... UNIVR Facoltà di Economia Sede di Vicenza Corso di Matematica Funzioni reali di variabile reale Indice Grafico di una funzione reale 2 Funzioni elementari 2 2. Funzione potenza................................................

Dettagli

~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE

~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE STUDIO DI FUNZIONE Passaggi fondamentali Per effettuare uno studio di funzione completo, che non lascia quindi margine a una quasi sicuramente errata inventiva, sono necessari i seguenti 7 passaggi: 1.

Dettagli

Esame di Analisi Matematica prova scritta del 23 settembre 2013

Esame di Analisi Matematica prova scritta del 23 settembre 2013 Esame di Analisi Matematica prova scritta del 23 settembre 2013 1. Determinare dominio, limiti significativi, intervalli di monotonia della funzione f (x) = (2x + 3) 2 e x/2 e tracciarne il grafico. In

Dettagli

21. Studio del grafico di una funzione: esercizi

21. Studio del grafico di una funzione: esercizi 1. Studio del grafico di una funzione: esercizi Esercizio 1.6. Studiare ciascuna delle seguenti funzioni in base allo schema di pagina 194, eseguendo anche il computo della derivata seconda e lo studio

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

ESERCITAZIONI DI ANALISI 1 FOGLIO 1 FOGLIO 2 FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI. Marco Pezzulla

ESERCITAZIONI DI ANALISI 1 FOGLIO 1 FOGLIO 2 FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI. Marco Pezzulla ESERCITAZIONI DI ANALISI FOGLIO FOGLIO FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI Marco Pezzulla gennaio 05 FOGLIO. Determinare il dominio e il segno della funzione ( ) f(x) arccos x x + π/3.

Dettagli

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 74 PROBLEMA Considerata una sfera di diametro AB, lungo, per un punto P di tale diametro si conduca il piano α perpendicolare ad esso

Dettagli

Anno 5 Funzioni inverse e funzioni composte

Anno 5 Funzioni inverse e funzioni composte Anno 5 Funzioni inverse e funzioni composte 1 Introduzione In questa lezione impareremo a definire e ricercare le funzioni inverse e le funzioni composte. Al termine di questa lezione sarai in grado di:

Dettagli

Anno 4 Grafico di funzione

Anno 4 Grafico di funzione Anno 4 Grafico di funzione Introduzione In questa lezione impareremo a disegnare il grafico di una funzione reale. Per fare ciò è necessario studiare alcune caratteristiche salienti della funzione che

Dettagli

PROGRAMMAZIONE DIDATTICA ANNUALE

PROGRAMMAZIONE DIDATTICA ANNUALE PROGRAMMAZIONE DIDATTICA ANNUALE Anno Scolastico: 2014 / 2015 Dipartimento: MATEMATICA Coordinatore: TRIMBOLI SILVIA Classe: 4 Indirizzo: Istituto Tecnico per il Turismo orientamento sportivo Ore di insegnamento

Dettagli

Esercizio 1. Sia f(x) = sin x, g(x) = log x. La funzione g(f 2 (x)) è. A log(sin 2 x); B log sin x ; C log(sin x 2 ); D sin log x 2.

Esercizio 1. Sia f(x) = sin x, g(x) = log x. La funzione g(f 2 (x)) è. A log(sin 2 x); B log sin x ; C log(sin x 2 ); D sin log x 2. 1 Esercizio 1. Sia f(x) = sin x, g(x) = log x. La funzione g(f 2 (x)) è A log(sin 2 x); B log sin x ; C log(sin x 2 ); D sin log x 2. Esercizio 2. Sia f(x) = sin(log x ). Questa funzione è Esercizio 3.

Dettagli

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0.

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0. Numeri Complessi. Siano z = + i e z 2 = i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 2. Siano z = 2 5 + i 2 e z 2 = 5 2 2i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 3. Ricordando che, se z è un numero complesso,

Dettagli

Studio di una funzione ad una variabile

Studio di una funzione ad una variabile Studio di una funzione ad una variabile Lo studio di una funzione ad una variabile ha come scopo ultimo quello di pervenire a un grafico della funzione assegnata. Questo grafico non dovrà essere preciso

Dettagli

Esercizi di Matematica. Funzioni e loro proprietà

Esercizi di Matematica. Funzioni e loro proprietà www.pappalardovincenzo.3.it Esercizi di Matematica Funzioni e loro proprietà www.pappalardovincenzo.3.it ESERCIZIO www.pappalardovincenzo.3.it ESERCIZIO ESERCIZIO www.pappalardovincenzo.3.it ESERCIZIO

Dettagli

LA FUNZIONE INTEGRALE

LA FUNZIONE INTEGRALE LA FUNZIONE INTEGRALE MAGLIOCURIOSO & CAMILLO magliocurioso@hotmail.it Sommario. In questa breve dispensa ho semplicementrascritto in L A TEX il contenuto di questa discussione: http://www.matematicamente.it/forum/

Dettagli

Determinare il dominio e la derivata delle seguenti funzioni e studiarne la monotonia ed eventuali massimi/minimi. ( ) x + 2.

Determinare il dominio e la derivata delle seguenti funzioni e studiarne la monotonia ed eventuali massimi/minimi. ( ) x + 2. Determinare il dominio e la derivata delle seguenti funzioni e studiarne la monotonia ed eventuali massimi/minimi (1) (2) (3) (4) f (x) = log ( ) x + 2 x 1 f (x) = x exp( x 3 ) ( f (x) = arctan x ) x 1

Dettagli

Indirizzo odontotecnico a.s. 2015/2016

Indirizzo odontotecnico a.s. 2015/2016 I.P.S.I.A E. DE AMICIS - ROMA PROGRAMMAZIONE DIDATTICA DI MATEMATICA Classe 5C Indirizzo odontotecnico a.s. 2015/2016 Prof. Rossano Rossi La programmazione è stata sviluppata seguendo le linee guida ministeriali

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli