Il corpo nero e la crisi della fisica classica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Il corpo nero e la crisi della fisica classica"

Transcript

1 Il corpo ro l crisi dll fisic clssic Emissio d ssorbimto dll rdizio lttromgtic di corpi Ogi corpo c si trov d u tmprtur mggior dllo zro ssoluto mtt u rdizio dtt rdizio trmic. Qust rdizio, d u puto di vist clssico, è ttribuit ll cric cclrt dl solido, quidi è costituit d uo spttro cotiuo. Ioltr è fcil immgir c ll umtr dll tmprtur l itgrl dllo spttro trmico msso umti proporziolmt. Qust crttristic di corpi cldi è stt mpiricmt dscritt dll lgg di Stf (879): 4 è l costt di Stf-Boltzm I tot ET L qutità E è u costt c si cim missività o potr missivo dl corpo. Qust costt può ssumr vlori comprsi fr d dipd dll tur dl corpo stsso d è u fuzio di di T. Si può dfiir c u potr ssorbt c rpprst il rpporto fr l dsità di rgi ssorbit qull icidt: E( v, T) A(, T) ST E E i E T

2 Mtrili o mtllici Mtlli Mtril Emissività Mtril Emissività Acqu.9 Acciio Amito.95 Ossidto.7-.9 Argill.95 Lmito frddo.7-.9 Asflto.95 Crboio Bslto.7 No ossidto.8-.9 Clcr.98 Grfit.7-.8 Clcstruzzo.95 Crborudum.9 Crt (qulsisi color).95 Frro Ossidto Arruggiito Crmic.95 Lg A Gsso Ossidto. Giccio Otto Giccio (bgo di).95 Bruito. Ossidto.5 Gii.95 Gomm.95 Piombo Lgo turl Ruvido.4 Mtto.95 Nv.9 Plstic (opc >5mils).95 Sbbi.9 Suolo Tssuto.95 Vric (o llumiio) Vtro (lstr di).95

3 L immgi IR corrispod ll rdizio trmic dl soggtto iqudrto L trmocmr vd l rdizio mss i tutt l dirzioi dll oggtto dll mbit circostt L immgi c si otti dipd dll combizio tr l tmprtur l missività dll oggtto i lisi

4 U smpio prtico molto sigifictivo. L diffrz di tmprtur tr l prt dstr siistr dll oggtto è solo pprt. I rltà solo l missività cmbi!! 4

5 Torm di Kircoff: F( v, T ) E( v, T) E( v, T) F( v, T) A ( v, T) A ( v, T) È u fuzio uivrsl U corpo i grdo di ssorbir tutt l rdizio icidt, (cioè pr il qul risult =), è dtto corpo ro. U corpo di qusto gr è cotmpormt il miglior ssorbitor m c il miglior mttitor di rdizio lttromgtic, ioltr è vidt c lo studio dll rdizio mss d u tl Lgg dllo spostmto di Wi: corpo divg uivrsl ssdo i tl cso F(,T)= E(,T) λmt = cost. = C 5

6 L tori di Rylig-Js Cosidrimo u sctol cubic prti prfttmt riflttti d tmprtur T, suppoimo c su u dll prti si prticto u piccolo foro, u od lttromgtic c lo colpiss b difficilmt potrbb riuscir, quidi il forllio si comport com u corpo ro. Ricorddo il torm di Kirkoff, è itrsst studir l distribuzio i rgi dl cmpo EM msso dl corpo ro. A tl scopo dobbimo prim di tutto clcolr il umro di modi c possoo soprvvivr ll cvità, si trtt vidtmt dll cosiddtt od stziori, cioè di qull od pr cui i odi dl cmpo si trovo sull prti dll sctol. Nl cso più grl è cssrio cosidrr tr possibili dirzioi di propgzio dl cmpo idividut dgli goli,,g. L distz fr i odi ll dirzioi di propgzio è => L tr compoti dl cmpo lttrico si possoo scrivr com : E(, t) E( y, t) E( z, t) Asi( Asi( Asi( y z / / / z y )si( )si( )si( t) t) t) cos y cos z cos g 6

7 7 Il cmpo così dscritto soddisf implicitmt ll codizio di vr u odo i =y=z=, S l ostr sctol i lti di dimsio, l codizio pr cui il cmpo è stziorio prst u odo i è : ) cos( ) cos( ) cos( g z y Dov: =,,,..; y=,,,, ; z=,,,.. Elvdo l qudrto trmbi i mmbri di qust ugugliz, poi sommdol mmbro mmbro ricorddo c, pr dfiizio, l somm di qudrti di cosi dirttori è, si otti: cos cos cos g z y z y c c z y 4 z y

8 Si dvoo dsso cotr il umro di od co frquz comprs fr d +d. Pr fr ciò psimo llo spzio dfiito dll isim dgli prmssi, ogi tr di umri rpprst u modo prmsso, quidi il umro di modi comprsi fr d +d è ugul l umro di puti comprso fr l clott sfric di rggio comprso fr r d r+dr dov : r y z r c Il umro di oscilltori, N( r ) dr, quidi ltro o è c il volum rcciuso fr l clott sfric. Limitdo prò l vlutzio l solo ottt positivo si trov: N( r) dr r dr 4r dr 8 N( ) d c d Il clcolo dl umro di modi è formlmt corrtto, cctto pr il ftto c si è trscurto il cotributo dovuto l ftto c du modi polrizzti ortogolmt fr di loro soo c idipdti. Quidi il umro di modi co frquz comprs fr +d è : 8 d N( ) d c 8

9 Pr vlutr l dsità di rgi cotut ll cvità si dv dsso clcolr l rgi mdi dl sigolo oscilltor c moltiplict pr il umro di oscilltori forisc il risultto crcto. Scodo l fisic clssic ogi oscilltor può vr quluqu vlor dll rgi, m pr u sistm popolto d u gr umro di oscilltori ll quilibrio trmico fr di loro, l mccic sttistic suggrisc c l rgi dgli oscilltori sio distribuiti scodo u probbilità di distribuzio P(,T) c dipd c dll tmprtur. L qutità P(,T)d rpprst l probbilità di trovr u oscilltor co rgi comprs fr d +d i u sistm ll quilibrio trmico cott u gr umro di oscilltori. P(, T) M, d P! P( ) d P( ) d P P d d podo y d dy d d Ossrvdo c: =,!= d d y Si trov: d y dy 9

10 L itgrl l domitor si otti dirttmt co l posizio : y d dy Si trov: d y y dy d y dy Quidi: P( ) d P( ) d d d

11 L dsità di rgi si otti moltiplicdo il umro di oscilltori pr l loro rgi mdi dividdo pr il volum. Si otti: d 8 c T d Ricorddo c : E cosidrdo c si possoo cottr du itrvlli rispttivmt di frquz lugzz d od c sio fr di ssi quivlti pr i quli vl l rlzio: Quidi: c / c d d T d T d c d d d Td T T 8K T 5 Qust ultim è l lgg di Rylig Js c pprtmt soddisf l lgg grl di Wi c prvd u dipdz proporziol ll quit potz gtiv dll lugzz d od.

12 Clcoldo l rgi totl pr ctimtro cubo l sistm utilizzdo l lgg di Rylig-Js si otti : d 8 T d 8 lim 4 Si può fcilmt ossrvr c qust ultim sprssio è divrgt pr c v zro. Qusto dmto irrlistico è oto com ctstrof ultrvioltt d è l ivitbil cosguz dll vr utilizzto u sttistic clssic pr l vlutzio dll rgi mdi dgli oscilltori.

13 L tori di Plk Nl 9 Plk postulò c l rgi possdut dgli oscilltori o potss ssr quluqu, m dovss soddisfr l rlzio : Dov è u itro positivo, l frquz di oscillzio d u costt uivrsl. Ovvimt qust ssuzio implic c il clcolo dl vlor mdio dll rgi ssocit gli oscilltori o può più ssr sguito utilizzdo l sttistic clssic. Iftti i qusto cso è cssrio sostituir ll itgrl l sommtori, così si otti: A A P P ) ( ) ( / /

14 4 l d d Tuttvi, poicé il modulo di è mior di uo, l sri covrg:... Quidi l / d d

15 Usdo qust ultimo vlor pr l rgi mdi possimo dsso clcolr l dsità di rgi ll cvità, si otti: T T d d N 8c 5 d 8 c d c/ d / Qust ultim riproduc b i dti sprimtli. è dtt costt di Plk vl 6.6X -7 rg.sc 5

dell'intervallo in cui si hanno discontinuità di prima o terza specie. Supponiamo, per semplicità (ma b ed ivi continua b h lim c h b ] e si pone

dell'intervallo in cui si hanno discontinuità di prima o terza specie. Supponiamo, per semplicità (ma b ed ivi continua b h lim c h b ] e si pone INTEGRALI IMPROPRI L tori dll'itgrzio di u fuzio f cotiu i u itrvllo ciuso itto [ ] si può stdr sostitudo l'ipotsi di cotiuità i [ ] dll fuzio f co qull dll ittzz I tl cso si ffrot il prolm dll'itgrzio

Dettagli

x ; sin x log 1 x ; 4 0 0,0.

x ; sin x log 1 x ; 4 0 0,0. .. Pr quli vlori dl prmtro l sri S (i uzio dl prmtro ). q ch covrg s solo s q. q Ricordimo ch pr q è q q q q q h soluzio pr tli vlori l sri covrg S E' u sri gomtric di rgio covrg? Pr tli vlori sprimi l

Dettagli

Successioni numeriche

Successioni numeriche 08//05 uccssioi umrich uccssioi umrich Dfiizio U succssio è u fuzio ch d ogi umro turl ssoci u umro rl 0 : 0 : Es. 08//05 uccssioi umrich Dfiizio Il it dll succssio ch ch covrg d ) si idic è il umro rl

Dettagli

I LIMITI DI FUNZIONI - CALCOLO

I LIMITI DI FUNZIONI - CALCOLO Autor: Erico Mfucci - // I LIMITI DI FUNZIONI - CALCOLO Dopo vr studito l tori di iti, dobbimo dsso vdr com si clcolo. Storicmt il clcolo di iti vi smplificto d u procsso ch prd il om di ritmtizzzio dll

Dettagli

( a) 1 a + Es. Data la funzione:

( a) 1 a + Es. Data la funzione: Es. Dt l uzio: ' ' ( Esrcizi Complmtri. A( ( b. Dtrmir pr quli vlori di b l uzio mmtt u puto di mssimo d u puto di miimo pr quli vlori l uzio o mmtt tli puti.. Dtrmir i vlori di b i modo ch l uzio prsti

Dettagli

Esonero di Materia Condensata del 28 Gennaio 2009

Esonero di Materia Condensata del 28 Gennaio 2009 Esoro di Mtri Codst dl 8 Gio 9 Risolvr du srcizi sclt fr i tr proposti. Proff. Polo Clvi Mrio Cpizzi º Esrcizio U ct lir è ftt di N toi di ss M 6 u.., ltrti N toi di ss M 8 u.. Lugo l ct si propgo soltto

Dettagli

se ne costruisca un altra s 1 L operazione che fa passare dalla prima successione alla seconda è detta serie e si indica con il

se ne costruisca un altra s 1 L operazione che fa passare dalla prima successione alla seconda è detta serie e si indica con il 07 SERIE NUMERICHE Dt l succssio,,...,,... s costruisc u ltr s, s,..., s,... tl ch: s... s... s... L oprzio ch f pssr dll prim succssio ll scod è dtt sri si idic co il simbolo...... k. k Gli k si dicoo

Dettagli

2.1 Il motore elettrico: considerazioni iniziali. Un motore è una macchina elettrica in cui la potenza di

2.1 Il motore elettrico: considerazioni iniziali. Un motore è una macchina elettrica in cui la potenza di Cpitolo Il motor lttrico. Il motor lttrico: cosidrzioi iizili U motor è u mcchi lttric i cui l potz di igrsso si di tipo lttrico qull di uscit si di tipo mccico [6]. I motori lttrici i corrt cotiu ho u

Dettagli

STRUTTURA DELLA MATERIA

STRUTTURA DELLA MATERIA UNIVRSITA DL SALNTO FACOLTA DI SCINZ MATMATICH, FISICH NATURALI LAURA MAGISTRAL IN FISICA Ao Accdmico 13-14 STRUTTURA DLLA MATRIA NOT DL CORSO TNUTO DAL PROF. CCILIA PNNTTA ( AD USO SCLUSIVO DL CORSO )

Dettagli

Rap a p p o p r o to o I n I c n r c em e e m n e t n al a e Def. rapporto incrementale nel punto x incremento h Nota:

Rap a p p o p r o to o I n I c n r c em e e m n e t n al a e Def. rapporto incrementale nel punto x incremento h Nota: Rpporto Icrmtl α Δ Δy y m tα y. Il rpporto icrmtl dll uzio l puto rltivo d u icrmto è il coicit olr dll sct l rico dll uzio i puti di sciss d Not: Nll smpio rico è riportto > m, i rl, può ssr c tivo. rivt

Dettagli

ELETTRONICA DELLO STATO SOLIDO Prova scritta del 7 luglio 2009

ELETTRONICA DELLO STATO SOLIDO Prova scritta del 7 luglio 2009 EETTRONIC DEO STTO SOIDO Prov scritt dl 7 luglio 9 CONOME Nom Mtricol Posto. dll il. Es. I u rticolo cubico, ) trovt gli idici di Millr di du migli di ii ch ccio tr loro u golo di 6. ) Trovt l golo tr

Dettagli

Esercizi Svolti di Idrologia. Problemi di bilancio idrologico

Esercizi Svolti di Idrologia. Problemi di bilancio idrologico Esrcizi Svolti di drologi roblmi di bilcio idrologico roblm 1 All szio di ciusur di u bcio idrogrfico di 0 km di suprfici è stt rgistrt u portt mdi u di 0.m s -1. L prcipitzio totl u rgguglit sull r dl

Dettagli

FUNZIONI REALI TRASCENDENTI FRT. 1. Potenza a esponente reale

FUNZIONI REALI TRASCENDENTI FRT. 1. Potenza a esponente reale FRT FUNZIONI REALI TRASCENDENTI Potz spot rl Sppimo ch l fuzio rdic qudrt di è l'ivrs dll rstrizio dll fuzio ll'itrvllo [ 0 + [ mt l fuzio rdic cubic di è l'ivrs dll fuzio I modo o possimo iir l fuzio

Dettagli

Università di Camerino Corso di Laurea Fisica Indirizzo Tecnologie per l Innovazione Appunti di Calcolo Prof. Angelo Angeletti

Università di Camerino Corso di Laurea Fisica Indirizzo Tecnologie per l Innovazione Appunti di Calcolo Prof. Angelo Angeletti Uivrsità di Camrio Corso di Laura Fisica Idirizzo Tcologi pr l Iovazio Apputi di Calcolo Prof. Aglo Agltti Formula di Taylor Si ricordrà ch l quazio dlla tagt ad ua curva di quazio y f() i u puto è data

Dettagli

( ) ε > 0, δ 0. +, con 1. ) si può centrare in c prendendo δ = min { δ1, , δ > 0. I c. c R un punto di I e f una funzione definita in \{ }

( ) ε > 0, δ 0. +, con 1. ) si può centrare in c prendendo δ = min { δ1, , δ > 0. I c. c R un punto di I e f una funzione definita in \{ } Alcu cosidrazioi sulla dfiizio di limit Alcu cosidrazioi sui limiti di fuzioi Itori di u puto U itoro (complto) di u puto è u qualsiasi itrvallo aprto cui il puto apparti Esmpi: (,3) è u itoro di [,3)

Dettagli

1/14. Lezione XV. Programma lezione XV

1/14. Lezione XV. Programma lezione XV Programma lzio XV 1/1 L origi dlla mccaica quatistica: Plack il corpo ro D Brogli l od di matria Itsità prssio di radiazio di u fascio di fotoi L itrazio od.m. matria: assorbimto d missio Radiazio matria

Dettagli

Limite Inferiore per l Ordinamento. Algoritmi e Strutture Dati (Mod. A) Limite Inferiore per l Ordinamento. Limite Inferiore per l Ordinamento

Limite Inferiore per l Ordinamento. Algoritmi e Strutture Dati (Mod. A) Limite Inferiore per l Ordinamento. Limite Inferiore per l Ordinamento Limit Ifrior pr l Ordiamto Ma quato può ssr fficit, i pricipio, u algoritmo di ordiamto? Algoritmi Struttur Dati (Mod. A) Limit Ifrior pr l Ordiamto Qusta è ua dll domad più ambizios itrssati ma ach ua

Dettagli

1 Studio di funzioni, sviluppi di Taylor e serie

1 Studio di funzioni, sviluppi di Taylor e serie Studio di fuzioi, sviluppi di Taylor sri. Esrcizi. Sia fx = x +. Dtrmiar l isim di dfiizio. Studiar il sgo. Calcolar i iti agli strmi dll isim di dfiizio. Dir s ci soo asitoti. Dtrmiar l isim di cotiuità

Dettagli

CORRENTI NEL TRANSITOR BIPOLARE A GIUNZIONE (BJT)

CORRENTI NEL TRANSITOR BIPOLARE A GIUNZIONE (BJT) O AO POA A GUZO (J) osidrimo qui di sguito il cso di u trsistor di tio l qul l coctrzioi di drogti ll tr rgioi soddisfio l sguti disugugliz (l giustificzio vrrà dt iù vti): >> >>. Assumimo com vrsi ositivi

Dettagli

03 FUNZIONI ELEMENTARI

03 FUNZIONI ELEMENTARI 03 FUNZIONI ELEMENTARI I qusto paragrafo dfiiamo l più usuali fuzioi di ua variabil, a partir dall quali, co l oprazioi algbrich la composizio di fuzioi, si ottrrao la maggior part dgli smpi ch icotrrmo.

Dettagli

SUCCESSIONI IN R esercizi. R. Argiolas. lim = n

SUCCESSIONI IN R esercizi. R. Argiolas. lim = n SUCCESSIONI IN R srcizi R. Argiols L? Qust piccol rccolt di srcizi sull succssioi l cmpo di rli è rivolt tutti gli studti dl corso di lisi mtmtic I, m è prcisr fi d or ch possdr svolgr gli srcizi di qust

Dettagli

ANALISI DI FOURIER. Segnali Tempo Discreti:

ANALISI DI FOURIER. Segnali Tempo Discreti: AALISI DI FOURIER Sgali Tmpo Discrti: - Trasformata Discrta di Fourir -Squza priodica - Taratura dgli assi frquziali - TDF di ua squza fiita - Campioamto i Frquza - Algoritmi fft: srcitazioi Matlab -Zro

Dettagli

α = α λ e Essendo ( ) , sostituendo nella (81) si ottiene: (83) 3 (86) Possiamo adesso scrivere la soluzione generale della (81): ~ 2

α = α λ e Essendo ( ) , sostituendo nella (81) si ottiene: (83) 3 (86) Possiamo adesso scrivere la soluzione generale della (81): ~ 2 Appunti dll lzion dl Prof Stfno D Mrchi dl //6 cur dl Prof Frnndo D Anglo Soluzion di un srcizio ssgnto nll scors lzion (srcizio h) (8) L soluzion gnrl dll quzion ssocit è dt d: (8) ( ) o Ossrvto ch il

Dettagli

[MnO - 4 ]=0,1 M [Mn 2+ ]=0,1M [H + ] = 0,001 M. Ag 3 PO 4 soluzione satura

[MnO - 4 ]=0,1 M [Mn 2+ ]=0,1M [H + ] = 0,001 M. Ag 3 PO 4 soluzione satura II FALTÀ DI INGEGNERIA dl i Iggri ivil pr l Ambitl il Trritorio (x DM 70/00) IMIA (1 FU) rov d sm scritt dl sttmbr 011 E1) All tmprtur di 80 i u rcipit vuoto si itroduc u qutità sufficit di mooidrogofosfto

Dettagli

6) Nel 1991 Carl Lewis ha stabilito il record del mondo dei 100 m percorrendoli in 9,86 s. Qual è la velocità media in km/h?

6) Nel 1991 Carl Lewis ha stabilito il record del mondo dei 100 m percorrendoli in 9,86 s. Qual è la velocità media in km/h? 1) L unità l SI pr l tmprtur l mss sono, rispttivmnt gri grmmi klvin kilogrmmi Clsius milligrmmi Clsius kilogrmmi klvin grmmi 2) Qul mtril ffon nll olio ( = 0,94 g/m 3 )? ghiio ( = 0,92 g/m 3 ) sughro

Dettagli

Chimica fisica superiore. Modulo 1. Recupero di matematica. Sergio Brutti

Chimica fisica superiore. Modulo 1. Recupero di matematica. Sergio Brutti Chimi fisi suprior Modulo Rupro di mtmti Srgio Brutti Numri omplssi U umro omplsso è u sprssio mtmti ostituit d 3 lmti ( umri rli, l uità immgiri i: i i dfiiio R Im Dti du umri omplssi: Algr di s i id

Dettagli

V Struttura del ricevitore. Il segnale ricevuto, nel generico intervallo di simbolo, assume la forma:

V Struttura del ricevitore. Il segnale ricevuto, nel generico intervallo di simbolo, assume la forma: Cpitolo V LA RIVELAZIOE O COEREE Molto frqutmt è difficil disporr l ricvitor di u rifrimto cort co l portt ssocit l sgl modulto; pr qusto motivo si soo sviluppti dgli schmi di rivlzio ch prscidoo dll cooscz

Dettagli

Fig. 1. 1) La resistenza totale della bobina vale: (*) 2) Il modulo B del campo di induzione magnetica B r nel punto medio M della spira vale: L (*)

Fig. 1. 1) La resistenza totale della bobina vale: (*) 2) Il modulo B del campo di induzione magnetica B r nel punto medio M della spira vale: L (*) Fcoltà di nggnri Prov Scritt di Fisic uglio 4 - Compito usito n. n un filo rttilino lungo fluisc un corrnt. Ad un distnz dl filo è post un oin, il cui punto mdio è ll stss quot dl punto mdio O dl filo.

Dettagli

FOTODIODI. La fotorivelazione è basata sull effetto fotoelettrico.

FOTODIODI. La fotorivelazione è basata sull effetto fotoelettrico. OODIODI La otorivlazio è basata sull tto otolttrico. I N Ua radiazio lumiosa icidt lla rgio itrisca di u diodo smicoduttor drogato IN polarizzato ivrsamt produc di portatori libri. Ogi coppia di portatori

Dettagli

Sistemi e Tecnologie della Comunicazione

Sistemi e Tecnologie della Comunicazione Sstm olog dll Comuzo Complmt : sr trsformt d Fourr Formul d prostfrs L formul d prostfrs sprmoo l vlor d so o d somm d gol prodott d s d gol gol, vvrs: ( α β ) ( α ) ( β ) ( α ) ( β ) ( α β ) ( α ) ( β

Dettagli

dove il Sia p( x ) un polinomio di grado n. Si dimostri che la sua derivata n esima è coefficiente a è il coefficiente di

dove il Sia p( x ) un polinomio di grado n. Si dimostri che la sua derivata n esima è coefficiente a è il coefficiente di Quesiti ord 010 Pgi 1 di 5 Si p( ) u poliomio di grdo. Si dimostri che l su derivt esim è coefficiete è il coefficiete di ( p ) ( ) =! dove il 1 Si p( ) = + 1 +... + 0 Applicdo l regol di derivzioe delle

Dettagli

ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR

ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR Tizin Rprlli 5/5/8 RICHIAMI DI TEORIA Proposizion.. Si f C ([, b]) g C ([, b]), llor f(x)g(x)dx = [F (x)g(x)] b F (x)g (x)dx. dov F (x) è un

Dettagli

LA MODULAZIONE PSK DIFFERENZIALE

LA MODULAZIONE PSK DIFFERENZIALE LA MODULAZIONE PSK DIFFERENZIALE. Grlità. S l vrizioi dll fs dll portt soo olto rpid, co l cso di collgti wirlss, può o ssr cooict covit l ipigo di dispositivi di ricostruzio dll portt. uttvi s l vrizioi

Dettagli

Es. Data la funzione:

Es. Data la funzione: Es. D l uzio: Esrcizi Complmri. A b. Drmir pr quli vlori di b l uzio mm u puo di mssimo d u puo di miimo pr quli vlori l uzio o mm li pui.. Drmir i vlori di b i modo ch l uzio prsi u mssimo rlivo co ordi

Dettagli

ANALISI DI FOURIER. Segnali Tempo Discreti:

ANALISI DI FOURIER. Segnali Tempo Discreti: ANALISI DI FOURIER Sgali mpo Discrti: - Ci alla rasormata di Fourir di ua squza - Rlazio co la CF - Codizio di Nyquist - Etto dl trocamto dl Sgal sulla F Cosidriamo ua squza x[]: l sguito cosidrrmo la

Dettagli

ESERCIZI SULLE SUCCESSIONI. a n := 2n + 3 3n 7. n n cos 2 n + 2. (3) Dimostrare, attraverso la definizione, che la successione

ESERCIZI SULLE SUCCESSIONI. a n := 2n + 3 3n 7. n n cos 2 n + 2. (3) Dimostrare, attraverso la definizione, che la successione ESERCIZI SULLE SUCCESSIONI VALENTINA CASARINO Esrcizi pr il corso di Aalisi Matmatica, Iggria Gstioal, dll Iovazio dl Prodotto, Mccaica Mccatroica, Uivrsità dgli studi di Padova) ) Vrificar, attravrso

Dettagli

1 - Estremo superiore ed estremo inferiore di insiemi Soluzioni 1. arctan(n), n N

1 - Estremo superiore ed estremo inferiore di insiemi Soluzioni 1. arctan(n), n N - Estrmo suprior d strmo ifrior di isimi Soluzioi Dato l isim A = { 7 arcta, N calcolar strmo suprior d strmo ifrior, spcificado s siao rispttivamt massimo miimo. Studiamo sparatamt pr pari d dispari.

Dettagli

&1 Generalità Def. 1.1 Se V e V sono due spazi vettoriali su K, dicesi applicazione lineare di V in V' ogni applicazione. f : V V

&1 Generalità Def. 1.1 Se V e V sono due spazi vettoriali su K, dicesi applicazione lineare di V in V' ogni applicazione. f : V V CAP 4 - APPLICAZIONI LINEARI & Grlità D S V V soo d spi ttorili s K dicsi pplicio lir di V i V ogi pplicio : V V ch riic l sgti codiioi: V : h K V : h h Si dic i tl cso ch è comptibil co l oprioi di somm

Dettagli

tx P ty P 1 + t(z P 1)

tx P ty P 1 + t(z P 1) Esrcizi dll dcim sttimn - Soluzioni Indichimo con S R 3 l sfr unitri nll mtric Euclid di R 3, oro S {x, y, z R 3 x + y + z 1}. Indichimo con N S il polo nord il polo sud di S, rispttimnt, oro N,, 1 S,,

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

Dove la suddivisione dell intervallo [a,b] è individuata dai punti

Dove la suddivisione dell intervallo [a,b] è individuata dai punti 04//205 Clcolo itegrle per fuzioi di u vriile Clcolo itegrle Itegrle defiito Si f:[,] R, limitt ξ ξ 2 ξ 3 ξ 4 ξ 5 0 = 2 3 4 5 = Costruimo l somm di Cuchy-Riem S f f Dove l suddivisioe dell itervllo [,]

Dettagli

Progressioni geometriche

Progressioni geometriche Progressioi geometriche Comicimo co due esempi: Esempio Cosiderimo l successioe di umeri:, 6,, 4, 48, 96 L successioe è tle che si pss d u termie l successivo moltiplicdo il precedete per. Si dice che

Dettagli

L equazione del reticolo cristallino

L equazione del reticolo cristallino Chmc sc supror Modulo L quzo dl rtcolo crstllo Srgo Brutt Rchmo d mtmtc: l sr d ourr U quluqu uzo () può ssr rpprstt spso d Tylor purchè l uzo () s drzbl - volt : ( )!... Nl cso cu ()=g() s u uzo prodc

Dettagli

. La n a indica il valore assoluto della radice.

. La n a indica il valore assoluto della radice. RADICALI Defiizioe: U umero irrziole è u umero decimle illimitto o periodico. Esempio:, 0, π Per clcolre il vlore pprossimto di u espressioe coteete rdici coviee mipolre l espressioe per ridurre l mssimo

Dettagli

Il linguaggio dell energia

Il linguaggio dell energia Il liguggio dll rgi Abbimo iso h l rgi pozil è dfii, om E p mgy f -mgy i Ou dl lolo dl loro fo dll sro pr ofigurr il sism, l loro fo i rsiuio h soo form di rgi ii. I ssz di rio, l rgi pozil, si rsform

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Lure i Scieze e Tecologie Agrrie Corso Itegrto: Mtemtic e Sttistic Modulo: Mtemtic (6 CFU) (4 CFU Lezioi CFU Esercitzioi) Corso di Lure i Tutel e Gestioe del territorio e del Pesggio Agro-Forestle

Dettagli

Rap a p p o p r o to o I n I c n r c em e e m n e t n al a e Def. rapporto incrementale nel punto x incremento h Nota:

Rap a p p o p r o to o I n I c n r c em e e m n e t n al a e Def. rapporto incrementale nel punto x incremento h Nota: Rpporto Incrmntl α Δ Δy y m tnα y. Il rpporto incrmntl dll unzion nl punto rltivo d un incrmnto è il coicint nolr dll scnt l rico dll unzion ni punti di sciss d Not: Nll smpio rico è riportto > m, in nrl,

Dettagli

Analisi Matematica I Soluzioni del tutorato 4

Analisi Matematica I Soluzioni del tutorato 4 Corso di laura i Fisica - Ao Accadmico 07/08 Aalisi Matmatica I Soluzioi dl tutorato 4 A cura di David Macra Esrcizio ( i) Domiio di dfiizio: La fuzio o è dfiita s è tal ch l argomto sotto radic sia gativo,

Dettagli

Segnali e sistemi tempo discreto

Segnali e sistemi tempo discreto Trasformata di ourir Sgali sistmi tmpo discrto TEORIA DEI SEGALI LAUREA I IGEGERIA DELL IORAZIOE Sommario Sgali tmpo discrto priodici Sri di ourir Sgali tmpo discrto apriodici Trasformata di ourir Proprità

Dettagli

EQUAZIONI ESPONENZIALI -- LOGARITMI

EQUAZIONI ESPONENZIALI -- LOGARITMI Equzioi espoezili e riti pg 1 Adolfo Sioe 1998 EQUAZIONI ESPONENZIALI -- LOGARITMI Fuzioe Espoezile Dto u uero rele positivo osiderio l fuzioe f : R R he d ogi eleeto R f orrispodere l'eleeto y =. Se =

Dettagli

Integrale indefinito

Integrale indefinito 04//05 Intgrl indinito unzion intgrl Dinizion Si un unzion intgrbil scondo Rimnn nll intrvllo [,b] [,b], si dinisc unzion intgrl di, l intgrl dinito: t 04//05 Torm ondmntl dl clcolo intgrl Si continu in

Dettagli

Successioni in R. n>a n+1

Successioni in R. n>a n+1 Successioi i R U successioe è u fuzioe f : N R. Si preferisce deotre f() co e quidi u successioe co ( ). Il codomiio di u successioe ( ) è l'isieme dei vlori che ssume l successioe, cioè { } successioe

Dettagli

( x) ( x) = - particelle puntiformi - nessuna interazione fra le particelle du dv. - soltanto energia cinetica

( x) ( x) = - particelle puntiformi - nessuna interazione fra le particelle du dv. - soltanto energia cinetica PRTICLL NLL SCTOL Iiimo d ffrotre i sistemi modello ce soo utili i Cimic (e per i quli si riesce risolvere l equioe di Scroediger) co u modello dtto i GS IDLI - prticelle putiformi - essu iterioe fr le

Dettagli

Calcolo a fatica di componenti meccanici. Terza parte

Calcolo a fatica di componenti meccanici. Terza parte Clcolo ftic di coponnti ccnici Trz prt Il cofficint di sicurzz nll progttzion ftic Un qulsisi punto ll intrno dll r sotts dl sgnto ch è rpprsntto d un coppi di vlori può giungr l liit trit un incrnto di

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Richiami su sistemi lineari discreti

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Richiami su sistemi lineari discreti INGEGNERIA E ECNOLOGIE DEI SISEMI DI CONROLLO su sistmi liari discrti Prof. Carlo Rossi DEIS - Uivrsità di Bologa l: 5 29324 mail: crossi@dis.uibo.it Sistmi mpo-discrti I qusti sistmi i sgali hao com bas

Dettagli

ma non sono uguali fra loro

ma non sono uguali fra loro Defiizioe U fuzioe f defiit i D (doiio) si dice cotiu i u puto c D se esiste i tle puto (è cioè possiile clcolre f (c)); se esiste, fiito, il ite dell fuzioe per che tede c e se il vlore del ite coicide

Dettagli

DERIVATE.. Si chiama rapporto incrementale della f (x) relativo al punto x

DERIVATE.. Si chiama rapporto incrementale della f (x) relativo al punto x DERIVATE Si f ( ; Se e soo due puti del suo domiio, si cim icremeto dell fuzioe il vlore f = f( f( Si cim rpporto icremetle dell f ( reltivo l puto e ll'icremeto il rpporto: y = u fuzioe rele defiit ell'itervllo

Dettagli

( ) ( ) exp 2 X. m m CV m CV. Complementi di Idrologia Appello del 1 Febbraio Problema n 1 (8 punti)

( ) ( ) exp 2 X. m m CV m CV. Complementi di Idrologia Appello del 1 Febbraio Problema n 1 (8 punti) Colti di Idrologia Allo dl Fbbraio 0 Probla (8 uti. Si cosidri la fuzio =l(. La variabil è distribuita scodo ua oral N(,. Qual è la distribuzio di il suo doiio di dfiizio?. Posto ch = l + l = ( l, drivar

Dettagli

Liceo Classico di Trebisacce Classe IV B - MATEMATICA. Prof. Mimmo Corrado. Numeri naturali [ ] ( ) ( ) Numeri razionali

Liceo Classico di Trebisacce Classe IV B - MATEMATICA. Prof. Mimmo Corrado. Numeri naturali [ ] ( ) ( ) Numeri razionali Mtemtic www.mimmocorrdo.it Liceo Clssico di Treiscce Clsse IV B - MATEMATICA Esercizi per le vcze estive 0 Prof. Mimmo Corrdo Numeri turli Clcol il vlore delle segueti espressioi. 0 ( ) [ ] ( ) [ ] 0 [

Dettagli

( x) x x. Integrali (di Paolo Urbani febbraio 2011) Indice in ultima pagina Integrale indefinito. Area=

( x) x x. Integrali (di Paolo Urbani febbraio 2011) Indice in ultima pagina Integrale indefinito. Area= ( ) Cso : r fr du fuzioi oiu sgo divrso. Il prodio o i. Espio: Clolr l r oprs fr l fuzioi y r ( ) y ll irvllo [ ;]. r ( ) ( ) 9 0 6 Idi Igrl idfiio... Clolo dll igrl.... Prodoo fr os fuzio.... So/Diffrz

Dettagli

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE PROPRIETA GEOMETRICHE DELL ELLISSOIDE Al fin di stbilir un gomtri sull llissoid di rotzion è ncssrio non solo dfinir l quzioni dll curv idon d individur

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

e k Queste sono funzioni oscillanti, periodiche di periodo N/k.

e k Queste sono funzioni oscillanti, periodiche di periodo N/k. Vr.. ot pr Aalisi di Fourir di Squz co l ausilio dl Matlab Cosidriamo ua squza ifiita priodica di priodo, x[t] tal pr cui x[t+t]x[t]. Pr rapprstar tal squza si possoo utilizzar fuzioi complss dl tipo jπ

Dettagli

Capitolo 3 (II) - Sistemi tempo-discreti

Capitolo 3 (II) - Sistemi tempo-discreti Apputi di Elborio umric di sgli Cpitolo 3 (II) - Sistmi tmpo-discrti Sistm sigolo polo... Squ di du cmpioi... Squ simmtric di tr cmpioi...8 Filtri umrici fs rigorosmt lir... Esmpi... Implmtio...7 Esmpio:

Dettagli

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli:

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli: Acidi Deboli Si definisce cido debole un cido con < 1 che risult perciò solo przilmente dissocito in soluzione. Esempi di cidi deboli: Acido cetico (H OOH) 1.75 1-5 Acido scorbico (vitmin ) 1 6.76 1-5.5

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

Esercitazioni di Calcolo delle Probabilità (04/04/2012) Soluzioni

Esercitazioni di Calcolo delle Probabilità (04/04/2012) Soluzioni Esrcitazioi di Calcolo dll Probabilità (4/4/) Soluzioi Esrcizio. Si trovi il valor dlla costat pr cui f, (>,

Dettagli

(x, y) R, x, y A. def

(x, y) R, x, y A. def 1 F0 RELAZIONI DI EQUIVALENZA 1. Proprità ll rlzioi i u isim Si him rlzio i u isim A, o vuoto, ogi R A. S (x, y) R, iimo h «x è ll rlzio R o y». Normlmt, ll'sprssio (x, y) R si prfris l'sprssio xry, ismt

Dettagli

Calcolo dei Logaritmi

Calcolo dei Logaritmi Vrcii Vrio - Clcolo di Logritmi Clcolo di Logritmi VrioVrcii@iwidit Lo scopo di qust pgi è qullo di dscrivr lcui mtodi pr il clcolo di ritmi I più itrssti, ll ppdic i fodo qust pgi, possoo trovr otii curiosità

Dettagli

Diodo: V D > 0 RCS. p n (x) p n0. x n. Figura 1

Diodo: V D > 0 RCS. p n (x) p n0. x n. Figura 1 CORRENI NE IOO Pr il calcolo dlla corrt l diodo i rsza di ua tsio di olarizzazio stra facciamo l sguti iotsi smlificativ: 1. i cotatti mtallo-smicoduttor co l zo d soo di tio ohmico, ovvrosia ad ssi è

Dettagli

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria Vi Aldo Mo ro, 1097-300 15 Chioggi (VE) t el. 0414 965 81 1 - fx 0 414 96 54 3 - ww w. itisri ghi.com POTENZA i N... DIVISIBILITÀ e NUMERI PRIMI...3 MASSIMO COMUN DIVISORE e MINIMO COMUNE MULTIPLO...3

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Tema di MATEMATICA a. s

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Tema di MATEMATICA a. s WWWMATEMATICAMENTEIT Corso di ordimto - Sssio ordiri - s 9- ROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Tm di MATEMATICA s 9- Si ABCD u qudrto di lto, u puto di AB γ l circofrz di

Dettagli

Appendice 1. Matrici. A1.1 Definizioni e concetti preliminari

Appendice 1. Matrici. A1.1 Definizioni e concetti preliminari Appdic 1. Matrici I qusta Appdic richiamrmo brvmt alcui coctti fodamtali riguardati l matrici, ch sarao impigati durat il Corso. Essi riguardao sostazialmt la diagoalizzazio la dcomposizio a valori sigolari

Dettagli

Misurare una grandezza fisica significa stabilire quante unità di misura sono contenute nella grandezza stessa.

Misurare una grandezza fisica significa stabilire quante unità di misura sono contenute nella grandezza stessa. L misur: Misurre u grdezz fisic sigific stilire qute uità di misur soo coteute ell grdezz stess. L misur di u grdezz si dice dirett qudo si effettu per cofroto co u grdezz d ess omogee scelt come cmpioe

Dettagli

c) Calcolare la probabilità P{N 120 = 36, N 180 = 48} = b) Calcolare la probabilità condizionata P{M 120 = 6 N 120 = 36} =

c) Calcolare la probabilità P{N 120 = 36, N 180 = 48} = b) Calcolare la probabilità condizionata P{M 120 = 6 N 120 = 36} = Laura Trial i Matmatica, Uivrsità La Sapiza Corso di Probabilità 2, A.A. 26/27 Prova scritta dl 26 Giugo 27 Soluzioi dgli srcizi proposti Esrcizio. Gli arrivi di mssaggi -mail ad u dato idirizzo di posta

Dettagli

Esercizio 1. La matrice di controllabilità è: Studiare la controllabilità del sistema in figura le cui matrici A, b e c sono qui riportate.

Esercizio 1. La matrice di controllabilità è: Studiare la controllabilità del sistema in figura le cui matrici A, b e c sono qui riportate. Gstvo Blfort Esr d otrollltà Ossrvltà Esro tdr l otrollltà dl sst fgr l tr, soo q rportt. (t) (t) Gstvo Blfort Esr d otrollltà Ossrvltà tr d otrollltà è: d, posto = +, s h dt l sst è dq opltt otrolll Gstvo

Dettagli

S kx. e che è dispari in quanto

S kx. e che è dispari in quanto imulzion MIUR Esm di tto 09 - mtmtic Prolm f x 0, 0 i h immditmnt: 0 x 0 x f ' x 0 x lim f lim 0 lim f lim x x x x f 0 Il grfico riport l ndmnto; pplicndo ll curv l trslzion di vttor 0;, ovvro: x' x y

Dettagli

j Verso la scuola superiore Gli insiemi N, Z, Q, R

j Verso la scuola superiore Gli insiemi N, Z, Q, R j Vrso l suol suprior Gli insimi N, Z, Q, R Individu l rispost orrtt Un numro è divisor sondo di un numro s L oprzion è impossiil possiil in Z possiil in R Trdundo il tsto nll simologi mtmti si h ; pplindo

Dettagli

ESERCIZI SULLE SUCCESSIONI NUMERICHE-SOLUZIONI

ESERCIZI SULLE SUCCESSIONI NUMERICHE-SOLUZIONI ESERCIZI SULLE SUCCESSIONI NUMERICHE-SOLUZIONI Esrcizio ( (i + + + Razioalizziamo: ( + + + ( + + + + ( + + + + [ ( ( ] ( + ( + + + + + + + [ ( + [( + ] ( ] + ( + ( + + + + ( + [( + ] ( + + + ( + ( + Dividiamo

Dettagli

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE220

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE220 Uiversità degli Studi Rom Tre - Corso di Lure i Mtemtic Tutorto di GE220 A.A. 2010-2011 - Docete: Prof. Edordo Seresi Tutori: Filippo Mri Boci, Amri Iezzi e Mri Chir Timpoe Soluzioi Tutorto 4 (7 Aprile

Dettagli

Successioni. (0, a 0 ), (1, a 1 ), (2, a 2 ),...

Successioni. (0, a 0 ), (1, a 1 ), (2, a 2 ),... Successioi U successioe di umeri reli e u legge che ssoci ogi umero turle = 0, 1, 2, u umero rele, i breve: e u fuzioe N R, Puo essere rppresett co l isieme delle coppie ordite (0, 0 ), (1, 1 ), (2, 2

Dettagli

Note di Matematica Generale

Note di Matematica Generale This is pg i Printr: Opqu this Not di Mtmtic Gnrl Robrto Mont Dcmbr 13, 2005 ii ABSTRACT Ths nots r still work in progrss nd r intndd to b for intrnl us. Pls, don t cit or quot. Contnts This is pg iii

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

Liceo scientifico comunicazione opzione sportiva

Liceo scientifico comunicazione opzione sportiva PRVA D ESAME SESSINE RDINARIA Lico scitifico comuicazio opzio sportiva Il cadidato risolva uo di du problmi rispoda a qusiti dl qustioario Durata massima dlla prova: 6 or È costito l uso dlla calcolatric

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. DEFINIZIONE DI APPLICAZIONE LINEARE. Sio V e W due spzi vettorili su u medesimo cmpo K. Si :V W u ppliczioe di V i W. Si dice che l è u ppliczioe liere di V i W se soo veriicte

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

APPUNTI DI FISICA. Gli errori

APPUNTI DI FISICA. Gli errori APPUNTI DI FISICA Gli rrori Abbiamo misurato la larghzza dllo stsso baco più prso d ogua più volt. Dall' sprimto ffttuato abbiamo costatato ch l misur ottut soo diffrti, ciò ci fa comprdr ch o riuscirmo

Dettagli

RADICALI RADICALI INDICE

RADICALI RADICALI INDICE RADICALI INDICE Rdici qudrte P. Rdici cubiche P. Rdici -esime P. Codizioi di esistez P. Proprietà ivritiv e semplificzioe delle rdici P. Poteze d espoete rziole P. 7 Moltipliczioe e divisioe di rdici P.

Dettagli

CORSO DI TOPOGRAFIA A - A.A. 2006-2007 ESERCITAZIONI - 09.05.07 ALLEGATO al file Esercizi di geodesia. r a. Z c. nella quale

CORSO DI TOPOGRAFIA A - A.A. 2006-2007 ESERCITAZIONI - 09.05.07 ALLEGATO al file Esercizi di geodesia. r a. Z c. nella quale CORSO DI TOPOGRAFIA A - A.A. 6-7 ESERCITAZIONI - 9.5.7 ALLEGATO l fil Esrcizi di godsi Ellissoid trrstr Fin dll scond mtà dl VII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di

Dettagli

( )( ) ( ) ( ) k. Appunti di Skuola.it. Analisi matematica. Calcolo combinatorio. (0 k n) diff. Per un elemento o per l ordine

( )( ) ( ) ( ) k. Appunti di Skuola.it. Analisi matematica. Calcolo combinatorio. (0 k n) diff. Per un elemento o per l ordine Aisi ttic Apputi di Suo.it Ccoo cobitorio Disposizioi spici D (-)(-)...(-) ( ) di. Pr u to o pr ordi co riptizio D r N di. Pr du. Dist. Ch occupo o stsso posto Prutzioi spici P D ti riptuti... (...) P

Dettagli

1.6 L'approccio di Gilbert

1.6 L'approccio di Gilbert .6 L'pproccio di Gilbrt Il mtodo di Gilbrt (966) cosist ll drivzio di u quzio itgrl pr lo spttro di fluttuzioi di piccol mpizz. L soluzio umric di qust quzio forisc l'voluzio tmporl di modi di Fourir dl

Dettagli

La pendenza m può essere ricavata derivando l equazione della semiellisse situata nel semipiano y 0 : a a

La pendenza m può essere ricavata derivando l equazione della semiellisse situata nel semipiano y 0 : a a Esm di Stto 7 sssion strordinri Prolm Utilizzndo l formul di sdoppimnto, l tngnt ll lliss nl punto ; x y x x y y x y Imponndo il pssggio pr (; ) si ottin: x ch, sostituito nll quzion dll lliss, prmtt di

Dettagli

spettroscopie ottiche

spettroscopie ottiche spttroscopi ottich Itrazio dl campo lttrico co il momto di dipolo lttrico molcolar assa dgli lttroi molto più piccola dlla massa di ucl i sparazio di moti uclari da qulli lttroici spttroscopi rotazioali

Dettagli

fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio

fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio Scomposizione di un polinomio in fttori Scomporre in fttori primi un polinomio signific esprimerlo come il prodotto di due più polinomi non più scomponibili Ad esempio 9 = ( 3) fttore 1 ( + 3) fttore +

Dettagli

L IPERBOLE. x a. y b

L IPERBOLE. x a. y b L IPERBOLE ± ARGOMENTI TRATTATI L quzio coic dll iprol Qustioi silri 3 Qustioi rltiv ll rtt tgti Curv dduciili dll iprol 5 L fuzio omogrfic 6 Discussio sistmi grdo co prmtro 7 Proprità ottic dll iprol

Dettagli

DEFINIZIONE SUCCESSIONE NUMERICA Una successione numerica è una funzione che ha per dominio l insieme dei numeri naturali { 0;1;2;3;...

DEFINIZIONE SUCCESSIONE NUMERICA Una successione numerica è una funzione che ha per dominio l insieme dei numeri naturali { 0;1;2;3;... SUCCESSIONI DEFINIZIONE SUCCESSIONE NUMERICA U successioe ueric è u fuzioe che h per doiio l isiee dei ueri turli { 0;;;; } N o u suo sottoisiee e coe codoiio R, o u suo sottoisiee I vlori che ssue tle

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Fcoltà di Igegeri - Lure Triele i Igegeri Meccic Corso di Clcolo Numerico Dott.ss M.C. De Bois Uiversità degli Studi dell Bsilict, Potez Fcoltà di Igegeri Corso di Lure i Igegeri Meccic Ao Accdemico 004/05

Dettagli