Cinematica e sicurezza stradale

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Cinematica e sicurezza stradale"

Transcript

1 Cinematica e sicurezza stradale Come calcolare lo spazio di frenatura frenata - arresto Lo spazio di frenata cosa è e a cosa serve soprattutto? Tutti abbiamo capito che esso rappresenta lo spazio che un' auto, una moto, un treno, un autobus, una bici, percorrono dopo aver premuto il comando del freno. Lo spazio di frenata è strettamente correlato alla distanza di sicurezza da tenere in strada. Se siamo ad una distanza di 10 metri dall'auto che ci precede e viaggiamo ad una velocità di 100 km/h, questa distanza potrebbe essere insufficiente per evitare l'impatto in caso di arresto dell'auto che ci precede e di nostra frenata. Come fare quindi per calcolare lo spazio di frenata o arresto del veicolo ed evitare l incidente? Certamente più piano si va, minore sarà lo spazio di frenata necessario per arrestare la moto. Più alta è la nostra velocità, maggiore sarà lo spazio che si percorrerà durante le pressione del pedale del freno. Ma quali sono le formule per il calcolo dello spazio di arresto? Di seguito descriviamo questa formula e quelle inverse che ne derivano. Innanzitutto precisiamo che lo spazio di arresto comprende: - lo spazio di reazione - e quello di effettiva frenata. Infatti, dal momento in cui percepiamo un ostacolo o vogliamo fermarci, al momento in cui effettivamente premiamo sul pedale del freno, intercorre uno spazio detto di reazione che sommato a quello della frenata effettiva, porta al completo spazio di arresto del veicolo. Mediamente il tempo di reazione è di circa 1 secondo ma dipende da persona a persona. La formula dello spazio di frenatura : Spazio Frenatura = (V * V) / (2 * 50 * ca) dove V indica la velocità del veicolo frenante e ca il cosiddetto coefficiente di aderenza della strada che dipende appunto dal fatto che la strada sia asfaltata, sdrucciolevole, bagnata, ghiacciata, ecc... Al denominatore è presente il valore 50 che è l'accelerazione di gravità. Generalmente il coefficiente ca è vicino al valore 1: - 1 se siamo su una strada asfaltata con un asfalto rugoso, - 0,5 circa se siamo su una strada non asfaltata, ad esempio di campagna, - 0,1 circa se la strada è ghiacciata. La formula dello spazio di reazione: Spazio reazione = (V / 3600) * Tempo reazione La velocità va trasformata in metri al secondo (Kmh x 1000) e divisa per 3600 perché si riferisce al tempo percorso in un'ora (in un'ora ci sono 60 minuti e quindi 60x60=3600 secondi). Da cui possiamo calcolare lo spazio di arresto totale: Spazio Frenatura + Spazio Reazione Per comprendere al meglio lo spazio di reazione, di frenata e di arresto di un veicolo e quindi farne mente locale quando viaggiamo su di una moto o auto e pensiamo di essere "invincibili", vediamo di risolvere questo semplice problema. 1

2 Problema dello spazio d arresto su una moto "Un veicolo procede alla velocità costante di 50 Km/h ed il conducente possiede un tempo di reazione pari ad 1 secondo". Il veicolo viaggia su una strada con coefficiente ca di aderenza pari a 0,5. Calcolare spazio di reazione, di frenata e di arresto. Se il conducente viaggiasse invece che a 50 Km/h, a 150 Km/h quali sarebbero i valori di spazio di reazione, frenata ed arresto della moto?" Dati : V = 50 km/h Tempo reazione = 1 secondo ca = 0,5 Spazio reazione =? Spazio frenata =? Spazio arresto =? Soluzione : Con velocità V = 50 Km : Spazio reazione = (V / 3600) * Tempo reazione = [(50 x 1000) / 3600)] * 1 = 13,8 * 1 = 13,8 metri Spazio frenata = (V * V) / (2 * 50 * ca) = (50 * 50) / (2 * 50 * 0,5) = 2500 / 50 = 50 metri Spazio arresto = Spazio reazione + Spazio frenata = 13, = 63,8 metri Con velocità V = 150 Km : Spazio reazione = (V / 3600) * Tempo reazione = [(150 x 1000) / 3600)] * 1 = 41,6 * 1 = 41,6 metri Spazio frenata = (V * V) / (2 * 50 * ca) = (150 * 150) / (2 * 50 * 0,5) = / 50 = 450 metri Spazio arresto = Spazio reazione + Spazio frenata = 41, = 491,6 metri 2

3 Tempo di reazione e distanze di sicurezza Il tempo di reazione è l intervallo di tempo che passa tra il momento in cui si percepisce un pericolo e il momento in cui si inizia ad agire per evitarlo. In condizioni normali il tempo di reazione è circa 1 s. Da quando vede un ostacolo, il conducente di un veicolo impiega 1 s prima di iniziare a frenare e l ostacolo dista meno di Δs r metri dall auto, l automobilista non ha neppure il tempo per iniziare a frenare e urta contro l ostacolo con la velocità v. v (km/h) v (m/s) Δs r (m) In altri termini: tutto quello che accade a una distanza minore di Δs r dal veicolo che stai guidando non può essere evitato. È come se il tuo veicolo fosse lungo Δs r metri in più e la sua lunghezza aumentasse con la velocità. 3

4 Riepilogando Spazio di frenata Lo spazio di frenata è la distanza che un veicolo percorre fra l inizio della decelerazione e l arresto. Nell ipotesi abbastanza realistica che la decelerazione prodotta dai freni sia costante, il moto del veicolo è uniformemente accelerato. La velocità iniziale v0, quella finale v = 0 m/s, l accelerazione -a e lo spazio di frenata Δsf sono legati dalla relazione: 0=v a Δsf e quindi Δsf = v0 2 / 2a Lo spazio di frenata dipende dalle condizioni del veicolo e dal fondo stradale, che determinano il valore della decelerazione -a. Ma il fatto importante è che lo spazio di frenata cresce con il quadrato della velocità. Per una moto in buone condizioni, su una strada con aderenza media, gli spazi di frenata sono molto simili ai valori riportati in tabella: v (km/h) Δsf (m) Gli spazi di frenata aumentano in modo considerevole in caso di pioggia o di asfalto sdrucciolevole e quando i pneumatici sono sgonfi o usurati. 4

5 Spazio di arresto La distanza di sicurezza è la distanza che un veicolo deve mantenere da quello che lo precede per potersi arrestare senza urtarlo. La distanza di sicurezza Δs s è la somma dello spazio di reazione e dello spazio di frenata: Δs s = Δs r + Δs f Per esempio, alla velocità di 90 km/h, si ha: Δs s = 25 m + 52 m = 77 m Il mancato rispetto della distanza di sicurezza provoca il 10% degli incidenti stradali: circa incidenti all anno. 5

La distanza di sicurezza Sommario

La distanza di sicurezza Sommario La distanza di sicurezza Sommario La distanza di sicurezza... 2 Definizione... 2 Le componenti... 2 Quale deve essere la distanza di sicurezza?... 2 Come si calcola?... 3 Formula magica?... 3 Traffico

Dettagli

Problema 1 Un razzo, partendo da fermo, raggiunge dopo 12 la velocità di 240 /? Qual è la sua accelerazione? Soluzione. Dalla relazione = +

Problema 1 Un razzo, partendo da fermo, raggiunge dopo 12 la velocità di 240 /? Qual è la sua accelerazione? Soluzione. Dalla relazione = + MOTO RETTILINEO UNIFORMEMENTE ACCELERATO Esercizi Problema 1 Un razzo, partendo da fermo, raggiunge dopo 12 la velocità di 240 /? Qual è la sua accelerazione? = + si ottiene 240=0+ 12 ; 12=240 ; =20. Pertanto

Dettagli

La distanza di sicurezza

La distanza di sicurezza La distanza di sicurezza La distanza di sicurezza... 2 Definizione... 2 Le componenti... 2 Quale deve essere la distanza di sicurezza?... 2 Come si calcola?... 3 Formula magica?... 3 Traffico congestionato...

Dettagli

ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO

ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Revisione del 16/03/16 ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Valdagno (VI) Corso di Fisica prof. Nardon MOTI ACCELERATI Richiami di teoria Moto uniformemente vario (accelerato) a = equazioni del moto:

Dettagli

SAPER LEGGERE LE SITUAZIONI MODULO A - 1

SAPER LEGGERE LE SITUAZIONI MODULO A - 1 SAPER LEGGERE LE SITUAZIONI dalle conoscenze agli atteggiamenti corretti sviluppare le abilità cognitive MODULO A - 1 1. Consapevolezza Consapevolezza dei nostri limiti Consapevolezza del rischio alla

Dettagli

L'andamento planimetrico delle strade ordinarie

L'andamento planimetrico delle strade ordinarie L'andamento planimetrico delle strade ordinarie Distanze di sicurezza 1 DISTANZA DI VISUALE LIBERA DISTANZA DI VISUALE LIBERA Google Street View 3 DISTANZA DI VISUALE LIBERA 1,10 m 1,10 m Google Street

Dettagli

ESERCITAZIONE 27 MARZO 2017 GEOLOGIA CINEMATICA

ESERCITAZIONE 27 MARZO 2017 GEOLOGIA CINEMATICA ESERCITAZIONE 27 MARZO 2017 GEOLOGIA CINEMATICA ESERCIZIO 1 Un auto che si muove con velocità iniziale pari a 36 Km/h aumenta la velocità con accelerazione costante pari a 2 m/s2, il moto è rettilineo.

Dettagli

IL CALCOLO DELLE DISTANZE DI VISUALE LIBERA

IL CALCOLO DELLE DISTANZE DI VISUALE LIBERA ONE DI STRIE ED AER IL CALCOLO DELLE DISTANZE DI VISUALE LIBERA LE VISUALI LIBERE NELLA PROGETTAZIONE STRADALE Al fine di garantire le condizioni di sicurezza della circolazione, in condizioni di veicolo

Dettagli

MOTO E LEGGI ORARIE. Due oggetti si muovono secondo le seguenti leggi orarie:

MOTO E LEGGI ORARIE. Due oggetti si muovono secondo le seguenti leggi orarie: ESERCIZIO N 1 MOTO E LEGGI ORARIE Due oggetti si muovono secondo le seguenti leggi orarie: y 5t x 6t 4t 1 Di ognuno di essi si dica: a) tipo di moto e di traiettoria b) posizione iniziale c) velocità iniziale

Dettagli

Problema 1. D= 1 2 at2 1 v f = at 1

Problema 1. D= 1 2 at2 1 v f = at 1 1 Problema 1 Una vettura di Formula 1 parte da fermo, con accelerazione costante a per un tratto D=400 m in cui raggiunge la velocitá massima v f. Al tempo T = 16.5 s ha percorso L=1 km (tutto in rettilineo).

Dettagli

Insegnamento di Fondamenti di Infrastrutture viarie

Insegnamento di Fondamenti di Infrastrutture viarie Insegnamento di Fondamenti di Infrastrutture viarie Territorio ed infrastrutture di trasporto La meccanica della locomozione: questioni generali Il fenomeno dell aderenza e l equazione generale del moto

Dettagli

La velocità può anche essere calcolata come media pesata (con pesi uguale ai tempi di percorrenza) delle velocità medie dei singoli tratti:

La velocità può anche essere calcolata come media pesata (con pesi uguale ai tempi di percorrenza) delle velocità medie dei singoli tratti: ESERCIZI SUL MOTO RETTILINEO UNIFORME -- - Un'auto percorre 4 m in 4 s e altri 4 m in 6 s. Quale 6 stata la velocità media nei due tratti e quella sull'intero percorso? Velocità media nel primo tratto

Dettagli

2^A - FISICA compito n =20,0 s. 2. Un'automobile, inizialmente ferma, si muove con accelerazione costante percorrendo la distanza

2^A - FISICA compito n =20,0 s. 2. Un'automobile, inizialmente ferma, si muove con accelerazione costante percorrendo la distanza ^A - FISICA compito n - 013-014 1 Un moto è descritto dal grafico a fianco Determina le leggi che esprimono la velocità e la posizione in funzione del tempo (assumendo che la posizione iniziale sia x 0

Dettagli

CORSO DI TECNICA ED ECONOMIA DEI TRASPORTI A.A. 2006-07 DIAGRAMMI DEL MOTO SEMPLIFICATI

CORSO DI TECNICA ED ECONOMIA DEI TRASPORTI A.A. 2006-07 DIAGRAMMI DEL MOTO SEMPLIFICATI POLITECNICO DI BARI II FACOLTA DI INGEGNERIA CORSO DI TECNICA ED ECONOMIA DEI TRASPORTI A.A. 2006-07 DIAGRAMMI DEL MOTO SEMPLIFICATI Diagrammi del moto semplificati slide 1 di 21 DESCRIZIONE DEL MOTO DI

Dettagli

CINEMATICA: MRU e MRUA. November 15, moto rettilineo uniforme. moto rettilineo. uniformemente accelerato. moto rettilineo.

CINEMATICA: MRU e MRUA. November 15, moto rettilineo uniforme. moto rettilineo. uniformemente accelerato. moto rettilineo. CINEMATICA: moto rettilineo uniforme moto rettilineo uniformemente accelerato moto parabolico moto armonico 1 2 3 4 1 moto rettilineo uniforme v = costante si percorrono spazi uguali in tempi uguali (accelerazione

Dettagli

Oggetti puntiformi. Può essere puntiforme un ippopotamo? È importante la sua rotazione? Sono importanti le sue dimensioni? Urta altri ippopotami?

Oggetti puntiformi. Può essere puntiforme un ippopotamo? È importante la sua rotazione? Sono importanti le sue dimensioni? Urta altri ippopotami? Oggetti puntiformi Può essere puntiforme un ippopotamo? È importante la sua rotazione? Sono importanti le sue dimensioni? Urta altri ippopotami? Sistemi di riferimento Fisso un'origine per i miei assi

Dettagli

Esempio di applicazione del principio di d Alembert: determinazione delle forze di reazione della strada su un veicolo.

Esempio di applicazione del principio di d Alembert: determinazione delle forze di reazione della strada su un veicolo. Esempio di applicazione del principio di d Alembert: determinazione delle forze di reazione della strada su un veicolo. C Si consideri il veicolo rappresentato in figura per il quale valgono le seguenti

Dettagli

Prodotto Multimediale

Prodotto Multimediale Prodotto Multimediale Relativo al Laboratorio 2: "Multimedialità e Didattica" Autore: Zumbo Francesco Breve presentazione del Moto Rettilineo Uniforme e Uniformemente Accelerato I moti, a seconda della

Dettagli

Chassis Systems Control Sistema di Frenata di Emergenza Preventiva: un aiuto per evitare i tamponamenti o ridurne le conseguenze.

Chassis Systems Control Sistema di Frenata di Emergenza Preventiva: un aiuto per evitare i tamponamenti o ridurne le conseguenze. Chassis Systems Control Sistema di Frenata di Emergenza Preventiva: un aiuto per evitare i tamponamenti o ridurne le conseguenze sicuro 2 Sistema di Frenata di Emergenza Preventiva Sistema di Frenata di

Dettagli

Soluzione: In direzione verticale non c è movimento, perciò F N mg = 0. Quindi, in ogni caso, la forza normale è pari a 24.5 N.

Soluzione: In direzione verticale non c è movimento, perciò F N mg = 0. Quindi, in ogni caso, la forza normale è pari a 24.5 N. Un oggetto con massa pari a 2500 g è appoggiato su un pavimento orizzontale. Il coefficiente d attrito statico è s = 0.80 e il coefficiente d attrito dinamico è k = 0.60. Determinare la forza d attrito

Dettagli

Il moto uniformemente accelerato. Prof. E. Modica

Il moto uniformemente accelerato. Prof. E. Modica Il moto uniformemente accelerato! Prof. E. Modica www.galois.it La velocità cambia... Quando andiamo in automobile, la nostra velocità non si mantiene costante. Basta pensare all obbligo di fermarsi in

Dettagli

Moto del Punto - Cinematica del Punto

Moto del Punto - Cinematica del Punto Moto del Punto - Cinematica del Punto Quiz 1 Posizione, spostamento e traiettoria 1. Un ciclista si sposta di 10km in una direzione formante un angolo di 30 rispetto all asse x di un fissato riferimento.

Dettagli

MECCANICA. Si occupa dei fenomeni connessi al MOVIMENTO dei corpi. CINEMATICA: movimento senza preoccuparsi delle cause MECCANICA

MECCANICA. Si occupa dei fenomeni connessi al MOVIMENTO dei corpi. CINEMATICA: movimento senza preoccuparsi delle cause MECCANICA MECCANICA Si occupa dei fenomeni connessi al MOVIMENTO dei corpi CINEMATICA: movimento senza preoccuparsi delle cause MECCANICA DINAMICA: causa del movimento = Forza F STATICA: fenomeni di non alterazione

Dettagli

FORZE E MOTO esercizi risolti Classi seconde e terze L.S.

FORZE E MOTO esercizi risolti Classi seconde e terze L.S. FORZE E MOTO esercizi risolti Classi seconde e terze L.S. In questa dispensa verrà riportato lo svolgimento di alcuni esercizi inerenti la dinamica dei sistemi materiali, nei quali vengono discusse le

Dettagli

Cinematica del punto ESERCIZI. Dott.ssa Elisabetta Bissaldi

Cinematica del punto ESERCIZI. Dott.ssa Elisabetta Bissaldi Cinematica del punto ESERCIZI Dott.ssa Elisabetta Bissaldi Elisabetta Bissaldi (Politecnico di Bari) A.A. 2018-2019 2 Si consideri un automobilista che, dopo aver percorso una strada rettilinea per 8.

Dettagli

L'andamento planimetrico delle strade ordinarie

L'andamento planimetrico delle strade ordinarie L'andamento planimetrico delle strade ordinarie Distanze di sicurezza http://people.unica.it/maltinti/files/2009/02/distanze-di-sicurezzarev03 1 DISTANZA DI VISUALE LIBERA 2 DISTANZA DI VISUALE LIBERA

Dettagli

Il movimento dei corpi

Il movimento dei corpi 1 Per stabilire se un corpo si muove oppure no è necessario riferirsi a qualcosa che sicuramente è fermo. È necessario scegliere un sistema di riferimento. 1. Un passeggero di un treno in moto appare fermo

Dettagli

Classe 3^A. Matematica a.s. 2013/2014 PROGRAMMA

Classe 3^A. Matematica a.s. 2013/2014 PROGRAMMA Classe 3^A Matematica a.s. 2013/2014 PROGRAMMA Funzioni Relazioni tra due insiemi. Definizione di funzione. Dominio e codominio di una funzione. Funzioni numeriche. Funzioni matematiche e funzioni sperimentali.

Dettagli

Capitolo Norme sulla velocità. 7.2 Pericolo e intralcio alla circolazione

Capitolo Norme sulla velocità. 7.2 Pericolo e intralcio alla circolazione Capitolo 7 Norme sulla velocità. Pericolo e intralcio alla circolazione. Limiti di velocità. Distanza di sicurezza 123 7.1 Norme sulla velocità Velocità Al conducente di un autoveicolo è fatto obbligo

Dettagli

PER ESERCITARSI Parte 1. Esercizi su Concetti introduttivi, vettori, cinematica, forze, lavoro ed energia

PER ESERCITARSI Parte 1. Esercizi su Concetti introduttivi, vettori, cinematica, forze, lavoro ed energia PER ESERCITARSI Parte 1 Esercizi su Concetti introduttivi, vettori, cinematica, forze, lavoro ed energia ESERCIZIO n.1 La Terra è assimilabile a una sfera di raggio 6.37 10 6 m. (a) Qual è la sua circonferenza

Dettagli

Il moto di una cometa

Il moto di una cometa Cinematica CINEMATICA: STUDIO DEL MOTO DI UN CORPO Il moto di una cometa Prof. Mastrangelo Domenico 1 Cinematica Quando possiamo dire che un corpo si muove? Prof. Mastrangelo Domenico 2 CINEMATICA Sistema

Dettagli

1. LA VELOCITA. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento.

1. LA VELOCITA. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento. 1. LA VELOCITA La traiettoria. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento Il moto rettilineo: si definisce moto rettilineo quello di un

Dettagli

Etichettatura UE degli pneumatici.

Etichettatura UE degli pneumatici. Etichettatura UE degli pneumatici. Efficienza nei consumi (classe di resistenza al rotolamento da A a G) Aderenza su bagnato ( di frenata sul bagnato da A a G) Rumorosità in decibel (db) e classe (simbolo

Dettagli

4. Su di una piattaforma rotante a 75 giri/minuto è posta una pallina a una distanza dal centro di 40 cm.

4. Su di una piattaforma rotante a 75 giri/minuto è posta una pallina a una distanza dal centro di 40 cm. 1. Una slitta, che parte da ferma e si muove con accelerazione costante, percorre una discesa di 60,0 m in 4,97 s. Con che velocità arriva alla fine della discesa? 2. Un punto materiale si sta muovendo

Dettagli

Esercitazioni di fisica cinematica

Esercitazioni di fisica cinematica Corso di Laurea in Scienze e Tecnologie Biologiche Esercitazioni di fisica cinematica Luca Brombal luca.brombal@phd.units.it 24/10/2017 #1 La pattinatrice Una pattinatrice sta correndo su di una pista

Dettagli

Esercizi sulla conversione tra unità di misura

Esercizi sulla conversione tra unità di misura Esercizi sulla conversione tra unità di misura Autore: Enrico Campanelli Prima stesura: Settembre 2013 Ultima revisione: Settembre 2013 Per segnalare errori o per osservazioni e suggerimenti di qualsiasi

Dettagli

c) il tempo che la palla impiega per raggiungere il suolo; d) la velocità con cui giunge a terra.

c) il tempo che la palla impiega per raggiungere il suolo; d) la velocità con cui giunge a terra. Alle Olimpiadi di Torino 2006, la pista di slittino era lunga 1435 m. Nella prima discesa, il tedesco M. Hackl ha realizzato un tempo di 44,55 s. Calcola la sua velocità media in m/s e in km/h. Durante

Dettagli

2. SIGNIFICATO FISICO DELLA DERIVATA

2. SIGNIFICATO FISICO DELLA DERIVATA . SIGNIFICATO FISICO DELLA DERIVATA Esempi 1. Un auto viaggia lungo un percorso rettilineo, con velocità costante uguale a 70 km/h. Scrivere la legge oraria s= s(t) e rappresentarla graficamente. 1. Scriviamo

Dettagli

ESAMI DEL PRECORSO DI FISICA CORSO A 13 OTTOBRE 2006

ESAMI DEL PRECORSO DI FISICA CORSO A 13 OTTOBRE 2006 CORSO A 13 OTTOBRE 2006 Esercizio 1 - Ad una valigia di massa 6 Kg appoggiata su un piano xy privo di attrito vengono applicate contemporaneamente due forze costanti parallele al piano. La prima ha modulo

Dettagli

Meccanica. Parte della fisica che studia il MOVIMENTO Si divide in

Meccanica. Parte della fisica che studia il MOVIMENTO Si divide in Meccanica Parte della fisica che studia il MOVIMENTO Si divide in Cinematica: descrive il movimento Dinamica: studia le cause del movimento Statica: studia quando non c è movimento Movimento Un oggetto

Dettagli

2.1 tempo, spazio e velocità

2.1 tempo, spazio e velocità Page 1 of 5 Secondo il fisico Giuliano Toraldo di Francia, la nostra sensazione della velocità non è ancora interiorizzata dall'esperienza. Di fronte ad un burrone, quando siamo su un terrazzo o più semplicemente

Dettagli

La descrizione del moto

La descrizione del moto Professoressa Corona Paola Classe 1 B anno scolastico 2016-2017 La descrizione del moto Il moto di un punto materiale La traiettoria Sistemi di riferimento Distanza percorsa Lo spostamento La legge oraria

Dettagli

Scegliere gli pneumatici: cosa sapere

Scegliere gli pneumatici: cosa sapere Scegliere gli pneumatici: cosa sapere Gli pneumatici sono importanti per la sicurezza della vettura: conoscerne le caratteristiche agevola nella scelta più adeguata per il modello di auto, per lo stile

Dettagli

6. IL MOTO Come descrivere un moto.

6. IL MOTO Come descrivere un moto. 6. IL MOTO Per definire il movimento di un corpo o il suo stato di quiete deve sempre essere individuato un sistema di riferimento e ogni movimento è relativo al sistema di riferimento in cui esso avviene.

Dettagli

Esercizi di fisica come ripasso generale (per le vacanze e per l eventuale recupero) Moto rettilineo uniforme

Esercizi di fisica come ripasso generale (per le vacanze e per l eventuale recupero) Moto rettilineo uniforme Esercizi di fisica come ripasso generale (per le vacanze e per l eventuale recupero) Problema 1. Moto rettilineo uniforme Una fanciulla A si muove da casa in bicicletta alla velocità costante di 36 km/h;

Dettagli

PASTIGLIE BREMBO. PER TUTTE LE MOTO, PER TUTTI I MOTOCICLISTI.

PASTIGLIE BREMBO. PER TUTTE LE MOTO, PER TUTTI I MOTOCICLISTI. PASTIGLIE BREMBO. PER TUTTE LE MOTO, PER TUTTI I MOTOCICLISTI. Il segreto di una frenata sicura sta anche nelle pastiglie Brembo, leader mondiale dei freni, integra la propria offerta con una gamma completa

Dettagli

L accelerazione. Quando la velocità cambia.

L accelerazione. Quando la velocità cambia. L accelerazione Quando la velocità cambia. Questo simbolo significa che l esperimento si può realizzare con materiali o strumenti presenti nel nostro laboratorio Questo simbolo significa che l esperimento

Dettagli

Antilock Braking Sistem (ABS) Sistema di controllo della frenata

Antilock Braking Sistem (ABS) Sistema di controllo della frenata Antilock Braking Sistem (ABS) Sistema di controllo della frenata Motivazioni FRENATA BRUSCA BLOCCAGGIO RUOTE SCARSA CAPACITÀ STERZANTE ELEVATO SPAZIO D ARRESTO Evitando il boccaggio delle ruote: si riduce

Dettagli

Facoltà di Ingegneria Prova intermedia 1 di Meccanica applicata alle macchine. 13 Novembre 2018, durata 120 minuti.

Facoltà di Ingegneria Prova intermedia 1 di Meccanica applicata alle macchine. 13 Novembre 2018, durata 120 minuti. Facoltà di Ingegneria Prova intermedia 1 di Meccanica applicata alle macchine. 13 Novembre 2018, durata 120 minuti. Matricola: 1. Si consideri il meccanismo biella-manovella in Figura 1. L asta (1) schematizza

Dettagli

Codice Elaborato: IMP INDICE

Codice Elaborato: IMP INDICE INDICE Pagina 1 di 6 1 SCOPO... 2 2 IMPIANTO DI ILLUMINAZIONE... 2 2.1 Raccomandazioni e normativa di riferimento... 2 2.2 Criteri di dimensionamento... 2 2.2.1 Velocità di progetto illuminotecnico...

Dettagli

Moto Rettilineo Uniformemente accelerato

Moto Rettilineo Uniformemente accelerato 1. Nel grafico seguente, che cosa è rappresentato? 32 2. Spiega come, in generale, si possono ricavare dal grafico della legge della velocità lo spazio percorso da un oggetto in movimento e la legge oraria.

Dettagli

ESERCIZI CINEMATICA UNIDIMENSIONALE. Dott.ssa Silvia Rainò

ESERCIZI CINEMATICA UNIDIMENSIONALE. Dott.ssa Silvia Rainò 1 ESERCIZI CINEMATICA UNIDIMENSIONALE Dott.ssa Silvia Rainò CALCOLO DIMENSIONALE 2 Una grandezza G in fisica dimensionalmente si scrive [G] = [M a L b T g K d ] Ove a,b,g,d sono opportuni esponenti. Ad

Dettagli

Scuola Politecnica e Delle Scienze di Base

Scuola Politecnica e Delle Scienze di Base Scuola Politecnica e Delle Scienze di Base Dipartimento di Ingegneria Civile,Edile e Ambientale Corso di Laurea in INGEGNERIA PER L AMBIENTE E IL TERRITORIO Presentazione della Tesi di Laurea PROGETTAZIONE

Dettagli

Moto rettilineo uniforme

Moto rettilineo uniforme Moto rettilineo uniforme Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, gennaio 2012. Indice 1 Moto in una dimensione. Velocità media e velocità istantanea. 1 1.1 Moto uniforme...................................

Dettagli

PER ESERCITARSI Parte 1. Esercizi su Concetti introduttivi, vettori, cinematica, forze, lavoro ed energia

PER ESERCITARSI Parte 1. Esercizi su Concetti introduttivi, vettori, cinematica, forze, lavoro ed energia PER ESERCITARSI Parte 1 Esercizi su Concetti introduttivi, vettori, cinematica, forze, lavoro ed energia ESERCIZIO n.1 La Terra è assimilabile a una sfera di raggio 6.37 10 6 m. (a) Qual è la sua circonferenza

Dettagli

Domande ed esercizi sul moto rettilineo uniformemente accelerato

Domande ed esercizi sul moto rettilineo uniformemente accelerato 1. Come si definisce la grandezza fisica accelerazione e qual è l unità di misura nel SI? 2. Come si definisce l accelerazione istantanea? 3. Come si definisce il moto rettilineo uniformemente accelerato?

Dettagli

Esercitazioni di fisica

Esercitazioni di fisica Esercitazioni di fisica Alessandro Berra 4 marzo 2014 1 Cinematica 1 Un corpo puntiforme, partendo da fermo, si muove per un tempo t 1 = 10 s con accelerazione costante a 1 = g/3, prosegue per t 2 = 15

Dettagli

Esercizi svolti di dinamica

Esercizi svolti di dinamica Esercizi svolti di dinamica Problema Una cassa si trova in cima ad un piano inclinato di 30, ad un altezza di 5 m dal suolo Sul piano inclinato è presente attrito dinamico di coefficiente µ = 0, La cassa

Dettagli

Anno Accademico Fisica I 12 CFU Esercitazione n.2 Moti unidimensionali

Anno Accademico Fisica I 12 CFU Esercitazione n.2 Moti unidimensionali Anno Accademico 2018-2019 Fisica I 12 CFU Esercitazione n.2 Moti unidimensionali Esercizio n.1 Sia assegnato il vettore posizione r(t) = (4bt 2 )i con b costante dimensionale. Si determinino: le dimensioni

Dettagli

Fisica 1 Anno Accademico 2011/2011

Fisica 1 Anno Accademico 2011/2011 Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 011/011 (1 Marzo - 17 Marzo 01) Sintesi Abbiamo introdotto lo studio del moto di un punto materiale partendo da un approccio cinematico.

Dettagli

Equazioni del moto in 1 dimensione:

Equazioni del moto in 1 dimensione: Equazioni del moto in 1 dimensione: O Velocità media come rapporto incrementale tra spazio percorso e tempo In generale la velocità varia istante per istante 1 Velocità istantanea: limite del rapporto

Dettagli

Progetto Ustica. Formazione della cittadinanza usticese alle attività di soccorso sanitario

Progetto Ustica. Formazione della cittadinanza usticese alle attività di soccorso sanitario Progetto Ustica Formazione della cittadinanza usticese alle attività di soccorso sanitario La conduzione dei mezzi di soccorso Per la guida dei veicoli adibiti ai servizi di soccorso in passato era necessario

Dettagli

CINEMATICA. Ipotesi di base: si trascurano le cause del moto ogge0 in movimento pun3formi

CINEMATICA. Ipotesi di base: si trascurano le cause del moto ogge0 in movimento pun3formi CINEMATICA Ipotesi di base: si trascurano le cause del moto ogge0 in movimento pun3formi Definiamo: spostamento la velocità media la velocità istantanea MOTO RETTILINEO UNIFORME Nel moto re4lineo uniforme:

Dettagli

GRAFICO 1. Sapendo che S 0 = - 5 m, dove si trova il corpo dopo 2 secondi dalla partenza? Cosa succede a 7 s dalla partenza?

GRAFICO 1. Sapendo che S 0 = - 5 m, dove si trova il corpo dopo 2 secondi dalla partenza? Cosa succede a 7 s dalla partenza? ESERCIZI SUL MOTO Un'automobile compie un viaggio di 100 km in tre tappe: 20 km a 60 km/h, 40 km a 80 km/h e 40 km a 30 km/h. Calcolare il tempo impiegato nel viaggio e la velocità media dell'automobile.

Dettagli

1 Nozioni utili sul piano cartesiano

1 Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x

Dettagli

ediz=verona&citta=verona&tt=&data= &ps=0&vis=g

ediz=verona&citta=verona&tt=&data= &ps=0&vis=g LEGGO. IT Tutte le edizioni 03/12/2009 MILANO, ROMA, TORINO, NAPOLI, BOLOGNA, PADOVA, FIRENZE, VENEZIA, VERONA, BARI, GENOVA, COMO, BERGAMO, BRESCIA, VARESE http://www.leggo.it/sfoglia.php? ediz=verona&citta=verona&tt=&data=20091203&ps=0&vis=g

Dettagli

GUIDA SICURA. In questa lezione affronteremo il rischio legato alla guida di mezzi di trasporto e conseguentemente alle modalità di guida sicura.

GUIDA SICURA. In questa lezione affronteremo il rischio legato alla guida di mezzi di trasporto e conseguentemente alle modalità di guida sicura. GUIDA SICURA In questa lezione affronteremo il rischio legato alla guida di mezzi di trasporto e conseguentemente alle modalità di guida sicura. Aziende ed addetti del settore trasporti su strada media

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. equazioni fratte Esercizio. epositando un capitale per un periodo di t anni a un tasso di interesse annuo i, si ha diritto al montante M. In formule: alcola i note le altre grandezze. M = ( + it) Soluzione.

Dettagli

Scuola di Alpinismo e Scialpinismo FALC CORSO DI ALPINISMO SU NEVE E GHIACCIO La catena di assicurazione

Scuola di Alpinismo e Scialpinismo FALC CORSO DI ALPINISMO SU NEVE E GHIACCIO La catena di assicurazione Scuola di Alpinismo e Scialpinismo FALC CORSO DI ALPINISMO SU NEVE E GHIACCIO 2019 La catena di assicurazione 1 Cos è la catena di assicurazione? L insieme degli elementi che permettono, in caso di caduta,

Dettagli

MOTO CIRCOLARE VARIO

MOTO CIRCOLARE VARIO MOTO ARMONICO E MOTO VARIO PROF. DANIELE COPPOLA Indice 1 IL MOTO ARMONICO ------------------------------------------------------------------------------------------------------ 3 1.1 LA LEGGE DEL MOTO

Dettagli

Le caratteristiche del moto. Un corpo è in moto se, rispetto ad un sistema di riferimento, cambia la posizione con il passare del tempo.

Le caratteristiche del moto. Un corpo è in moto se, rispetto ad un sistema di riferimento, cambia la posizione con il passare del tempo. Il moto dei corpi Le caratteristiche del moto Un corpo è in moto se, rispetto ad un sistema di riferimento, cambia la posizione con il passare del tempo. Le caratteristiche del moto Immagina di stare seduto

Dettagli

Cinematica 1-dimensionale

Cinematica 1-dimensionale Alfonso Monaco Cinematica 1-dimensionale Fisica Medica - CINEMATICA 1D 1 MOTO UNIFORME a = 0, v = cost, x = x0 +vt Posizione iniziale Istante iniziale t 0 = 0 v Istante successivo t v x 0 x Fisica con

Dettagli

Chimica e Tecnologia Farmaceutiche Esercitazioni di Fisica a.a. 2010-2011. Emanuele Biolcati

Chimica e Tecnologia Farmaceutiche Esercitazioni di Fisica a.a. 2010-2011. Emanuele Biolcati Esercitazione 4 Chimica e Tecnologia Farmaceutiche Esercitazioni di Fisica a.a. 010-011 Emanuele Biolcati Ringraziamenti speciali a Monica Casale per la preparazione delle slides Quantità di moto ed impulso

Dettagli

Decelerazione in frenata e proiezione di calcolo. Corso base. = ----------------- v. Weg. accelerazione. tempo. accelerazione.

Decelerazione in frenata e proiezione di calcolo. Corso base. = ----------------- v. Weg. accelerazione. tempo. accelerazione. Deceleraione in frenata e proieione di Introduione Un automeo in marcia possiede una determinata energia di movimento (Ekin), il cui dimensionamento dipende sostanialmente dalla massa dell'autoveicolo

Dettagli

Durante l inverno, per garantire la massima sicurezza su strada, sono meglio le catene da neve o gli pneumatici da neve?

Durante l inverno, per garantire la massima sicurezza su strada, sono meglio le catene da neve o gli pneumatici da neve? Durante l inverno, per garantire la massima sicurezza su strada, sono meglio le catene da neve o gli pneumatici da neve? Assocatene, associazione italiana dei produttori di catene da neve, fa finalmente

Dettagli

ELEMENTI DI CINEMATICA Una volta fissato un sistema di riferimento con la sua origine O è possibile descrivere in ogni istante la posizione del punto

ELEMENTI DI CINEMATICA Una volta fissato un sistema di riferimento con la sua origine O è possibile descrivere in ogni istante la posizione del punto ELEMENTI DI CINEMATICA Una volta fissato un sistema di riferimento con la sua origine O è possibile descrivere in ogni istante la posizione del punto P al passare del tempo t per mezzo della terna di coordinate

Dettagli

Convincere dei neopatentati dell importanza dell uso delle cinture di sicurezza

Convincere dei neopatentati dell importanza dell uso delle cinture di sicurezza Convincere dei neopatentati dell importanza dell uso delle cinture di sicurezza Classe 2 A Istituto Agrario L. Perdisa Ravenna Anno scolastico 2016/2017 DEFINIZIONE ED INTRODUZIONE DEL PROBLEMA Il lavoro

Dettagli

Esercitazioni di Fisica Corso di laurea in Biotecnologie e Geologia

Esercitazioni di Fisica Corso di laurea in Biotecnologie e Geologia Esercitazioni di Fisica Corso di laurea in Biotecnologie e Geologia Ninfa Radicella ninfa.radicella@sa.infn.it Università degli Studi del Sannio 30 Marzo 2016 Testi utilizzabili Principi di Fisica, Vol

Dettagli

Principi base dei sistemi frenanti. Toyota Motor Italia S.p.A.

Principi base dei sistemi frenanti. Toyota Motor Italia S.p.A. Principi base dei sistemi frenanti 2/37 Fondamenti Cosa accade in frenata? 3/37 Fondamenti Cosa accade in curva? Accelerazione/decelerazione (marcia in rettilineo) 4/37 Accelerazione TRC F = m x a Zona

Dettagli

FISICA per il C.d.L. in Scienze Biologiche Prof.ssa S. Corezzi (Cinematica-Dinamica-Elettrostatica-Magnetostatica-Fluidi-Teoria degli errori)

FISICA per il C.d.L. in Scienze Biologiche Prof.ssa S. Corezzi (Cinematica-Dinamica-Elettrostatica-Magnetostatica-Fluidi-Teoria degli errori) FISICA per il C.d.L. in Scienze Biologiche Prof.ssa S. Corezzi (Cinematica-Dinamica-Elettrostatica-Magnetostatica-Fluidi-Teoria degli errori) APPELLO n.3 Data: 24 Febbraio 2016, ore 9:30 Tempo Disponibile:

Dettagli

m = 53, g L = 1,4 m r = 25 cm

m = 53, g L = 1,4 m r = 25 cm Un pendolo conico è formato da un sassolino di 53 g attaccato ad un filo lungo 1,4 m. Il sassolino gira lungo una circonferenza di raggio uguale 25 cm. Qual è: (a) la velocità del sassolino; (b) la sua

Dettagli

Movimento dei corpi 1

Movimento dei corpi 1 Movimento dei corpi 1 1. Corpo in quiete e corpo in moto Un corpo rispetto a un sistema di riferimento si dice in moto se cambia la sua posizione nel tempo; si dice in quiete se non cambia la sua posizione

Dettagli

Esercizio (tratto dal Problema 1.3 del Mazzoldi)

Esercizio (tratto dal Problema 1.3 del Mazzoldi) Esercizio tratto dal Problema.3 del Mazzoldi) In un rally automobilistico un pilota deve percorrere nel minor tempo possibilie un tratto d Km, partendo ed arrivando da fermo. Le caratteristiche dell auto

Dettagli

Liceo Scien co Paritario R. Bruni Padova, 27/10/2012 a.s. 2012/2013 classe I COMPITO DI FISICA

Liceo Scien co Paritario R. Bruni Padova, 27/10/2012 a.s. 2012/2013 classe I COMPITO DI FISICA Liceo Scien co Paritario R. Bruni Padova, 27/10/2012 Cognome e nome 1) Segna la risposta corre'a. Quali delle seguen scri'ure è errata? (a) (52,35 ± 0,1) cm (b) (216 ± 4) m (c) (87,3 ± 0,2) g (d) (8,40

Dettagli

Nozioni di meccanica classica

Nozioni di meccanica classica Nozioni di meccanica classica CORSO DI LAUREA IN TECNICHE DI RADIOLOGIA MEDICA, PER IMMAGINI E RADIOTERAPIA - Prof. Marco Maggiora Jacopo Pellegrino - jacopo.pellegrino@infn.it Introduzione Introduzione

Dettagli

COME AFFRONTARE UN PROBLEMA DI FISICA?

COME AFFRONTARE UN PROBLEMA DI FISICA? COME AFFRONTARE UN PROBLEMA DI FISICA? Bisogna anzitutto tener conto che un problema CONTIENE NEL TESTO INFORMAZIONI NECESSARIE ALLA SOLUZIONE. A volte si fa riferimento a costanti o valori che VANNO CONOSCIUTI

Dettagli

Anno Scolastico Classe 2^DS

Anno Scolastico Classe 2^DS Anno Scolastico 205-6 Classe 2^DS DISCIPLINA FISICA DOCENTE ZENOBI ANTONELLA Libro di testo: Fisica! Le regole del gioco, autori Caforio-Ferilli, ed. Le Monnier I vettori Definizione di vettore, componenti

Dettagli

!!!! E quella parte della meccanica che studia il movimento di un corpo indagandone le cause che l hanno prodotto

!!!! E quella parte della meccanica che studia il movimento di un corpo indagandone le cause che l hanno prodotto E quella parte della meccanica che studia il movimento di un corpo indagandone le cause che l hanno prodotto La dinamica è fondata su tre princìpi fondamentali: Il PRIMO PRINCIPIO, o principio di inerzia;

Dettagli

Le caratteristiche del moto. Un corpo è in moto se, rispetto ad un sistema di riferimento, cambia la posizione con il passare del tempo.

Le caratteristiche del moto. Un corpo è in moto se, rispetto ad un sistema di riferimento, cambia la posizione con il passare del tempo. Il Mot Le caratteristiche del moto Un corpo è in moto se, rispetto ad un sistema di riferimento, cambia la posizione con il passare del tempo. Le caratteristiche del moto Immagina di stare seduto in treno

Dettagli

Classe 3^AL a.s. 2014/15 Fisica - prof.ssa Silvana Castiglioni

Classe 3^AL a.s. 2014/15 Fisica - prof.ssa Silvana Castiglioni ISTITUTO DI ISTRUZIONE SECONDARIA DANIELE CRESPI Liceo Internazionale Classico e Linguistico VAPC02701R Liceo delle Scienze Umane VAPM027011 Via G. Carducci 4 21052 BUSTO ARSIZIO (VA) Tel. 0331 3325 -

Dettagli

Norme sulla velocità Pericolo e intralcio alla circolazione limiti di velocità - distanza di sicurezza

Norme sulla velocità Pericolo e intralcio alla circolazione limiti di velocità - distanza di sicurezza 7 CAPITOLO Norme sulla velocità Pericolo e intralcio alla circolazione limiti di velocità - distanza di sicurezza %% Norme sulla velocità %% Pericolo e intralcio alla circolazione %% Limiti di velocità

Dettagli

Insegnamento di Fondamenti di Infrastrutture viarie

Insegnamento di Fondamenti di Infrastrutture viarie Insegnamento di Fondamenti di Infrastrutture viarie Territorio ed infrastrutture di trasporto La meccanica della locomozione: questioni generali Il fenomeno dell aderenza e l equazione generale del moto

Dettagli

UNIVERSITA DEL SANNIO CORSO DI FISICA 1 ESERCIZI DINAMICA I

UNIVERSITA DEL SANNIO CORSO DI FISICA 1 ESERCIZI DINAMICA I UNIVERSITA DEL SANNIO CORSO DI FISICA 1 ESERCIZI DINAMICA I 1. La tensione alla quale una lenza si spezza è comunemente detta resistenza della lenza. Si vuole calcolare la resistenza minima T min che deve

Dettagli

Modulo di Fisica (F-N) A.A MECCANICA

Modulo di Fisica (F-N) A.A MECCANICA Modulo di Fisica (F-N) A.A. 2016-2017 MECCANICA COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. COSA E LA MECCANICA? Viene tradizionalmente suddivisa in: CINEMATICA DINAMICA

Dettagli

Lavoro ed energia. Daniel Gessuti

Lavoro ed energia. Daniel Gessuti Lavoro ed energia Daniel Gessuti indice 1 Lavoro e potenza 1 Lavoro di una forza costante 1 Lavoro di una forza non costante 2 Potenza 3 2 Forme di energia 4 Energia cinetica 4 Energia potenziale gravitazionale

Dettagli

Compiti per le vacanze di FISICA. Indicazioni per il recupero e per il consolidamento di MATEMATICA

Compiti per le vacanze di FISICA. Indicazioni per il recupero e per il consolidamento di MATEMATICA ISTITUTO DI ISTRUZIONE SECONDARIA DANIELE CRESPI Liceo Internazionale Classico e Linguistico VAPC02701R Liceo delle Scienze Umane VAPM027011 Via G. Carducci 4 21052 BUSTO ARSIZIO (VA) www.liceocrespi.it-tel.

Dettagli