Geometria proiettiva differenziale. II

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Geometria proiettiva differenziale. II"

Transcript

1 Geometria proiettiva differenziale. II [Obsah][Contents] In: Guido Fubini (author); Eduard Čech (author); Georges Tzitzeica (author); Alessandro Terracini (author); Enrico Bompiani (author): Geometria proiettiva differenziale. II. (Italian)., pp. [785] Persistent URL: Terms of use: Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library

2 Prefazione pag. v INTRODUZIONE. 1. Coordinate, versi, orientazioni pag, 1 (Coordinate di punto, piano e retta. I simboli v? 2. Orientazioni di una retta. Orientazione di un fascio. Alcuno identita di matrici). 2. Gollini axioni > 8 (Preliminari. Collineazioni nello spazio rigato). 3. Contatto di curve e superficie» 11 (Contatto di curve. Contatto di superficie. Contatto di superficie in corrispondenza biunivoea). 4. Osserva'xioni varie» 16 (Curve razionali di terzo grado. Varieta di terzo grado. La retta principale del Togliatti. Una ulteriore generalizzazione. La divisione covariante). CAP. I. - LA TEORIA DELLE CURVE. 5. La teoria delle curve in geometria euclidea... pag. 23 (Gli invarianti íondamentali. Equazioni intrinseche di una curva. Nuova deduzione degli invarianti íondamentali). 6. Geometria proiettivo-differen%iale delle curve.» 2 6 (Preliminari analitici. Applicazione della teoria delle curve. Le curve come luogo ed inviluppo. Lo equazioni differeuziali fondamentali. Le curve di un complesso lineare. Signiíicato del segno cli oo = + 1. Le collineazioni a modulo qualsiasi. Coordinate normali). 7. Qli elementi geometrici fondamentali.... * 37 (Sistema nullo osculatore. II tetraedro principale. Altri elementi geometrici. Una osservazione). 8. L* curve piane» 4 6 (Una osservazione).

3 786 ÍNDICE CAP. II. - I FONDAMENTI BELLA TEORIA DELLE SUPERFICIE. 9. F or mole di caleolo assoluto pag. 49 (Differenziali controvarianti. Alcune definizioni. Le goodetiche. Derívate covarianti. Una generalizzazione. I simboli a quattro iodici e alcuqí parametri differenziali. Relazioni di apolarità). 10. Iîiassunto di alcuni teoremi metriei....» 56 (Triedri diretti e inversi. Le forme fondamentali di Gauss di una superficie. Raggi e linee di curvatura. Elemento lineare deir immagine sferica. Superficie applicabili). 11. Prime consideraxioni di geom. proiettiva...» 61 (Le direzioni asintotiche. Le direzioni di Darboux). 12. Le forme differenxiali fondamentali....» 64 (Primo método. Nuovo método per definiré le F 2, F :i. Le forme F t, F 3 nella geometria métrica. Una osservazione). 13. Prime applicaxioni» 73 (Superficio correlativo. Significato geométrico del fattore di proporzionalità delle ). 14. Le equaxioni differenxiali fondamentali e la terxa forma differenxialc» 78 (Formole fondamentali. La forma P II. Altre equazioni fondamentali. II teorema fondamentale). 15. Varii sistemi di coordínate x,» 83 (Un primo sistema di coordínate. Coordínate non omogenee. Superficie rigate. Coordínate normali. Rette normali. Métrica normale). 16. Il caso di linee coordínate asintotiche....» 8 9 (Le forme P } II, Q. Flecnodi. Osservazioni varíe. Condizioni di integrabilità. Caleolo di (x dx d 2 x d :i x). II cono di Segre. Confronto con le formole della Geom. métrica). 17. Applicax-ione agli invarianti di un sistema coniugato» 102 (Caleolo di tali invarianti. Sistemi coniugati ad invarianti uguali. Un' altra applicazione). 18. Nuovi studii in coordínate asintotiche u, v...» 109 (Coordínate non omogenee e di Lelieuvre. Asintotiche appartcnenti a complessi lineari. Superficio di cui tutte le asintotiche appartengono a complessi lineari). 19. Le rette tangenti» Applicabilità proiettiva» 118 (II teorema fondamentale. Una proprictà caratteristica di due superficie proiettivaniente applicabili. Un' altra proprietà caratteristica delle superficie proiettivamente applicabili).

4 INDICK 787 CAP. III. - GLI ELEMENTI GEOMETRICI FONDAMENTAL!. 21. La quadrica di Lie pag. 125 (Sua définizione. Interpretazioni geometriche della forma cp., e deir elemento lineare cp :{ : cp 2. Fascio delle quadriche di Darboux. La quadrica di Lie come iperboloide osculatore). 22. La corrispondenxa di Segre» Geodetiche, e analoghi sistemi di curve...» 133 (Primi teoremi. Terne apolari. Le coppie apolari e la cónica di Wilczynski. Interpretazione non euclidea della métrica proiettiva. Curve di un íascio ; l 1 asse della superficie). 24. Le pangeodetiche. II fascio canonico....» 14i 25. Congruente di rette» 144 (Sviluppabili e fuochi. Le direttrici di Wilczynski. Congruenze K coniugate e IC armoniche ad S, tra cu i si corrispondono le sviluppabili. Le superficie a curvatura 2. Le congruenze a sviluppabili indeterminate). 26. Lo spigolo (edge) di Green» Il fascio canonico» Le superficie per cui una retta canónica passa per un punto ftsso, e superficie duali» 160 (Caso delle normali proiottive. Formole generali. Il caso 1-4-/.' = 0 (per Tasse). II caso k = 0 delle direttrici. Le superficie di Tzitzeica-Wilczynski). 29. Le superficie di Cech a linee di Darboux piane..» Breve riassunto di altrc ricerchc >177 Cap. IV. SUPERFICIE RIGATE. 31. Applicaxione delle formole generali del Capitolo II al caso particolare di una superficie rig at a... pag Deduxione diretta dei risultati precedenti c prime applicazioni»187 (Nuova deduzione delle (11). Applicazione alia quadrica di Lie). 33. Orient alione delle generatrici; espressioni intrinsech e. Formole relative al cambiamento di vaviabili. > Linee asiniotichc, la forma bilineare intrínseca..» 198 (Lineo asintoticlie. La forma bilinoare fondamentale. Coiv gruenza ílecnodale). 35. Normalixxaxione delle coordinate delle generatrici per superficie rig ate a due curve flecnodali distinte..» 206 (Coordinate normali. Invarianti fondamontali d' una rigata a linee flecnodali distinte. Alcune applicazioni geometriclie). 36. Normalixxaxione delle coordinate delle generatrici per superficie rig ate a curve flecnodali coincidenti..» 216

5 788 ÍNDICE (Determinazíone di queste rigate per mezzo di invarianti. Aie une interpretazioni geometriche). 37. Il complesso lineare osculatore pag interiore studio di superficie rigate a curve flecnodali distinte, prive di retta direttrice....» La trasformaxione flecnodale.....» L'applieabilità proiettha di superficie rigate..» 238 Cap. V. - CONGRUENZE, CONGRUENZE IF E TRASFORMAZIONI PER CONGRUENZE TV. 41. Congruenxe di assegnata prima falda focale.. pag. 243 (Formolc fondamentali. Nuova interpretazione delle formoleprecedonti). 42. Formate fondamentali delta teoría delle congruenxe AY» Le congruenxe AV con N = cost» Confronto coi risultati classici délia geometría métrica» L' equaxione delle congruenxe^ in coordina,te di retta» Le congruenxe di Wilcxynski» Congruenxe W di cui una falda focale S è quadrica» 266 (Primi teoremi. Interpretazione nella geometría non euelidea. Inversione dei teoremi dati in A). 48. Conyruenxe W con le due falde rigate (non quadriche)» Superficie tras formate delle rigate con congruenxe "W > Composixione di Bianchi di due congruenxe AV.» Le trasformaxioni W di Fubini delle superficie isolermo-asintotichc » Le trasformaxioni di lonas per congruenxe W delle superficie R» Le trasformaxioni di lonas delle superficie di lonas.» Il teorema di Fubini per le trasformaxioni delle superficie R» 293 (Una osservazione sulla teoría delle congruenze JF). CAP. VI. INVARIANTI DELL' ELEMENTO LINEARE PROIETTIVO. 55. Alcune consideraxioni preliminari.... pag I differenxiali coniugati» La forma differenxiale F3.....» 300 (Definizione di F3. Alcune identità notevoli). 58. La forma differenxiale 24>i dui» 305 (Definizione delle c >/. Relázioni con le p r $ 59. Qli invarianti del primo ordine delv elemento lineare proiettivo > 307 (Definizione. Alcune identità nel caso «Ê^O. Altre identità. 11 caso <î> = 0, ^ + 0).

6 INDICK Invarianti del secondo ordine delv elemento lineare proiettivo pag. 315 (Defînizione. II caso «Ê^fcO. Il caso í> = 0. II caso delle e W costanti). 61. II primo problema delv applicabilité proiettiva..» 319 (Preliminari. Condizioni necessarie. Condizioni sufficienti. Nuova forma delle condizioni sufficienti). 62. Gontinuaxione. Elementi linear i proiettivi con un gruppo continuo di tras for maxioni in sé.....» 325 (Alcune formóle preliminari. Un lemma. II teorema fondamentale). CAP. VII. - CONDIZIONI D' INTEGRABILITÀ E SUPERFICIE PROIETTIVAMENTE APPLICABILI 63. Gondixioni d'integrabilità delle equaxioni fondamentali pag. 335 (Equazioni preliminari. Trasformazione delle (5). Calcolo delle h ). 64. Gontinuaxione» 340 (Condizioni d'integrabilità delle (1)M 3. Studio delle (1). Studio della (2). Esame delle condizioni d'integrabilità. Teorema riassuntivo). 65. Trasformaxione delle equaxioni tróvate per superficie non rigate. Caso di coordinate normali... > 345 (II caso J^O. Nuovo enunoiato per lo coordinate normali). 66. Nuova tras for maxione delle equaxioni tróvate per il caso di coordinate normali» 350 (Introduzione della funzione ausiliaria o. Studio delle (2)). 67. Deformaxione proiettiva» 353 (II problema fondamentale. Il sistema coniugato di deformazione proiettiva. Superficie R e R 0. Deformazione proiettiva di una superficie data). 68. Teoremi varii sulle superficie R e R 0....» 360 (Elemento lineare riferito alie asintotiche. Un teorema per le superficie R {) o R). 69. Le superficie proiettivámente deformabili in oc 3 modi» 364 (Preliminari. II caso K = 0. Continuazione. Formolo finali relative al caso K = 0. II caso K = cost. 4= 0. Le formóle finali nel caso K = cost. ^O. Teorema riassuntivo e osservazioni varie. Quadro finale delle forme fondamentali delle superficie con H = 0, K-=cost.). 70. Nuovo método per lo studio dei problemi precedenti. > 384 (Principio del método. Le superficie con p = 1 deformabili in oo 3 modi. Superficie con P = l, K^O, deformabili al più in CP 2 modi. Le superficie R deformabili in oo 3 modi).

7 790 ÍNDICE CAP. VIII. - SUPERFICIE NON RIGATE CHE AMMETTONO UN GRUPPO CONTINUO DI DEFOMAZIONI PROIETTIVE IN SÈ Superficie con zo2 deformaxioni proiettive (o collineaxioni) in se (Preliminari. Il primo caso 0. Il caso ÜL^O. Secondo caso K+2 = 0. Torzo caso IC {K -f 2) i 0. Quadro delle forme fondamentali delle superficie con oo2 deformazioni proiettive in sô). 72. Nuova deduxione dei precedenti risidtati... (Método di Fubini. Método di Lie per i gruppi di collineazioni). 73. Superficie con oo1 deformaxioni proiettive in sé. Specie A. (Loro determinazione. Altri metodi di calcolo). 74. Risoluxione di uri equaxione ausiliaria.... (Preliminari. Primo modo di soddisfare alia (5). Secondo modo di soddisfare alia (5). Non esistenza di ultcriori soluzioni di (E). Quadro di soluzioni dell'equazione) Superficie con cc1 deformaxioni proiettive in sé. Riduxione del problema alv equaxione studiata al precedente 7 6. Verifiche per le specie B, e B2 (Superficie della specie B t. Superficie della specie B 2 ) Verifiche per la specie B;{ 78. Verifiche per le specie B,, B-, B,: (Specie. B 4. Specie Z?5. Specie 2?(i). 71. pag. 389» 394» 398» 403»416»418» 423» 436 CAP. IX. QUADRICHE DI MOUTARD E CORRISPONDENZE S (C). 79. Trasformaxione delle equaxioni fondamentali II teorema di Moutard (Un lemma. Dimostrazionc del teorema di Moutard. Dimostrazione) Le corrispondenxc S (Loro definizione. La polarità di Lie. Corrispondenza di Segre. La Corrispondenza di Moutard. Proprieta delle corrispondenze S per le rigate. Proprieta delle corrispondenze S per superficie non rigate). 82. Le corrispondenxe S appartenenti ad una generatrice di una rig ata (Trasformazioni birazionali S (c) nello spazio. Curva omologa di un fascio di piani. Determinazione delle 2) Metriehe di Weyl e corrispondenxe S ^. pag. 457» 460» 470»481.» 490 (Metriche di AVoyl. Piani osculatori alie geodetiche di Weyl. Geodetiche formanti fascio) Le rette canonichc in coordinate generali...» 496

8 INDICK 791 CAP. X. INTORNO DI UN PUNTO DI UNA SUPERFICIE QUADRICIIE DI MOUTARI) E CONO DI SEO HE 85. Enuncíalo di alcuni teuremi per le quad riche di Moutard, 80. Rette polari rispetto ad una quadrica di Moutard (Rotto r 0, r" polari di una retta r rispetto alia quadrica di Lie e alie quadricke di Moutard relative a duo direzioni coniugate. Le rette I del regolo r 0 r r". I punti y,,, ed i piani y m ^. Dcterminazione dei punti o piani precedenti. Il punto m e il piano JI). 87. Costruxione del punto m e del piano ji (Caso di una superficie rigata. Superficie non rigato. Conidio G e coni T). 88. I fasci di coniche Ch 89. Significato geométrico degli invaria,7iti proiettivi più semplici di una superficie (Intorno del quarto ordinc di una superficie. Invarianti delle coniche G\ e G*. Alcune formule preliminari. Birapporti R i ed R ). 90. Quadricke di Moutard relative aile rigate asintotichc 91. Il cono di Segre (Formule preliminari. Nuovo calcolo di un determinante. Cono di Segre. Alcune applicazioni). 92. Superficie a pangeodetiche piane pag. 501» 504» 512» 517» 522» 529» 533 CAP. XI (F). - COMPLESSI E CONGRUENZE 1)1 RETTE 93. Formule preliminari pag. 541 (Rette e complessi lineari. Alcune idontità. Collineazioni e correlazioni. Equazioni di una retta). 94. La forma 9» I complessi di rette con A == 0» L'elemento lineare proiettivo di un cotuplcsso..» 548 (Il coinplesso n e la forma x- L' elemento lineare proiettivo. Curvature proiettive e coordinate normali;. 97. Le equaxioni differenxiali fondamentali nella teoria dei complessi» 556 (Equazioni /, II, III. Applicabilità proiettiva dei complessi). 98. Le congruence con A = 0» Gli elementi geometrici fondamentali di una congruenxa» 563 (Fasci centrali e focali. Tangenti focali. Asintotichc locali) La seconda forma fondamentale di una congruenxa» 568 (La forma <î>. Complessi bitangenti. Complessi satelliti. Complcsso osculatore di una congruenza IF. Fascio satellite e nuovi invarianti).

9 792 ÍNDICE 101. Le equaxioni differenxiali fondamcntali... pag U elemento lineare proiettivo d'una congruenxa.» 578 Aleune altre osservaxioni......» Applicabilité di complessi e di congruenxc..» 581 (Applicabilità del primo ordine di due complesi. Applicabilité proiettiva di duo congruenze (F). Studio delle falde focali di congruenze applicabili (del secondo ordine). Continuazione. Formule duali delle precedenti. Trasformazione delle precedenti condizioni. Il caso singolare di Cartan. Nuova trasformazione delle precedenti condizioni. Il caso singolare. Altra deduzione delle formule precedenti). CAP. XII. - INTRODUZIONE ALLA GEOMETRIA PROIETTIVO - DIFFERENZIALE NEGLI IPERSPAZI 104. Le forme fondamcntali delle ipersuperflcie... pag. 605 (Preliminari geometrici (F). Formole fondamcntali (F). Le equazioni difterenziali fondamentali. Alcune applicazioni dei risultati precedenti) La quadrica di Ceck» 615 (Polarità e quadrica di Cech. Teorema di Cecli. Continuazione e fine délia dimostrazione) Rette normali ; coordínate normali.... > U applicabilità proiettiva delle ipersuperficie (F)..» Alcune gencralixxaxioni > Le superficie V 2 non parabolichc in S 4 e ta loro prima forma fondamentale» La seconda forma fondamentale di una \ in S^.» 637 (La forma Significato geometrico délia F r ) Le equaxioni differenx,iali (F)» Superficie rigate appartenenti ad uno spaxio ad un numero impari di dimensioni (C)....» Superficie rigate appartenenti ad uno spaxio ad un numero pari di dimensioni (C)» 655 APPENDICE I a (Note de M. G. TZITZKICA) Sur la déformation de certaines surfaces tétraédralex, les surfaces S et les réseaux R pag. 663 Una osservaxione bibliográfica» 669 APPENDICE II» (Nota di E. BOMPIANI) 1 fondamenti geometrici délia teoria proiettiva delle curve e delle superficie pag. 671

10 INDICK 793 I. Curve piane pag. 674 (1. Invariante di Sogro. 2. Invariante assoluto di un'eijuazione di Laplace. 3. Invarianti di contatto fra curve piane. 4. Invarianti proiettivi di una curva piaña. 5. Singolarità : punti di flesso). II. Curve sghembe»679 (1. Invarianti di contatto. 2. Piano, retta e punto principali. 3. Invarianti proiettivi di una curva sghemba). III. Superficie. Le forme fondamentali....» 68 L (1. Invarianti infinitesimi di contatto fra superficie. 2. L'elemento lineare proiettivo di una superficie. 3. Le due prime forme normali di Fubini. 4. Le prime forme elementan cuni elementi geometrici). (1. Deíinizione dei sistemi assiali. 2. Un invariante fondamentale. Curve anarmoniche. 3. Le forme di Fubini. 4. Altre forme invarianti del 1 ordine). IV. Invarianti dette curve sopra una superficie...» 691 (1. Curvatura proiettiva. 2. Curvatura relativa di duo curve. 3. Le forme elementan e gli invarianti di curvatura. 4. Método générale per la costruzione di invarianti. Trasporto proiettivo 5. La torsiono proiettiva. Sezioni piane. 6. La terza forma fondamentale di Fubini). V. Invarianti proiettivi di una superficie.... > 698 (1. Osservazioni generali. 2. Invarianti delp elemento lineare proiettivo. 3. Le forme elementari e gli invarianti precedenti. 4. Invarianti per collineazioni). VI. La geometria dette superficie nello spaxio rigato. Método iperspaziale» 703 (1. Rappresentazione iperspaziale del complesso delle tangenti ad una superficie 2. Regoli di Lie. 3. Rigate asintotiche lungo le linee di Darboux e di Segrc. 4. Nuove quadriclie invarianti. 5. II fascio canonico. 6. Determinazione iperspaziale delle forme elementari. 7. Invarianti c classi di superficie invarianti. 8. Sistemi di curve invarianti). VII. Corrispondenze puntuali fra superficie....» 720 (1. Corrispondenza Cremoniana fra stelle di piani. 2. Corrispondenze proiettive fra stelle di rette. 3. Sistemi assiali corrispondenti). 1. (Le corrispondenze proiettivo-conformi e proiottivo-simili. 2. Le corrispondenze geodetico-proiettive. 3. Le corrispondenze asintotiche). APPENDICE 111. a (Nota di A. TERRACINI) Esposizione di alcuni risultati di geometria proiettiva-differendale negli iperspaxi pag / successivi intorni di un punto su una varietà.. > 731

11 794 ÍNDICE 2. Généralité, suite varieta rappresentanti sistemi di equaxioni lineari aile deriváte parxiali 3. Superficie rappresentanti equaxioni di Laplaee. 4. Varietà rappresentanti sistemi di equaxioni lineari alte deriváte parxiali aventi dimensione assai elevata. 5. Alcuni altri particolari sistemi di equaxioni di Laplace rappresentati da V h 6. La varieta degli spaxi tangenti ad un' altra varietà. 7. Comportamrnto degli spaxi osculatori a una varietà in relaxione con le sue sexioni iperpiane 8. Le linee quasi asintotiche di una varietà. 9. Altri notevoti sistemi di linee esistenti suite superficie 10. Varietà luoghi di spaxi 11. Luoghi di spaxi con carattere di sviluppabili 12. Un tipo particolare di luoghi di spaxi pag. 725» 736» 741» 743» 747» 750» 751» 753» 756» 760» 764 APPENDICE IV.* (Nota di A. TERRACINI) Suite superficie aventi un sistema, o entrambi, di asintotiche in complessi lineari 771

12 Finito di st ampare il giorno 28 Febbraio 1927 nella Tipografía del Seminario in Padora

SULLE VARIETÀ ALGEBRICHE A TRE DIMENSIONI AVENTI TUTTI I GENERI NULLI

SULLE VARIETÀ ALGEBRICHE A TRE DIMENSIONI AVENTI TUTTI I GENERI NULLI G. FANO (Torino - Italia) SULLE VARIETÀ ALGEBRICHE A TRE DIMENSIONI AVENTI TUTTI I GENERI NULLI 1. - La distinzione, che pareva tradizionale, tra scienze di ragionamento e scienze sperimentali è ormai

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 74 PROBLEMA Considerata una sfera di diametro AB, lungo, per un punto P di tale diametro si conduca il piano α perpendicolare ad esso

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

SULLE CORRISPONDENZE FRA SUPERFICIE DELLA VARIETÁ DI SEGRE

SULLE CORRISPONDENZE FRA SUPERFICIE DELLA VARIETÁ DI SEGRE SULLE CORRISPONDENZE FRA SUPERFICIE DELLA VARIETÁ DI SEGRE di M. VILLA. e L. MURACCHINI (a Bologna) 1. - Nelle nostre ricerche sull'applicabilita proiettiva delle trasformazioni puntuali fra piani, abbiamo

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE - Matematica - Griglie di valutazione Materia: Matematica Obiettivi disciplinari Gli obiettivi indicati si riferiscono all intero percorso della classe quarta

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014)

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) Le grandezze fisiche. Metodo sperimentale di Galilei. Concetto di grandezza fisica e della sua misura. Il Sistema internazionale di Unità

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio.

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio. Appunti di Analisi Matematica Docente:Fabio Camilli SAPIENZA, Università di Roma A.A. 4/5 http://www.dmmm.uniroma.it/~fabio.camilli/ (Versione del 9 luglio 5) Note scritte in collaborazione con il prof.

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA PROGRAMMA DI MATEMATICA E FISICA Classe VA scientifico MATEMATICA MODULO 1 ESPONENZIALI E LOGARITMI 1. Potenze con esponente reale; 2. La funzione esponenziale: proprietà e grafico; 3. Definizione di logaritmo;

Dettagli

Soluzioni classiche dell'equazione di Laplace e di Poisson

Soluzioni classiche dell'equazione di Laplace e di Poisson Soluzioni classiche dell'equazione di Laplace e di Poisson Antonio Paradies Dipartimento di Matematica e Applicazioni Renato Caccioppoli Università degli studi di Napoli Federico II Napoli, 25 Febbraio

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento RTICL rchimede 4 esame di stato seconda prova scritta per il liceo scientifico di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario PRBLEM Siano f e g le funzioni

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

Appunti ed esercizi. di Meccanica Razionale

Appunti ed esercizi. di Meccanica Razionale Appunti ed esercizi di Meccanica Razionale Università degli Studi di Trieste - Sede di Pordenone Facoltà di Ingegneria Appunti ed esercizi di Meccanica Razionale Luciano Battaia Versione del 29 dicembre

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Capitolo 2 Equazioni differenziali ordinarie 2.1 Formulazione del problema In questa sezione formuleremo matematicamente il problema delle equazioni differenziali ordinarie e faremo alcune osservazioni

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

L. Pandolfi. Lezioni di Analisi Matematica 2

L. Pandolfi. Lezioni di Analisi Matematica 2 L. Pandolfi Lezioni di Analisi Matematica 2 i Il testo presenta tre blocchi principali di argomenti: A Successioni e serie numeriche e di funzioni: Cap., e 2. B Questa parte consta di due, da studiarsi

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

La funzione di risposta armonica

La funzione di risposta armonica 0.0. 3.1 1 La funzione di risposta armonica Se ad un sistema lineare stazionario asintoticamente stabile si applica in ingresso un segnale sinusoidale x(t) = sen ωt di pulsazione ω: x(t) = sin ωt (s) =

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

PREMESSE PROPRIETA AFFINI E PROPRIETA METRICHE

PREMESSE PROPRIETA AFFINI E PROPRIETA METRICHE PREMESSE PROPRIETA AFFINI E PROPRIETA METRICHE Si assumano come primitivi i concetti di retta, piano e spazio. Qui si vogliono studiare le proprietà delle figure (insiemi opportuni di punti) sulla retta,

Dettagli

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α?

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? QUESITO 1 Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? Applicando il Teorema dei seni si può determinare il valore di senza indeterminazione, in quanto dalla

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

Numeri complessi e polinomi

Numeri complessi e polinomi Numeri complessi e polinomi 1 Numeri complessi L insieme dei numeri reali si identifica con la retta della geometria: in altri termini la retta si può dotare delle operazioni + e e divenire un insieme

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

ED. Equazioni cardinali della dinamica

ED. Equazioni cardinali della dinamica ED. Equazioni cardinali della dinamica Dinamica dei sistemi La dinamica dei sistemi di punti materiali si può trattare, rispetto ad un osservatore inerziale, scrivendo l equazione fondamentale della dinamica

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA

QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA Michele Impedovo Bollettino dei Docenti di Matematica del Canton Ticino (CH) n 36, maggio 98. Il problema Il lavoro che

Dettagli

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0)

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0) Numeri Complessi Un numero complesso z può essere definito come una coppia ordinata (x,y) di numeri reali x e y. L insieme dei numeri complessi è denotato con C e può essere identificato con il piano cartesiano

Dettagli

Fuoco, direttrice ed equazione di una parabola traslata. Bruna Cavallaro, Treccani scuola

Fuoco, direttrice ed equazione di una parabola traslata. Bruna Cavallaro, Treccani scuola Fuoco, direttrice ed equazione di una parabola traslata Bruna Cavallaro, Treccani scuola 1 Traslare parabole con fuoco e direttrice Su un piano Oxy disegno una parabola, con fuoco e direttrice. poi traslo

Dettagli

A.1 Definizione e rappresentazione di un numero complesso

A.1 Definizione e rappresentazione di un numero complesso 441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;

Dettagli

Terne pitagoriche e teorema di Pitagora, numeri e triangoli. Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it

Terne pitagoriche e teorema di Pitagora, numeri e triangoli. Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it 3 4 5 Terne pitagoriche e teorema di Pitagora, numeri e triangoli Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it Qualche osservazione preliminare sul Teorema di Pitagora e le terne

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta

Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta Francesco Zumbo www.francescozumbo.it http://it.geocities.com/zumbof/ Questi appunti vogliono essere

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

Calcolo tensoriale: introduzione elementare ed applicazione alla relatività speciale

Calcolo tensoriale: introduzione elementare ed applicazione alla relatività speciale Capitolo 6 Calcolo tensoriale: introduzione elementare ed applicazione alla relatività speciale Il calcolo tensoriale costituisce un capitolo della geometria differenziale, e potrebbe essere discusso in

Dettagli

. analisi teorica (studio di esistenza, unicità della soluzione, sensitività rispetto ai dati, regolarità, comportamento qualitativo).

. analisi teorica (studio di esistenza, unicità della soluzione, sensitività rispetto ai dati, regolarità, comportamento qualitativo). 1 Modelli matematici Un modello è un insieme di equazioni e altre relazioni matematiche che rappresentano fenomeni fisici, spiegando ipotesi basate sull osservazione della realtà. In generale un modello

Dettagli

Richiami di algebra lineare e geometria di R n

Richiami di algebra lineare e geometria di R n Richiami di algebra lineare e geometria di R n combinazione lineare, conica e convessa spazi lineari insiemi convessi, funzioni convesse rif. BT.5 Combinazione lineare, conica, affine, convessa Un vettore

Dettagli

su web che riportano documentazione e software dedicati agli argomenti trattati nel libro, riportandone, alla fine dei rispettivi capitoli, gli

su web che riportano documentazione e software dedicati agli argomenti trattati nel libro, riportandone, alla fine dei rispettivi capitoli, gli Prefazione Non è facile definire che cosa è un problema inverso anche se, ogni giorno, facciamo delle operazioni mentali che sono dei metodi inversi: riconoscere i luoghi che attraversiamo quando andiamo

Dettagli

Il luogo delle radici (ver. 1.0)

Il luogo delle radici (ver. 1.0) Il luogo delle radici (ver. 1.0) 1 Sia dato il sistema in retroazione riportato in Fig. 1.1. Il luogo delle radici è uno strumento mediante il quale è possibile valutare la posizione dei poli della funzione

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

C.L. Tecniche della prevenzione nell ambiente e nei luoghi di lavoro Polo di Rieti. Calendario Lezioni 3 anno 2 Semestre - A.A.

C.L. Tecniche della prevenzione nell ambiente e nei luoghi di lavoro Polo di Rieti. Calendario Lezioni 3 anno 2 Semestre - A.A. I Settiman 2-6 Ore Lunedi 2 Martedi 3 Mercoledi 4 Giovedì 5 Venerdì 6 II 09-13 Ore Lunedì 9 Martedì 10 Mercoledì 11 Giovedì 12 Venerdì 13 III 16-20 Ore Lunedì 16 Martedì 17 Mercoledì 18 Giovedì 19 Venerdì

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

Le Geometrie non euclidee

Le Geometrie non euclidee Le Geometrie non euclidee Un introduzione elementare Riccardo Dossena Liceo Scientifico G. Novello Codogno (LO) 12 marzo 2015 Euclide di Alessandria Euclide (circa 300 a.c.) Euclide di Alessandria 1 Epoca:

Dettagli

Universitá di Firenze. Che cosa é realmente successo ai colloqui di pace di Parigi fra Henry Kissinger e Le Duc Tho

Universitá di Firenze. Che cosa é realmente successo ai colloqui di pace di Parigi fra Henry Kissinger e Le Duc Tho Universitá di Firenze FACOLTÁ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Matematica Che cosa é realmente successo ai colloqui di pace di Parigi fra Henry Kissinger e Le Duc Tho What

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i NA. Operatore nabla Consideriamo una funzione scalare: f : A R, A R 3 differenziabile, di classe C (2) almeno. Il valore di questa funzione dipende dalle tre variabili: Il suo differenziale si scrive allora:

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

GLI ASSI CULTURALI. Allegato 1 - Gli assi culturali. Nota. rimessa all autonomia didattica del docente e alla programmazione collegiale del

GLI ASSI CULTURALI. Allegato 1 - Gli assi culturali. Nota. rimessa all autonomia didattica del docente e alla programmazione collegiale del GLI ASSI CULTURALI Nota rimessa all autonomia didattica del docente e alla programmazione collegiale del La normativa italiana dal 2007 13 L Asse dei linguaggi un adeguato utilizzo delle tecnologie dell

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

Studio grafico-analitico delle funzioni reali a variabile reale

Studio grafico-analitico delle funzioni reali a variabile reale Studio grafico-analitico delle funzioni reali a variabile reale Sequenza dei passi Classificazione In pratica Classifica il tipo di funzione: Funzione razionale: intera / fratta Funzione irrazionale: intera

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc.

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. Classi Numeriche 1 1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. In questo breve capitolo richiamiamo le definizioni delle classi numeriche fondamentali, già note al lettore,

Dettagli

5 Radici primitive dell unità e congruenze del tipo

5 Radici primitive dell unità e congruenze del tipo 5 Radici primitive dell unità e congruenze del tipo X m a (mod n ) Oggetto di questo paragrafo è lo studio della risolubilità di congruenze del tipo: X m a (mod n) con m, n, a Z ed m, n > 0. Per l effettiva

Dettagli

POLITECNICO di BARI - A.A. 2012/2013 Corso di Laurea in INGEGNERIA Informatica e dell Automazione

POLITECNICO di BARI - A.A. 2012/2013 Corso di Laurea in INGEGNERIA Informatica e dell Automazione POLITECNICO di BARI - A.A. 0/03 Corso di Laurea in INGEGNERIA Informatica e dell Automazione Problema Sia f :[0, +[! R una funzione continua. La funzione composta g() =f(kk) è c o n t i n u a? Problema

Dettagli

Costruzioni con riga e compasso. Fabio Stumbo Dipartimento di Matematica Università di Ferrara Ferrara, I f.stumbo@unife.it

Costruzioni con riga e compasso. Fabio Stumbo Dipartimento di Matematica Università di Ferrara Ferrara, I f.stumbo@unife.it ostruzioni con riga e compasso Fabio Stumbo Dipartimento di Matematica Università di Ferrara Ferrara, I f.stumbo@unife.it INDIE 2 Indice 1 Note storiche 3 2 ostruzioni fondamentali 8 2.1 Definizione e

Dettagli

TRAVE SU SUOLO ELASTICO

TRAVE SU SUOLO ELASTICO Capitolo 3 TRAVE SU SUOLO ELASTICO (3.1) Combinando la (3.1) con la (3.2) si ottiene: (3.2) L equazione differenziale può essere così riscritta: (3.3) La soluzione dell equazione differenziale di ordine

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

LA MATEMATICA PER LE ALTRE DISCIPLINE. Prerequisiti e sviluppi universitari G. ACCASCINA, G. ANICHINI, G. ANZELLOTTI, F. ROSSO, V. VILLANI, R.

LA MATEMATICA PER LE ALTRE DISCIPLINE. Prerequisiti e sviluppi universitari G. ACCASCINA, G. ANICHINI, G. ANZELLOTTI, F. ROSSO, V. VILLANI, R. LA MATEMATICA PER LE ALTRE DISCIPLINE Prerequisiti e sviluppi universitari a cura di G. ACCASCINA, G. ANICHINI, G. ANZELLOTTI, F. ROSSO, V. VILLANI, R. ZAN Unione Matematica Italiana 2006 Ho continuato

Dettagli

PRINCIPI BASILARI DI ELETTROTECNICA

PRINCIPI BASILARI DI ELETTROTECNICA PRINCIPI BASILARI DI ELETTROTECNICA Prerequisiti - Impiego di Multipli e Sottomultipli nelle equazioni - Equazioni lineari di primo grado e capacità di ricavare le formule inverse - nozioni base di fisica

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b :

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b : Forme bilineari e prodotti scalari Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione b : { V V K ( v, w) b( v, w), si dice forma bilineare su V se per ogni u, v, w V e per ogni k K:

Dettagli

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p =

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p = 5. Rette e piani in R 3 ; sfere. In questo paragrafo studiamo le rette, i piani e le sfere in R 3. Ci sono due modi per desrivere piani e rette in R 3 : mediante equazioni artesiane oppure mediante equazioni

Dettagli

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys.

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys. METODO DEI MINIMI QUADRATI GIUSEPPE GIUDICE Sommario Il metodo dei minimi quadrati è trattato in tutti i testi di statistica e di elaborazione dei dati sperimentali, ma non sempre col rigore necessario

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

Lezione 12: La visione robotica

Lezione 12: La visione robotica Robotica Robot Industriali e di Servizio Lezione 12: La visione robotica L'acquisizione dell'immagine L acquisizione dell immagine Sensori a tubo elettronico (Image-Orthicon, Plumbicon, Vidicon, ecc.)

Dettagli

VC-dimension: Esempio

VC-dimension: Esempio VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio

Dettagli

PLANIMETRIA E PROFILO INSIEME

PLANIMETRIA E PROFILO INSIEME PLANIMETRIA E PROFILO INSIEME planimetria profili 11 RELAZIONE TRA PLANIMETRIA E PROFILO La correlazione tra andamento planimetrico e altimetrico è molto stretta; variazioni del primo incidono subito sul

Dettagli