STATISTICA DESCRITTIVA - SCHEDA N. 4 VARIABILI QUANTITATIVE Trasformazioni lineari Indici di covarianza e correlazione

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "STATISTICA DESCRITTIVA - SCHEDA N. 4 VARIABILI QUANTITATIVE Trasformazioni lineari Indici di covarianza e correlazione"

Transcript

1 Matematca e statstca: da dat a modell alle scelte Resposabl scetfc M.P. Rogat e E. Sasso (Dpartmeto d Matematca Uverstà d Geova) STATISTICA DESCRITTIVA - SCHEDA N. 4 VARIABILI QUANTITATIVE Trasformazo lear Idc d covaraza e correlazoe ) Trasformazo lear d varabl statstche I vare stuazo s operao trasformazo de dat. Alcu esemp c soo famlar: operamo ua trasformazoe d ua varable quado cambamo utà d msura, ad esempo passado da dat espress cetmetr a dat espress metr, oppure quado trasformamo le temperature espresse grad Celsus quelle grad Fahrehet. Se dchamo co msure espresse cetmetr e co le stesse espresse metr, avremo: = 0.0 Se dchamo co le temperature espresse grad Fahrehet e co quelle grad Celsus, avremo: = (-3) 00/80 Operamo ua trasformazoe d ua varable ache quado sottraamo a msure della massa d oggett la massa del cotetore utlzzato; avremo, ad esempo: = - I quest cas le trasformazo soo lear, coè del tpo: = a + b co a e b valor real. Cascu dato vee trasformato el seguete modo: y = ax + b Il coeffcete b opera ua traslazoe metre l coeffcete a è u fattore d scala che cde sulla varable medate ua dlatazoe o ua cotrazoe (dlatazoe se a > e cotrazoe se a < ). Se a è egatvo s ha u rbaltameto rspetto all asse delle ordate. Vedamo ora come s comportao meda e varaza della varable trasformata learmete rspetto agl stess dc della varable orgale. Idchamo co x e y le mede e co e le varaze delle due varabl. A) Traslazoe = + b La meda camba: vee traslata d b, così come sgol dat. y = ( x + b) = x +b La varaza resta uguale; fatt è basata sugl scart dalla meda, che restao ugual dopo la traslazoe: y y = x + b x + b = x x ( ) = Nell esempo rportato a faco s ha = -0 e: x = 49. e = 9.0 y = 39. e = 9.0

2 B) Dlatazoe/cotrazoe = a La meda camba: vee dlatata o cotratta del fattore a, così come sgol dat. a y = ax = x = ax La varaza camba; gl scart dalla meda dvetao: y y = a x a x = a( x x ) e qud ( ) ( ) = y y = a x x = ( ) Il sego del coeffcete a o cde sulla varaza. = a x x a. A faco soo rappresetate, oltre alla varable dell esempo precedete, ua varable dlatata 3 volte e ua W cotratta 3 volte, coè: = 3 e W = /3 =3 S ha: x = 49. e = 9.0 e qud: y = 4.3 e = 8.63 w = 6.3 e W =.0 W=/ Bsoga fare attezoe a pall: per problem d scala e tre grafc u pallo corrspode a u dverso umero d osservazo. Each symbol represets up to 3 observatos. I preseza sa d traslazoe che d dlatazoe/cotrazoe s ha: la meda s trasforma secodo la stessa trasformazoe della varable, ovvero y = ax + b. la varaza, vece, ha u comportameto dfferete = a. e la devazoe stadard s trasforma el seguete modo: = a fatt la devazoe stadard è u dce postvo. C) Cetratura e stadardzzazoe La trasformazoe = x è detta cetratura. La varable vee traformata ua varable co meda zero. x La trasformazoe Z = è detta stadardzzazoe. La varable vee traformata ua varable Z co meda zero e varaza uo. NB: Le formule precedet valgoo solo per trasformazo lear. Ad esempo se = / o è vero che y = / x

3 ) Dstrbuzoe coguta d due varabl quattatve e loro rappresetazoe grafca I rsultat d due varabl quattatve e rlevate sulla stessa popolazoe possoo essere rappresetat attraverso put d u pao: a cascua osservazoe è assocato u puto le cu coordate soo valor d e per quella osservazoe, dcat co (x,y ). Il grafco s chama dagramma d dspersoe bdmesoale o scatterplot. L seme delle K dfferet coppe d valor (x k,y k ) e delle corrspodet frequeze relatve è detta dstrbuzoe coguta d e. ESEMPIO. Cosderamo l grafco della dstrbuzoe coguta de pes e delle altezze de soggett dell espermeto sulle pulsazo (gà vsto elle schede. e 3) Scatterplot of Peso vs Altezza Notamo che el ttolo de dagramm relatv a due varabl software statstc scrvoo: varable rappresetata sulle ordate rspetto (versus glese) varable rappresetata sulle ascsse Peso Altezza La rappresetazoe grafca a faco evdeza, oltre alla dstrbuzoe coguta delle due varabl, ache le due dstrbuzo margal d e. La stuazoe è del tutto aaloga a quato abbamo vsto el caso d varabl qualtatve. Margal Plot of Peso vs Altezza Il barcetro de dat relatv a due varabl è l puto (x, y ) coè l puto che ha coordate due barcetr della varable e della varable. Ache questo caso l barcetro è l puto d equlbro della dstrbuzoe. Peso Altezza 90 Nel grafco della dstrbuzoe coguta s può ache evdezare l apparteeza de soggett a lvell d ua varable qualtatva, così come è fatto a faco per l geere: masch () e femme () Scatterplot of Peso vs Altezza Sex Peso 0 0 Altezza

4 3) Idc per due varabl quattatve: la covaraza e la correlazoe. Quado s hao due varabl quattatve e, defte sulla stessa popolazoe d utà, c possamo chedere se esste u legame leare tra le due varabl e, caso affermatvo, d che tpo sa. Esameremo come s costruscoo e che propretà hao due uov dc: la covaraza e la correlazoe. A) Gl dc d covaraza e correlazoe hao la propretà d essere: postv per dat che hao u comportameto come quello a faco vc a zero per dat che hao u comportameto come quello a faco egatv per dat che hao u comportameto come quello a faco B) Gl dc d covaraza e correlazoe soo costrut azttutto cetrado dat el barcetro. Idchamo co e co le varabl cetrate. Osservamo che, ua volta cetrat dat el barcetro, prodott x y soo postv per dat che soo rappresetat el prmo e el terzo quadrate e egatv per dat che soo rappresetat el secodo e el quarto quadrate de uov ass. Nell esempo rportato a faco la maggor parte de prodott è postva e oltre prodott egatv soo pccol. La covaraza fra e è data da m Cov(,)= x y = ( x x)( y y ) oppure fk( xk x)( yk y ) k = avedo dcato co (x k,y k ) gl m dfferet valor assut dalle varabl e co f k le corrspodet frequeze relatve. Talvolta come el caso della varaza, l dce d covaraza può avere (-) al deomatore. Come la varaza, la covaraza può essere scrtta modo pù semplce per calcol m Cov(,)= x y x y oppure k k k = f x y x y k = ovvero come la dffereza fra la meda del prodotto de dat e l prodotto delle mede. Ua covaraza postva dca che per la maggor parte de dat: - a valor alt della varable corrspodoo valor alt della varable - a valor bass della varable corrspodoo valor bass della varable Ua covaraza egatva dca che per la maggor parte de dat: 4

5 - a valor alt della varable corrspodoo valor bass della varable - a valor bass della varable corrspodoo valor alt della varable Ua covaraza crca ulla dca che o esste essu legame d questo geere. ESEMPIO: Per le varabl Altezza e Peso la covaraza vale 8,55. Covaraza e trasformazo lear. Abbamo vsto che la covaraza è otteuta cetrado le varabl e qud o rsete d evetual traslazo delle varabl. Qud: Cov( + b, + d) = Cov(,). Ivece rsete, come la varaza, delle dlatazo/cotrazo. Ifatt Cov( a, c) = ax cy ax cy ac x y xy accov(, ) = = I geerale: Cov( a + b, c + d) = accov(, ) L utà d msura della covaraza fra e (ad esempo espresse ua cm e l altra kg) è data dal prodotto delle utà d msura d e d (qud, cm x kg): qud rsete della scelta dell utà d msura. Come s potrebbe defre u dce, che da le formazo della covaraza ma o dpeda dalla scelta delle utà d msura d e? Bsoga trasformare le varabl e operado, oltre che ua cetratura, ache ua stadardzzazoe, cosderado qud varabl co varaza. Idchamo ora co e co x le varabl stadardzzate: y = e =. Il coeffcete d correlazoe ρ(,) è defto come Cov(, ) : Qud ρ(,) = ρ(,) = x y x y Cov (, ) = ( x)( y) = Il sego della correlazoe cocde co quello della covaraza. L dce d correlazoe è u umero compreso fra e. Se è vco a valor estrem le due varabl hao u forte legame leare. Se è vco a 0 o esstoo legam lear apprezzabl fra le due varabl. ATTENZIONE: la covaraza e la correlazoe msurao solo l legame leare fra le varabl; altr tp d legam o soo dvduat. Ua covaraza o correlazoe crca ulla o sgfca che o essta essua relazoe fra le varabl stesse. Il grafco a faco mostra u caso d correlazoe pressoché ulla, pur preseza d ua relazoe quas quadratca fra le varabl. 5

6 Osservamo fe come el caso delle varabl qualtatve che aver dvduato u legame leare o vuol dre aver dvduato ua relazoe d causa/effetto. Ad esempo se da u dage statstca s trova che l umero d fgl per famgla e l cosumo d alcool pro capte per famgla hao ua correlazoe postva abbastaza alta, questo o vuol dre che l avere ua famgla umerosa duce ecessaramete u maggor cosumo d alcolc, oppure che u alto cosumo d alcolc abba come cosegueza dretta ua famgla umerosa. I questo caso s può potzzare che le cause dell alto cosumo d alcolc e della umerostà de fgl sao le codzo cultural e ecoomche delle famgle, ovvero che esstoo altre varabl, magar o rlevate dall dage, che fluscoo sulle varabl studate. Correlazoe e trasformazo lear. Abbamo vsto che la correlazoe è otteuta stadardzzado le varabl e qud o rsete d evetual traslazo e dlatazo/cotrazo delle varabl, a parte l sego. Cov ( a + b, c + d ) a c Cov(, ) ρ (a + b, c + d) = = = sego( ac) ρ(, ) a c a + b c + d Alcue osservazo:. S ha: Cov(,) =, Cov(,) = Cov(,) e ρ(,) =, ρ(,-) = -.. Date due (o pù) varabl quattatve e la matrce d varaza-covaraza è quella matrce smmetrca coteete sulla dagoale prcpale Var( )e el posto (,j) Cov(, j ). Nel caso delle varabl Altezza e Peso s ha altezza peso altezza 86,3896 8,558 peso 8,558 5,9 Aalogamete la matrce d correlazoe è quella matrce smmetrca coteete sulla dagoale prcpale e el posto (,j) ρ (, j ). Nel caso delle varabl Altezza e Peso s ha altezza peso altezza 0.85 peso 0.85 UN ESEMPIO REALE. Cosderamo alcu dat relatv a tre varetà d Irs; soo msurate la lughezza e la larghezza de petal e lughezza e la larghezza de sepal. 0 vareta 3 Nella rappresetazoe grafca a faco soo rportate le dstrbuzo cogute della lughezza e della larghezza de petal d tre varetà d Irs. S vede che la correlazoe complessva fra la lughezza e la larghezza è postva e questo dovuto a u fattore d scala : le tre spece soo d dmeso dverse: la è pccola, la è meda e la 3 è grade. Le correlazo fra la lughezza e la larghezza de petal per cascua varetà soo molto pù basse. Qu d seguto vedamo altre due aomale. lughezza petal larghezza petal ρ tot =0.964 ρ =0.36 ρ =0.8 ρ 3=

7 Lughezza e larghezza sepal: ρ totale egatvo quas ullo; ρ elle sottopopolazo postvo e u caso puttosto alto Lughezza petal e larghezza sepal: ρ totale egatvo basso; ρ elle sottopopolazo postvo 45 vareta 3 0 vareta 3 larghezza sepal lughezza petal lughezza sepal ρ tot = -0.8 ρ =0.48 ρ =0.56 ρ 3 = larghezza sepal ρ tot = ρ =0.86 ρ =0.56 ρ 3=0. 45 UN ALTRO ESEMPIO REALE (tratto dalla rvsta Nature del ottobre 005). Ne tre grafc soo rportate le dstrbuzoe cogute del peso () e delle ore d soo goralere () d alcu amal; soo dcat: - carvor co romb - gl erbvor co tragol - gl ovor co quadrat Nelle tre sottopopolazo s ottee: - carvor: ρ c (, ) = erbvor: ρ ( e, ) = ovor: ρ ( o, ) = - 0.3

8 Qud tutte le sottopopolazo la correlazoe è egatva, ma per gl erbvor tale correlazoe è puttosto alta, metre per gl altr due grupp la correlazoe è o sgfcatva. Il grafco a faco rguarda l tera popolazoe degl amal. Nella popolazoe complessva s ottee: ρ (, ) = Come abbamo gà detto ua correlazoe alta o forsce formazo su evetual cause/effetto fra le varabl. Talvolta però queste formazo soo ote a ch sta studado ua stuazoe reale: c è ua varable (che dcheremo co ) che produce degl effett su u altra varable (che dcheremo co ). 8

9 ESERCIZI ) A faco soo rportat rsultat d due caratterstche quattatve effettuate sulla stessa popolazoe. a. Costrure u dagramma d dspersoe che vsualzz la dstrbuzoe della varable b. Calcolare la meda d. c. Calcolare la varaza d. d. Costrure u grafco della fuzoe d dstrbuzoe cumulata della varable. e. Costrure u box-plot per la varable f. Sapedo che per la varable s ottee: y = 35.9 e y = 85.55, calcolare meda e varaza d. g. Costrure u dagramma d dspersoe bdmesoale che vsualzz la dstrbuzoe coguta delle varabl e h. Calcolare l coeffcete d correlazoe delle varabl e ) I dat rportat ella tabella seguete soo msure d u partcolare parametro d fuzoaltà epatca (SGOT) co l lvello d colesterolo HDL el sague. SGOT [x] HDL (mg/dl) [y] x = 0 x =.5 y = 300. y = 900. x y = a) Calcolare meda e varaza delle varabl SGOT e HDL. b) Costrure u dagramma d dspersoe bdmesoale che vsualzz la dstrbuzoe coguta delle varabl e c) Calcolare la covaraza fra le varabl SGOT e HDL. d) Calcolare la correlazoe fra le varabl SGOT e HDL. 3) A faco soo rportat 3 rsultat d ua rlevazoe quattatva, dcata co. Calcolare la meda e la varaza d ) Per alcu, l zo d questo mlleo è l geao 000, per altr è l geao 00. S effettuao msure d tempo rferte all'zo del terzo mlleo. Dre quale de seguet dc statstc rfert alle sue msure è varate rspetto alle due scelte per l orge: meda varaza medaa IQR 9

Analisi dei Dati. La statistica è facile!!! Correlazione

Analisi dei Dati. La statistica è facile!!! Correlazione Aals de Dat La statstca è facle!!! Correlazoe A che serve la correlazoe? Mettere evdeza la relazoe esstete tra due varabl stablre l tpo d relazoe stablre l grado d tale relazoe stablre la drezoe d tale

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 26 Febbrao 200 Dott. Mrko Bevlacqua ESERCIZIO Cosderado le class d altezza 60 6; 6 70; 70 78; 78 86 per u collettvo d 20 persoe, s può affermare che l ALTEZZA dpede

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 3 VARIABILI QUANTITATIVE Indici di centralità, dispersione e forma

STATISTICA DESCRITTIVA - SCHEDA N. 3 VARIABILI QUANTITATIVE Indici di centralità, dispersione e forma Matematca e statstca: da dat a modell alle scelte www.dma.uge/pls_statstca Resposabl scetfc M.P. Rogat e E. Sasso (Dpartmeto d Matematca Uverstà d Geova) STATISTICA DESCRITTIVA - SCHEDA N. 3 VARIABILI

Dettagli

Lezione 4. La Variabilità. Lezione 4 1

Lezione 4. La Variabilità. Lezione 4 1 Lezoe 4 La Varabltà Lezoe 4 1 Defzoe U valore medo, comuque calcolato, o è suffcete a rappresetare l seme delle osservazo effettuate (o l seme de valor assut dalla varable statstca); è ecessaro qud affacare

Dettagli

MEDIA DI Y (ALTEZZA):

MEDIA DI Y (ALTEZZA): Uverstà d Casso Eserctazo d Statstca del 4 Marzo 0 Dott. Mrko Bevlacqua ESERCIZIO Su u collettvo d dvdu soo stat rlevat caratter X Peso( kg) e Altezza ( cm) otteamo la seguete dstrbuzoe d frequeza coguta:

Dettagli

Indici di asimmetria. Elementi di Statistica descrittiva Parte IV. Simmetria di una distribuzione di frequenze. Primo indice di asimmetria (1/3)

Indici di asimmetria. Elementi di Statistica descrittiva Parte IV. Simmetria di una distribuzione di frequenze. Primo indice di asimmetria (1/3) Smmetra d ua dstrbuzoe d frequeze Ua dstrbuzoe s dce asmmetrca se o è possble dvduare (aalzzado u stogramma) u asse vertcale che tagl la dstrbuzoe due part specularmete ugual Idc d asmmetra Rferedoc a

Dettagli

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione?

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione? Prma dstrb. Secoda dstrb. Totale Meda 0 5 8 35 85 63 63/5 =3,6 5 5 38 40 45 63 63/5 =3,6 Due dstrbuzo, stessa meda ma quale delle due la meda rappreseta, stetzza meglo la stuazoe? Le mede stetzzao la dstrbuzoe,

Dettagli

Università di Cassino Esercitazioni di Statistica 1 del 5 Febbraio Dott. Mirko Bevilacqua

Università di Cassino Esercitazioni di Statistica 1 del 5 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 5 Febbrao 00. Dott. Mrko Bevlacqua ESERCIZIO N A partre dalla dstrbuzoe semplce del carattere peso rlevata su 0 studet del corso d Mcroecooma peso: { 4, 59, 65,

Dettagli

CORSO DI STATISTICA I (Prof.ssa S. Terzi)

CORSO DI STATISTICA I (Prof.ssa S. Terzi) CORSO DI STATISTICA I (Prof.ssa S. Terz) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI Eserctazoe 2 2.1 Da u dage svolta su u campoe d lavorator dpedet co doppo lavoro è stata rlevata la dstrbuzoe coguta del reddto

Dettagli

Le misure di variabilità

Le misure di variabilità arlea Pllat - Semar d Statstca (SVIC) "Le msure d varabltà e cocetrazoe" La varabltà L atttude d u carattere quattatvo X ad assumere valor dfferet tra le utà compoet u seme statstco è chamata varabltà

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione Corso d laurea Sceze Motore Corso d Statstca Docete: Dott.ssa Immacolata Scacarello Lezoe 9: Covaraza e correlazoe Altr tp d dpedeza L dce Ch-quadro presetato ella lezoe precedete stablsce l grado d dpedeza

Dettagli

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che:

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che: Eserctazoe VI: Il teorema d Chebyshev Eserczo La statura meda d u gruppo d dvdu è par a 73,78cm e la devazoe stadard a 3,6. Qual è la frequeza relatva delle persoe che hao ua statura superore o ferore

Dettagli

INDICI DI VARIABILITA

INDICI DI VARIABILITA INDICI DI VARIABILITA Defzoe d VARIABILITA': la varabltà s può defre come l'atttude d u carattere ad assumere dverse modaltà quattatve. La varabltà è la quattà d dspersoe presete e dat. Idc d varabltà

Dettagli

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100 ESERCIZIO Data la seguete dstrbuzoe percetuale delle famgle talae per class d reddto, espresso mlo d lre, (ao 995, fote Istat): Class d reddto % famgle Fo a 5 5.3 5-5 6. 5-35. 35-45 8.6 45-55 3.6 Oltre

Dettagli

Caso studio 10. Dipendenza in media. Esempio

Caso studio 10. Dipendenza in media. Esempio 09/03/06 Caso studo 0 S cosder la seguete dstrbuzoe degl occupat Itala secodo l umero d ore settmaal effettvamete lavorate e l settore d attvtà (cfr. Itala cfre, Ao 008, pag. 7 ): Ore lavorate Settore

Dettagli

Voti Diploma Classico Scientifico Tecn. E Comm Altro

Voti Diploma Classico Scientifico Tecn. E Comm Altro 4 Data la seguete dstrbuzoe doppa de vot rportat ad u esame secodo l Dploma posseduto: Vot 8-3-5 6-8 9-30 Dploma Classco 8 4 5 Scetfco 5 7 7 5 Tec E Comm 8 0 0 Altro 3 a) s calcol la meda artmetca de vot

Dettagli

MISURE DI TENDENZA CENTRALE. Psicometria 1 - Lezione 2 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek

MISURE DI TENDENZA CENTRALE. Psicometria 1 - Lezione 2 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek MISURE DI TENDENZA CENTRALE Pscometra 1 - Lezoe Lucd presetat a lezoe AA 000/001 dott. Corrado Caudek 1 Suppoamo d dsporre d u seme d msure e d cercare u solo valore che, meglo d cascu altro, sa grado

Dettagli

Esercitazione 5 del corso di Statistica (parte 1)

Esercitazione 5 del corso di Statistica (parte 1) Eserctazoe 5 del corso d Statstca (parte 1) Dott.ssa Paola Costat 8 Novembre 011 I alcue crcostaze s poe u maggor teresse sullo studo della varabltà tra le sgole utà statstche, puttosto che lo studo della

Dettagli

Capitolo 6 Gli indici di variabilità

Capitolo 6 Gli indici di variabilità Captolo 6 Gl dc d varabltà ommaro. Itroduzoe. -. Il campo d varazoe. - 3. La dffereza terquartle. - 4. Gl scostamet med. -. La varaza, lo scarto quadratco medo e la devaza. - 6. Le dffereze mede. - 7.

Dettagli

Elementi di Statistica descrittiva Parte II

Elementi di Statistica descrittiva Parte II Elemet d Statstca descrttva Parte II Nella prma parte d queste ote s soo llustrate le tecche utlzzate per rappresetare dat, maera stetca, medate tabelle e grafc Tal tecche soo applcabl sa a caratter quattatv

Dettagli

frazione 1 n dell ammontare complessivo del carattere A x

frazione 1 n dell ammontare complessivo del carattere A x La Cocetrazoe Il cocetto d cocetrazoe rguarda l modo cu l ammotare totale d u carattere quattatvo trasferble s rpartsce tra utà statstche. Tato pù tale ammotare è addesato u sottoseme d utà, tato pù s

Dettagli

CORSO DI STATISTICA I (Prof.ssa S. Terzi) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI. Esercitazione n 3

CORSO DI STATISTICA I (Prof.ssa S. Terzi) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI. Esercitazione n 3 ORSO I STTISTI I (Prof.ssa S. Terz) STUIO ELLE ISTRIUZIONI SEMPLII Eserctazoe 3 3. ata la seguete dstrbuzoe de reddt: lass d reddto Reddter Reddto medo 6.500-7.500 4 6.750 7.500-8.500 7.980 8.500-9.500

Dettagli

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione IV

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione IV Uverstà degl Stud d Napol Partheope Facoltà d Sceze Motore a.a. 011/01 Statstca Lezoe IV E-mal: paolo.mazzocch@upartheope.t Webste: www.statmat.upartheope.t Fuzoe d regressoe Attraverso la fuzoe d regressoe

Dettagli

Caso studio 12. Regressione. Esempio

Caso studio 12. Regressione. Esempio 6/4/7 Caso studo Per studare la curva d domada d u bee che sta per essere trodotto sul mercato, s rlevao dat rguardat l prezzo mposto e l umero d pezz vedut 7 put vedta plota, ell arco d ua settmaa. I

Dettagli

Dott.ssa Marta Di Nicola

Dott.ssa Marta Di Nicola RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quado s cosderao due o pù caratter (varabl) s possoo esamare ache l tpo e l'testà delle relazo che sussstoo tra loro. http://www.bostatstca.uch.tt Nel caso cu per

Dettagli

LE MEDIE. Le Medie. Medie razionali. Medie di posizione

LE MEDIE. Le Medie. Medie razionali. Medie di posizione LE MEDIE RAZIONALI LE MEDIE Msure stetche trodotte per valutare aspett compless e global d ua dstrbuzoe d u feomeo X medate u solo umero reale costruto modo da dsperdere al mmo le formazo su dat orgar.

Dettagli

Esercizi su Rappresentazioni di Dati e Statistica

Esercizi su Rappresentazioni di Dati e Statistica Esercz su Rappresetazo d Dat e Statstca Eserczo Esprmete forma percetuale e traducete u aerogramma dat della seguete tabella: Nord Cetro Sud Isole Totale 5 58 866 0 95 36 4 35 30 6 79 56 57 399 08 Soluzoe

Dettagli

Elementi di Statistica descrittiva Parte III

Elementi di Statistica descrittiva Parte III Elemet d Statstca descrttva Parte III Paaa Idce d asmmetra (/) Idce d forma che esprme l grado d asmmetra (skewess) d ua dstrbuzoe. Sao u, u,,u osservazo umerche. Chamamo dce d asmmetra l espressoe: c

Dettagli

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100)

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100) ESERCIZIO Il Moblty Maager d u azeda ha rlevato l umero d chlometr percors settmaalmete da 60 mpegat. I dat soo rportat ello schema successvo. 67 4 93 58 66 87 5 53 86 8 7 47 56 70 54 86 48 43 60 58 5

Dettagli

Associazione tra due variabili quantitative

Associazione tra due variabili quantitative Esempo (1) Assocazoe tra due varabl quattatve Suppoamo che u professore vogla dmostrare che eserctars a casa aut gl studet el superameto dell esame. esame. A tal fe regstra la votazoe de compt a casa e

Dettagli

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso ESERCIZIO Co rfermeto a dvers modell d auto del medesmo segmeto d mercato e cldrata s soo rlevat dat sul prezzo d lsto mglaa d euro (X), la veloctà massma dcharata km/h (Y) ed l peso kg (Z). I dat soo

Dettagli

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in Le mede Italo Nofro LE MEDIE Le mede (o valor med) soo dc d tedeza cetrale e costtuscoo u modo semplce ed mmedato per stetzzare u solo valore dat eterogee raccolt u collettvo Statstca medca Le mede Le

Dettagli

Regressione e Correlazione

Regressione e Correlazione Regressoe e Correlazoe Probabltà e Statstca - Aals della Regressoe - a.a. 4/5 L aals della regressoe è ua tecca statstca per modellare e vestgare le relazo tra due (o pù) varabl. Nella tavola è rportata

Dettagli

3 Variabilità. variabilità. Senza deviazione dalla norma il progresso non è possibile. (Frank Zappa) Statistica - 9CFU

3 Variabilità. variabilità. Senza deviazione dalla norma il progresso non è possibile. (Frank Zappa) Statistica - 9CFU 3 Varabltà 3 varabltà Seza devazoe dalla orma l progresso o è possble (Frak Zappa) 68 Statstca - 9CFU 3 Varabltà 3. varabltà Defzo Varabltà E l atttude d u feomeo ad assumere dverse modaltà. Essa è msurata

Dettagli

Il termine regressione fu introdotto da Francis Galton ( ), antropologo (promotore dell eugenetica).

Il termine regressione fu introdotto da Francis Galton ( ), antropologo (promotore dell eugenetica). Regressoe leare Il terme regressoe fu trodotto da Fracs Galto (8-9), atropologo (promotore dell eugeetca). I u suo famoso studo (877-885), Galto scoprì che, sebbee c fosse ua tedeza de getor alt ad avere

Dettagli

6. LA CONCENTRAZIONE

6. LA CONCENTRAZIONE UNIVERSITA DEGLI STUDI DI PERUGIA DIPARTIMENTO DI FILOSOFIA SCIENZE SOCIALI UMANE E DELLA FORMAZIONE Corso d Laurea Sceze per l'ivestgazoe e la Scurezza 6. LA CONCENTRAZIONE Prof. Maurzo Pertchett Statstca

Dettagli

III Esercitazione: Sintesi delle distribuzioni semplici secondo un carattere qualitativo ordinale.

III Esercitazione: Sintesi delle distribuzioni semplici secondo un carattere qualitativo ordinale. III Eserctazoe: Stes delle dstrbuzo semplc secodo u carattere qualtatvo ordale. Eserczo 3 dvdu ao seguet ttol d studo: Lceza elemetare, Lceza elemetare, ploma, Lceza meda, Lceza elemetare, Lceza meda,

Dettagli

Facoltà di Farmacia Corso di Matematica con elementi di Statistica Docente: Riccardo Rosso

Facoltà di Farmacia Corso di Matematica con elementi di Statistica Docente: Riccardo Rosso Facoltà d Farmaca Corso d Matematca co elemet d Statstca Docete: Rccardo Rosso Statstca descrttva: l coeffcete d cocetrazoe d G Quado s vuole rpartre ua certa somma d dearo, v soo due suddvso che soo,

Dettagli

Numeri complessi Pag. 1 Adolfo Scimone 1998

Numeri complessi Pag. 1 Adolfo Scimone 1998 Numer compless Pag. Adolfo Scmoe 998 NUMERI COMPLESSI Come sappamo, o esstoo el campo de umer real le radc d dce par de umer egatv. Ammettamo pertato l esstea della radce quadrata del umero. Questo uovo

Dettagli

Statistica descrittiva

Statistica descrittiva Statstca descrttva Grafc e tabelle permettoo d fare valutazo qualtatve, o quattatve. C è la ecesstà d stetzzare le caratterstche salet d ua varable: dc d locazoe o d poszoe dc d varabltà o dspersoe Questo

Dettagli

x... Gli indici sintetici La media aritmetica Gli indici sintetici Indici assoluti Indici relativi Indici normalizzati Forma

x... Gli indici sintetici La media aritmetica Gli indici sintetici Indici assoluti Indici relativi Indici normalizzati Forma Gl dc stetc Tedeza cetrale Forma Varabltà Cosetoo l passaggo da ua pluraltà d formazo ad u uca msura umerca; Stetzzao l tera dstrbuzoe u sgolo valore, cosetedo così cofrot el tempo, ello spazo o tra crcostaze

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 4 VARIABILI QUANTITATIVE (Trasformazioni lineari Indici di covarianza e correlazione)

STATISTICA DESCRITTIVA - SCHEDA N. 4 VARIABILI QUANTITATIVE (Trasformazioni lineari Indici di covarianza e correlazione) STATISTICA DESCRITTIVA - SCHEDA N. 4 VARIABILI QUANTITATIVE (Trasformazioi lieari Idici di covariaza e correlazioe) ) Trasformazioi lieari di variabili statistiche I varie situazioi si operao trasformazioi

Dettagli

Indipendenza in distribuzione

Indipendenza in distribuzione Marlea Pllat - Semar d Statstca (SVIC) "Lo studo delle relazo tra due caratter" Aals delle relazo tra due caratter Dpedeza dstrbuzoe s basa sul cofroto delle dstrbuzo codzoate Dpedeza meda s basa sul cofroto

Dettagli

La distribuzione statistica doppia (o bivariata)

La distribuzione statistica doppia (o bivariata) Marlea Pllat - Semar d Statstca (SVIC) "Le dstrbuzo doppe" La dstrbuzoe statstca doppa (o bvarata) Se u seme d utà statstche s osservao gl stat d gradezza assut da due caratter e s ottee ua -pla statstca

Dettagli

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0)

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0) Massm e Mm Fuzo d pù varabl Massm e Mm Dezoe: Sa z = (, ) ua uzoe deta u seme E U puto (, E s dce puto d massmo (rsp mmo) relatvo per (, ) se esste δ > tale che ((, ) B((, ), δ ) E (, ) (, ) (rsp (, )

Dettagli

Sommario. Facoltà di Economia. Obiettivo. Quando studiarla? Lezione n 7. X: carattere quantitativo tra le unità statistiche. Quando studiarla?

Sommario. Facoltà di Economia. Obiettivo. Quando studiarla? Lezione n 7. X: carattere quantitativo tra le unità statistiche. Quando studiarla? Corso d Statstca acoltà d Ecooma a.a. - La cocetrazoe Quado studarla? Obettvo Dagramma d Lorez apporto d cocetrazoe rea d cocetrazoe Esemp Sommaro Lezoe 7 Lez7-a.a. - statstca-fracesco mola Quado studarla?

Dettagli

Matematica elementare art.1 di Raimondo Valeri

Matematica elementare art.1 di Raimondo Valeri Matematca elemetare art. d Ramodo Valer I questo artcolo voglamo provare che esste ua formula per calcolare l umero de dvsor d u dato umero aturale seza cooscere la scomposzoe fattor prm del umero stesso.

Dettagli

STATISTICA DESCRITTIVA modulo 1 Corso di Laurea SMID Elda Guala e Ivano Repetto Dipartimento di Matematica - Università degli Studi di Genova

STATISTICA DESCRITTIVA modulo 1 Corso di Laurea SMID Elda Guala e Ivano Repetto Dipartimento di Matematica - Università degli Studi di Genova - -. Varabl statstche STATISTICA DESCRITTIVA modulo Corso d Laurea SMID Elda Guala e Ivao Repetto Dpartmeto d Matematca - Uverstà degl Stud d Geova I dat rportat sotto s rferscoo a studet uverstar che

Dettagli

SIMULAZIONE DI SISTEMI CASUALI 1 parte. Variabili casuali e Distribuzioni di variabili casuali. Calcolo delle probabilità

SIMULAZIONE DI SISTEMI CASUALI 1 parte. Variabili casuali e Distribuzioni di variabili casuali. Calcolo delle probabilità SIMULAZIONE DI SISTEMI CASUALI parte Varabl casual e Dstrbuzo d varabl casual Calcolo delle probabltà Defzo Il calcolo delle probabltà tede a redere razoale l comportameto dell uomo d frote all certezza;

Dettagli

Lezione 4. Metodi statistici per il miglioramento della Qualità

Lezione 4. Metodi statistici per il miglioramento della Qualità Tecologe Iormatche per la Qualtà Lezoe 4 Metod statstc per l mglorameto della Qualtà Msure d Tedeza Cetrale Ultmo aggorameto: 30 Settembre 2003 Il materale ddattco potrebbe coteere error: la segalazoe

Dettagli

Capitolo 2 Errori di misura: definizioni e trattamento

Capitolo 2 Errori di misura: definizioni e trattamento Captolo Error d msura: )Geeraltà defzo e trattameto I cocett d meda, varaza e devazoe stadard s utlzzao ormalmete per otteere formazo sulla botà d ua msura. I geerale, s assume come msura m della gradezza

Dettagli

SERVIZIO DAF: FONTI STATISTICHE

SERVIZIO DAF: FONTI STATISTICHE Gacomo Bulgarell Uffco Servz Statstc SERVIZIO DAF: FONTI STATISTICHE Mercoledì 3 ottobre 202 4. La Statstca (III) Idc d poszoe Nella rcerca scetfca e tecologca, così come elle sceze ecoomche, socal e poltche,

Dettagli

Lezione 13. Anelli ed ideali.

Lezione 13. Anelli ed ideali. Lezoe 3 Prerequst: Aell e sottoaell. Sottogrupp. Rfermet a test: [FdG] Sezoe 5.2; [H] Sezoe 3.4; [PC] Sezoe 4.2 Aell ed deal. Rcordamo la seguete defzoe, data el corso d Algebra : Defzoe 3. S dce aello

Dettagli

TRATTAMENTO STATISTICO DEI DATI ANALITICI

TRATTAMENTO STATISTICO DEI DATI ANALITICI TRATTAMENTO STATISTICO DEI DATI ANALITICI Nell aals chmca u aalsta effettua u umero lmtato d prove e cosdera la meda de rsultat otteut per poter arrvare a determare o l valore VERO d ua determata gradezza

Dettagli

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI Uverstà degl Stud d Mlao Bcocca CdS ECOAMM Corso d Metod Statstc per l Ammstrazoe delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI 1. Carta d cotrollo per frazoe d o coform (carta U resposable d produzoe,

Dettagli

Analisi di dati vettoriali. Direzioni e orientazioni

Analisi di dati vettoriali. Direzioni e orientazioni Aals d dat vettoral Drezo e oretazo I tal caso, dat soo msurat term d agol e spesso soo rfert al ord geografco (statstca crcolare) Soo rappresetat su ua crcofereza Dat d drezoe: flusso ua specfca drezoe,

Dettagli

LA REGRESSIONE LINEARE SEMPLICE

LA REGRESSIONE LINEARE SEMPLICE LA REGRESSIONE LINEARE SEMPLICE L ANALISI DI REGRESSIONE La regressoe è volta alla rcerca d u modello atto a descrvere la relazoe esstete tra ua varable Dpedete e ua varable dpedete (regressoe semplce)

Dettagli

corrispondenza della generica i-esima modalità. Indicando con #(.) la cardinalità di un insieme, per esse si ha, rispettivamente:

corrispondenza della generica i-esima modalità. Indicando con #(.) la cardinalità di un insieme, per esse si ha, rispettivamente: Corso d Statstca docete: Domeco Vstocco Le requeze cumulate S cosder ua varable qualtatva ordale X Per essa, oltre alle requeze assolute, relatve e ercetual, è ossble calcolare ache le requeze cumulate

Dettagli

DI IDROLOGIA TECNICA PARTE II

DI IDROLOGIA TECNICA PARTE II FACOLTA DI INGEGNERIA Laurea Specalstca Igegera Cvle NO Guseppe T Aroca CORSO DI IDROLOGIA TECNICA PARTE II Aals e prevsoe statstca delle varabl drologche Lezoe X: Scelta d u modello probablstco Aals e

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA COSIDERAZIOI PRELIMIARI SULLA STATISTICA La Statstca trae suo rsultat dall osservazoe de feome che c crcodao. Gl stess feome per essere oggetto d statstca devoo essere adeguatamete umeros modo tale che

Dettagli

Università della Calabria

Università della Calabria Uverstà della Calabra FACOLTA DI INGEGNERIA Corso d Laurea Igegera per l Ambete e l Terrtoro CORSO DI IDROLOGIA Ig. Daela Bod SCHEDA DIDATTICA N 5 ISOIETE E TOPOIETI A.A. 20-2 Calcolo della precptazoe

Dettagli

ELABORAZIONE DEI DATI

ELABORAZIONE DEI DATI ELABORAZIONE DEI DATI QUESTA FASE SERVE AD ESPRIMERE IN MODO SINTETICO I RISULTATI DELL INDAGINE SVOLTA CALCOLANDO DEGLI INDICI: VALORI MEDI INDICI DI VARIABILITA I valor med Il valore medo è u valore

Dettagli

Il modello di regressione lineare semplice (1) Studio della dipendenza riepilogo

Il modello di regressione lineare semplice (1) Studio della dipendenza riepilogo Studo della dpedeza replogo Abbamo vsto due msure d assocazoe tra caratter: ) msure d assocazoe basate sull dpedeza dstrbuzoe ( χ, V d Cramer) possoo essere applcate a coppe d caratter qualuque (ache etrambe

Dettagli

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno Idc d Poszoe Gl dc s poszoe soo msure stetche ( valor caratterstc ) che descrvoo la tedeza cetrale d u feomeo La tedeza cetrale è, prma approssmazoe, la modaltà della varable verso la quale cas tedoo a

Dettagli

ESERCIZI SU DISTRIBUZIONI CAMPIONARIE

ESERCIZI SU DISTRIBUZIONI CAMPIONARIE Corso d Ifereza Statstca Eserctazo A.A. 009/0 ESERCIZI SU DISTRIBUZIONI CAMPIONARIE Eserczo I cosumator d marmellata ua data popolazoe soo l 40%. Determare la probabltà che, per u campoe beroullao d =

Dettagli

1. Statistiche descrittive

1. Statistiche descrittive 1. Statstche descrttve 1. 1. Scale d msurazoe I dat statstc possoo essere rlevat su dverse scale d msurazoe: 1. 1. 1. La scala omale S parla d scala omale quado dat s dfferezao fra d loro per caratterstche

Dettagli

Statistica. Maura Mezzetti Sono indipendenti i caratteri X e Y? Y Totale. Totale

Statistica. Maura Mezzetti Sono indipendenti i caratteri X e Y? Y Totale. Totale .09.06 Statstca Maura Mezzett maura.mezzett@uroma.t Soo dpedet caratter X e? A B Totale X 0 0 0 0 0 0 3 0 0 0 Totale 40 0 50 .09.06 Soo dpedet caratter X e? A B C Totale X 40 0 0 40 0 40 0 60 Totale 40

Dettagli

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA Le msure d tedeza cetrale OBIETTIVO Idvduare u dce che rappreset sgfcatvamete u seme d dat statstc. Esempo Nella tabella seguete soo rportat valor del tasso glcemco rlevat su 0 pazet:

Dettagli

Interpolazione. Definizione: per interpolazione si intende la ricerca di una funzione matematica che approssima l andamento di un insieme di punti.

Interpolazione. Definizione: per interpolazione si intende la ricerca di una funzione matematica che approssima l andamento di un insieme di punti. Iterpolazoe Defzoe: per terpolazoe s tede la rcerca d ua fuzoe matematca che approssma l adameto d u seme d put. Iterpolazoe MATEMATICA Calcola ua fuzoe che passa PER tutt put Tp d terpolazoe Iterpolazoe

Dettagli

Formulario e tavole. Complementi per il corso di Statistica Medica

Formulario e tavole. Complementi per il corso di Statistica Medica Complemet per l corso d Statstca Medca Formularo e tavole Ne è cosetto l uso all esame scrtto, ma og Studete deve cosultare solo l propro formularo, e essu altro materale! Statstca Descrttva destà ampea

Dettagli

Variabili casuali ( ) 1 2 n

Variabili casuali ( ) 1 2 n Varabl casual &. Valore edo. Data ua varable casuale = ( x,x 2, K,x ) (.) cu valor assuoo le rspettve probabltà P = p,p, K,p (.2) s defsce valore edo la quattà ( ) 2 = [ ] T M = M = P = xp (.3) Sgfcato:

Dettagli

Analisi statistiche bivariate

Analisi statistiche bivariate Aals statstche bvarate Aals coguta d due caratter (varabl) osservat per ua utà statstca (ad es. peso ed altezza d studet) Rappresetazoe de dat tabelle elecazoe completa delle modaltà a doppa etrata grafc

Dettagli

Analisi della Dipendenza

Analisi della Dipendenza Aals della Dpedeza La correlazoe Il presete materale ddattco è stato parte estratto e adattato dal materale prodotto dal prof. Claudo Caplupp dell Uverst Uverstà d Veroa, che s rgraza. La resposabltà del

Dettagli

Lezione 3. Gruppi risolubili.

Lezione 3. Gruppi risolubili. Lezoe 3 Prerequst: Lezo 1 2 Class d cougo e cetralzzat rupp rsolubl I questo captolo troducamo ua ozoe che come vedremo seguto fuge da raccordo tra la teora de grupp e la teora de camp Defzoe 31 Dato u

Dettagli

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO.

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO. elazoe d laboratoro d Fsca corso M-Z Laboratoro d Fsca del Dpartmeto d Fsca e Astrooma dell Uverstà degl Stud d Cataa. Scala Stefaa. AGOMENTO: MSUA DELLA ESSTENZA ELETTCA CON L METODO OLT-AMPEOMETCO. NTODUZONE:

Dettagli

Vogliamo ora riprendere i concetti principali per poi applicarli a qualche esempio concreto.

Vogliamo ora riprendere i concetti principali per poi applicarli a qualche esempio concreto. UNITA 13 PARTE PRIMA STATISTICA DESCRITTIVA: RICHIAMI E APPROFONDIMENTI Par.1 Popolazoe e dat statstc Nel beo ha zato a studare come s descrvoo, s rappresetao e s terpretao cosddett feome collettv, coè

Dettagli

Propagazione di errori

Propagazione di errori Propagazoe d error Gl error e dat possoo essere amplfcat durate calcol. Rspetto alla propagazoe degl error s può dstguere: comportameto del problema - codzoameto del problema: vedere come le perturbazo

Dettagli

2 si da eguale peso alle misure senza tener conto dell incertezza, che in generale possono essere diverse.

2 si da eguale peso alle misure senza tener conto dell incertezza, che in generale possono essere diverse. 5 MEDIE PESTE Come combare msure separate? Esempo, msure Msura d : ± Msura d B: B ± B Se s effettua la meda artmetca: B s da eguale peso alle msure seza teer coto dell certezza, che geerale possoo essere

Dettagli

Il modello di regressione multipla

Il modello di regressione multipla S. Borra A. D Cacco Statstca metodologe per le sceze ecoomche e socal McGraw Hll 4 ISBN 88-386-66-6 9 Il modello d regressoe multpla Relazoe statstca modello d regressoe leare multpla omoschedastctà superfce

Dettagli

Capitolo 4 Le Misure di Centralità

Capitolo 4 Le Misure di Centralità Captolo 4 Le Msure d Cetraltà Le msure d cetraltà Premessa Il passaggo da u eleco d modaltà alle dstrbuzo d frequeze co modaltà dstte (carattere qualtatvo o dscreto) e co class d modaltà (carattere cotuo

Dettagli

IL MODELLO DI REGRESSIONE LINEARE MULTIPLA

IL MODELLO DI REGRESSIONE LINEARE MULTIPLA Captolo 9 - Il modello d regressoe leare multpla 9 - IL MODELLO DI REGRESSIONE LINEARE MULTIPLA 9 9. Itroduzoe 9. Il modello d regressoe leare multpla 9.3 Il modello d regressoe leare multpla forma matrcale

Dettagli

Laboratorio di Fisica I: laurea in Ottica e Optometria. Misura di una resistenza con il metodo VOLT-AMPEROMETRICO

Laboratorio di Fisica I: laurea in Ottica e Optometria. Misura di una resistenza con il metodo VOLT-AMPEROMETRICO Laboratoro d Fsca I: laurea Ottca e Optoetra Msura d ua ressteza co l etodo OLTMPEOMETICO descrzoe s sura ua ressteza utlzzado u voltetro e u llaperoetro sfruttado la relazoe : Per coduttor ohc è dpedete

Dettagli

Sommario. Facoltà di Economia francesco mola. Distribuzioni (cont.) Distribuzioni di frequenza. Distribuzioni Distribuzioni di quantità

Sommario. Facoltà di Economia francesco mola. Distribuzioni (cont.) Distribuzioni di frequenza. Distribuzioni Distribuzioni di quantità Corso d Statstca Facoltà d Ecooma fracesco mola a.a. 2-2 2 Sommaro Dstrbuzo d frequeza Rappresetazo grafche Dagramm a barre Istogramm Fuzoe d rpartzoe emprca Lezoe 2 lez2_2-2 statstca-fracesco mola 2 Dstrbuzo

Dettagli

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione Artmetca 06/07 Esercz svolt classe Quarta lezoe Rcorreze o lear Sa a c a cq ua rcorreza dove {c }, c C e c 0. Sa P C[λ] l polomo caratterstco della rcorreza. Allora ua soluzoe partcolare della rcorreza

Dettagli

ALCUNI ELEMENTI DI STATISTICA DESCRITTIVA

ALCUNI ELEMENTI DI STATISTICA DESCRITTIVA ALCUNI ELEMENTI DI STATISTICA DESCRITTIVA The last step of reaso s to ackowledge that there s a fty of thgs that go beyod t. B. Pascal La Statstca ha come scopo la coosceza quattatva de feome collettv.

Dettagli

Premessa. Abbiamo più volte enfatizzato come questo processo di sintesi comporta un prezzo da pagare in termini di perdita di informazioni.

Premessa. Abbiamo più volte enfatizzato come questo processo di sintesi comporta un prezzo da pagare in termini di perdita di informazioni. Le Msure d Cetraltà Le msure d cetraltà Premessa Il passaggo da u eleco d modaltà alle dstrbuzo d frequeze co modaltà dstte (carattere qualtatvo o dscreto) e co class d modaltà (carattere cotuo o dscreto

Dettagli

Incertezza di misura

Incertezza di misura Icertezza d msura Itroduzoe e rcham Come gà detto rsultat umerc ottebl dalle msurazo soo trsecamete caratterzzat da aleatoretà è duque sempre ecessaro stmare ua fasca d valor attrbubl come msura al msurado;

Dettagli

SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1

SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1 SIMULAZIONE DI ESAME ESERCIZI Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero ESERCIZIO. Alcu autor hao studato se la depressoe possa essere assocata a dc serologc d process autommutar

Dettagli

FUNZIONI LOGICHE FORME CANONICHE SP E PS

FUNZIONI LOGICHE FORME CANONICHE SP E PS FUNZIONI LOGICHE FORME CANONICHE SP E PS Ua fuzoe logca può essere espressa quattro forme: 1. attraverso ua proposzoe logca; 2. attraverso ua tabella della vertà; 3. attraverso u espressoe algebrca; 4.

Dettagli

NOTA METODOLOGICA PER L ANALISI DELLE CAUSE DI MORTE

NOTA METODOLOGICA PER L ANALISI DELLE CAUSE DI MORTE OTA METODOOGICA PER AAISI DEE CAUSE DI MORTE SITESI METADATI Fote de dat archvo del Regstro d Mortaltà Regoale della Toscaa Area della rlevazoe Utà Satare ocal della Toscaa (suddvsoe 12 U.S.. e rspettve

Dettagli

Appunti di. Elaborazione dei dati sperimentali

Appunti di. Elaborazione dei dati sperimentali Apput d Elaboraoe de dat spermetal Corso d sca er cors d Laurea Igegera Uverstà d adova sura d ua gradea fsca Ua gradea fsca s rappreseta co uo (o pù) umer segut da ua utà d msura. Il umero che quatfca

Dettagli

Modulo di Fisica Tecnica. Differenze finite per problemi di conduzione in regime instazionario

Modulo di Fisica Tecnica. Differenze finite per problemi di conduzione in regime instazionario Dpartmeto d Meccaca, Strutture, Ambete e Terrtoro UNIVERSITÀ DEGLI STUDI DI CASSINO Laurea Specalstca Igegera Meccaca: Modulo d Fsca Tecca Lezoe d: Dffereze fte per problem d coduzoe regme stazoaro /20

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Excel o ha ua fuzoe per calcolare automatcamete gl dc d cocetrazoe e per costrure la curva d Lorez. Tuttava è possble calcolare tal dc e costrure tale grafco co alcue procedure. La cocetrazoe può essere

Dettagli

= = stimatori degli indici statistici di variabilità. Definizione della varianza campionaria. Definizione dello scarto quadratico medio.

= = stimatori degli indici statistici di variabilità. Definizione della varianza campionaria. Definizione dello scarto quadratico medio. regressoe- M. Maravalle dell'aqula - A.A. 3-'4 Uverstà scarto stadard devazoe stadard stmator degl dc statstc d varabltà varaza σ scarto quadratco medo rage {ma-m} σ Defzoe della varaza campoara,..., σ

Dettagli

Un esempio. le diverse situazioni possibili riferibili alla popolazione, è quella meglio sostenuta dalle evidenze empiriche.

Un esempio. le diverse situazioni possibili riferibili alla popolazione, è quella meglio sostenuta dalle evidenze empiriche. I molte crcostaze l rcercatore s trova a dover decdere quale, tra le dverse stuazo possbl rferbl alla popolazoe, è quella meglo sosteuta dalle evdeze emprche. Ipotes statstca: supposzoe rguardate: u parametro

Dettagli

STATISTICA Lezioni ed esercizi

STATISTICA Lezioni ed esercizi Uverstà d Toro QUADERNI DIDATTICI del Dpartmeto d Matematca MARIA GARETTO STATISTICA Lezo ed esercz Corso d Laurea Botecologe A.A. / Quadero # Novembre M. Garetto - Statstca Prefazoe I questo quadero

Dettagli

Design of experiments (DOE) e Analisi statistica

Design of experiments (DOE) e Analisi statistica Desg of epermets (DOE) e Aals statstca L utlzzo fodametale della metodologa Desg of Epermets è approfodre la coosceza del sstema esame Determare le varabl pù sgfcatve; Determare l campo d varazoe delle

Dettagli

STATISTICA Lezioni ed esercizi

STATISTICA Lezioni ed esercizi Uverstà d Toro QUADERNI DIDATTICI del Dpartmeto d Matematca MARIA GARETTO STATISTICA Lezo ed esercz Corso d Laurea Botecologe A.A. / Quadero # Novembre M. Garetto - Statstca Prefazoe I questo quadero

Dettagli