AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n."

Transcript

1 AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert un bse nel dominio V ed un nel condominio V, eventulmente eguli fr loro, esiste un ben determint mtrice qudrt A di ordine n egule ll dimensione di V. Allor ogni endomorfismo f : V V si può rppresentre come Y = A X con X e Y mtrici colonn delle coordinte dei vettori v e f(v) rispetto ll bse scelt in V e A mtrice qudrt ssocit d f. Si f : V V un endomorfismo di V in sé. Si dice utovettore di f ogni vettore v V tle che. v. f(v) = v con R. Lo sclre viene detto utovlore di f e v chimsi utovettore reltivo ll utovlore. Ciò signific che l immgine di v trmite f è un multiplo di v stesso. L insieme degli utovlori di f si dice spettro di f. Si osservi che l condizione ) è essenzile; inftti se così non fosse tutti i numeri reli c srebbero utovlori corrispondenti v =, in qunto f() = c è un identità sempre verifict qulunque si c R. Sussiste il seguente teorem: L insieme V() costituito dl vettore nullo e d tutti gli utovettori di f reltivi ll utovlore è un sottospzio vettorile di V. Il sottospzio V() costituito dl vettore nullo e d tutti gli utovettori di f reltivi ll utovlore si dice utospzio reltivo ll utovlore. Per qunto osservto il sottospzio V() non può ridursi l solo vettore nullo e pertnto dim V(). Inoltre si dice molteplicità geometric di, e si indic con m g () l dim V().

2 Dimostrimo or il seguente teorem: Si f : V V un endomorfismo di V in sé. Se v, v,,v n sono utovettori reltivi,,, n utovlori distinti tr loro, llor v, v,,v n sono linermente indipendenti. Dimostrzione Procedimo per induzione. Se n =, l utovettore v è diverso dl vettore nullo (per definizione) e quindi è linermente indipendente. Si n > e supponimo che, se v, v,,v n- sono utovettori reltivi gli utovlori,,, n- distinti tr loro, essi sino linermente indipendenti. Si llor v n un utovetture reltivo ll utovlore n distinto d,,, n- e supponimo, per ssurdo, che v n dipend linermente d v, v,,v n-, cioè che si: () v n = α v + α v + + α n- v n- Applicndo l endomorfismo f d mbo i membri dell () si ottiene: () f(v n ) = n v n = α ( v ) + α ( v )+ + α n- ( n- v n- ) Sostituendo l () nell () si ottiene: α ( n - )v + α ( n - )v + + α n- ( n - n- )v n- = Poichè n,,, n- e v, v,,v n- sono linermente indipendenti per l ipotesi induttiv, si h α = α = = α n- =. Dll () llor risult v n = contro l ipotesi che v n si utovettore. Quindi v, v,,v n sono linermente indipendenti. Inoltre si h che: Se dim V = n, ogni endomorfismo f : V V h l più n utovlori distinti. Vedimo come si possono determinre gli utovlori e gli utovettori di un endomorfismo. Si f : V V un endomorfismo di V in sé. Indict con A l mtrice ssocit d f rispetto d un bse B = { u, u,,u n } di V, se x è un utovettore reltivo ll utovlore e se X indic l mtrice colonn delle coordinte di x rispetto B, dll essere Y = A X

3 risult A X = X. In ltre prole se A è un mtrice qudrt di ordine n, x R n è un utovettore di A con utovlore A x = x. ESEMPI Ogni vettore x è utovettore dell mtrice identità I con utovlore. Inftti Ix = x x quindi lo spettro dell identità è { }. Generlizzndo Per ogni numero rele c ogni vettore x è utovetture dell mtrice ci con utovlore c. Inftti risult (ci) x = cx x e lo spettro di ci è { c }. Se c = si h lo spettro dell mtrice zero. Indict con I l mtrice identità d A x = x si ottiene A x - I x = (A - I)x = () L () rppresent un sistem linere omogeneo di n equzioni in n incognite del tipo: ( - )x + x + + n x n = x + ( - )x + + n x n =.. n x + n x + + ( nn - ) x n =. Tle sistem h soluzioni non nulle, essendo x diverso d zero, qundo det (A - I) = cioè... det (A - I) =... n Sviluppndo tle determinnte si ottiene un equzione di grdo n in, dett equzione crtteristic.... n nn n n... = 3

4 n n n p () = n = il polinomio p () è detto polinomio crtteristico. Per il teorem fondmentle dell Algebr quest equzione mmette n soluzioni,,, n che rppresentno gli utovlori di A. Pertnto Se A è un mtrice qudrt di ordine n, un numero rele è utovlore di A se e solo se det (A - I) = Si dice molteplicità lgebric di un utovlore, e si indic con m (), l molteplicità di come rdice del polinomio crtteristico, cioè il numero di volte che compre come soluzione dell equzione crtteristic. Si h che: n i= m ( i ) = n Sussiste inoltre il seguente teorem: Se f : V V è un endomorfismo di V in sé e è un suo utovlore llor risult m g ( ) m ( ) ESEMPI. Si clcolino gli utovlori dell seguente mtrice 3 Soluzione Detto un utovlore di A deve essere det (A - I) = con I mtrice identic di ordine. Sino A = I = I = 3 Deve essere A - I = 3 det (A - I) = = 3 4

5 Quindi det (A - I) = ( - )( - ) 6 = = = ( + )( - 4) = det (A - I) = = - e = 4 Pertnto gli utovlori di A sono = - e = 4. Determinimo gli utovettori reltivi ll utovlore = -. Considerimo il sistem linere reltivo ll equzione (A + I)x = Essendo, per = - (A + I) = 3 3 il sistem ssocito d (A +I) è: Esso mmette infinite soluzioni. Posto x = y si h : x y = -3x + 3y = x = α y = α pertnto gli infiniti utovettori reltivi ll utovlore = - sono x = α Per = 4 si ottiene 3 (A - 4I) = 3 il sistem ssocito d (A 4I) è: -3x y = -3x - y = Esso mmette infinite soluzioni. Posto x = - y si h : 3 x = -3α y = α 3 pertnto gli infiniti utovettori reltivi ll utovlore = - sono x = α.. Si A = Clcolimo i suoi utovlori, gli utospzi reltivi gli utovlori e verifichimo che gli utovettori ssociti gli utovlori sono linermente indipendenti. 5

6 Soluzione A - I = det(a -I) = = ( ) ( ) = ( )( ) ( )( )( ) = + = + Gli utovlori di A quindi sono = -, =, 3 =. Clcolimo gli utovettori reltivi = - (A + I) = Il sistem ssocito d (A +I) è: x + z= - x + y+z = Esso mmette infinite soluzioni. Posto x 3 = z, x = y, x = x si h: x+ z= z = x 3 x = - 3 x = - x 3 Quindi l utospzio ssocito = - è costituito di vettori x = x 3 3, con x 3 R Con procedimento nlogo si ottiene che l utospzio ssocito = è costituito di vettori x = x, con x R e l utospzio ssocito 3 = è costituito di vettori x = x, con x R. 6

7 Verifichimo che i tre utovettori ssociti i tre distinti utovlori sono linermente indipendenti. Bst fr vedere che det 3. E si ottiene det 3 = Si A = clcolimo i suoi utovlori, gli utospzi reltivi gli utovlori e verifichimo se gli utovettori ssociti gli utovlori sono linermente indipendenti. Soluzione det(a -I) = = ( ) = = - Quindi = - è utovlore di A. Clcolimo (A + I) =. L utospzio ssocito si ottiene risolvendo x = x d cui si h che l utovettore reltivo ll utovlore = - è x x = = x, con x R, d ciò è immedito che non è possibile trovre due utovettori linermente indipendenti tr loro. Il polinomio crtteristico p () di un mtrice qudrt A di ordine n gode delle seguenti proprietà: p () h grdo n e il coefficiente di n è (-) n ; n n il coefficiente di è ( ) ii il termine noto è det(a), cioè n = det(a) i indicti con,,, n gli utovlori di A risult det(a) = n. 7

8 ESEMPI 3. Esistono mtrici reli che non hnno utovlori reli. Ogni mtrice rele 3 3 h lmeno un utovlore rele. Inftti se A è un mtrice rele, il suo polinomio crtteristico è coefficienti reli. Se A è dell ordine 3, il polinomio crtteristico h grdo 3 e, quindi, per il teorem di Bolzno-Weierstrss, h lmeno un rdice: l funzione rele p () ssume vlori positivi e negtivi ed è continu; quindi il suo grfico intersec l sse delle scisse. Se invece considerimo l mtrice A = e det(a - I) = p() = Il polinomio crtteristico è p () = +, che non h rdici reli, m solo le due rdici complesse i e -i.. Considerimo l mtrice un suo utovlore è: det(a - I) = 3 5 A = 3 5 = ( - ) 3 = = il polinomio crtteristico è p () = ( - ) 3 = ; esso h grdo 3 (ordine dell mtrice A) e il coefficiente di 3 è (-) 3 = - mentre il coefficiente di è (-) ( + + ) = 3 n = = det(a) essendo gli utovlori = = 3 =, det(a) = = l molteplicità lgebric m () = m () = 3 Proprietà degli utovlori Si A un mtrice qudrt di ordine n e un suo utovlore llor: A e A T (trspost di A) hnno gli stessi utovlori Se A è non singolre llor - è utovlore di A - p è utovlore di A p p N se A è ortogonle llor = = è utovlore di A det(a) = 8

9 gli utovlori di mtrici digonli e tringolri (inferiori e superiori) sono gli elementi dell digonle principle. Due mtrici qudrte A e B di ordine n si dicono simili se esiste un mtrice non singolre S tle che B = S A S - Si può dimostrre che L similitudine tr mtrici è un relzione di equivlenz. Sussiste l seguente proposizione: se A e B sono mtrici simili, llor det(a - I) = det(b - I) quindi A e B hnno gli stessi utovlori con l stess m (). Teorem Sino A e B due mtrici simili. Allor esse hnno gli stessi utovlori con l stess molteplicità lgebric e l stess molteplicità geometric. Dimostrzione Sino A e B due mtrici simili e si un utovlore di entrmbe. Fissimo un mtrice non singolre S tle che B = S A S - Se v V A (), ponimo f(v) = S - v. llor risult B f(v) = B S - v = S - S B S - v = S - A v = S - v = (S - v) = f(v) e pertnto f(v) V B (). In ltri termini bbimo definito un ppliczione linere f: V A () V B (). Anlogmente si può definire g: V B () V A () ponendo per w V B () g(w) = S w. E immedito llor che l ppliczione compost g f è l ppliczione identic su V A () e che f g è l ppliczione identic su V B (). Quindi gli spzi V A () e V B () sono isomorfi e pertnto hnno l stess dimensione, cioè l stess molteplicità lgebric e geometric. Dto un endomorfismo f : V V essso si dice digonlizzbile se è possibile trovre un bse B di V rispetto ll qule l mtrice qudrt ssocit d f è un mtrice digonle. Un mtrice qudrt A di ordine n è non singolre (o regolre) se r(a) = n, cioè se A h rngo mssimo, cioè ncor se det(a) ; in cso contrrio A si dice singolre. 9

10 Sussiste l seguente: Condizione necessri e sufficiente ffinché un endomorfismo f : V V si digonlizzbile è che esiste un bse B di V costituit d utovettori. Dimostrzione Se f : V V è digonlizzbile e A = n è l mtrice ssocit d f rispetto d un bse B = {u, u,, u n,} di V, si h: f(u ) = u, f(u ) = u,, f(u n ) = n u n cioè i vettori u, u,, u n sono gli utovettori ssociti gli utovlori,,, n. Vicevers, se B = {u, u,, u n,} è un bse di utovettori di V reltiv gli utovlori,,, n rispettivmente, llor si h f(u ) = u, f(u ) = u,, f(u n ) = n u n Quindi l mtrice ssocit d f rispetto B è proprio l mtrice digonle A. Se f è digonlizzbile llor l mtrice d ess ssocit rispetto d un bse di utovettori è un mtrice digonle l cui digonle principle è costituit dgli utovlori corrispondenti, rispettivmente, gli utovettori dell bse. Si dimostr che Se f è un endomorfismo di V in sé digonlizzbile, llor il suo polinomio crtteristico h solo rdici reli. Vle inoltre l seguente: Condizione necessri e sufficiente perché un endomorfismo f di V in sé si digonlizzbile è che. il polinomio crtteristico bbi solo rdici reli. per ogni utovlore di f risulti m () = m g (). L digonlizzbilità può essere definit nche in termini di mtrici. Un mtrice qudrt A si dice digonlizzbile se e solo se è simile d un mtrice digonle, cioè se esistono un mtrice non singolre S ed un mtrice digonle D tli che: D = S A S -

11 Si dimostr il seguente teorem: Un mtrice A è digonlizzbile se e solo se mmette n utovettori linermente indipendenti. Esempi 4. L mtrice dell esempio. è digonlizzbile. Inftti possiede tre utovettori linermente indipendenti che formno l mtrice 3 S = ponendo risult A = S D S -. D = Non tutte le mtrici sono digonlizzbili: l mtrice dell esempio 3. non lo è, non possedendo due utovettori linermente indipendenti.. Si dto l endomorfismo f : R 3 R 3 tle che: f(x, y, z) = (x y +z, y, -z) (x, y, z) R 3. ) Trovre gli utovlori e gli utovettori di f b) Stbilire se f è digonlizzbile. Soluzione ) L mtrice ssocit d f rispetto ll bse B = {u, u, u 3,} di R 3 è: A = Il det(a) = - e quindi r(a) = 3. Gli utovlori di f sono le soluzioni reli dell equzione crtteristic det(a - I) = ovvero = d cui ( - ) ( - ) ( - - ) = Essi sono =, =, 3 = -.

12 Gli utovettori corrispondenti ll utovlore = sono le soluzioni del sistem ottenuto dll (A - I) X = in cui si è posto = : -y +z = y = -z = Quindi si ottengono le infinite soluzioni k k R -{}; pertnto gli utovettori ssociti ll utovlore = sono x = k Anlogmente per = si ottiene il sistem -x y +z = = -3z = d cui si ottengono gli utovettori x = h h R - {}. Infine per 3 = - si h il sistem x y +z = 3y = = dl qule si ottengono gli utovettori x = t t R - {}. b) L endomorfismo f è digonlizzbile poiché mmette tre utovettori reli e distinti. Pertnto esiste un bse di utovettori di f rispetto ll qule l mtrice che rppresent f è un mtrice digonle.

APPLICAZIONI LINEARI e MATRICI ASSOCIATE

APPLICAZIONI LINEARI e MATRICI ASSOCIATE APPLICAZIONI LINEARI e MATRICI ASSOCIATE Dt un ppliczione f: V W con V e W spzi vettorili si dice che f è un ppliczione linere o omomorfismo f(v + v 2 ) = f(v ) + f(v 2 ) v, v 2 V f(αv) = α f(v) v V e

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Salvatore Loris Pelella. Corso di. Matematica RCS LIBRI EDUCATION SPA

Salvatore Loris Pelella. Corso di. Matematica RCS LIBRI EDUCATION SPA Slvtore Loris Pelell Corso di Mtemtic RCS LIBRI EDUCATION SPA ISBN 88-45-084-3 004 RCS Libri S.p.A.- Milno Prim edizione: gennio 004 Ristmpe 004 005 006 3 4 5 Stmp: V. Bon, Torino Coordinmento editorile

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. DEFINIZIONE DI APPLICAZIONE LINEARE. Sio V e W due spzi vettorili su u medesimo cmpo K. Si :V W u ppliczioe di V i W. Si dice che l è u ppliczioe liere di V i W se soo veriicte

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003 Liceo Scientifico Sperimentle nno - Problem Bernrdo Pedone ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI nno - PROBLEMA Nel pino sono dti: il cerchio γ di dimetro OA =, l rett t tngente γ

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 005 Sessione suppletiv Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PROBLEMA Sono dti un pirmide

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

Equivalenza tra equazioni di Lagrange e problemi variazionali

Equivalenza tra equazioni di Lagrange e problemi variazionali Equivlenz tr equzioni di Lgrnge e problemi AM Cherubini 20 Aprile 2007 1 / 21 Problemi Mostrimo or come si possono ricvre sistemi di equzioni con struttur lgrngin in un mbito diverso: prim si er crtterizzt

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 20 20.1. Prodotti sclri. Definizione 20.1.1. Si V uno spzio vettorile su R. Un prodotto sclre su V è un ppliczione tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia COME SOPRAVVIVERE ALLA MATEMATICA di Giuli Cnzin e Dominique Cppelletti Come potrete notre inoltrndovi nel corso di Introduzione ll economi, l interpretzione dell teori economic non presuppone conoscenze

Dettagli

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti:

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti: Minori di un mtrice Si A K m,n, si definisce minore di ordine p con p N, p

Dettagli

Appunti di Analisi Matematica 1

Appunti di Analisi Matematica 1 Appunti di Anlisi Mtemtic 1 MASTER IN ECONOMIA DIGITALE & e-business Centro per lo studio dei sistemi complessi Università di Sien Mrzo 2005 Prof. Polo Nistri Un funzione (o ppliczione) tr due insiemi

Dettagli

Operazioni sulle Matrici

Operazioni sulle Matrici Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione 9 Ottore Operzioni sulle Mtrici F. Cliò Addizione e Sottrzione Lezione 9 Ottore Operzioni sulle Mtrici Pgin Addizione

Dettagli

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes I Teoremi di Green, dell divergenz o di Guss e di Stokes In R Si un sottoinsieme limitto di R semplice rispetto d entrmbi gli ssi crtesini con costituit dll unione di un numero finito di sostegni di curve

Dettagli

Successioni di funzioni

Successioni di funzioni Successioni di funzioni 3.1 Introduzione Considerimo l successione (x n ) n0,icuiterminisono 1, x,x 2,x 3,..., x n,... Si trtt dell progressione geometric di termine inizile 1 e rgione x, che bbimo già

Dettagli

Scuola di Dottorato in Scienze e Tecnologie dell Informazione e della Comunicazione.

Scuola di Dottorato in Scienze e Tecnologie dell Informazione e della Comunicazione. T. ZOLZZI. Appunti del corso di Introduzione ll Anlisi Funzionle Scuol di Dottorto in Scienze e Tecnologie dell Informzione e dell Comuniczione. NOTA. L utore desider ringrzire le studentesse di dottorto,

Dettagli

Facoltà di Ingegneria

Facoltà di Ingegneria UNIVERSITA DEGLI STUDI DI CAGLIARI Fcoltà di Ingegneri Corso di Lure Specilistic in Ingegneri per l Ambiente e il Territorio TESINA DI CALCOLO NUMERICO Anlisi dell errore nei metodi di risoluzione dei

Dettagli

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Esame di Geometria (Prof. F. Tovena) Argomenti: Proprietà di nucleo e immagine di una applicazione lineare. dim V = dim

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

Equazioni parametriche di primo grado

Equazioni parametriche di primo grado Polo Sivigli Equzioni prmetriche di primo grdo Premess Come si s dll lgebr elementre, si chim equzione un uguglinz fr due espressioni letterli che si verific soltnto ttribuendo prticolri vlori lle lettere,

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

Appunti di Analisi matematica 1. Paolo Acquistapace

Appunti di Analisi matematica 1. Paolo Acquistapace Appunti di Anlisi mtemtic Polo Acquistpce 23 febbrio 205 Indice Numeri 4. Alfbeto greco................................. 4.2 Insiemi..................................... 4.3 Funzioni....................................

Dettagli

Definizioni fondamentali

Definizioni fondamentali Definizioni fondmentli Sistem scisse su un rett 1 Un rett si ce orientt qundo su ess è fissto un verso percorrenz Dti due punti qulsisi A e B un rett orientt r, il segmento AB che può essere percorso d

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna verso LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI secondo GRADO PROVA DI Mtemtic 30 quesiti Febbrio 0 Scuol... Clsse... Alunno... e b sono numeri reli che verificno quest uguglinz: Qunto vle il loro prodotto?

Dettagli

Elementi grafici per Matematica

Elementi grafici per Matematica Elementi grfici per Mtemtic Sommrio: Sistemi di coordinte crtesine... Grfici di funzioni... 4. Definizione... 4. Esempi... 5.3 Verificre iniettività e suriettività dl grfico... 8.4 L rett... 9.5 Esempi

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

F (r(t)), d dt r(t) dt

F (r(t)), d dt r(t) dt Cmpi vettorili Un cmpo vettorile è un funzione vlori vettorili F : A R, con A R n, ove in questo cso l imensione el ominio e el coominio è l stess. F ( 1, 2,..., n ) (f 1 ( 1, 2,..., n ), f 2 ( 1, 2,...,

Dettagli

TEORIA ELEMENTARE DEL PROBLEMA DI CAUCHY

TEORIA ELEMENTARE DEL PROBLEMA DI CAUCHY TEORIA ELEMENTARE DEL PROBLEMA DI CAUCHY DANIELE ANDREUCCI DIP. METODI E MODELLI, UNIVERSITÀ LA SAPIENZA VIA A.SCARPA 16, 00161 ROMA, ITALY ndreucci@dmmm.unirom1.it 1. Notzione fondmentle e prime definizioni

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stbilità dei sistemi di controllo in retrozione Criterio di Nyquist Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 Criterio di Nyquist Stbilità

Dettagli

Integrali curvilinei e integrali doppi

Integrali curvilinei e integrali doppi Integrli curvilinei e integrli doppi Integrli curvilinei di prim specie Prim di inizire l trttzione di questo rgomento dimo l definizione di curv. Per curv nello 3 3 spzio R intendimo un sottoinsieme di

Dettagli

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è:

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è: 1) In un equzione differenzile del tipo y (t)= y(t), con > 0, il tempo di rddoppio, cioè il tempo T tle che y(t+t)=y(t) è: A) T = B) 1 T = log e C) 1 T = log e ** D) 1 T = E) T = log e ) L equzione differenzile

Dettagli

Topologia Algebrica e Analisi Complessa

Topologia Algebrica e Analisi Complessa Ginluc Occhett Note di Topologi Algeric e Anlisi Compless Diprtimento di Mtemtic Università di Trento Vi Sommrive 14 38050 - ovo (TN) Not per l lettur Queste note rccolgono gli rgomenti (lcuni vriili

Dettagli

ESPONENZIALI LOGARITMI

ESPONENZIALI LOGARITMI ESPONENZIALI LOGARITMI Prerequisiti: Conoscere e sper operre con potenze con esponente nturle e rzionle. Conoscere e sper pplicre le proprietà delle potenze. Sper risolvere equzioni e disequzioni. Sper

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

Il calcolo integrale: intro

Il calcolo integrale: intro Il clcolo integrle: intro Le ppliczioni del clcolo integrle sono svrite: esistono, inftti, molti cmpi, dll fisic ll ingegneri, dll iologi ll economi, in cui si f lrgo uso degli integrli. Per fornire l

Dettagli

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per Funzioni di utilità (finlmente un po di geroglifici, dopo i grffiti) NB: non fte leggere queste pgine un mtemtico, ltrimenti mi msscr!. Definizione e proprietà Considerimo due eni e di interesse per un

Dettagli

1.1 Insegnamento apprendimento della cinematica e della statica dei sistemi di travi: parole chiave

1.1 Insegnamento apprendimento della cinematica e della statica dei sistemi di travi: parole chiave DIDATTICA DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA MODULO UNO LA CINEMATICA E LA STATICA DEI SISTEMI DI TRAVI MODULO PER LO SPECIALIZZANDO Modulo 0 IN QUESTO MODULO:. Insegnmento pprendimento

Dettagli

Esercizi sulle curve in forma parametrica

Esercizi sulle curve in forma parametrica Esercizi sulle curve in form prmetric Esercizio. L Elic Cilindric. Dt l curv di equzioni prmetriche: xt cos t yt sin t t 0 T ] > 0 b IR zt bt trovre: versore tngente normle binormle vettore curvtur rggio

Dettagli

Problemi di Sturm-Liouville

Problemi di Sturm-Liouville Problemi di Sturm-Liouville Alberto Tibldi 11 dicembre 2012 1 Introduzione e definizioni generli Nell mbito di problemi fisici/ingegneristici, spesso si h che fre con equzioni lle derivte przili (PDE:

Dettagli

Teoria in sintesi ESPONENZIALI. Potenze con esponente reale. La potenza. Sono definite: Non sono definite: Casi particolari :

Teoria in sintesi ESPONENZIALI. Potenze con esponente reale. La potenza. Sono definite: Non sono definite: Casi particolari : Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >, per ogni R se, per tutti e soli gli R se

Dettagli

Problemi e rappresentazione di problemi di geometria dello spazio - Claudio Cereda febbraio 2001 pag. 1

Problemi e rappresentazione di problemi di geometria dello spazio - Claudio Cereda febbraio 2001 pag. 1 Prolemi e rppresentzione di prolemi di geometri dello spzio - ludio ered ferio 00 pg. onvenzioni di disegno e di rppresentzione Nel corso dell trttzione si dotternno le seguenti convenzioni simoliche:

Dettagli

Manuale Generale Sintel Guida alle formule di aggiudicazione

Manuale Generale Sintel Guida alle formule di aggiudicazione MANUALE DI SUPPOTO ALL UTILIZZO DELLA PIATTAFOMA SINTEL GUIDA ALLE FOMULE DI AGGIUDICAZIONE Pgin 1 di 21 AGENZIA EGIONALE CENTALE ACQUISTI Indice 1 INTODUZIONE... 3 1.1 Cso di studio... 4 2 FOMULE DI CUI

Dettagli

I costi dell impresa. Litri di benzene per unità di tempo. Linea di isocosto

I costi dell impresa. Litri di benzene per unità di tempo. Linea di isocosto 7 I costi dell impres 7.1. Per l combinzione di equilibrio dei due input, si ved il grfico successivo. L pendenz dell line di isocosto e` pri ll opposto del rpporto tr i prezzi dei fttori: -10 = 2 = -5.

Dettagli

CORSO DI METODI MATEMATICI PER L INGEGNERIA MECCANICA

CORSO DI METODI MATEMATICI PER L INGEGNERIA MECCANICA CORSO DI METODI MATEMATICI PER L INGEGNERIA MECCANICA. ALCUNE NOZIONI E STRUMENTI PRELIMINARI -RICHIAMI SUGLI SPAZI VETTORIALI Ricordimo che u vettore i R (o C ) e u -upl ordit di umeri reli (o complessi)

Dettagli

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S Sessione ordinri 996 Liceo di ordinmento Soluzione di De Ros Nicol ) In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le prbole di equzione:, dove è un numero rele positivo.

Dettagli

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x)

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x) Nome.Cognome Clsse D 7 Aprile 0 Verific di mtemtic Problem (punti ) Sono dte le funzioni: f ( ) =, g ( ) = ( ) ) determinre il dominio di f() e di g() b) determinre, senz l uso dell clcoltrice f ( ) c)

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI 1 se 0, per ogni R ; Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >0: Sono definite: se >0: Non sono definite: Csi prticolri: Le proprietà delle

Dettagli

-STRUTTURE DI LEWIS SIMBOLI DI LEWIS

-STRUTTURE DI LEWIS SIMBOLI DI LEWIS STRUTTURE DI LEWIS SIMBLI DI LEWIS ELETTRI DI VALEZA: sono gli elettroni del guscio esterno, i responsbili principli delle proprietà chimiche di un tomo e quindi dell ntur dei legmi chimici che vengono

Dettagli

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo:

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo: FUNZIONI MATEMATICHE Le relzioni mtemtihe utilizzte per desrivere fenomeni nturli, in iologi ome in ltre sienze, possono ovvimente essere le più svrite. Per lo più si trtt di equzioni lineri, qudrtihe,

Dettagli

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA Nome.Cognome. 8 Dicembre 008 Clsse G VERIFICA di MATEMATICA A) Risolvi le seguenti disequzioni goniometriche sin ) sin + ) 0 6 tn cos + sin ) 0 (punti:0,5) ) tn + tn > 0 sin 5) sin > cos (punti: ) 6) sin

Dettagli

ESERCIZI ESERCIZI. Test di autoverifica... 206 Prova strutturata conclusiva... 208 ESERCIZI

ESERCIZI ESERCIZI. Test di autoverifica... 206 Prova strutturata conclusiva... 208 ESERCIZI Indice cpitolo Insiemi ed elementi di logic... 7 8 Insiemi... Operzioni con gli insiemi... 8 Introduzione ll logic... 9 Connettivi e tvole di verità... Espressioni proposizionli... 0 Predicti e quntifictori...

Dettagli

Teorema della Divergenza (di Gauss)

Teorema della Divergenza (di Gauss) eorem dell ivergenz (di Guss) i un dominio tridimensionle regolre, l cui frontier è un superficie chius orientt con cmpo normle unitrionˆ uscente d. e F(,,z) F (,,z) i F (,,z) j F (,,z) k è un cmpo vettorile

Dettagli

] + [ ] [ ] def. ] e [ ], si ha subito:

] + [ ] [ ] def. ] e [ ], si ha subito: OPE OPERAZIONI BINARIE Definizione di operzione inri Dto un insieme A non vuoto, si him operzione (inri) su A ogni pplizione di A in A In generle, un'operzione su A viene indit on il simolo Se (x, y) è

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

METTITI ALLA PROVA. b. Posto che a, b e c siano i valori trovati al punto precedente, calcola: lim fx ( ); lim fx ( ).

METTITI ALLA PROVA. b. Posto che a, b e c siano i valori trovati al punto precedente, calcola: lim fx ( ); lim fx ( ). Mettiti ll prov METTITI ALLA PROVA Limiti e continuità b - + c e, c Si dt l funzione f ( ) se $ 0! = * sin, con b,! R, c! R + se 0 Ricv i vlori di, b e c in modo tle che: f() si continu in = 0 ; lim f

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI RICHIAMI DI TEORIA dom f Im f grfico Funzioni esponenzili y=^ con > Funzioni esponenzili y=^ con

Dettagli

Diagonalizzazione di matrici e applicazioni lineari

Diagonalizzazione di matrici e applicazioni lineari CAPITOLO 9 Diagonalizzazione di matrici e applicazioni lineari Esercizio 9.1. Verificare che v = (1, 0, 0, 1) è autovettore dell applicazione lineare T così definita T(x 1,x 2,x 3,x 4 ) = (2x 1 2x 3, x

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

Problemi di collegamento delle strutture in acciaio

Problemi di collegamento delle strutture in acciaio 1 Problemi di collegmento delle strutture in cciio Unioni con bulloni soggette tglio Le unioni tglio vengono generlmente utilizzte negli elementi compressi, quli esempio le unioni colonn-colonn soggette

Dettagli

8. Matrice inversa 21 Risoluzione dei sistemi lineari con il metodo della matrice inversa, 24

8. Matrice inversa 21 Risoluzione dei sistemi lineari con il metodo della matrice inversa, 24 Indice Mtrici e sistemi lineri. Mtrici Trspost di un mtrice, Mtrice digonle e mtrice unità, Mtrici tringolri,. Operzioni con le mtrici Addizioni di mtrici, Moltipliczione per un numero, Prodotto tr mtrici,

Dettagli

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti Problemi di mssimo e minimo in Geometri olid Problemi su poliedri Indice dei problemi risolti In generle, un problem si riferisce un figur con crtteristice specifice (p.es., il numero dei lti dell bse)

Dettagli

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli:

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli: Acidi Deboli Si definisce cido debole un cido con < 1 che risult perciò solo przilmente dissocito in soluzione. Esempi di cidi deboli: Acido cetico (H OOH) 1.75 1-5 Acido scorbico (vitmin ) 1 6.76 1-5.5

Dettagli

Introduzione all algebra

Introduzione all algebra Introduzione ll lgebr E. Modic ersmo@glois.it Liceo Scientifico Sttle S. Cnnizzro Corso P.O.N. Modelli mtemtici e reltà A.S. 2010/2011 Premess Codificre e Decodificre Nell vit quotidin ci cpit spesso di

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

ACCADEMIA NAVALE. Syllabus POLIGRAFICO ACCADEMIA NAVALE LIVORNO

ACCADEMIA NAVALE. Syllabus POLIGRAFICO ACCADEMIA NAVALE LIVORNO ACCADEMIA NAVALE Sllbus POLIGRAFICO ACCADEMIA NAVALE LIVORNO PREFAZIIONE È noto che in tluni ordini dell scuol medi superiore l'insegnmento dell mtemtic non giunge sino ll'ultimo nno, in ltri, lo svolgimento

Dettagli

DEBITI VERSO BANCHE 1 PREMESSA 2 CONTENUTO DELLA VOCE. Passivo SP D.4. Prassi Documento OIC n. 12; Documento OIC n. 19 2.

DEBITI VERSO BANCHE 1 PREMESSA 2 CONTENUTO DELLA VOCE. Passivo SP D.4. Prassi Documento OIC n. 12; Documento OIC n. 19 2. Cp. 49 - Debiti verso bnche 49 DEBITI VERSO BANCHE Pssivo SP D.4 Prssi Documento OIC n. 12; Documento OIC n. 19 1 PREMESSA I debiti verso bnche ricomprendono tutti quei debiti in cui l controprte è un

Dettagli

Rendite (2) (con rendite perpetue)

Rendite (2) (con rendite perpetue) Rendite (2) (con rendite perpetue) Esercizio n. Un ziend industrile viene vlutt ttulizzndo i redditi futuri dell gestione l tsso del 9% con inflzione null. I redditi prospettici vengono stimnti nell misur

Dettagli

QUADERNI DIDATTICI. Dipartimento di Matematica

QUADERNI DIDATTICI. Dipartimento di Matematica Università ditorino QUADERNI DIDATTICI del Diprtimento di Mtemtic G. Zmpieri Anlisi Vettorile.. 21/22 Quderno # 1 - Novembre 21........... Getno Zmpieri - Anlisi Vettorile 1 PREFAZIONE Questo quderno

Dettagli

Dispense di MATEMATICA PER L INGEGNERIA 4

Dispense di MATEMATICA PER L INGEGNERIA 4 ispense di MATEMATICA PER L INGEGNERIA 4 Qurto trimestre del o nno del Corso di Lure in Ingegneri Elettronic ocente: Murizio Romeo Mggio 25 ii Indice Integrzione delle funzioni di più vribili. Insiemi

Dettagli

Parte 6. Applicazioni lineari

Parte 6. Applicazioni lineari Parte 6 Applicazioni lineari A Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Applicazioni fra insiemi, 2 Applicazioni lineari tra spazi vettoriali, 2 3 Applicazioni lineari da R n a R

Dettagli

Edizione dicembre 2010 - Rev 0. Manuale per l applicazione dell immagine coordinata

Edizione dicembre 2010 - Rev 0. Manuale per l applicazione dell immagine coordinata Edizione dicembre 20 - Rev 0 Mnule per l ppliczione dell immgine coordint 1 Mnule per l ppliczione dell immgine coordint 1 Presentzione 2 Elementi bse Logotipo generico 3-4 Logotipo d personlizzre 5-8

Dettagli

Teoremi di geometria piana

Teoremi di geometria piana l congruenz teoremi sugli ngoli γ teorem sugli ngoli complementri Se due ngoli sono complementri di uno stesso ngolo α β In generle: Se due ngoli sono complementri di due ngoli congruenti α γ β teorem

Dettagli

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante Prof.. Di Muro Moto rettilineo uniformemente ccelerto ( m.r.u.. ) Il moto rettilineo uniformemente ccelerto è un moto che iene su un rett con ccelerzione costnte. Dll definizione di ccelerzione t t t t

Dettagli

CLASSI PRIME 2013/14

CLASSI PRIME 2013/14 LICEO SCIENTIFICO STATALE G.B. GRASSI CLASSI PRIME 2013/14 INDICAZIONI DI LAVORO PER LA SOSPENSIONE DEL GIUDIZIO IN FISICA Liceo scientifico e liceo delle scienze pplicte In relzione lle esigenze del secondo

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

Introduciamo il concetto di trasformazione geometrica prendendo come esempio una rotazione.

Introduciamo il concetto di trasformazione geometrica prendendo come esempio una rotazione. Le trsformzioni geometriche ITL 7 TERI Letture llo specchio! Ingegni, ossesso, nilin: tre esempi di plindromi, ovvero di prole che si possono leggere si d sinistr verso destr, si d destr verso sinistr.

Dettagli

3. Si determini l area del segmento parabolico di base AB e si verifichi che essa è 3

3. Si determini l area del segmento parabolico di base AB e si verifichi che essa è 3 MINIERO DELL'IRUZIONE,DELL'UNIERIÀ E DELLA RICERCA CUOLE IALIANE ALL EERO EAMI DI AO DI LICEO CIENIFICO essioe Ordiri s 00/005 ECONDA PROA CRIA em di Mtemtic Il cdidto risolv uo dei due problemi e quesiti

Dettagli

APPLICAZIONI LINEARI. B si definisce surriettiva. 9 quando ogni elemento di. B risulta IMMAGINE di. almeno un elemento di A.

APPLICAZIONI LINEARI. B si definisce surriettiva. 9 quando ogni elemento di. B risulta IMMAGINE di. almeno un elemento di A. APPLICAZIONI LINEARI Siano V e W due spazi vettoriali, di dimensione m ed n sullo stesso campo di scalari R. Una APPLICAZIONE ƒ : V W viene definita APPLICAZIONE LINEARE od OMOMORFISMO se risulta, per

Dettagli

LE RETTIFICHE DI STORNO

LE RETTIFICHE DI STORNO Cpitolo 11 LE RETTIFICHE DI STORNO cur di Alfredo Vignò Le scritture di rettific di fine esercizio Sono composte l termine del periodo mministrtivo per inserire nel sistem vlori stimti e congetturti di

Dettagli

Le equazioni di grado superiore al secondo

Le equazioni di grado superiore al secondo Le equzioni di grdo superiore l secondo ITIS Feltrinelli nno scolstico 007-008 R. Folgieri 007-008 1 Teorem fondmentle dell lger Ogni equzione lgeric di grdo n h sempre n soluzioni, che possono essere

Dettagli

LEZIONE 17. B : kn k m.

LEZIONE 17. B : kn k m. LEZIONE 17 17.1. Isomorfismi tra spazi vettoriali finitamente generati. Applichiamo quanto visto nella lezione precedente ad isomorfismi fra spazi vettoriali di dimensione finita. Proposizione 17.1.1.

Dettagli

MODALITA DIVALUTAZIONE DEGLI STUDENTI CON CARENZE NEL SECONDO QUADRIMESTRE ESITO SOSPESO MATEMATICA BIENNIO. Coordinatrice: Prof. ANTONINA CASTANIOTTO

MODALITA DIVALUTAZIONE DEGLI STUDENTI CON CARENZE NEL SECONDO QUADRIMESTRE ESITO SOSPESO MATEMATICA BIENNIO. Coordinatrice: Prof. ANTONINA CASTANIOTTO LICEO SCIENTICO STATALE LEONARDO DA VINCI GENOVA.s.04-5 MODALITA DIVALUTAZIONE DEGLI STUDENTI CON CARENZE NEL SECONDO QUADRIMESTRE ESITO SOSPESO MATEMATICA BIENNIO Coordintrice: Prof. ANTONINA CASTANIOTTO

Dettagli