Il problema di Cauchy

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Il problema di Cauchy"

Transcript

1 Sia I = [t 0, t 0 + T ] con 0 < T < +. Sia f (t, y) una funzione assegnata definita in I R continua rispetto ad entrambe le variabili. Si trata di determinare una funzione y C 1 (I ) soluzione di { y (t) = f (t, y(t)) t I y(t 0 ) = y 0 (1)

2 Esistenza e unicità di soluzione Una funzione f (t, y) si dice che è lipschitziana nella variabile y in un insieme D R 2 se esiste una costante L > 0 tale che per ogni (t, y 1 ), (t, y 2 ) D. f (t, y 1 ) f (t, y 2 ) L y 1 y 2 Sia D = {(t, y) t 0 t t 0 + T, y R} con 0 < T < +. Se f (t, y) è continua e lipschitziana nella variabile y in D allora il problema di Cauchy (1) ha una soluzione unica per t 0 t t 0 + T.

3 Funzioni lipschitziane Sia g : Σ R R una funzione lipschitziana, cioè, esiste una costante L > 0 tale che g(x 1 ) g(x 2 ) L x 1 x 2 x 1, x 2 Σ, allora g è continua in Σ. Non tutte le funzioni continue sono lipschitziane. Per esempio g(x) = x 1/3 è continua ma non è lipschitziana in [ 1, 1]. Se g C 1 (Σ) e esiste una costante K > 0 tale che g (x) K per ogni x Σ allora g è lipschitziana in Σ perche g(x 1 ) g(x 2 ) = g ( x) (x 1 x 2 ) K x 1 x 2. La funzione g(x) = x C 1 ([ 1, 1]) ma è lipschitziana in [ 1, 1] perche x 1 x 2 x 1 x 2..

4 Buona posizione { y (t) = f (t, y(t)) t I := [t 0, t 0 + T ] y(t 0 ) = y 0 si dice che è ben posto se esiste una unica soluzione del problema; chiamando z(t) alla soluzione del problema { z (t) = f (t, z(t)) + δ(t) t I z(t 0 ) = y 0 + δ 0 dove δ è una funzione continua in I la perturbazione (δ0, δ(t)) verifica δ 0 < ɛ e δ(t) < ɛ per ogni t I con ɛ sufficientement piccolo, allora esiste una costante K indipendente da ɛ tale che y(t) z(t) < Kɛ t I.

5 Buona posizione Sia D = {(t, y) t 0 t t 0 + T, y R} con 0 < T < +. Se f (t, y) è continua e lipschitziana nella varibile y in D allora il problema di Cauchy (1) è ben posto.

6 Esempi { y (t) = 1 + t sin(ty) t [0, 2] y(0) = 0 f (t, y) = 1 + t sin(ty) è lipschitziana nella variabile y: f (t, y 1 ) f (t, y 2 ) = t sin(ty 1 ) t sin(ty 2 ) = t 2 cos(tŷ) y 1 y 2 4 y 1 y 2. { y = y + t + 1 t [0, 10] y(0) = 1 f (t, y) = y + t + 1 è lipschitziana nella variabile y: f (t, y 1 ) f (t, y 2 ) = y 1 + y 2 = y 1 y 2.

7 Esempi In questo secondo esempio possiamo verificare la buona posizione. { y = y + t + 1 t [0, 10] y(t) = e t + t y(0) = 1 Siano δ e δ 0 due costanti. { z = z + t δ t [0, 10] z(0) = 1 + δ 0 z(t) = (1 + δ 0 δ)e t + t + δ Se δ < ɛ e δ 0 < ɛ allora z(t) y(t) = (δ 0 δ)e t + δ δ (1 e t ) + δ 0 e t 2ɛ per ogni t [0, 10].

8 Risoluzione numerica del problema di Cauchy Fissato 0 < T < +, sia I = (t 0, t 0 + T ). L intervallo I si divide in N sottointervalli di ampieza h = T /N. Sia t n = t 0 + nh, con n = 0, 1,..., N, la successione dei nodi di discretizzazione di I in sottointervalli I n = [t n 1, t n ], n = 1,..., N. Nella risoluzione numerica del problema di Cauchy calcolaremo una successione di valori u n, con n = 0, 1,..., N tali che u n approssimi y(t n ).

9 Eulero esplicito Dallo sviluppo di Taylor y(t + h) = y(t) + hy (t) + h2 2 y (ξ) usando l equazione differenziale segue che y(t n+1 ) = y(t n ) + h f (t n, y(t n )) + O(h 2 ) Metodo di Eulero esplicito { un+1 = u n + h f (t n, u n ) n = 0,..., N 1 u 0 = y 0

10 Eulero implicito Usando adesso lo sviluppo di Taylor segue y(t h) = y(t) hy (t) + h2 2 y (ξ) y (t) = y(t) y(t h) h + O(h) y (t n+1 ) = f (t n+1, y(t n+1 )) = y(t n+1) y(t n ) h y(t n+1 ) = y(t n ) + h f (t n+1, y(t n+1 )) + O(h 2 ) + O(h) Metodo di Eulero implicito { un+1 = u n + hf (t n+1, u n+1 ) n = 0,..., N 1 u 0 = y 0

11 Punto medio Consideriamo adesso i due sviluppi di Taylor y(t + h) = y(t) + hy (t) + h2 2 y (t) + h3 6 y (ξ), y(t h) = y(t) hy (t) + h2 2 y (t) h3 6 y (ζ). Prendendo la differenza y(t + h) y(t h) = 2hy (t) + h3 6 (y (ξ) + y (ζ)) y (t) = y(t + h) y(t h) 2h + O(h 2 )

12 Punto medio y (t) = y(t + h) y(t h) 2h + O(h 2 ) y (t n ) = f (t n, y(t n )) = y(t n+1) y(t n 1 ) 2h + O(h 2 ) y(t n+1 ) = y(t n 1 ) + 2h f (t n, y(t n )) + O(h 3 ) Metodo del punto medio u n+1 = u n 1 + 2h f (t n, u n ) n = 1,..., N 1 u 0 = y 0 u 1 = y 1

13 Crank-Nicolson Dall equazione differenziale y (t) = f (t, y(t)), integrando fra t n e t n+1 y(t n+1 ) y(t n ) = tn+1 t n y (t) dt = tn+1 t n f (t, y(t)) dt. Usando il metodo del trapezio per approssimare l integrale y(t n+1 ) y(t n ) = h 2 [f (t n, y(t n )) + f (t n+1, y(t n+1 ))] + O(h 3 ) Metodo di Crank-Nicolson { un+1 = u n + h 2 [f (t n, u n ) + f (t n+1, u n+1 )] n = 0,..., N 1 u 0 = y 0

14 Metodi di Taylor Consideriamo lo sviluppo di Taylor della funzione soluzione (ad esempio fino al termine di secondo ordine) y(t + h) = y(t) + h y (t) + h2 2 y (t) + O(h 3 ) Usando l equazione differenziale Quindi y (t) = f (t, y(t)) y (t) = f t (t, y(t)) + y (t) f y (t, y(t)). y(t n+1 ) = y(t n ) + h f (t n, y(t n )) + h2 2 [f t(t n, y(t n )) + f (t n, y(t n )) f y (t n, y(t n ))] + O(h 3 )

15 Metodi di Taylor Metodo di Taylor di ordine 2 u n+1 = u n + h f (t n, u n ) + h2 2 [f t(t n, u n ) + f (t n, u n )f y (t n, u n )] n = 0,..., N 1 u 0 = y 0 Il metodo di Eulero esplicito è il metodo di Taylor di ordine 1. Usando lo sviluppo fino al termine di ordine 3, 4,..., si ottengono i metodi di Taylor di ordine 3, 4,...

16 Risoluzione numerica del problema di Cauchy Metodi ad un passo Eulero esplicito Eulero implicito Crank-Nicolson Taylor Metodi a più passi Punto medio Metodi espliciti Eulero esplicito Punto medio Taylor Metodi impliciti Eulero implicito Crank-Nicolson

Metodi a più passi. Esempi

Metodi a più passi. Esempi . Esempi Metodo del punto medio y(t n+1 ) = y(t n 1 ) + t n+1 t n 1 f (t, y(t)) dt = y(t n 1 ) + 2hf (t n, y(t n )) + O(h 3 ) u n+1 = u n 1 + 2hf (t n, u n ) Metodo di Simpson y(t n+1 ) = y(t n 1 ) + t

Dettagli

Cenni sulla risoluzione numerica di equazioni differenziali ordinarie (ODE) f(t, y(t))dt. y (t)dt = y(x) y(x 0 ) =

Cenni sulla risoluzione numerica di equazioni differenziali ordinarie (ODE) f(t, y(t))dt. y (t)dt = y(x) y(x 0 ) = Cenni sulla risoluzione numerica di equazioni differenziali ordinarie (ODE) Problema di Cauchy. y (x) = f(x, y(x)) x [, T ] y( ) = y 0 Formulazione integrale. x Approssimazione numerica. y (t)dt = y(x)

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Complementi di Matematica e Calcolo Numerico A.A. 2010-2011 Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Cosideriamo il seguente Problema di Cauchy: Trovare una funzione y : I

Dettagli

Metodi numerici per ODE. Metodi numerici per ODE

Metodi numerici per ODE. Metodi numerici per ODE Problema di Cauchy Consideriamo un equazione differenziale (sistema di equazioni) del primo ordine in forma normale con condizioni iniziali assegnate. { y (x) = f (x, y(x)) x [x 0, x F ] y(x 0 ) = y 0

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 9 Metodi numerici per equazioni differenziali ordinarie

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 9 Metodi numerici per equazioni differenziali ordinarie Complementi di Matematica e Calcolo Numerico A.A. 2016-2017 Laboratorio 9 Metodi numerici per equazioni differenziali ordinarie Cosideriamo il seguente Problema di Cauchy: Trovare una funzione y : I R,

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Complementi di Matematica e Calcolo Numerico A.A. 2012-2013 Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Cosideriamo il seguente Problema di Cauchy: Trovare una funzione y : I

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 12 Metodi numerici per equazioni differenziali ordinarie

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 12 Metodi numerici per equazioni differenziali ordinarie Complementi di Matematica e Calcolo Numerico A.A. 2017-2018 Laboratorio 12 Metodi numerici per equazioni differenziali ordinarie Cosideriamo il seguente Problema di Cauchy: Trovare una funzione y : I R,

Dettagli

Daniela Lera A.A

Daniela Lera A.A Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2014-2015 Equazioni Differenziali Si consideri il seguente problema: Quali sono le curve y = f (x) del piano

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 Metodi numerici per equazioni differenziali ordinarie

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 Metodi numerici per equazioni differenziali ordinarie Complementi di Matematica e Calcolo Numerico A.A. 2018-2019 Laboratorio 11 Metodi numerici per equazioni differenziali ordinarie Cosideriamo il seguente Problema di Cauchy: Trovare una funzione y : I R,

Dettagli

Soluzione numerica di equazioni differenziali

Soluzione numerica di equazioni differenziali Soluzione numerica di equazioni differenziali Laboratorio di programmazione e calcolo (Chimica e Tecnologie chimiche) Pierluigi Amodio Dipartimento di Matematica Università di Bari Soluzione numerica di

Dettagli

Metodi ad un passo espliciti

Metodi ad un passo espliciti Sono metodi della forma { un+1 = u n + h Φ(t n, u n ; h, f ) n = 0,..., N 1 Esempi: u 0 = y 0 metodi di Taylor metodo di Eulero esplicito metodo di Taylor di ordine 2 Φ(t, u; h, f ) = f (t, u) Φ(t, u;

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Complementi di Matematica e Calcolo Numerico A.A. 2014-2015 Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Cosideriamo il Problema di Cauchy: { y (t) = f(t, y(t)) t I, y(t 0 ) =

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 9 - EQUAZIONI DIFFERENZIALI ORDINARIE valori iniziali Valori iniziali Ci occuperemo della soluzione numerica di equazioni del prim ordine

Dettagli

Eulero esplicito: Questo metodo approssima la derivata di una funzione con le differenze in avanti. La formula iterativa è la seguente:

Eulero esplicito: Questo metodo approssima la derivata di una funzione con le differenze in avanti. La formula iterativa è la seguente: Dato un problema di Cauchy del tipo: y =f(x,y) y(x0)=y0 Esistono vari metodi numerici che fissato h, cioè il passo di integrazione, forniscono una soluzione numerica che è costituita da una successione

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 10

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 10 Complementi di Matematica e Calcolo Numerico A.A. 2014-2015 Laboratorio 10 Convergenza di metodi iterativi per sistemi lineari UnmetodoiterativoperlarisoluzionediunsistemalineareAx = b si scrive in forma

Dettagli

Francesca Mazzia Dipartimento di Matematica Università di Bari. Equazioni Differenziali

Francesca Mazzia Dipartimento di Matematica Università di Bari. Equazioni Differenziali 1 Francesca Mazzia Dipartimento di Matematica Università di Bari Equazioni Differenziali 2 Consideriamo il sistema di equazioni differenziali: con condizione iniziale: y = f(t, y) (6.1) y(t 0 ) = y 0,

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 9 - EQUAZIONI DIFFERENZIALI ORDINARIE Lucio Demeio Dipartimento di Scienze Matematiche 1 Problemi ai Valori Iniziali: metodo di Eulero

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 9 - EQUAZIONI DIFFERENZIALI ORDINARIE Lucio Demeio Dipartimento di Scienze Matematiche 1 2 3 Problemi ai valori iniziali Problemi ai

Dettagli

EQUAZIONI DIFFERENZIALI

EQUAZIONI DIFFERENZIALI EQUAZIONI DIFFERENZIALI Si consideri il problema di Cauchy y'(t) t y, y() y(t) t e. t, la cui soluzione esatta è PARTE a. Approssimare il problema di Cauchy con il metodo di Eulero Esplicito b. Eseguire

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Prof. L. Brandolini Corso di Calcolo Numerico Dott.ssa N. Franchina Laboratorio 5 Equazioni differenziali ordinarie: metodi espliciti 25 Novembre 215 Esercizi di implementazione Un equazione differenziale

Dettagli

Lezione 7 Equazioni Differenziali Ordinarie.

Lezione 7 Equazioni Differenziali Ordinarie. Lezione 7 Equazioni Differenziali Ordinarie http://idefix.mi.infn.it/~palombo/didattica/lab-tnds/corsolab/lezionifrontali Fernando Palombo Equazioni Differenziali Ordinarie Descrizione dell evolversi spazio-temporale

Dettagli

Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie

Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie Metodi numerici per la risoluzione di equazioni differenziali ordinarie Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 5-31 ottobre 2005 Outline 1 Il problema di Cauchy Il problema

Dettagli

METODO DI EULERO ESPLICITO

METODO DI EULERO ESPLICITO METODO DI EULERO ESPLICITO { u0 dato u n+1 = u n + hf (t n, u n ) 0 n N h 1 (1) Scrivere una function [tn,un]=eulero esp(odefun,tspan,y0,nh) INPUT: odefun: espressione della f tspan=[t0,t]: vettore di

Dettagli

Matematica con elementi di Informatica

Matematica con elementi di Informatica Equazioni differenziali Matematica con elementi di Informatica Tiziano Vargiolu Dipartimento di Matematica vargiolu@math.unipd.it Corso di Laurea Magistrale in Chimica e Tecnologie Farmaceutiche. () Equazioni

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Prof. L. Brandolini Corso di Calcolo Numerico Dott.ssa N. Franchina Laboratorio 6 Equazioni differenziali ordinarie: metodi impliciti 3 Novembre 26 Esercizi di implementazione Un equazione differenziale

Dettagli

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008 Dott.ssa G. Bellomonte Indice 1 Introduzione 2 2 Equazioni differenziali lineari del primo ordine

Dettagli

Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali:

Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali: Capitolo 1 PROBLEMI INIZIALI PER ODE Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali: { y (t) = f(t, y(t)), t t f (1.1) y( ) = y 0 dove f : [, t f ] R m R

Dettagli

Equazione del calore

Equazione del calore Equazione del calore Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 29 maggio 2017 Alvise Sommariva Equazione del calore 1/ 1 Equazione del calore. Consideriamo l equazione

Dettagli

Mattia Zanella mattia.zanella@unife.it www.mattiazanella.eu

Mattia Zanella mattia.zanella@unife.it www.mattiazanella.eu mattia.zanella@unife.it www.mattiazanella.eu Department of Mathematics and Computer Science, University of Ferrara, Italy Ferrara, 1 Maggio 216 Programma della lezione Seminario II Equazioni differenziali

Dettagli

19 Marzo Equazioni differenziali.

19 Marzo Equazioni differenziali. 19 Marzo 2019 Equazioni differenziali. Definizione 1. Si chiama equazione differenziale una relazione che coinvolge una o più derivate di una funzione incognita y(x), la funzione stessa, funzioni di x

Dettagli

Metodi numerici per equazioni differenziali ordinarie. Calcolo Numerico a.a. 2008/2009

Metodi numerici per equazioni differenziali ordinarie. Calcolo Numerico a.a. 2008/2009 Metodi numerici per equazioni differenziali ordinarie Calcolo Numerico a.a. 2008/2009 ODE nei problemi dell ingegneria 1 Le leggi fondamentali della fisica, della meccanica, dell elettricità e della termodinamica

Dettagli

Esercitazione 4 - Matematica Applicata

Esercitazione 4 - Matematica Applicata Esercitazione - Matematica Applicata Lucia Pilleri // Esercizio dal compito del //). Considerato il seguente metodo alle differenze finite, dipendente dai parametri reali e β )] η i+ = η i + h 5fx i, η

Dettagli

CAPITOLO VIII EQUAZIONI DIFFERENZIALI. Consideriamo il seguente problema di Cauchy per i sistemi di equazioni differenziali del primo ordine :

CAPITOLO VIII EQUAZIONI DIFFERENZIALI. Consideriamo il seguente problema di Cauchy per i sistemi di equazioni differenziali del primo ordine : CAP8-DU versione aggiornata al 4/1/95 CAPITOLO VIII EQUAZIONI DIFFERENZIALI Consideriamo il seguente problema di Cauchy per i sistemi di equazioni differenziali del primo ordine : y'(t) = f(t,y(t)) y(t

Dettagli

Analisi Numerica I - Secondo appello a.a Correzione 10 febbraio 2017

Analisi Numerica I - Secondo appello a.a Correzione 10 febbraio 2017 Analisi Numerica I - Secondo appello a.a. 06 07 - Correzione 0 febbraio 07 Esercizio Si consideri il sistema lineare Ax = b con A = 0 α β, α, β R b = 0 8. 0. Dire per quali valori di α e β il metodo del

Dettagli

Algoritmi numerici. Zeri di una funzione. Integrale di una funzione. Soluzione di una equazione differenziale

Algoritmi numerici. Zeri di una funzione. Integrale di una funzione. Soluzione di una equazione differenziale Algoritmi numerici Zeri di una funzione Integrale di una funzione Soluzione di una equazione differenziale Zeri di una funzione Trovare le soluzioni di f(x) = 0 dove f(x) e una funzione reale di variabile

Dettagli

Esercitazioni di Analisi e Simulazione dei Processi Chimici

Esercitazioni di Analisi e Simulazione dei Processi Chimici Esercitazioni di Analisi e Simulazione dei Processi Chimici Metodi numerici per la risoluzione di sistemi di equazioni differenziali ordinarie Antonio Brasiello Email: abrasiel@unina.it Tel. 081 76 82537

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Equazioni differenziali Analisi Matematica 1 1 / 30 Formulazione del problema In generale

Dettagli

Calcolo Numerico - A.A Laboratorio 6

Calcolo Numerico - A.A Laboratorio 6 Calcolo Numerico - A.A. 2011-2012 Laboratorio 6 Approssimazione ai minimi quadrati Siano (x i, y i ), per i = 0,..., n, n + 1 coppie di dati di origine sperimentale o originati dal campionamento y i =

Dettagli

ESERCIZI DI ANALISI MATEMATICA II. sin(tv) v. f(v) dv = (1 + t) (e 1/t + 1)

ESERCIZI DI ANALISI MATEMATICA II. sin(tv) v. f(v) dv = (1 + t) (e 1/t + 1) ESERCIZI DI ANALISI MATEMATICA II Equazioni differenziali ED 1 Stabilire se l equazione integrale f(t) 1/2 0 sin(tv) v f(v) dv = (1 + t) (e 1/t + 1) ammette una soluzione nello spazio C([0, 1/2]). (Suggerimento:

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2013-2014) Metodi Numerici Appunti delle lezioni: Equazioni differenziali ordinarie Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio:

Dettagli

Prova scritta di Analisi Matematica III

Prova scritta di Analisi Matematica III 18 luglio 2016 f n (x) = 1 n e (x n)2 (x R, n N ). 2. Si scriva la disuguaglianza di Bessel per la funzione f, periodica di periodo 2π, tale che 0 x [ π, 0) f (x) = 2 x x [0, π). 3. Si consideri l equazione

Dettagli

Contenuti. (b) tipi di errori: errori di discretizzazione locali e globali; errori di arrotondamento; metodi consistenti

Contenuti. (b) tipi di errori: errori di discretizzazione locali e globali; errori di arrotondamento; metodi consistenti Appunti di Analisi e Calcolo Numerico Metodi numerici per la soluzione delle equazioni differenziali LS in Ingegneria Edile AA 2007-2008 Docente : Dott. Ivelina Bobtcheva Contenuti 1. Radici di equazioni

Dettagli

Integrazione numerica

Integrazione numerica Integrazione numerica Introduzione Il calcolo di integrali si presenta assai di frequente nelle applicazioni della matematica, ad esempio come misura dell area sottesa da una curva, o alla lunghezza di

Dettagli

Complementi di Analisi Matematica. Foglio di esercizi n.8 18/04/2018

Complementi di Analisi Matematica. Foglio di esercizi n.8 18/04/2018 Complementi di Analisi Matematica. Foglio di esercizi n.8 8/04/08 Esercizi su equazioni differenziali Esercizio Tracciare i grafici qualitativi delle soluzioni dell equazione differenziale y = e y (y 3

Dettagli

Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari

Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza Equazioni non lineari ESERCIZIO 1 Data l equazione ln(e + x) = 1 (1 + 4x) + 1 2 1.1 verificare analiticamente se sono soddisfatte le

Dettagli

Metodi Numerici con Laboratorio di Informatica - A.A Esercizi Laboratorio n 4 - Metodo di Newton e Metodi di punto fisso

Metodi Numerici con Laboratorio di Informatica - A.A Esercizi Laboratorio n 4 - Metodo di Newton e Metodi di punto fisso Metodi Numerici con Laboratorio di Informatica - A.A. 2015-2016 Esercizi Laboratorio n 4 - Metodo di Newton e Metodi di punto fisso Metodi numerici per le equazioni differenziali ordinarie Consideriamo

Dettagli

Equazioni differenziali a variabili separabili e lineari del primo ordine. Esercizi.

Equazioni differenziali a variabili separabili e lineari del primo ordine. Esercizi. Equazioni differenziali a variabili separabili e lineari del primo ordine. Esercizi. Mauro Saita Versione provvisoria. Dicembre 204 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Complementi di Matematica e Calcolo Numerico A.A. 2013-2014 Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Cosideriamo il Problema di Cauchy: y (t) = f(t,y(t)) t I, y(t 0 ) = y

Dettagli

METODI DI COLLOCAZIONE POLINOMIALE (Metodi di Runge-Kutta continui) November 30, 2004

METODI DI COLLOCAZIONE POLINOMIALE (Metodi di Runge-Kutta continui) November 30, 2004 METODI DI COLLOCAZIONE POLINOMIALE (Metodi di Runge-Kutta continui) November, Nell approssimare numericamente un problema di Cauchy, puo capitare di essere interessati a valori della soluzione in punti

Dettagli

1 Richiami di teoria sui problemi di Cauchy

1 Richiami di teoria sui problemi di Cauchy 1 Richiami di teoria sui problemi di Cauchy Il problema di Cauchy consiste nel cercare una funzione y continua e derivabile in un intervallo I 0 di R contenente un punto x 0 tale che y (t) = f(t, y(t))

Dettagli

Successioni e serie di funzioni

Successioni e serie di funzioni Capitolo 2 Successioni e serie di funzioni In questo capitolo studiamo le successioni e le serie di funzioni. quindi particolari metodi per approssimare una data funzione Studiamo CAPITOLO 2. SUCCESSIONI

Dettagli

y = f(t, y) y = y y(0) = 0,

y = f(t, y) y = y y(0) = 0, Il teorema di Peano Considerato il problema di Cauchy 1) y = ft, y) y ) = y 0, se il campo vettoriale f è solamente continuo e non localmente lipschitziano nella seconda variabile, la successione delle

Dettagli

LE EQUAZIONI DIFFERENZIALI del PRIMO e del SECONDO ORDINE

LE EQUAZIONI DIFFERENZIALI del PRIMO e del SECONDO ORDINE LE EQUAZIONI DIFFERENZIALI del PRIMO e del SECONDO ORDINE EQUAZIONI DIFFERENZIALI LE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE ESEMPIO Della funzione y = f(x) si sa che y' 2x = 1. Che cosa si può dire della

Dettagli

Esercizi Svolti di Analisi Numerica

Esercizi Svolti di Analisi Numerica Esercizi Svolti di nalisi Numerica Esercizi Svolti di nalisi Numerica Gli esercizi che proponiamo qui di seguito si riferiscono ai contenuti del libro. M. Perdon, Elementi di nalisi Numerica, Pitagora

Dettagli

METODI NUMERICI PER IL CONTROLLO

METODI NUMERICI PER IL CONTROLLO METODI NUMERICI PER IL CONTROLLO Relazione 4: Equazioni differenziali ESERCIZIO 1 Risolvere il problema ai valori iniziali 3 x& = 1x + t x(0) = 0 1t + 6t 3 1 nell intervallo [0 1] con passo h=0.1 usando

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

Analisi Numerica. Debora Botturi ALTAIR. Debora Botturi. Laboratorio di Sistemi e Segnali

Analisi Numerica. Debora Botturi ALTAIR.  Debora Botturi. Laboratorio di Sistemi e Segnali Analisi Numerica ALTAIR http://metropolis.sci.univr.it Argomenti Argomenti Argomenti Rappresentazione di sistemi con variabili di stato; Tecniche di integrazione numerica Obiettivo: risolvere sistemi di

Dettagli

Analisi Vettoriale - A.A Foglio di Esercizi n. 6 Soluzioni. 1. Esercizio Determinare l integrale generale dell equazione autonoma.

Analisi Vettoriale - A.A Foglio di Esercizi n. 6 Soluzioni. 1. Esercizio Determinare l integrale generale dell equazione autonoma. Analisi Vettoriale - A.A. 23-24 Foglio di Esercizi n. 6 Soluzioni. Esercizio Determinare l integrale generale dell equazione autonoma.. Soluzione. y = y(y )(y 2) y(y )(y 2) dy = Tenuto conto che y(y )(y

Dettagli

Introduzione alle equazioni differenziali attraverso esempi. 20 Novembre 2018

Introduzione alle equazioni differenziali attraverso esempi. 20 Novembre 2018 Introduzione alle equazioni differenziali attraverso esempi 20 Novembre 2018 Indice: Equazioni separabili. Esistenza e unicità locale della soluzione di un Problemi di Cauchy. Equazioni differenziali lineari

Dettagli

Esame di Complementi di Matematica (STC) e Parziale di Matematica II (SMat). 3 Maggio Soluzioni

Esame di Complementi di Matematica (STC) e Parziale di Matematica II (SMat). 3 Maggio Soluzioni Esame di Complementi di Matematica (STC) e Parziale di Matematica II (SMat). 3 Maggio 2006. Soluzioni In questo documento sono contenuti gli svolgimenti del tema d esame del 05/06/2006. Alcuni esercizi

Dettagli

()Probablità, Statistica e Processi Stocastici

()Probablità, Statistica e Processi Stocastici Probablità, Statistica e Processi Stocastici Discretizzazione equazione del calore Per l equazione usiamo lo schema esplicito p tk+1 (x i ) p tk (x i ) h t p t = σ2 2 p 2 x 2 = σ2 2 p tk (x i+1 ) p tk

Dettagli

Fondamenti di Calcolo Numerico. Appunti relativi alla soluzione numerica di un problema di Cauchy

Fondamenti di Calcolo Numerico. Appunti relativi alla soluzione numerica di un problema di Cauchy Fondamenti di Calcolo Numerico Appunti relativi alla soluzione numerica di un problema di Cauchy Claudia Fassino (fassino@dima.unige.it) Premessa Queste dispense riassumono le mie lezioni relative alla

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equazioni differenziali ordinarie Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 9 marzo 2008 Outline 1 Il problema di Cauchy Esistenza, unicità e dipendenza continua dai dati

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi con soluzione

EQUAZIONI DIFFERENZIALI Esercizi con soluzione EQUAZIONI DIFFERENZIALI Esercizi con soluzione 1. Calcolare l integrale generale delle seguenti equazioni differenziali lineari del primo ordine: (a) y 2y = 1 (b) y + y = e x (c) y 2y = x 2 + x (d) 3y

Dettagli

Sia assegnata la seguente equazione differenziale con condizione iniziale

Sia assegnata la seguente equazione differenziale con condizione iniziale Capitolo 2 METODI A UN PASSO PER ODE Sia assegnata la seguente equazione differenziale con condizione iniziale { y (t) = f(t, y(t)) y(t 0 ) = y 0 (2.1) dove y : [t 0, t f ] R, f : [t 0, t f ] R m R m e

Dettagli

1 Equazioni Differenziali

1 Equazioni Differenziali Equazioni Differenziali Un equazione differenziale è un equazione che esprime un legame tra una variabile indipendente x (o t, quando ci riferiamo al tempo) una variabile dipendente y o incognita che sta

Dettagli

Analisi Matematica I

Analisi Matematica I Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-7 Savona Tel. +39 9 264555 - Fax +39 9 264558 Analisi Matematica I Testi d esame e Prove parziali Analisi Matematica

Dettagli

Analisi Numerica Corso di Laurea in Ingegneria Elettrotecnica

Analisi Numerica Corso di Laurea in Ingegneria Elettrotecnica Analisi Numerica Corso di Laurea in Ingegneria Elettrotecnica (A.A. 2016-2017) Prof.ssa Silvia Tozza Integrazione numerica 6 Dicembre 2016 Silvia Tozza Email: tozza@mat.uniroma1.it Ricevimento: Su appuntamento

Dettagli

Equazioni separabili. Un esempio importante

Equazioni separabili. Un esempio importante Equazioni separabili. Un esempio importante Esempio La soluzione generale dell equazione y = αy, α R (1) è data da y(x) = Ke αx, K R (2) C è un unica soluzione costante: y = 0: cioè y(x) = 0 per ogni x.

Dettagli

Modellistica e Simulazione. Outline. Notes. Notes. Luigi Iannelli. 6 giugno Introduzione. Generalità sui metodi numerici di integrazione

Modellistica e Simulazione. Outline. Notes. Notes. Luigi Iannelli. 6 giugno Introduzione. Generalità sui metodi numerici di integrazione 6 giugno 2011 1 Outline Introduzione Generalità sui metodi numerici di integrazione Proprietà dei metodi di integrazione Alcuni metodi di integrazione 2 Equazioni differenziali nello spazio di stato Consideriamo

Dettagli

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del c.1.

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del c.1. Prova scritta di Analisi Matematica II del 14-07-1999 - c.1 1) Sia (d n ) una successione di numeri reali tali che inf d n > 0. Studiare il carattere della serie + n=1 al variare del parametro reale positivo

Dettagli

Complementi di Analisi Matematica. Foglio di esercizi n.9 10/04/2017 (Aggiornamento del 26/04/2017)

Complementi di Analisi Matematica. Foglio di esercizi n.9 10/04/2017 (Aggiornamento del 26/04/2017) Complementi di Analisi Matematica. Foglio di esercizi n.9 0/04/207 (Aggiornamento del 26/04/207) Esercizi su equazioni differenziali Esercizio Tracciare i grafici qualitativi delle soluzioni dell equazione

Dettagli

Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I. Prova scritta del 8 Gennaio 2014

Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I. Prova scritta del 8 Gennaio 2014 Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I Prova scritta del 8 Gennaio 214 Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile. (1) (Punti 8)

Dettagli

Daniela Lera A.A. 2008-2009

Daniela Lera A.A. 2008-2009 Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2008-2009 Equazioni non lineari Metodo di Newton Il metodo di Newton sfrutta le informazioni sulla funzione

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

INTEGRAZIONE NUMERICA

INTEGRAZIONE NUMERICA INTEGRAZIONE NUMERICA Obiettivo: calcolare valore di integrale definito di una funzione f Integrale viene calcolato mediante insieme discreto di valori noti di f nell intervallo dato Uso di tecniche numeriche:

Dettagli

SPAZI METRICI COMPLETI

SPAZI METRICI COMPLETI Capitolo 1 SPAZI METRICI COMPLETI Sia dato uno spazio metrico (X, d). Definizione 1.1 Una successione {x n } si dice successione di Cauchy se ε > 0 n 0 n, m n 0 = d(x n x m ) < ε (1.1) Esercizio 1.1 Dimostrare

Dettagli

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Risoluzione di Equazioni non lineari Sia F C 0 ([a, b]), cioé F è una funzione continua in un intervallo [a, b] R, tale che F(a)F(b) < 0 1.5 1 F(b) 0.5 0 a

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equazioni differenziali ordinarie Lucia Gastaldi DICATAM - Sez. di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Il problema di Cauchy Esistenza, unicità e dipendenza continua dai dati 2 Metodi numerici

Dettagli

Cenni sull integrazione numerica delle equazioni differenziali. Corso di Dinamica e Simulazione dei Sistemi Meccanici

Cenni sull integrazione numerica delle equazioni differenziali. Corso di Dinamica e Simulazione dei Sistemi Meccanici Cenni sull integrazione numerica delle equazioni differenziali Corso di Dinamica e Simulazione dei Sistemi Meccanici 9 ottobre 009 Introduzione La soluzione analitica dell integrale di moto di sistemi

Dettagli

Appunti sul corso di Complementi di Matematica ( modulo Analisi)- prof. B.Bacchelli

Appunti sul corso di Complementi di Matematica ( modulo Analisi)- prof. B.Bacchelli Appunti sul corso di Complementi di Matematica ( modulo Analisi)- prof. B.Bacchelli 01- Equazioni differenziali del primo ordine: variabili separabili Riferimenti: R.Adams, Calcolo Differenziale 2. Casa

Dettagli

Assoluta stabilità e metodi multipasso. Assoluta stabilità

Assoluta stabilità e metodi multipasso. Assoluta stabilità Assoluta stabilità e metodi multipasso Elena Loli Piccolomini-metodi multipasso p.1/33 Assoluta stabilità La convergenza è un concetto fondamentale: non avrebbe senso un metodo non convergente. la convergenza

Dettagli

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA COGNOME: NOME: MATR.:

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA COGNOME: NOME: MATR.: Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA 1) L applicazione lineare f : R 3 R 2 data da f(x, y, z) = (3x + 2y + z, kx + 2y + kz) è suriettiva A: sempre; B: mai; C: per k 1 D: per k 2;

Dettagli

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni Prof. ssa Laura Pezza (A.A. 2017-2018) XXXII Lezione del 21.05.2018 http://www.dmmm.uniroma1.it/ laura.pezza 1 1. Metodo

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equazioni differenziali ordinarie Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 16 novembre 2007 Outline 1 Il problema di Cauchy Esistenza, unicità e dipendenza continua dai

Dettagli

n (x i x j ), det V = i>j

n (x i x j ), det V = i>j Capitolo 4 Approssimazione 4.1 Richiami di teoria Prerequisiti: nozioni elementari di calcolo differenziale e integrale. Interpolazione Il problema dell interpolazione è un caso particolare del vasto settore

Dettagli

Sistemi dinamici a tempo discreto

Sistemi dinamici a tempo discreto Matematica Open Source http://www.extrabyte.info Quaderni di Matematica Applicata 206 Sistemi dinamici a tempo discreto Marcello Colozzo.0 y 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8.0 x INDICE Indice Sistemi dinamici

Dettagli

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0.

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0. D0MINIO Determinare il dominio della funzione f ln 4 + Deve essere 4 + > 0 Ovviamente 0 Se > 0, 4 + 4 + quindi 0 < < > Se < 0, 4 + 4 4 e, ricordando che < 0, deve essere 4 < 0 dunque 7 < < 0 Il campo di

Dettagli

TECNICHE COMPUTAZIONALI AVANZATE

TECNICHE COMPUTAZIONALI AVANZATE TECNICHE COMPUTAZIONALI AVANZATE Francesca Pelosi e Salvatore Filippone Università di Roma Tor Vergata Problemi di diffusione, trasporto, reazione http://www.mat.uniroma2.it/ pelosi/ TECNICHE COMPUTAZIONALI

Dettagli

COMPLETAMENTO DI SPAZI METRICI

COMPLETAMENTO DI SPAZI METRICI COMPLETAMENTO DI SPAZI METRICI 1. Successioni di Cauchy e spazi metrici completi Definizione 1.1. Una successione x n n N a valori in uno spazio metrico X, d si dice di Cauchy se, per ogni ε > 0 esiste

Dettagli

Correzione del compito di Analisi 1 e 2 del giorno 09/06/2017

Correzione del compito di Analisi 1 e 2 del giorno 09/06/2017 Correzione del compito di Analisi e 2 del giorno 9/6/27 Stra Federico 5 giugno 27 Esercizio Studiare, al variare di α R e R, la convergenza assoluta e la convergenza semplice della serie n n sin/n cos/n

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equazioni differenziali ordinarie Lucia Gastaldi DICATAM - Sez. di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Il problema di Cauchy Esistenza, unicità e dipendenza continua dai dati 2 Metodi numerici

Dettagli

Appendici Definizioni e formule notevoli Indice analitico

Appendici Definizioni e formule notevoli Indice analitico Indice 1 Serie numeriche... 1 1.1 Richiami sulle successioni................................. 1 1.2 Serie numeriche........................................ 4 1.3 Serie a termini positivi...................................

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equazioni differenziali ordinarie Lucia Gastaldi DICATAM - Sez. di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Il problema di Cauchy Esistenza, unicità e dipendenza continua dai dati 2 Metodi numerici

Dettagli

Problema. Equazioni non lineari. Metodo grafico. Teorema. Cercare la soluzione di

Problema. Equazioni non lineari. Metodo grafico. Teorema. Cercare la soluzione di Problema Cercare la soluzione di Equazioni non lineari dove Se è soluzione dell equazione, cioè allora si dice RADICE o ZERO della funzione Metodo grafico Graficamente si tratta di individuare l intersezione

Dettagli