Argomento 13 Sistemi lineari
|
|
- Ilario Paolini
- 3 anni fa
- Visualizzazioni
Transcript
1 Sistemi lineari: definizioni Argomento 3 Sistemi lineari I Un equazione nelle n incognite x,,x n della forma c x + + c n x n = b ove c,,c n sono numeri reali (detti coefficienti) eb è un numero reale (detto termine noto) si chiama equazione lineare in x,,x n I Un sistema lineare di m equazioni nelle n incognite x,,x n è un sistema formato da m equazioni lineari in x,,x n, ossia: a x + a x + + a n x n = b a x + a x + + a n x n = b : : : a m x + a m x + + a mn x n = b m (*) I Una soluzione di ( )èunan-pla di numeri reali (ex,,ex n ) che sostituita alle incognite soddisfa simultaneamente tutte le equazioni del sistema I La matrice di tipo (m, n) :A =(a ij ) j=n i=m si chiama matrice dei coefficienti del sistema Il vettore colonna di tipo (m, ) : b =(b i ) m i= si chiama vettore dei termini noti La matrice di tipo (m, n +):(A b) ottenuta accostando alle colonne della matrice A dei coefficienti il vettore (colonna) b dei termini noti si chiama matrice completa del sistema Esempio 3 di due equazioni in tre incognite ½ x +3y z = 4x +6y z =, la matrice del sistema, il vettore dei termini noti e la matrice completa sono, rispettivamente: µ µ µ 3 3 A =, b =, (A b) = I Detto x =(x j ) n j= il vettore colonna di tipo (n, ) delle incognite il sistema ( ) sipuò trascrivere in forma matriciale Una sua soluzione è quindi un vettore colonna di tipo (n, ) ex =(ex j ) n j= di numeri reali che soddisfa la relazione matriciale Aex = b I Un sistema si dice possibile (o risolubile) se ammette almeno una soluzione In tal caso le equazioni si dicono compatibili I Un sistema si dice impossibile se non ammette alcuna soluzione In tal caso le equazioni si dicono incompatibili
2 NOTA Un sistema possibile può avereunasolasoluzione(sistema determinato) oppure infinite soluzioni (sistema indeterminato), ma mai un numero finito disoluzioni I Due sistemi si dicono equivalenti quando ammettono le stesse soluzioni I Trasformazioni elementari Le seguenti trasformazioni, applicateadundatosistema, portano a un sistema equivalente: I) scambiare due equazioni tra loro; II) moltiplicare i due membri di un equazione per lo stesso numero k (6= ); III) sommare ad un equazione un altra equazione moltiplicata per k Esempio 3 Il sistema dell Esempio 3 è impossibile Infatti, sommando alla seconda equazione la prima moltiplicata per, si ottiene il sistema, equivalente a quello iniziale, ½ x +3y z = = ma la seconda equazione è impossibile x + y = Esempio 33 x 3y = x + y = la matrice del sistema, il vettore dei termini noti e la matrice completa sono: A =, b =, (A b) = Il sistema ha una sola soluzione Infatti, sottraendo alla terza equazione la seconda si ottiene il sistema, equivalente a quello dato: x + y = x 3y = 4y = chehacomeunicasoluzioneilvettore(x, y) =(, ) (Verificarlo) µ µ Esempio 34 Dati A =, e b =, 6 3 il sistema è il sistema di due equazioni in due incognite ½ x y = 6x +3y = Sommando alla seconda equazione la prima moltiplicata per 3 si ottiene il sistema equivalente: ½ x y = = Il sistema ammette quindi le infinite soluzioni della forma (t, t ), al variare del numero reale t
3 Soluzione dei sistemi lineari I teoremi di Cramer e di Rouché-Capelli Il Teorema di Cramer permette di stabilire quando un sistema di n equazioni in n incognite (lo stesso numero di equazioni ed incognite) ha una sola soluzione e fornisce un metodo per determinarla attraverso il calcolo del determinante di opportune matrici quadrate I Si consideri un sistema di n equazioni in n incognite, con A =(a ij ) j=n i=n matrice dei coefficienti (quadrata di ordine n) e vettore dei termini noti b Per ogni indice j con j n si definiscono le matrici A j quadrate di ordine n, ottenute sostituendo la j esima colonna di A con la colonna dei termini noti Teorema 3 (di Cramer) Il sistema di n equazioni in n incognite ha una sola soluzione det A 6= In tal caso, la soluzione è il vettore ex =(ex j ) n j= con ex j = det A j det A Esempio 3 x + y + z = x z = x y +3z =, la matrice dei coefficienti e il vettore dei termini noti sono: A =, b = 3 Poichè deta = 6=, il Teorema di Cramer garantisce che il sistema ha una sola soluzione Per determinarla costruiamo le matrici A =, A =, A 3 = 3 3 ecalcoliamodeta = 6, det A =, det A 3 = Allora la soluzione (x, y, z) èdatada: µ det A, det A, µ 3 det A 3, =, 6, Esempio 36 Il sistema x y +4z = 3x + y +z = x + y +3z = non ha una soluzione unica Infatti, detta A la matrice dei coefficienti si ha: det A = Quindi, inbasealteoremadicramer, possiamoescludere che abbia una sola soluzione Il sistema potrebbe essere impossibile oppure essere indeterminato, ossia ammettere infinite soluzioni 3
4 Nell esempio precedente non siamo stati in grado di stabilire il comportamento del sistema perchèil Teorema di Cramer ci permette soltanto di escludere che il sistema abbia una sola soluzione Più in generale,ilteoremadicramernonsiapplicaatuttiisistemi,masoltantoaquelliincuiilnumero delle equazioni è uguale al numero delle incognite Il teorema successivo (di Rouché-Capelli) risolve il problema della risolubililità del generico sistema lineare attraverso il calcolo della caratteristica (o rango) di opportune matrici I Si consideri un sistema di m equazioni in n incognite, con A =(a ij ) j=n i=m matrice dei coefficienti (di tipo (m, n)) e vettore dei termini noti b Teorema 3 (di Rouché Capelli) Il sistema di m equazioni in n incognite èrisolubile Car A =Car(A b) I Quando il sistema è risolubile (cioè CarA = Car(A b) = k), per sapere quante soluzioni ha dobbiamo confrontare il numero k con il numero n delle incognite: Se n>kil sistema è indeterminato ossiahainfinite soluzioni che dipendono da n k variabili libere (si dice che il sistema ha n k soluzioni) Se n = k il sistema è determinato ossia ha una sola soluzione I Inoltre, se il sistema è risolubile, detta k la caratteristica comune delle due matrici, per trovare le soluzioni si procede così: si fissa una sottomatrice A di A, quadrata di ordine k con det(a ) 6= (secara = k, esiste certamente un minore A non nullo di ordine k); si considera un nuovo sistema di k equazioni in k incognite ottenuto considerando solo le k (delle m) equazioni relative alle righe di A elek incognite (variabili effettive) relative alle colonne di A Le restanti n k incognite (variabili libere) sono trattate come parametri; 3 si risolve il sistema così ottenuto di k equazioni in k incognite (con determinante della matrice dei coefficienti non nullo) utilizzando, ad esempio, il Teorema di Cramer Esempio 37 Riprendiamo in esame il sistema dell Esempio 36 La matrice dei coefficienti e la matrice completa sono: A = 4 3, (A b) = Si ha: Car A = (prendendo ad esempio le prime due righe e due colonne) e Car (A b) =3, (infatti il determinante della sottomatrice ottenuta prendendo le ultime tre colonne è diverso da zero) Applicando il Teorema di Rouché Capelli possiamo quindi concludere che il sistema è impossibile 4
5 Esempio 38 x +4y = 3x + y = x +3y =, risulta A = e(a b) = Poichè CarA = Car(A b) =, il sistema èrisolubile(è stata riquadrata una sottomatrice con determinante non nullo) Inoltre, poichè la caratteristica è uguale al numero delle incognite, il sistema è determinato ossia ha una sola soluzione µ Per trovarla si risolve il sistema formato dalle prime due equazioni e si trova la soluzione, 3 Esempio 39 6, x + y + z = x + z = 6x +y =, risulta A = 6 e(a b) = Poichè deta = bisogna applicare il Teorema di Rouché Capelli Si ha che Car A =Car (A b) = e quindi il sistema è indeterminato ed ha soluzioni che dipendono da una variabile libera Per determinare le soluzioni, si considera il sistema delle prime due equazioni nelle prime due incognite (variabili effettive), considerando z come variabile libera: ½ x + y = z x = z che ha soluzione ( z, 3 z) Quindi le soluzioni del sistema assegnato sono i vettori: ( z, 3 z, z) al variare di z R Esempio 3 Discutere la risolubità al variare del parametro reale k, e trovare le eventuali soluzioni del sistema Poichè A = e (A b) = x +y z = x + y +z = x y = x y z = k k,da = si ha: Car A = 3, mentre det(a b) = k + Quindi, se k 6= il sistema è impossibile perchè 3 = Car A 6= Car(A b) =4 Se k = allora Car A =Car(A b) = 3 e il sistema è determinato Per trovare la soluzione si risolve il sistema delle prime tre equazioni e si trova, 4,
SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI
SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,
SISTEMI LINEARI MATRICI E SISTEMI 1
MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui
Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite
3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x
SISTEMI LINEARI, METODO DI GAUSS
SISTEMI LINEARI, METODO DI GAUSS Abbiamo visto che un sistema di m equazioni lineari in n incognite si può rappresentare in forma matriciale come A x = b dove: A è la matrice di tipo (m, n) dei coefficienti
Metodi per la risoluzione di sistemi lineari
Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante
Il teorema di Rouché-Capelli
Luciano Battaia Questi appunti (1), ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia, campus di Treviso, contengono un
Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale
Esercizi svolti 1. Matrici e operazioni fra matrici 1.1 Date le matrici 1 2 1 6 A = B = 5 2 9 15 6 risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Osservazione iniziale: qualunque
Esercitazione 6 - Soluzione
Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione
Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara
Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)
Esercizi svolti sui sistemi lineari
Francesco Daddi - www.webalice.it/francesco.daddi Esercizi svolti sui sistemi lineari Esercizio 1. Risolvere il seguente sistema lineare al variare del parametro reale t: tx+(t 1)y + z =1 (t 1)y + tz =1
I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.
ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio
Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente
Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente Dati i vettori di R (i) Calcolare il prodotto scalare v w, (ii) Stabilire se v e w sono ortogonali, (ii) Stabilire
Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice
Pordenone Corso di Matematica e Statistica 3 Algebra delle UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica Università di Udine
Esercizi sui sistemi di equazioni lineari.
Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la
SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3
SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni
Geometria BIAR Esercizi 2
Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si
SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5.
SISTEMI LINEARI Esercizi Esercizio. Risolvere, se possibile, i seguenti sistemi: x y z = 0 x + y + z = 3x + y + z = 0 x y = 4x + z = 0, x y z = 0. Svolgimento. Procediamo con operazioni elementari di riga
Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni
Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)
Sistemi di equazioni lineari
Sistemi di equazioni lineari I sistemi di equazioni si incontrano in natura in molti problemi di vita reale. Per esempio, prendiamo in considerazione una bevanda a base di uova, latte e succo d arancia.
2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A =
Esercizio 1. Risolvere il sistema lineare 2x 5y +4z = x 2y + z =5 x 4y +6z =10 (1) Soluz. La matrice dei coefficienti è 1 4 6, calcoliamone il rango. Il determinante di A è (applico la regola di Sarrus):
ESERCIZI SULLE MATRICI
ESERCIZI SULLE MATRICI Consideriamo il sistema lineare a, x + a, x + + a,n x n = b a, x + a, x + + a,n x n = b a m, x + a m, x + + a m,n x n = b m di m equazioni in n incognite che ha a, a,n A = a m, a
Esercizio 1 Trovare, se esistono, le soluzioni del sistema lineare. y + 3z = 3 x y + z = 0. { x + y = 1
Esercizio 1 Trovare, se esistono, le soluzioni del lineare y + 3z = 3 x y + z = 0 x + y = 1 0 1 3 3 1 1 1 0 1 1 1 0 = 0 1 3 3 = 1 1 0 1 1 1 0 1 = 1 1 1 0 0 1 3 3 0 1 1 = Il di partenza è quindi equivalente
Chi non risolve esercizi non impara la matematica.
5.5 esercizi 9 Per trovare la seconda equazione ragioniamo così: la parte espropriata del primo terreno è x/00, la parte espropriata del secondo è y/00 e in totale sono stati espropriati 000 m, quindi
Inversa. Inversa. Elisabetta Colombo
Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 00-0, http://users.mat.unimi.it/users/colombo/programmabio.html e 3 con i Matrici inverse di matrici quadrate e con i Sia A una
Sistemi lineari - Parte Seconda - Esercizi
Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione
Sistemi di equazioni lineari
Sistemi di equazioni lineari A. Bertapelle 25 ottobre 212 Cos è un sistema lineare? Definizione Un sistema di m equazioni lineari (o brevemente sistema lineare) nelle n incognite x 1,..., x n, a coefficienti
a + 2b + c 3d = 0, a + c d = 0 c d
SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,
Appunti su Indipendenza Lineare di Vettori
Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo
Esercizi svolti sui sistemi lineari
Esercizio 1. Risolvere il seguente sistema lineare al variare del parametro reale t: t x + (t 1)y + z = 1 (t 1)y + t z = 1 2 x + z = 5 Soluzione. Il determinante della matrice dei coefficienti è t t 1
Prima di risolverli, è necessario prevedere se ci saranno soluzioni e, eventualmente, quante saranno.
Sistemi lineari Prima di risolverli, è necessario prevedere se ci saranno soluzioni e, eventualmente, quante saranno. La discussione di un sistema si imposta in questo modo: 1 studiare il rango della matrice
SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n
SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,
SISTEMI DI 1 GRADO CON DUE EQUAZIONI IN DUE INCOGNITE
Pagina 1 di 6 SISTEMI DI 1 GRADO CON DUE EQUAZIONI IN DUE INCOGNITE L insieme di due equazioni di primo grado in due incognite si dice SISTEMA DI 1 GRADO. La soluzione del sistema è ogni coppia di numeri
= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con
Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti su m righe e n colonne. I numeri che compaiono nella tabella si dicono elementi della matrice. La loro individuazione
+2 3 = = =3 + =3 + =8 =15. Sistemi lineari. nelle stesse due incognite. + = + = = = Esempi + =5. Il sistema è determinato
Sistemi di equazioni SISTEMI LINEARI Un sistema di equazioni è un insieme di equazioni per le quali si cercano eventuali soluzioni comuni. +=7 =1 Ognuna delle due equazioni ha infinite soluzioni. La coppia
Esercizi di ripasso: geometria e algebra lineare.
Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare
Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI
Pagine di Algebra lineare di premessa al testo Pagine di Geometria di Sara Dragotti Parte terza: SISTEMI LINEARI 1. Definizioni Dato un campo K ed m 1 polinomi su K in n indeterminate di grado non superiore
Sistemi lineari. 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = 0. x 1 x 2 x 3
Sistemi lineari 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = 0 2 1 1 1 1 1 1 3 2 x 1 x 2 x 3 = 2 1 0 n j=1 a i,jx j = b i, i = 1,, n Ax = b A = (a i,j ) R n n matrice invertibile (det(a) 0) b
I sistemi di equazioni di primo grado
I sistemi di equazioni di primo grado RIPASSIAMO INSIEME SISTEMI DI EQUAZIONI DI PRIMO GRADO Un sistema di equazioni di primo grado in due (o più) incognite è l insieme di due (o più) equazioni di primo
( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1
. Scimone a.s 1997 98 pag 1 TEORI DELLE MTRICI Dato un campo K, definiamo matrice ad elementi in K di tipo (m, n) un insieme di numeri ordinati secondo righe e colonne in una tabella rettangolare del tipo
Lezione 7: Il Teorema di Rouché-Capelli
Lezione 7: Il Teorema di Rouché-Capelli In questa lezione vogliamo rivisitare i sistemi lineari e dare alcuni risultati che ci permettono di determinare dato un sistema lineare se ammette soluzioni e da
ottenuta scambiando in A, le righe con le colonne, così, ad esempio, posto
MATRICI Si chiama matrice di m righe ed n colonne una tabella costituita da m n numeri (detti elementi), disposti in m righe orizzontali ed in n colonne verticali, racchiusi tra due parentesi tonde. (1)
Equazioni lineari con due o più incognite
Equazioni lineari con due o più incognite Siano date le uguaglianze: k 0; x + y = 6; 3a + b c = 8. La prima ha un termine incognito rappresentato dal simbolo letterale k; la seconda ha due termini incogniti
Dipendenza e indipendenza lineare
Dipendenza e indipendenza lineare Luciano Battaia Questi appunti () ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia campus
1 Fattorizzazione di polinomi
1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente
LEZIONE 3. Typeset by AMS-TEX
LEZIONE 3 3 Risoluzione di sistemi Supponiamo che AX = B sia un sistema di equazioni lineari Ad esso associamo la sua matrice completa (A B Per la Proposizione 236 sappiamo di poter trasformare, con operazioni
MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI
MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI LE MATRICI DEFINIZIONE: Una matrice è un insieme di numeri disposti su righe e colonne. 1 3 7 M = 2 5 1 M è
Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.
Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo
Equazioni di primo grado ad un incognita
Equazioni di primo grado ad un incognita Identità Si dice IDENTITÀ un uguaglianza fra due espressioni letterali che è verificata per ogni valore attribuito alle lettere. 2 = 2 è un identità =3 2 3=2 3
Sistemi di 1 grado in due incognite
Sistemi di 1 grado in due incognite Problema In un cortile ci sono polli e conigli: in totale le teste sono 7 e zampe 18. Quanti polli e quanti conigli ci sono nel cortile? Soluzione Indichiamo con e con
Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler
Equazioni e disequazioni M.Simonetta Bernabei, Horst Thaler A(x)=0 x si chiama incognita dell equazione. Se oltre all incognita non compaiono altre lettere l equazione si dice numerica, altrimenti letterale.
LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m
LEZIONE 4 41 Equazioni matriciali Negli Esempi 336 e 337 si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = B 2,, AX p = B p aventi la stessa matrice incompleta A Tale tipo di problema si presenta
1 Ampliamento del piano e coordinate omogenee
1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di
Applicazioni lineari e diagonalizzazione. Esercizi svolti
. Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)
La riduzione a gradini e i sistemi lineari (senza il concetto di rango)
CAPITOLO 4 La riduzione a gradini e i sistemi lineari (senza il concetto di rango) Esercizio 4.1. Risolvere il seguente sistema non omogeneo: 2x+4y +4z = 4 x z = 1 x+3y +4z = 3 Esercizio 4.2. Risolvere
Matrici. Matrici.h Definizione dei tipi. Un po di esercizi sulle matrici Semplici. Media difficoltà. Difficili
Matrici Un po di esercizi sulle matrici Semplici Lettura e scrittura Calcolo della trasposta Media difficoltà Calcolo del determinante Difficili Soluzione di sistemi lineari È veramente difficile? 1 Matrici.h
Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I)
Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema
Sistemi lineari. 1. Generalità. a 1 x 1 + a 2 x 2 + a 3 x a n x n = k (matrice completa)
Sistemi lineari. Generalità La teoria dei sistemi di equaioni lineari costituisce uno dei capitoli molto importanti della matematica pura e applicata. Infatti molte questioni teoriche o tecniche si traducono
Corso di Matematica II Anno Accademico Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori
Esercizio 1 Corso di Matematica II Anno Accademico 29 21. Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori May 7, 21 Commenti e correzioni sono benvenuti. Mi scuso se ci fosse qualche
Esercitazione di Calcolo Numerico 1 22 Aprile Determinare la fattorizzazione LU della matrice a 1 1 A = 3a 2 a 2a a a 2 A =
Esercitazione di Calcolo Numerico 22 Aprile 29. Determinare la fattorizzazione LU della matrice a A = 3a 2 a 2a a a 2 ed utilizzarla per calcolare il det(a). 2. Calcolare il determinante della matrice
Prontuario degli argomenti di Algebra
Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.
Esercizi sulla retta. Gruppo 1 (4A TSS SER, 4B TSS SER, 4A AM )
Esercizi sulla retta. Gruppo 1 (4A TSS SER, 4B TSS SER, 4A AM ) 1. Scrivere l'equazione della retta passante per i punti P1(-3,1), P2(2,-2). Dobbiamo applicare l'equazione di una retta passante per due
FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA
Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere
1.1 Coordinate sulla retta e nel piano; rette nel piano
1 Sistemi lineari 11 Coordinate sulla retta e nel piano; rette nel piano Coordinate sulla retta Scelti su una retta un primo punto O (origine) ed un diverso secondo punto U (unita ), l identificazione
Le matrici. A cura di Benedetta Noris, 17 aprile Cos è una matrice. 2 Rappresentazione di una matrice generica 2
Le matrici A cura di Benedetta Noris, 17 aprile 2012 benedetta.noris1@unimib.it Indice 1 Cos è una matrice 1 2 Rappresentazione di una matrice generica 2 3 Somma di matrici e prodotto di una matrice per
Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di
DEFINIZIONE Espressione algebrica costituita dal prodotto tra una parte numerica (coefficiente) e una o più variabili e/o costanti (parte letterale). Variabili e costanti possono comparire elevate a potenza
Esercizio 1 (sistema omogeneo) Discutere al variare del parametro k reale il sistema:
Leione - esercitaioni di lgebra e Geometria - nno accademico 9- Eserciio (sistema omogeneo) Discutere al variare del parametro reale il sistema: ) ( ) ( e risolverlo per. n, m La matrice incompleta del
Corso di Matematica B - Ingegneria Informatica Testi di Esercizi
A. Languasco - Esercizi Matematica B - 1. Sistemi lineari e Matrici 1 A: Sistemi lineari: eliminazione gaussiana Corso di Matematica B - Ingegneria Informatica Testi di Esercizi A1. Determinare, con il
ALGEBRA E GEOMETRIA Esercizi Corso di Laurea in Chimica - anno acc. 2015/2016 docente: Elena Polastri,
ALGEBRA E GEOMETRIA Esercizi Corso di Laurea in Chimica - anno acc. 05/06 docente: Elena Polastri, plslne@unife.it Esercizi 3: SPAZI VETTORIALI e MATRICI Combinazioni lineari di vettori.. Scrivere il vettore
III-4 Sistemi di equazioni lineari
SISTEMI DI EQUAZIONI LINEARI III-4 Sistemi di equazioni lineari Indice Sistemi di equazioni lineari 2 Alcuni risultati generali 2 2 Il teorema di Rouché Capelli 3 22 Il teorema e la regola di Cramer 3
1 Sistemi di equazioni lineari 1. 2 Alcuni risultati generali Il teorema di Rouché Capelli Il teorema e la regola di Cramer...
SISTEMI DI EQUAZIONI LINEARI Sistemi di equazioni lineari Indice Sistemi di equazioni lineari 2 Alcuni risultati generali 2 2 Il teorema di Rouché Capelli 2 22 Il teorema e la regola di Cramer 3 3 Il calcolo
Lezione 4 - Esercitazioni di Algebra e Geometria - Anno accademico
Trasformazioni elementari sulle matrici Data una matrice A K m,n definiamo su A le seguenti tre trasformazioni elementari: T : scambiare tra loro due righe (o due colonne) di A; T : sommare ad una riga
3. Vettori, Spazi Vettoriali e Matrici
3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e
08 - Matrici, Determinante e Rango
Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 08 - Matrici, Determinante e Rango Anno Accademico 2013/2014 D.
Per equazione lineare nelle incognite x, y intendo un equazione del tipo. ax = b,
Matematica II 161110 1 Equazioni lineari in una incognita Per equazione lineare nell incognita x intendo un equazione del tipo ax = b dove a b sono due costanti reali a e il coefficiente e b e il termine
(x B x A, y B y A ) = (4, 2) ha modulo
GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()
Anno 2. Risoluzione di sistemi di primo grado in due incognite
Anno Risoluzione di sistemi di primo grado in due incognite Introduzione In questa lezione impareremo alcuni metodi per risolvere un sistema di due equazioni in due incognite. Al termine di questa lezione
EQUAZIONE DELLA RETTA
EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale
Massimi e minimi vincolati
Massimi e minimi vincolati Data una funzione G C 1 (D), dove D è un aperto di R 2, sappiamo bene dove andare a cercare gli eventuali punti di massimo e minimo relativi. Una condizione necessaria affinché
Esercizi svolti. Geometria analitica: rette e piani
Esercizi svolti. Sistemi di riferimento e vettori. Dati i vettori v = i + j k, u =i + j + k determinare:. il vettore v + u ;. gli angoli formati da v e u;. i vettore paralleli alle bisettrici di tali angoli;
Le equazioni di I grado
Le equazioni di I grado ITIS Feltrinelli anno scolastico 007-008 R. Folgieri 007-008 1 Le equazioni abbiamo una uguaglianza tra due quantità (espressioni algebriche, perché nei due termini ci possono essere
La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione.
La retta nel piano Equazioni vettoriale e parametriche di una retta Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. Condizione
Precorso di Matematica
UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni
LEZIONE 4. { x + y + z = 1 x y + 2z = 3
LEZIONE 4 4.. Operazioni elementari di riga. Abbiamo visto, nella precedente lezione, quanto sia semplice risolvere sistemi di equazioni lineari aventi matrice incompleta fortemente ridotta per righe.
Matematica per le scienze sociali Equazioni e disequazioni. Francesco Lagona
Matematica per le scienze sociali Equazioni e disequazioni Francesco Lagona University of Roma Tre F. Lagona (francesco.lagona@uniroma3.it) 1 / 19 Outline 1 Equazioni algebriche 2 Equazioni di primo grado
Metodo di Gauss-Jordan 1
Metodo di Gauss-Jordan 1 Nota Bene: Questo materiale non debe essere considerato come sostituto delle lezioni. Ārgomenti svolti: Riduzione per righe e matrici equivalenti per righe. Forma echelon e sistemi
LE EQUAZIONI DI SECONDO GRADO
LE EQUAZIONI DI SECONDO GRADO Definizione: un equazione è di secondo grado se, dopo aver applicato i principi di equivalenza, si può scrivere nella forma, detta normale: ax + bx + c 0!!!!!con!a 0 Le lettere
Se la base è 10, il risultato della potenza è una potenza di 10 con tanti zeri quante sono le unità dell esponente:
Definizione di potenza Si definisce potenza ennesima di A, con n intero maggiore di 1, il prodotto di A per se stesso eseguito n volte A n =(AxAxAx A) n volte 2 5 = 2 2 2 2 2=32 Se la base è 10, il risultato
ha come obiettivo quello di costruire a partire da A una matrice U, m n, che abbia il
Facoltà di Scienze Statistiche, Algebra Lineare 1 A, G.Parmeggiani LEZIONE 6 Eliminazione di Gauss con scambi di righe Sia A O una matrice m n. Abbiamo illustrato nella Lezione 5 un algoritmo che ha come
Esercitazioni di Algebra e Geometria
Esercitazioni di Algebra e Geometria Anno Accademico 2010 2011 Dott.ssa Elisa Pelizzari e-mail elisa.peli@libero.it Esercitazioni: lunedì 14.30 16.30 venerdì 14.30 16.30 Ricevimento studenti: venerdì 13.30
Giuseppe Accascina. Note del corso di Geometria e Algebra
Giuseppe Accascina Note del corso di Geometria e Algebra Corso di Laurea Specialistica in Ingegneria Gestionale Anno Accademico 26-27 ii Istruzioni per l uso Faremo spesso riferimento a ciò che è stato
1 Forme quadratiche 1. 2 Segno di una forma quadratica Il metodo dei minori principali Soluzioni degli esercizi 7.
1 FORME QUADRATICHE 1 Forme quadratiche Indice 1 Forme quadratiche 1 2 Segno di una forma quadratica 2 2.1 Il metodo dei minori principali........................................ 3 3 Soluzioni degli esercizi
Parte 1. Sistemi lineari, algoritmo di Gauss, matrici
Parte 1. Sistemi lineari, algoritmo di Gauss, matrici A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Brevi richiami sugli insiemi, 1 Insiemi numerici, 3 3 L insieme R n, 4 4 Equazioni
IV-2 Forme quadratiche
1 FORME QUADRATICHE 1 IV-2 Forme quadratiche Indice 1 Forme quadratiche 1 2 Segno di una forma quadratica 2 2.1 Il metodo dei minori principali........................................ 3 3 Soluzioni degli
Le eguaglianze algebriche: Identità ed Equazioni
Le eguaglianze algebriche: Identità ed Equazioni Le eguaglianze algebriche possono essere di due tipi 1 - Identità - Equazioni L eguaglianza è verificata da qualsiasi valore attribuito alle lettere L eguaglianza
Geometria BATR-BCVR Esercizi 9
Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio
I coefficienti delle incognite sono proporzionali fra loro ma NON coi termini noti, e il sistema è dunque IMPOSSIBILE (si dice anche: INCOMPATIBILE).
RISOLUZIONI DEGLI ESERCIZI SUI SISTEMI DI 1 GRADO IMPOSSIBILI E INDETERMINATI Per ciascuno dei seguenti sistemi, stabilisci se è determinato, impossibile, o indeterminato. In caso di indeterminazione,
1 Equazioni parametriche e cartesiane di sottospazi affini di R n
2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale
Geometria Analitica Domande e Risposte
Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano
1 Definizione di sistema lineare non-omogeneo.
Geometria Lingotto LeLing: Sistemi lineari non-omogenei Ārgomenti svolti: Sistemi lineari non-omogenei Il metodo di Gauss-Jordan per sistemi non-omogenei Scrittura della soluzione generale Soluzione generale
Le equazioni. 2x 3 = x + 1. Definizione e caratteristiche
1 Definizione e caratteristiche Chiamiamo equazione l uguaglianza tra due espressioni algebriche, che è verificata solo per particolari valori che vengono attribuiti alle variabili. L espressione che si