Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte I)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte I)"

Transcript

1 Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte I) Luigi De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi alle spiegazioni del docente. Il loro scopo è quello di fissare alcuni concetti presentati in classe. Le note contengono un numero limitato di esempi ed esercizi svolti. Questi rappresentano una parte fondamentale nella comprensione della materia e sono presentati in classe. 1

2 Contents 1 Problemi di programmazione lineare Notazione Soluzione di un problema PL Geometria della Programmazione Lineare La regione ammissibile Vertici di un poliedro Caratterizzazione algebrica dei vertici Motivazioni Forma standard di problemi di programmazione lineare Richiami di algebra lineare Vettori e matrici Sistemi di equazioni lineari Soluzioni di base Vertici e soluzioni di base Verso un metodo per la soluzione di problemi di PL L. De Giovanni - Ricerca Operativa 2

3 1 Problemi di programmazione lineare Un problema di ottimizzazione vincolata è definito dalla massimizzazione di una funzione obiettivo sotto un certo numero di vincoli: si vuole trovare la soluzione che massimizza o minimizza la funzione obiettivo f tra tutte le soluzioni x che soddisfano un dato insieme di m vincoli definiti come funzioni g i. In termini matematici possiamo scrivere: dove x = x 1 x 2. x n min(max) f(x) s.t. g i (x) = b i (i = 1... k) g i (x) b i (i = k k ) g i (x) b i (i = k m) x R n è un vettore di n variabili reali (ciascun vettore rappresenta una poten- ziale soluzione del problema); f e g i sono funzioni R n R b i R Un problema di Programmazione Lineare (PL) è un problema di ottimizzazione in cui la funzione obiettivo f e tutti i vincoli g i sono funzioni lineari delle variabili x j : 1.1 Notazione min(max) c 1 x 1 + c 2 x c n x n s.t. a i1 x 1 + a i2 x a in x n = b i (i = 1... k) a i1 x 1 + a i2 x a in x n b i (i = k k ) a i1 x 1 + a i2 x a in x n b i (i = k m) x i R (i = 1... n) Ricorrendo alle operazioni tra vettori, un problema di PL può essere scritto in forma più compatta. Si noti come la funzione obiettivo è ottenuta dal prodotto scalare dei due c 1 x 1 c 2 vettori c =. e x = x 2. Lo stesso prodotto può essere scritto come prodotto. c n x n righe per colonne del vettore riga c T e del vettore colonna x, cioè: L. De Giovanni - Ricerca Operativa 3

4 c T x = [ ] c 1 c 2... c n x 1 x 2. x n = c 1x 1 + c 2 x c n x n Analogamente, il termine a sinistra di ciascun vincolo i può essere scritto come: x 1 a T i x = [ ] x 2 a i1 a i2... a in. = a i1x 1 + a i2 x a in x n x n In forma più compatta, un problema PL diventa: min(max) c T x s.t. a T i x = b i (i = 1... k) a T i x b i (i = k k ) a T i x b i (i = k m) x R n 1.2 Soluzione di un problema PL Una soluzione ammissibile di un problema di PL è un vettore x R n che soddisfa tutti i vincoli. L insieme di tutte le soluzioni ammissibili si dice regione ammissibile o insieme ammissibile. Una soluzione ottima x è una soluzione ammissibile che ottimizza (miminizza o massimizza) il valore della funzione obiettivo tra tutte le soluzioni ammissibili: c T x ( )c T x, x R n, x ammissibile. Non sempre un problema di PL ammette una soluzione ottima. Infatti, è possibile dimostrare che ogni problema di PL soddisfa sempre e solo uno dei 3 casi seguenti: 1. il problema è inammissibile: l insieme ammissibile è vuoto; 2. il problema è illimitato: è possibile trovare delle soluzioni ammissibili che fanno diminuire (o aumentare per problemi di massimo) il valore della funzione obiettivo a piacere. 3. il problema ammette soluzione ottima: esiste almeno una soluzione ammissibile che ottimizza la funzione obiettivo (e il valore ottimo della funzione obiettivo è limitato). Risolvere un problema di PL significa riconoscere uno dei tre casi citati e dare, nel caso 3, una soluzione ottima e il corrispondete valore della funzione obiettivo. L. De Giovanni - Ricerca Operativa 4

5 2 Geometria della Programmazione Lineare Per la messa a punto di metodi di soluzione di problemi di PL, è utile analizzare la geometria dell insieme ammissibile. 2.1 La regione ammissibile Ciascuna equazione o disequazione nel sistema dei vincoli di un problema PL individua una regione nello spazio R n : ogni equazione individua un iperpiano e ogni disequazione un semispazio chiuso. L insieme ammissibile deriva dall intersezione di questi iperpiani e semispazi chiusi. Definizione 1 (Poliedro). Un insieme P R n è un poliedro se è ottenuto dall intersezione di un numero finito di semispazi chiusi e iperpiani in R n. Da un punto di vista geometrico, quindi, una soluzione ammissibile è un punto nello spazio n-dimensionale e la regione ammissibile è un poliedro nello stesso spazio. Un esempio è dato dalla figura 1. Figure 1: Un poliedro in R 3 Possiamo quindi scrivere un problema di PL nella seguente forma: oppure min(max) s.t. c T x x P dove P è un poliedro in R n. min(max){c T x : x P } L. De Giovanni - Ricerca Operativa 5

6 2.2 Vertici di un poliedro Se pensiamo alla soluzione di un problema di PL con il metodo grafico, intuiamo la particolare rilevanza dei punti del poliedro corrispondenti ai vertici, dove si trova una soluzione ottima. Introduciamo dei concetti che ci aiutino a generalizzare questo risultato. Definizione 2 (Combinazione convessa di due punti) Dati due punti x, y R n, il punto z R n è combinazione convessa di x e y se esiste uno scalare λ [0, 1] tale che z = λx + (1 λ)y. Per avere un idea del significato [ ] geometrico [ ] della combinazione convessa, consideriamo x1 y1 x e y nel piano, cioé x = e y =. Le combinazioni convesse dei due punti x x 2 y 2 e y rappresentano, al variare di λ tra 0 e 1, tutti e soli i punti del segmento x y, estremi inclusi (vedi figura 2). Figure 2: Combinazione convessa in R 2 Definizione 3 (Combinazione convessa stretta di due punti) Dati due punti x, y R n, il punto z R n è combinazione convessa stretta di x e y se esiste uno scalare λ (0, 1) tale che z = λx + (1 λ)y. In pratica, la combinazione convessa stretta non include i due punti x e y. Definizione 4 (Vertice di un poliedro) Dato un poliedro P e un punto del poliedro v P, v è vertice di P se non può essere espresso come combinazione convessa stretta di due punti distinti dello stesso poliedro: x, y P, λ (0, 1) : x y, v = λx + (1 λ)y. Il concetto di combinazione convessa può essere generalizzato alla combinazione di più punti, come segue. L. De Giovanni - Ricerca Operativa 6

7 Definizione 5 (Combinazione convessa) Dati k punti x 1, x 2... x k R n, il punto z R n è combinazione convessa di x 1, x 2... x k se esistono k scalari non negativi λ 1, λ 2... λ k 0 k k tali che λ i = 1 e z = λ i x i. i=1 i=1 Per l interpretazione geometrica, possiamo considerare la figura 3: al variare dei coefficienti λ i, si possono rappresentare tutti i punti nel quadrilatero evidenziato (corrispondente all inviluppo convesso dei suoi 4 vertici). Figure 3: Combinazione convessa in R 2 Usando questa definizione, è facilmente intuibile il seguente risultato, del quale non diamo dimostrazione formale: Teorema 1 (Rappresentazione dei poliedri [Minkowski-Weyl] - caso limitato): Dato un poliedro limitato P R n, e indicando con v 1, v 2,..., v k (v i R n ) i vertici di P, si ha x P x = k i=1 λ iv i con λ i 0, i = 1..k e k i=1 λ i = 1. In altri termini, ogni punto di P si può ottenere come combinazione convessa dei suoi vertici. Abbiamo ora gli elementi per generalizzare il risultato che fa corrispondere l ottimo di un problema PL con uno dei suoi vertici. Teorema 2 (Vertice ottimo) Dato un problema PL min(max){c T x : x P }, se P è non vuoto e limitato, allora il problema ammette soluzione ottima e esiste almeno un vertice ottimo. Dimostrazione: consideriamo il caso di problemi di minimizzazione (per problemi di massimizzazione la dimostrazione e analoga). L esistenza di una soluzione ottima deriva dall escludere la possibilità di problema inammissibile (P è non vuoto) e la possibilità di problema illimitato (P è limitato). Sia V = {v 1, v 2... v k } l insieme dei vertici di L. De Giovanni - Ricerca Operativa 7

8 P. Consideriamo il minimo valore assunto dalla funzione obiettivo sui vertici e sia v il vertice (o uno dei vertici) in cui la funzione obiettivo assume questo valore minimo: v = arg min c T v : v V. Per un generico punto del poliedro x P, possiamo scrivere: c T x = k i=1 λ iv i = k i=1 λ ic T v i k i=1 λ ic T v = c T v k i=1 λ i = c T v In sintesi, x P, c T v c T x, cioè v è una soluzione ottima corrispondente ad un vertice del poliedro. Il risultato appena dimostrato è molto importante perché permette di restringere la ricerca dell ottimo di un problema di PL ai soli vertici di un poliedro (che, come vedremo, sono in numero limitato), potendo trascurare i restanti (infiniti) punti della regione ammissibile. Consideriamo il seguente esempio. Esempio 1 Una piccola ditta di profumi realizza due nuove fragranze a partire da 3 essenze: rosa, mughetto e viola. Per realizzare un litro di fragranza 1 sono richiesti 3 centilitri di rosa, 1 centilitro di mughetto e 3 centilitri di viola. Per realizzare un litro di fragranza 2 sono richiesti 4 centilitri di rosa, 4 centilitri di mughetto e 2 centilitri di viola. La disponibilità in magazzino per le tre essenze è di 24, 20 e 18 centilitri per rosa, mughetto e viola rispettivamente. Sapendo che l azienda realizza un profitto di 13 e 10 euro per ogni litro venduto di fragranza 1 e 2 rispettivamente, determinare le quantità ottimali delle due fragranze da produrre. Introducendo le variabili: - x 1 : quantità in litri di fragranza 1 e - x 2 : quantità in litri di fragranza 2, un modello di programmazione lineare in grado di risolvere il problema è il seguente: max 13x x 2 s.t. 3x 1 + 4x 2 24 (e1) x 1 + 4x 2 20 (e2) 3x 1 + 2x 2 18 (e3) x 1, x 2 0 In figura 4 è rappresentata la regione ammissibile. La ricerca dell ottimo può avvenire sui soli vertici e ciascun vertice è ottenibile dall intersezione di due delle rette che definiscono i semipiani corrispondenti ai vincoli (sulle disponibilità di essenze o di non negatività delle variabili). Ad esempio, il vertice B = (2, 9/2) è ottenuto dall intersezione della retta x 1 + 4x 2 = 20 con la retta 3x 1 + 4x 2 = 24; il vertice E = (6, 0) è ottenuto dall intersezione delle rette x 2 = 0 e 3x 1 + 2x 2 = 18 etc. Calcolando il valore della funzione obiettivo in ciascun vertice e scegliendo il valore minimo, si ottiene l ottimo in corrispondenza del vertice C: x 1 = 4, x 2 = 3 con valore della funzione obiettivo pari a 82 (profitto massimo pari a 82). Ovviamente, la rappresentazione grafica dei vertici non è sempre possibile e, per poter procedere alla ricerca dell ottimo sui vertici, è necessario poterli determinare per via algebrica. L. De Giovanni - Ricerca Operativa 8

9 Figure 4: Regione ammissibile del problema dei profumi 3 Caratterizzazione algebrica dei vertici 3.1 Motivazioni Tralasciando per il momento i vincoli di non negatività delle variabili, i restanti vincoli del problema, possono essere scritti sotto forma di equazioni come segue: 3x 1 + 4x 2 + s 1 = 24 x 1 + 4x 2 + s 2 = 20 3x 1 + 2x 2 + s 3 = 18 dove s 1, s 2 e s 3 sono variabili ausiliarie che indicano la possibilità di soddisfare i rispettivi vincoli originari all uguaglianza (se assumono valore 0) o in modo stretto (se assumono valori > 0). Si tratta di un sistema di 3 equazioni (non ridondanti né contraddittorie) in 5 incognite che, come noto, può essere risolto sfruttando 2 gradi di libertà per fissare a piacere il valore di 2 incognite e ricavare il valore delle altre 3. Decidiamo allora di fissare al valore 0 le incognite s 1 e s 2. Si ottiene il sistema 3x 1 + 4x 2 = 27 x 1 + 4x 2 = 20 3x 1 + 2x 2 + s 3 = 18 che porta alla soluzione x 1 = 2, x 2 = 9/2, s 1 = 0, s 2 = 0, s 3 = 3. Si noti come tale soluzione corrisponda al vertice B. In effetti, porre s 1 = s 2 = 0 significa, da un punto di vista geometrico, saturare i vincoli (e1) ed (e2): la soluzione si troverà quindi all intersezione delle corrispondenti rette. Un altra soluzione particolare può essere ottenuta fissando a 0 le variabili x 1 e s 2, che porta alla soluzione x 1 = 0, x 2 = 5, s 1 = 4, s 2 = 0, s 3 = 8, corrispondente al vertice A. Intuiamo quindi che, tra le infinite ( 5 3 ) soluzioni del sistema di equazioni equivalente ai vincoli del problema, ne esistono alcune particolari: queste soluzioni sono ottenute L. De Giovanni - Ricerca Operativa 9

10 fissando a 0 un numero opportuno di variabili e corrispondono a vertici della regione ammissibile. Si noti che le le variabili da porre a 0 devono essere opportunamente scelte. Ad esempio, ponendo x 1 = s 1 = 0, si ottiene la soluzione x 1 = 0, x 2 = 6, s 1 = 0, s 2 = 4, s 3 = 6 che non corrisponde ad un vertice del poliedro: la soluzione ottenuta non è infatti ammissibile, dato che s 2 < 0 indica che il vincolo (e2) è violato. Cerchiamo di generalizzare queste osservazioni. Il primo passo è scrivere i vincoli di un problema PL in modo conveniente sotto forma di sistema di equazioni lineari. Il secondo passo è la manipolazione del sistema di equazioni per derivare delle soluzioni che corrispondano a vertici del poliedro ammissibile. Introduciamo quindi la forma standard per un problema di PL e richiamiamo alcune notazioni e proprietà dell algebra lineare. 3.2 Forma standard di problemi di programmazione lineare Un qualsiasi problema di PL può essere messo nella seguente forma, detta forma standard: dove min c 1 x 1 + c 2 x c n x n s.t. a i1 x 1 + a i2 x a in x n = b i (i = 1... m) x i R + (i = 1... n) - la funzione obiettivo è di minimo e senza costanti additive o moltiplicative (si moltiplicano per -1 le funzioni di massimizzazione; le costanti additive e moltiplicative possono essere trascurate); - tutte le variabili sono positive o nulle (si effettuano sostituzioni di variabili per le variabili libere o negative); - tutti i vincoli sono delle equazioni (si aggiunge una variabile positiva di slack per i vincoli di e si sottrae una variabile positiva di surplus per i vincoli di ); - i termini noti b i sono tutti positivi o nulli (si moltiplicano per -1 i vincoli con termine noto negativo). Ciò permette, senza perdere in generalità, di risolvere un qualsiasi problema di PL tramite sistemi di equazioni lineari. Esercizio 1 Mettere in forma standard il seguente problema di PL: max 5( 3x 1 + 5x 2 7x 3 ) + 34 s.t. 2x 1 + 7x 2 + 6x 3 x 1 5 3x 1 + x x 1 0 x 2 0 L. De Giovanni - Ricerca Operativa 10

11 3.3 Richiami di algebra lineare Vettori e matrici Un vettore v R n è una n-upla di numeri reali (v 1, v 2... v n ). Una matrice A R m n è una tabella m n di numeri reali ordinati secondo righe a 11 a a 1n a 11 a a 1n e colonne: A = a m1 a m2... a mn Un vettore v R n può essere visto come una matrice particolare con una sola colonna o riga: v 1 - vettore colonna v R n 1 v 2 : v =. v n - vettore riga v T R 1 n : v T = [v 1, v 2,..., v n ] Dati due vettori v, w R n, il prodotto scalare v w può essere scritto come caso particolare del prodotto tra matrici righe colonne: v w = v T w = vw T = n i=1 v iw i Una matrice A R m n può essere scritta come giustapposizione delle sue righe o a 11 a a 1n a T 1 a 11 a a 1n colonne: A = = a T 2. = [ ] A 1 A 2... A n a m1 a m2... a mn Il Rango di una matrice A R m n è indicato con ρ(a) ed è il massimo numero di righe linearmente indipendenti (coincide con il massimo numero di colonne linearmente indipendenti). Matrici quadrate B R m m : matrice inversa: B 1 R m m : B 1 B = BB 1 = I (matrice identità m m); B è invertibile det(b) 0 (matrice non singolare); det(b) 0 ρ(b) = m. a T m L. De Giovanni - Ricerca Operativa 11

12 3.3.2 Sistemi di equazioni lineari Sistemi di equazioni in forma matriciale: un sistema di m equazioni in n incognite può essere messo in forma matriciale: Ax = b, con A R m n, b R m e x R n. Teorema di Rouché-Capelli: Ax = b ammette soluzioni ρ(a) = ρ(a b) = r ( n r soluzioni). Operazioni elementari su matrici: scambiare la riga i con la riga j; moltiplicare la riga i per uno scalare non nullo; sostituire alla riga i, la riga i più α volte la riga j (α R). Le operazioni elementari sulla matrice aumentata [A b] non alterano l insieme delle soluzioni ammissibili del sistema Ax = b. Metodo di Gauss-Jordan per la soluzione di sistemi Ax = b: eseguire delle operazioni elementari sulla matrice aumentata in modo da ottenere in A una sottomatrice identità di dimensioni pari a ρ(a) = ρ(a b). 3.4 Soluzioni di base Un metodo per risolvere un sistema di equazioni lineari si ottiene ricorrendo al concetto di base di una matrice. Sia data una matrice A R m n. D ora in poi assumeremo che n > m (in modo da avere infinite soluzioni ammissibili tra le quali scegliere la soluzione ottima) e che la matrice abbia rango massimo (ρ(a) = m). Definizione 6 (Base) Una base di A è una sottomatrice quadrata di A di rango massimo o, in altri termimi, una matrice B R m m ottenuta scegliendo m colonne linearmente indipendenti della matrice A. Dato un sistema Ax = b si scelga una base B della matrice A. Le colonne della matrice A e le variabili del vettore x possono essere riordinati opportunamente in modo da poter scrivere: [ ] A = [B F ] B R m m xb, det(b) 0 x =, x B R m, x F R n m dove B è l insieme delle colonne di A che formano la base; F l insieme delle restanti colonne; x B il vettore delle variabili corrispondenti alle colonne in base (variabili di base); x F L. De Giovanni - Ricerca Operativa 12

13 x F il vettore delle variabili corrispondenti alle colonne fuori base (variabili non di base o fuori base). Di conseguenza, il[ sistema ] Ax = b si può scrivere in forma a blocchi: xb Ax = b = [B F ] = Bx B + F x F = b x F Osservando che la matrice di base B è invertibile (ha rango massimo), una soluzione al sistema Ax = b si può ottenere ponendo a 0 tutte le variabili fuori base (x F = 0) e scrivendo [ ] [ ] xb B x = = 1 b 0 x F Esercizio 2 Con riferimento all esempio precedente, si consideri la base formata dalle colonne di x 1, x 2 e s 3 e si determinino B, F, x B e x F. Scegliendo una matrice di base B diversa da B, cioè scegliendo un diverso insieme di m colonne [ di A] linearmente [ ] indipendenti, si ottiene una nuova soluzione del sistema xb B x = = 1 b. x F 0 Definizione 7 Soluzioni di base Dato un sistema di equazioni Ax = b, le soluzioni ottenute scegliendo una base B della matrice e ponendo x B = B 1 b e x F = 0 si dicono soluzioni di base. Caratteristica delle soluzioni di base è di avere (al più) m variabili diverse da 0 (le variabili di base) e (almeno) m n variabili pari a 0 (variabili non di base). Infatti, potrebbe verificarsi il caso corrispondente alla seguente definizione: Definizione 8 Soluzioni di base degeneri Dato un sistema di equazioni Ax = b e una base B di A, la soluzione di base corrispondente (e, per estensione, la stessa base) si dice degenere se il vettore x B = B 1 b ha almeno una componente nulla. Qualora il sistema di equazioni Ax = b sia riferito ad un problema di PL in forma standard, si introducono le seguenti definizioni: Definizione 9 Soluzioni di base ammissibili Dato un sistema di equazioni Ax = b e una base B di A, la soluzione di base corrispondente (e, per estensione, la stessa base) si dice ammissibile (resp. non ammissibile) se viene soddisfatta (resp. non soddisfatta) la condizione di non negatività x B = B 1 b 0. L. De Giovanni - Ricerca Operativa 13

14 3.5 Vertici e soluzioni di base Consideriamo un problema di PL in forma standard min c 1 x 1 + c 2 x c n x n s.t. a i1 x 1 + a i2 x a in x n = b i (i = 1... m) x i R + (i = 1... n) o, equivalentemente, in forme più compatte: oppure min c T x s.t. Ax = b x 0 min{c T x : Ax = b, x 0} Le soluzioni ammissibili di base associate al problema di PL si ottengono risolvendo un sistema di equazioni univocamente determinato e che corrisponde, secondo l interpretazione geometrica sopra riportata, all intersezione di un numero opportuno di iperpiani in R. Si ha infatti la seguente importante proprietà, nota come caratterizzazione algebrica dei vertici di un politopo: Teorema 3 (Corrispondenza tra vertici e soluzioni di base). Dato un problema di PL min{c T x : Ax = b, x 0} e il corrispondente poliedro della regione ammissibile P = {x R n : Ax = b, x 0}, x è soluzione ammissibile di base del sistema Ax = b x è vertice di P. Dimostrazione: Vedi libro di testo. Immediata e importante conseguenza è il seguente risultato Teorema 4 Soluzione ammissibile di base ottima. Dato un problema di PL min{c T x : x P }, dove P = {x 0 : Ax = b} è un poliedro limitato e non vuoto, esiste almeno una soluzione ottima coincidente con una soluzione ammissibile di base. Dimostrazione: Per il teorema 2 esiste un vertice ottimo che corrisponde, per il teorema 3, a una soluzione ammissibile di base. 3.6 Verso un metodo per la soluzione di problemi di PL I risultati teorici sopra riportati possono essere immediatamente sfruttati per derivare un metodo generale per la soluzione di un problema di PL min{c T x : Ax = b, x 0}. Per il teorema 4, la soluzione ottima, se esiste, può essere ricercata tra tutte le soluzioni di base del sistema di equazioni Ax = b. In particolare, siamo interessati alle soluzioni L. De Giovanni - Ricerca Operativa 14

15 ammissibili di base, cioè le soluzioni di base in cui le variabili di base assumano valori positivi o nulli: B 1 b 0. Mentre il numero di soluzioni ammissibili è, almeno per i casi di interesse, illimitato ( (n m) secondo il teorema di Rouché-Capelli), il numero di soluzioni ammissibili di base (e, per il teorema 3, il numero di vertici del poliedro ammissibile) è limitato superiormente dal numero delle possibili combinazioni di m colonne scelte tra le n colonne di A: ( n m ) = n! m!(n m)! (numero massimo di soluzioni ammissibili di base e di vertici del poliedro ammissibile) Pertanto, si potrebbe derivare un algoritmo che ricerca esaustivamente tutte le possibili basi di A. Ovviamente, anche se non tutte le combinazioni di m colonne tra le n della matrice A corrispondono a soluzioni di base (le colonne potrebbero non essere linearmente indipendenti o la corrispondente soluzione di base potrebbe non essere ammissibile), il numero di soluzioni ammissibili di base è comunque molto elevato e la ricerca esaustiva non è un metodo efficiente. Il metodo del simplesso è un metodo iterativo che permette di esplorare in modo efficiente l insieme delle soluzioni ammissibili di base, a partire da una soluzione ammissibile di base data. L efficienza consiste nel garantire di generare, ad ogni iterazione: soluzioni ammissibili soluzioni che migliorino (o comunque non peggiorino) la soluzione all iterazione precedente, in termini di valore della funzione obiettivo. L. De Giovanni - Ricerca Operativa 15

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I)

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema

Dettagli

Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso

Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso Luigi De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso Luigi De Giovanni Giacomo Zambelli Problemi di programmazione lineare Un problema di ottimizzazione

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare p. 1/39 Geometria della programmazione lineare Mariantonia Cotronei Facoltà di Ingegneria Università degli Studi Mediterranea di Reggio Calabria Geometria della programmazione

Dettagli

Soluzione dei Problemi di Programmazione Lineare

Soluzione dei Problemi di Programmazione Lineare Soluzione dei Problemi di Programmazione Lineare Consideriamo un problema di Programmazione Lineare (PL) con m vincoli ed n variabili in Forma Standard dove: ma 0 c A b ( ) 0 ( 2) R è il vettore n delle

Dettagli

Corso di Matematica Applicata A.A

Corso di Matematica Applicata A.A Corso di Matematica Applicata A.A. 2012-2013 Programmazione lineare (II parte) Prof.ssa Bice Cavallo Soluzione di un problema PL Soluzione ottima Variabili slack e surplus A R mxn Ax b s R m, s i 0 : Ax

Dettagli

Sviluppando ancora per colonna sulla prima colonna della prima matrice e sulla seconda della seconda matrice si ottiene:

Sviluppando ancora per colonna sulla prima colonna della prima matrice e sulla seconda della seconda matrice si ottiene: M. CARAMIA, S. GIORDANI, F. GUERRIERO, R. MUSMANNO, D. PACCIARELLI RICERCA OPERATIVA Isedi Esercizi proposti nel Cap. 5 - Soluzioni Esercizio 5. - La norma Euclidea di è 9 6 5 - Il versore corrispondente

Dettagli

Programmazione lineare: basi e soluzioni di base

Programmazione lineare: basi e soluzioni di base Programmazione lineare:basi e soluzioni di base p. 1/33 Programmazione lineare: basi e soluzioni di base Mariantonia Cotronei Facoltà di Ingegneria Università degli Studi Mediterranea di Reggio Calabria

Dettagli

PROGRAMMAZIONE LINEARE E DUALITA'

PROGRAMMAZIONE LINEARE E DUALITA' PROGRAMMAZIONE LINEARE E DUALITA' 1) Dati i punti di R 2 (1, 2), (1, 4), (2, 3), (3, 5), (4, 1), (4, 2), (5, 5), (6, 2), (6, 5). Determinare graficamente: A - L'involucro convesso di tali punti. B - Quali

Dettagli

Introduzione alla programmazione lineare

Introduzione alla programmazione lineare Introduzione alla programmazione lineare struttura del problema di PL forme equivalenti rappresentazione e soluzione grafica rif. Fi 1.2; BT 1.1, 1.4 Problema di programmazione lineare Dati: un vettore

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi Definizione Sia a un vettore non

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi Definizione Sia a un vettore non

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi, poliedri Sia a un vettore non nullo

Dettagli

Esercizi sulla Programmazione Lineare. min. cx Ax b x 0

Esercizi sulla Programmazione Lineare. min. cx Ax b x 0 Soluzioni 4.-4. Fondamenti di Ricerca Operativa Prof. E. Amaldi Esercizi sulla Programmazione Lineare 4. Risoluzione grafica e forma standard. Si consideri il problema min x cx Ax b x dove x = (x, x )

Dettagli

Teoria della Programmazione Lineare. Teoria della Programmazione Lineare p. 1/8

Teoria della Programmazione Lineare. Teoria della Programmazione Lineare p. 1/8 Teoria della Programmazione Lineare Teoria della Programmazione Lineare p. 1/8 I problemi di PL in forma canonica In forma scalare: max n j=1 c jx j n j=1 a ijx j b i x j 0 i = 1,...,m j = 1,...,n Teoria

Dettagli

Ricerca Operativa. Programmazione Lineare. Università Mediterranea di Reggio Calabria Decisions Lab

Ricerca Operativa. Programmazione Lineare. Università Mediterranea di Reggio Calabria Decisions Lab Ricerca Operativa Programmazione Lineare Università Mediterranea di Reggio Calabria Decisions Lab Ottimizzazione In un problema di ottimizzazione si cerca di massimizzare o minimizzare una quantità specifica,

Dettagli

4.3 Esempio metodo del simplesso

4.3 Esempio metodo del simplesso 4.3 Esempio metodo del simplesso (P ) min -5x 4x 2 3x 3 s.v. 2x + 3x 2 + x 3 5 4x + x 2 + 2x 3 3x + 4x 2 + 2x 3 8 x, x 2, x 3 Per mettere il problema in forma standard si introducono le variabili di scarto

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte II)

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte II) Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte II) Luigi De Giovanni Giacomo Zambelli 1 I passi dell algoritmo del simplesso L

Dettagli

4.3 Esempio metodo del simplesso

4.3 Esempio metodo del simplesso 4.3 Esempio metodo del simplesso (P ) min -5x 4x 2 3x 3 s.v. 2x + 3x 2 + x 3 5 4x + x 2 + 2x 3 3x + 4x 2 + 2x 3 8 x, x 2, x 3 Per mettere il problema in forma standard si introducono le variabili di scarto

Dettagli

Geometria della Programmazione Lineare

Geometria della Programmazione Lineare Capitolo 2 Geometria della Programmazione Lineare In questo capitolo verranno introdotte alcune nozioni della teoria dei poliedri che permetteranno di cogliere gli aspetti geometrici della Programmazione

Dettagli

Soluzione grafica di problemi PM in 2 variabili

Soluzione grafica di problemi PM in 2 variabili Capitolo 4 Soluzione grafica di problemi PM in 2 variabili In questo paragrafo si vuole fornire una interpretazione geometrica di un problema di Programmazione matematica. In particolare, quando un problema

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla teoria della dualità in programmazione lineare

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla teoria della dualità in programmazione lineare Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla teoria della dualità in programmazione lineare L. De Giovanni G. Zambelli 1 Definizione del problema duale La teoria della dualità in programmazione

Dettagli

Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan

Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan Note per il corso di Geometria 2006-07 Corso di laurea in Ing. Edile/Architettura Sistemi lineari. Metodo di eliminazione di Gauss Jordan.1 Operazioni elementari Abbiamo visto che un sistema di m equazioni

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.3)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.3) Docente: Marco Gaviano (e-mail:gaviano@unica.it) Corso di Laurea in Infomatica Corso di Laurea in Matematica Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a. 5-6 lez.) Matematica Computazionale

Dettagli

Ricerca Operativa. G. Liuzzi. Lunedí 9 Marzo Programmazione Matematica Geometria di R n Esempi Teoria della PL Forma Standard. logo.

Ricerca Operativa. G. Liuzzi. Lunedí 9 Marzo Programmazione Matematica Geometria di R n Esempi Teoria della PL Forma Standard. logo. 1 Lunedí 9 Marzo 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Problema di Ottimizzazione min(o max) f (x) con la restrizione x S dove f (x) : R n R è detta funzione obiettivo S R n

Dettagli

Note sull algoritmo di Gauss

Note sull algoritmo di Gauss Note sull algoritmo di Gauss 29 settembre 2009 Generalità Un sistema lineare di m equazioni in n incognite x,..., x n è un espressione del tipo: a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n

Dettagli

Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte III)

Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte III) Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte III) L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di

Dettagli

Il metodo del simplesso

Il metodo del simplesso Capitolo 5 Il metodo del simplesso 5. La forma standard Esercizio 5.. Porre il problema di Programmazione Lineare: in forma standard. min x +x + x + x x +x 5 x 4 x, x Si trasformano i vincoli di disuguaglianza

Dettagli

4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1

4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1 4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1 Problemi di programmazione matematica: min s.v. f () X n dove X è la regione delle soluzioni ammissibili con funzione

Dettagli

Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard

Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard Introduzione al Metodo del Simplesso Giacomo Zambelli 1 Soluzioni di base e problemi in forma standard Consideriamo il seguente problema di programmazione lineare (PL), relativo all esempio di produzione

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

Soluzione grafica di problemi PM in 2 variabili

Soluzione grafica di problemi PM in 2 variabili Capitolo 4 Soluzione grafica di problemi PM in 2 variabili In questo paragrafo si vuole fornire una interpretazione geometrica di un problema di Programmazione matematica. In particolare, quando un problema

Dettagli

LA GRAN PARTE DI QUESTI ELEMENTI DOVREBBE ESSERE GIÀ NOTA

LA GRAN PARTE DI QUESTI ELEMENTI DOVREBBE ESSERE GIÀ NOTA I PRESUPPOSTI DELL ALGORITMO DEL SIMPLESSO CONSISTONO IN UN INSIEME DI ELEMENTI TEORICI LEGATI ALLO STUDIO DEGLI INSIEMI CONVESSI ED UN ALTRO INSIEME DI ELEMENTI TEORICI LEGATI ALLO STUDIO DEI SISTEMI

Dettagli

Ricerca Operativa. Ricerca Operativa p. 1/6

Ricerca Operativa. Ricerca Operativa p. 1/6 Ricerca Operativa Ricerca Operativa p. 1/6 Ricerca Operativa Disciplina basata sulla modellizzazione e la risoluzione tramite strumenti automatici di problemi di decisione complessi. In tali problemi la

Dettagli

SI RICORDA CHE LE LEZIONI DI MERCOLEDÌ 5 E 12 APRILE SI TERRANNO IN AULA D3 DALLE 9 ALLE 11

SI RICORDA CHE LE LEZIONI DI MERCOLEDÌ 5 E 12 APRILE SI TERRANNO IN AULA D3 DALLE 9 ALLE 11 SI RICORDA CHE LE LEZIONI DI MERCOLEDÌ 5 E 12 APRILE SI TERRANNO IN AULA D3 DALLE 9 ALLE 11 MARTEDÌ 11 APRILE LA LEZIONE SI TERRÀ IN AULA SEMINARI PIANO C 1di 26 LEZIONE N.7 INTRODUZIONE AI METODI DI PROGRAMMAZIONE

Dettagli

LEZIONE N.7 INTRODUZIONE AI METODI DI PROGRAMMAZIONE LINEARE, IL METODO DEL SIMPLESSO. 1di 18

LEZIONE N.7 INTRODUZIONE AI METODI DI PROGRAMMAZIONE LINEARE, IL METODO DEL SIMPLESSO. 1di 18 LEZIONE N.7 INTRODUZIONE AI METODI DI PROGRAMMAZIONE LINEARE, IL METODO DEL SIMPLESSO 1di 18 Metodo del Simplesso Il metodo del simplesso dovuto a Dantzing ed a Kantorovich è un algoritmo il cui nome deriva

Dettagli

Esercizi proposti nel Cap. 6 - Soluzioni. Esercizio 6.1. Esercizio 6.2

Esercizi proposti nel Cap. 6 - Soluzioni. Esercizio 6.1. Esercizio 6.2 M. CARAMIA, S. GIORDANI, F. GUERRIERO, R. MUSMANNO, D. PACCIARELLI RICERCA OPERATIVA Isedi Esercizi proposti nel Cap. 6 - Soluzioni Esercizio 6.1 La soluzione ottima è il vertice 4 1, di valore 9, vedi

Dettagli

Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte II)

Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte II) Ricerca Operativa Note su Programmazione Lineare e Metodo del Simplesso (parte II) L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di

Dettagli

Teoria della Programmazione Lineare

Teoria della Programmazione Lineare 6 Teoria della Programmazione Lineare In questo capitolo iniziamo lo studio formale dei problemi di Programmazione Lineare e, in particolare, dimostriamo il Teorema fondamentale della Programmazione Lineare.

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

Algoritmo del Simplesso

Algoritmo del Simplesso Algoritmo del Simplesso Renato Bruni bruni@dis.uniroma.it Univertà di Roma Sapienza Corso di Ricerca Operativa, Corso di Laurea Ingegneria dell Informazione Vertici e Punti Estremi di un Poliedro Un poliedro

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.3)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.3) Docente: Marco Gaviano (e-mail:gaviano@unica.it) Corso di Laurea in Infomatica Corso di Laurea in Matematica Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a. -4 lez.) Matematica Computazionale

Dettagli

Programmazione Lineare

Programmazione Lineare Programmazione Lineare Andrea Scozzari a.a. 2012-2013 March 14, 2013 Andrea Scozzari (a.a. 2012-2013) Programmazione Lineare March 14, 2013 1 / 18 Metodo del Simplesso Dato un problema di PL in forma standard

Dettagli

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Capitolo Sistemi di equazioni lineari.8 Il Teorema di Cramer Si consideri un generico sistema

Dettagli

Problemi di Flusso: Il modello del Trasporto

Problemi di Flusso: Il modello del Trasporto Problemi di Flusso: Il modello del rasporto Andrea Scozzari a.a. 2014-2015 April 27, 2015 Andrea Scozzari (a.a. 2014-2015) Problemi di Flusso: Il modello del rasporto April 27, 2015 1 / 25 Problemi su

Dettagli

Ricerca Operativa 2. Introduzione al metodo del Simplesso

Ricerca Operativa 2. Introduzione al metodo del Simplesso Ricerca Operativa 2. Introduzione al metodo del Simplesso Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema di ottimizzazione vincolata è definito dalla massimizzazione

Dettagli

4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1

4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1 4 PROGRAMMAZIONE LINEARE (PL) E. Amaldi -- Fondamenti di R.O. -- Politecnico di Milano 1 Problemi di programmazione matematica: min f () s.v. X n insieme delle soluzioni ammissibili con funzione obiettivo

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

Le condizioni di Karush-Kuhn-Tucker

Le condizioni di Karush-Kuhn-Tucker Capitolo 9 Le condizioni di Karush-Kuhn-Tucker 9. Introduzione In questo capitolo deriveremo le condizioni necessarie di Karush-Kuhn-Tucker (KKT) per problemi vincolati in cui S è descritto da vincoli

Dettagli

Applicazioni lineari e diagonalizzazione. Esercizi svolti

Applicazioni lineari e diagonalizzazione. Esercizi svolti . Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)

Dettagli

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,

Dettagli

Condizioni di Karush-Kuhn-Tucker e Programmazione Lineare

Condizioni di Karush-Kuhn-Tucker e Programmazione Lineare Condizioni di Karush-Kuhn-Tucker e Programmazione Lineare A. Agnetis 1 Richiami su condizioni di Karush-Kuhn-Tucker e convessità Si consideri il problema di ottimizzazione vincolata: min f(x) (1) x X R

Dettagli

Note per le esercitazioni di Geometria 1 a.a. 2007/08 A. Lotta. Metodi per il calcolo del rango di una matrice

Note per le esercitazioni di Geometria 1 a.a. 2007/08 A. Lotta. Metodi per il calcolo del rango di una matrice Note per le esercitazioni di Geometria 1 a.a. 2007/08 A. Lotta Versione del 21/12/07 Metodi per il calcolo del rango di una matrice Sia A M m,n (K). Denotiamo con A (i) la riga i-ma di A, i {1,..., m}.

Dettagli

Algoritmi per la programmazione lineare: il metodo del simplesso

Algoritmi per la programmazione lineare: il metodo del simplesso Algoritmi per la programmazione lineare: il metodo del simplesso Dipartimento di Informatica, Universita' di Pisa A.A. 2018/2019 Contenuti della lezione Problemi di programmazione lineare, forma standard

Dettagli

Note sui sistemi lineari per il Corso di Geometria per Chimica, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 4 Maggio 2010

Note sui sistemi lineari per il Corso di Geometria per Chimica, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 4 Maggio 2010 Note sui sistemi lineari per il Corso di Geometria per Chimica, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 4 Maggio 21 Sistemi lineari. Un sistema lineare di n 1 equazioni in m incognite

Dettagli

3x 2 = 6. 3x 2 x 3 = 6

3x 2 = 6. 3x 2 x 3 = 6 Facoltà di Scienze Statistiche, Algebra Lineare 1 A, GParmeggiani LEZIONE 7 Sistemi lineari Scrittura matriciale di un sistema lineare Def 1 Un sistema di m equazioni ed n incognite x 1, x 2, x n, si dice

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani parametriche Allineamento nel piano nello spazio Angoli tra rette e distanza 2 2006 Politecnico di Torino 1 Esempio 2 Sia A = (1, 2). Per l interpretazione geometrica

Dettagli

Parte IV: Rafforzamento di formulazioni e algoritmo dei piani di taglio

Parte IV: Rafforzamento di formulazioni e algoritmo dei piani di taglio Parte IV: Rafforzamento di formulazioni e algoritmo dei piani di taglio Nozioni di geometria Definizione: Un vettore y R n è combinazione conica dei vettori { 1,, k } se esistono k coefficienti reali λ

Dettagli

Geometria analitica di base (seconda parte)

Geometria analitica di base (seconda parte) SAPERE Al termine di questo capitolo, avrai appreso: il concetto di luogo geometrico la definizione di funzione quadratica l interpretazione geometrica di un particolare sistema di equazioni di secondo

Dettagli

CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI

CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI Lo studente ha forse già incontrato i sistemi di equazioni lineari alla scuola secondaria Con il termine equazione

Dettagli

Programmazione Matematica / A.A Soluzioni di alcuni esercizi

Programmazione Matematica / A.A Soluzioni di alcuni esercizi Programmazione Matematica / A.A. 7-8 Soluzioni di alcuni esercizi Esercizi - I. Aggiungiamo al problema una variabile v, e richiediamo che v soddisfi v n a ij x j b i. j= Fissato x, il minimo v che soddisfa

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA II Parziale - Compito B 3/05/005 A. A. 004 005 ) Risolvere il seguente sistema

Dettagli

Risoluzione di sistemi lineari

Risoluzione di sistemi lineari Risoluzione di sistemi lineari Teorema (Rouché-Capelli) Dato il sistema di m equazioni in n incognite Ax = b, con A M at(m, n) b R n x R n [A b] si ha che: matrice dei coefficienti, vettore dei termini

Dettagli

SISTEMI LINEARI, METODO DI GAUSS

SISTEMI LINEARI, METODO DI GAUSS SISTEMI LINEARI, METODO DI GAUSS Abbiamo visto che un sistema di m equazioni lineari in n incognite si può rappresentare in forma matriciale come A x = b dove: A è la matrice di tipo (m, n) dei coefficienti

Dettagli

5.2 IL TEOREMA FONDAMENTALE DELLA PROGRAMMAZIONE LINEARE

5.2 IL TEOREMA FONDAMENTALE DELLA PROGRAMMAZIONE LINEARE 94 TEORIA DELLA PROGRAMMAZIONE LINEARE 5.2 IL TEOREMA FONDAMENTALE DELLA PROGRAMMAZIONE LINEARE Quanto fino ad ora esaminato permette di enunciare e dimostrare un risultato di fondamentale importanza che

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla teoria della dualità in programmazione lineare

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla teoria della dualità in programmazione lineare Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla teoria della dualità in programmazione lineare L. De Giovanni G. Zambelli 1 Definizione del problema duale La teoria della dualità in programmazione

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA II Parziale - Compito C 3/5/25 A. A. 24 25 ) Risolvere il seguente sistema

Dettagli

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5.

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5. SISTEMI LINEARI Esercizi Esercizio. Risolvere, se possibile, i seguenti sistemi: x y z = 0 x + y + z = 3x + y + z = 0 x y = 4x + z = 0, x y z = 0. Svolgimento. Procediamo con operazioni elementari di riga

Dettagli

3.6 Metodi basati sui piani di taglio

3.6 Metodi basati sui piani di taglio 3.6 Metodi basati sui piani di taglio Problema generale di Programmazione Lineare Intera (PLI) con A matrice m n e b vettore n 1 razionali min{ c t x : x X = {x Z n + : Ax b} } Sappiamo che esiste una

Dettagli

Ricerca Operativa. G. Liuzzi. Giovedí 19 Marzo Tableau del Simplesso Esempio Fase I del Simplesso Esempio

Ricerca Operativa. G. Liuzzi. Giovedí 19 Marzo Tableau del Simplesso Esempio Fase I del Simplesso Esempio 1 Giovedí 19 Marzo 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Tableau o Dizionario Qualche richiamo sulla generica iterazione della Fase II: B base ammissibile corrente x SBA corrente:

Dettagli

Programmazione Non Lineare

Programmazione Non Lineare Capitolo 1 Programmazione Non Lineare 1.1 Introduzione Un problema di ottimizzazione viene definito come la minimizzazione o la massimizzazione di una funzione a valori reali su un insieme specificato.

Dettagli

Università degli Studi di Roma La Sapienza

Università degli Studi di Roma La Sapienza Università degli Studi di Roma La Sapienza Dipartimento di Informatica e Sistemistica A. Ruberti Proff. Gianni Di Pillo and Laura Palagi Note per il corso di OTTIMIZZAZIONE (a.a. 2007-08) Dipartimento

Dettagli

Scuola di Dottorato in Ingegneria L. da Vinci. Problemi di estremo vincolato ed applicazioni. Introduzione ai problemi di estremo

Scuola di Dottorato in Ingegneria L. da Vinci. Problemi di estremo vincolato ed applicazioni. Introduzione ai problemi di estremo Scuola di Dottorato in Ingegneria L. da Vinci Problemi di estremo vincolato ed applicazioni Pisa, 28-29 Maggio, 2009 Introduzione ai problemi di estremo G. Mastroeni Ricercatore, Dipartimento di Matematica

Dettagli

ALGEBRA LINEARE PARTE III

ALGEBRA LINEARE PARTE III DIEM sez Matematica Finanziaria Università degli studi di Genova Dicembre 200 Indice PREMESSA 2 GENERALITA 2 RAPPRESENTAZIONE DI UN SISTEMA LINEARE IN FORMA MATRI- CIALE 2 3 SOLUZIONE DI SISTEMI LINEARI

Dettagli

LEZIONE N. 6 - PARTE 1 - Introduzione

LEZIONE N. 6 - PARTE 1 - Introduzione LEZIONE N. 6 PROGRAMMAZIONE LINEARE IN MARKAL, SOLUZIONE DEI PROBLEMI DI PROGRAMMAZIONE LINEARE CON: IL METODO GRAFICO ED IL METODO DEL SIMPLESSO. PROPRIETÀ DELLA DUALITÀ ED ESEMPI DI SOLUZIONE DEL PROBLEMA

Dettagli

1. Un sistema di m equazioni lineari in n incognite x 1,... x n aventi tutte termine noto nullo A =...

1. Un sistema di m equazioni lineari in n incognite x 1,... x n aventi tutte termine noto nullo A =... Algebra/ Algebra Lineare, 230207 1 Un sistema di m equazioni lineari in n incognite x 1, x n aventi tutte termine noto nullo a i1 x 1 + a i2 x 2 + + a in x n = 0, i = 1,, m si dice omogeneo; ponendo x

Dettagli

Argomento 13 Sistemi lineari

Argomento 13 Sistemi lineari Sistemi lineari: definizioni Argomento Sistemi lineari Un equazione nelle n incognite x,, x n della forma c x + + c n x n = b ove c,, c n sono numeri reali (detti coefficienti) e b è un numero reale (detto

Dettagli

Esercizi di Programmazione Lineare - Dualità

Esercizi di Programmazione Lineare - Dualità Esercizi di Programmazione Lineare - Dualità Esercizio n1 Dato il seguente problema 3 + 3 2 2 + a scriverne il duale; b risolvere il duale (anche geometricamente indicando cosa da esso si può dedurre sul

Dettagli

Esercizi di Programmazione Lineare

Esercizi di Programmazione Lineare Esercizi di Programmazione Lineare 1 grafica Si consideri il seguente problema di programmazione lineare: max 3x 1 + 2x 2 s.t. + 2x 1 + x 2 4 2x 1 + x 2 2 + x 1 x 2 1 x 1, x 2 0 a) Risolvere il problema

Dettagli

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016.

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016. Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016 Di seguito si riporta il riassunto degli argomenti svolti; i riferimenti sono a parti del Cap8 Elementi di geometria e algebra lineare Par5

Dettagli

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer.

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer. ) Trovare le soluzioni del seguente sistema lineare: x+ y+ z = 3x y + z = 0 x + 5y 4z = 5 Osserviamo in primo luogo che il sistema dato è un sistema quadrato di tre equazioni in tre incognite, precisamente

Dettagli

PreCorso di Matematica - PCM Corso M-Z

PreCorso di Matematica - PCM Corso M-Z PreCorso di Matematica - PCM Corso M-Z DOCENTE: M. Auteri Outline Docente: Auteri PreCorso di Matematica 2016 2 Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti

Dettagli

Algebra delle matrici

Algebra delle matrici Algebra delle matrici Metodo di Gauss-Jordan per l inversione di una matrice. Nella lezione scorsa abbiamo visto che un modo per determinare l eventuale inversa di una matrice quadrata A consiste nel risolvere

Dettagli

RICERCA OPERATIVA (9 cfu)

RICERCA OPERATIVA (9 cfu) a PROVA scritta di RICERCA OPERATIVA (9 cfu) gennaio Cognome Nome Ai fini della pubblicazione (cartacea e elettronica) del risultato ottenuto nella prova di esame, autorizzo al trattamento dei miei dati

Dettagli

r 2 r 2 2r 1 r 4 r 4 r 1

r 2 r 2 2r 1 r 4 r 4 r 1 SPAZI R n 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x, y, z)

Dettagli

Analisi dei dati corso integrato - Algebra lineare, e a b c 0. le soluzioni del sistema lineare omogeneo x d e f 2. a b c.

Analisi dei dati corso integrato - Algebra lineare, e a b c 0. le soluzioni del sistema lineare omogeneo x d e f 2. a b c. Analisi dei dati corso integrato - Algebra lineare 4.3.8 e 5.3.8-1 1. Nella lezione precedente abbiamo definito lo spazio nullo e lo spazio delle colonne di una matrice; ora definiamo lo spazio delle righe

Dettagli

Il metodo del simplesso

Il metodo del simplesso 7 Il metodo del simplesso Dato un problema di PL è ovviamente necessario, se il modello fatto deve essere di qualche utilità, essere capaci di risolverlo. Nel caso della programmazione lineare si dice

Dettagli

1 Ampliamento del piano e coordinate omogenee

1 Ampliamento del piano e coordinate omogenee 1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di

Dettagli

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare.

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare. ALGEBRA COMPLESSA Nel corso dei secoli gli insiemi dei numeri sono andati man mano allargandosi per rispondere all esigenza di dare soluzione a equazioni e problemi sempre nuovi I numeri complessi sono

Dettagli

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3 SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni

Dettagli

Università Ca Foscari Venezia

Università Ca Foscari Venezia Università Ca Foscari Venezia Dipartimento di Scienze Ambientali, Informatica e Statistica Giovanni Fasano Brevi FAQ sul Metodo del SIMPLESSO Università Ca Foscari Venezia, Dipartimento di Management,

Dettagli

Soluzione della seconda prova intermedia di Algebra lineare del 17 maggio Esercizio 1

Soluzione della seconda prova intermedia di Algebra lineare del 17 maggio Esercizio 1 Soluzione della seconda prova intermedia di Algebra lineare del 17 maggio 2012 Esercizio 1 (a) Si calcola il polinomio caratteristico λ 2 1 p(λ) = det k 1 2k λ k 1 2 2 λ usando lo sviluppo di Laplace secondo

Dettagli

Istituzioni di Matematiche Modulo A (ST)

Istituzioni di Matematiche Modulo A (ST) Istituzioni di Matematiche Modulo A (ST V II foglio di esercizi ESERCIZIO. Nei seguenti sistemi lineari, discutere l insieme delle soluzioni al variare del parametro t, o dei parametri t e τ, in R. 5 x

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari A. Bertapelle 25 ottobre 212 Cos è un sistema lineare? Definizione Un sistema di m equazioni lineari (o brevemente sistema lineare) nelle n incognite x 1,..., x n, a coefficienti

Dettagli

RICERCA OPERATIVA. Tema d esame del 13/12/2005

RICERCA OPERATIVA. Tema d esame del 13/12/2005 RICERCA OPERATIVA Tema d esame del 13/12/2005 COGNOME: NOME: MATRICOLA: 1. Un associazione umanitaria ha raccolto 150.000 euro per inviare dei pacchetti regalo natalizi ai bambini di Haiti. Per l acquisto

Dettagli