Oltre la Borsa. Matematica, scienze, economia, filosofia, metafisica, congetture ed altro. La raccolta di:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Oltre la Borsa. Matematica, scienze, economia, filosofia, metafisica, congetture ed altro. La raccolta di:"

Transcript

1 Oltre la Borsa Matematica, scienze, economia, filosofia, metafisica, congetture ed altro. La raccolta di: Erika Tassi Francesco Caranti Ralph Sassun Vittorio Malvezzi Ario Benedetti Un viaggio tra la regressioni, le serie storiche e i sistemi di analisi numerica. In questa Rubrica si parlerà sempre di numeri ma la vera novità è che questi saranno presentati in una dimensione diversa e accattivante, forse non a tutti ben nota. Protagonista sarà il numero primo da cui tutto deriva. Andremo indietro nel tempo raccontando storie insolite, teoremi, congetture, paradossi una materia che ruota intorno alla genia del numero, quella che ha contributo a farlo diventare l elemento base delle congetture, delle ipotesi e delle teorie contemporanee. Ci muoveremo tra i confini della matematica, cioè dentro agli schemi che comprendono il numero e che nel numero sono compresi. Per potersi districare dentro la Finanza Derivata è importante riuscire a comprendere i concetti di rischiosità e di probabilità. E questo è ciò che faremo, raccontando una storia che avrà il sapore del passato ma che ci proietterà verso la realtà dei movimenti di Mercato passando attraverso i giochi matematici. Tutti elementi che ci permetteranno di entrare con semplicità nei problemi delle strategie complesse di Portafoglio. Perché riteniamo che la conoscenza, la consapevolezza e l applicazione costante delle regole siano i tre presupposti fondamentali e indispensabili per affrontare e battere i Mercati. Per informazioni, commenti o curiosità scrivete a

2 2 Indice Il Nastro di Moebius e l Universo Simmetrico Caranti pag. 3 Moebius, incipit perfetto Malvezzi pag. 7 I Problemi del Millennio Caranti pag. 9 Fantasiose fantasie di un commesso viaggiatore Tassi pag. 14 Il Paradosso di Schrödinger Caranti pag. 16 La Musica e il Teorema di Gödel Caranti pag. 21 Relazioni matematiche in natura Sassun pag. 25 Il Codice della Torah e il Teorema del Delirio Caranti pag. 27 Re: Il Codice della Torah Malvezzi pag. 31 I Numeri magici dell isola di Gavrinis Malvezzi pag. 32 Il Déjà vu: un viaggio nella dimensione Spazio-Tempo Caranti pag. 35 Madre Natura alza il sipario: matematica e fantasia Tassi pag. 39 L Empireo e le Ipersfere Caranti pag. 41 Il NIM e il teorema di Sprague-Grundy Caranti pag. 45 Il Teorema dei Quattro Colori Caranti pag. 49 Who has the fish? Caranti pag. 52 Incroci matematici per vedere il mondo a regola d arte Tassi pag. 56 Gli Aforismi di Ippocrate Caranti pag. 59 L elisir di lunga vita dentro un algoritmo Tassi pag. 63 Le Leggi di Murphy, Parkinson e Peter Caranti pag. 65 Doctor Peter? Ma che simpatia! Tassi pag. 67 Il numero aureo anche nella mia testa Tassi pag. 69 La formula segreta della ricchezza Tassi pag. 71 L Elisir di lunga Vita nel genoma Malvezzi pag. 73 Ricchi e felici con la luna nuova Tassi pag. 74 Ricchi e felici con il SuperEnalotto Caranti pag. 76 E Natale e puoi Tassi pag. 79 L anagramma Fondamentale del Calcolo Caranti pag. 84 La ricerca dicotomica Caranti pag. 86 Dijkstra e il problema dei Filosofi a Cena Caranti pag. 89 Numeri, violini e sinfonie celesti Benedetti pag. 92 Capitalism: a love story Caranti pag. 94 Il segreto è la psicologia? Tassi pag. 96 Al Grand Hotel con Lem e Hilbert Caranti pag. 99 Platone, Eulero e la magia del numero 2 Caranti pag.102 La Topologia di Eulero Caranti pag.106

3 3 Il Nastro di Moebius e l Universo Simmetrico le superfici di Moebius hanno spinto la fantasia a soluzioni limite come quella di un treno impazzito che scompare girando all'infinito e senza ritorno Mentre è ormai pronto il nuovo Sito rivolto al tema dell Ingegneria Finanziaria, un treno impazzito percorre incontrollato i sotterranei di Buenos Aires. La novità è però che il metrò non viaggia su binari reali ma lungo un Nastro di Moebius cioè lungo quel percorso atipico che la Geometria definisce come topologico. Tutto ha inizio negli anni 50 quando l astronomo americano A.J. Deutsch imposta nel libro A subway called Moebius una personale rielaborazione delle teorie del matematico tedesco August Ferdinand Moebius ( ) che per primo considerò le proprietà delle superfici geometriche definite non orientabili. Tanto per sapere di cosa stiamo parlando, va detto che in Geometria si definisce orientabile tutto ciò che possiede una faccia interna e una faccia esterna in modo che per passare da una all altra si debba "attraversare e forare" la superficie stessa. Per fare un esempio, sono orientabili tutte le superfici chiuse e senza bordi: la sfera (che ci permette di gonfiare un pallone) e il toro (che altro non è che una semplice ciambella o una normale camera d'aria di bicicletta). Al contrario, per definire le superfici non orientabili dobbiamo riferirci a un esempio un po particolare, cioè quello di una cintura. E vediamo come: prima di allacciarla facciamo fare ad una sua estremità un mezzo giro. Se mettiamo un dito all esterno nella parte liscia vicino alla fibbia e lo facciamo strisciare lungo la cintura, ecco che quando torneremo alla fibbia, il dito si ritroverà nella parte opposta, ossia in quella grezza anziché in quella liscia. Siamo così tornati nello stesso punto di partenza ma esattamente dalla parte opposta, cioè quella contraria e come tale "invisibile" al resto del mondo. Questo movimento si alterna a ogni giro in modo che la volta successiva ci si ritroverà sulla parte liscia cioè su quella visibile. La considerazione più importante da fare è quella che in una cintura normalmente chiusa per passare da una parte all altra è indispensabile attraversare il bordo mentre in una cintura di Moebius è possibile farlo una volta sì e una volta no senza spostare il dito. In un certo senso il nastro di Moebius ha una faccia sola, mentre una cintura normalmente chiusa ne ha due. Da questa considerazione lo spunto matematico è evidente: poiché quando si percorre un giro su un nastro di Moebius ci si ritrova dalla parte opposta, è lecito pensare che in questa condizione si possa scomparire alla vista del mondo. Non solo: il nastro di Moebius è ricco di altre stupefacenti proprietà: se una trottola gira destrorsa lungo tutta la striscia, al suo ritorno nel punto di partenza avrà cambiato il senso di rotazione diventando improvvisamente sinistrorsa. Questo è il motivo per cui le superfici non orientabili di

4 4 Moebius hanno spinto in più occasioni la fantasia degli artisti a soluzioni di fanta-matematica come quella appunto di un treno che scompare girando all'infinito senza tornare mai più nel punto di partenza. Nel 1996 il regista argentino Gustavo Mosquera traspone in pellicola il racconto di Deutsch nel film Moebius. Il racconto viene adattato per il cinema da vari autori, fra cui il regista stesso, ed ambientato a Buenos Aires dove il protagonista viene incaricato di ritrovare un Professore scomparso dopo essere salito su un treno metropolitano partito alla volta di un percorso senza ritorno. Certo l ipotesi di Mosquera è frutto di pura fantasia artistica poiché, per quanto si possano scavare infinite gallerie all interno della terra, non si potrà mai ricadere in proprietà tanto fantasiose. Ciononostante tutti i matematici hanno dimostrato grande indulgenza di fronte alle divagazioni sul mistero di Moebius e ogni volta hanno tollerato l estro e la fantasia più invasiva degli artisti che hanno voluto esprimersi in tal senso. L'incisore olandese Maurits Cornelis Escher, nel 1961, usa il nastro di Moebius per un lavoro ligneo: La Striscia di Moebius I e, due anni più tardi, la Striscia di Moebius II. La scenicità di questa litografia si appoggia sulla proprietà della superficie di Moebius di presentare una sola faccia e un solo bordo e di questa proprietà si avvantaggia una formica che, su questa superficie, può raggiungere il cibo in qualunque punto esso si trovi. E su questa proprietà di Moebius, il film di Mosquera, attraverso congetture forzate delle proprietà delle arcotangenti paraboliche, riesce a far sparire un treno carico di passeggeri nel tunnel di Buenos Aires sfruttando la scelta migliore dei parametri di questo teorema. I varchi aperti sulle diverse dimensioni spazio-temporali possono così esporsi verso la suggestione e va da sé che un bel giorno potrebbe capitare a noi stessi di finire sul treno sbagliato e nel momento sbagliato, rimanendo intrappolati per sempre. Anche Carole Berger in Una coppia chiamata Moebius, affascinato dalla trasposizione matematica, si lascia andare alla fantasia in versi stupendi: "Quando un uomo e una donna si uniscono nell'amore, esiste una potenzialità infinita di rapporti, che come la striscia di Moebius, non hanno fine e non hanno principio". Volendo divagare un po, va detto che la Geometria ha svolto i propri compiti nel tempo adeguandosi man mano agli studi successivi attraverso l ampliamento del concetto della Trasformazione delle Figure. Già in Grecia, Euclide assegnava alla trasformazione i concetti esclusivi collegati alla: Traslazione (spostamento di una figura nello spazio) Rotazione (modifica angolare) Riflessione (speculare) Dilatazione (zoom). Il passo successivo si deve al matematico russo Nikolaj Ivanovi Lobatcevskij che nel 1829 estende le ipotesi primitive di Euclide assegnate al punto, alla retta e al piano e dall Università del Kazan fonda la nuova Geometria Iperbolica. Lobatcevskij riconsiderare come fondamentale il contatto tra i corpi e le deformazioni senza lacerazione (una sfera che muta in un ovale, un ovale in un cubo, un cubo in una piramide) attraverso passaggi successivi senza rottura della struttura, in pratica l inizio della moderna Topologia. Un po più tardi, su un altro fronte scientifico, il pedagogo svizzero Jean Piaget (Neuchâtel 1896 Ginevra 1980) segue il ragionamento del matematico russo affermando che i primi concetti della geometria della vita infantile non hanno caratteristiche metriche ma solo topologiche. I suoi studi affermano cioè che i neonati presentano un approccio naturale e spontaneo più per la topologia che non per la geometria nel senso che sono in grado di

5 5 distinguere subito e per istinto la forma degli oggetti e non tanto il dettaglio specifico (come per esempio la differenza tra un pentagono e un esagono), elementi aggiuntivi che si specializzeranno solo più avanti nel tempo. Ecco come, scorrendo un Nastro di Moebius con un dito, ci si possa muovere pur rimanendo invisibili al resto del mondo, così come un treno che corre nella metropolitana di Buenos Aires e allora, che qualcosa possa rimanere nascosto tra le simmetrie può anche risultare un ragionamento niente affatto forzato, un nuovo passo verso la Teoria dell Universo Simmetrico (TUS). Spetta alla TUS descrivere in modo nuovo ma verosimile l Universo, i suoi confini e il dilemma della vita e della morte. Secondo questa teoria, l Universo è un sistema isolato per il quale, secondo le leggi della Fisica, vale indistintamente il cosiddetto Principio di Conservazione. Ma poiché il Principio di Conservazione viaggia di pari passo con la Simmetria, anche l Universo si deve evolvere in forma Simmetrica. E quindi, anche se in maniera grossolana, si potrebbe dire che nel momento del Big Bang doveva esistere "qualcosa" di perfettamente omogeneo, indistinto ed uniforme che, espandendosi nello spazio e nel tempo, deve aver generato tutto ciò che è osservabile in natura. Se ciò è accaduto davvero da una parte del "centro" dell esplosione, identicamente deve essere successo nella parte opposta. Ecco perché, a fronte del Sistema Solare nel quale esistiamo, agli antipodi dell universo deve necessariamente esistere un secondo Sistema Solare simmetrico e identico al nostro in cui i mutamenti avvengono in modo contemporaneo. Dunque tutto ciò che esiste deve avere un gemello perfetto in modo che, nello stesso momento, ciascuno di noi non è più solo" dato che un nostro perfetto clone agli antipodi del cosmo sta facendo e pensando le nostre stesse e identiche cose. Se un esploratore partisse dalla terra per scoprire i confini dell universo, nello stesso momento il suo gemello si imbarcherebbe nella stessa impresa: senza saperlo, i due si troveranno a seguire lo stesso Nastro di Moebius, sperando di incontrarsi ai confini del cosmo. Nel percorso del Nastro, la simmetria si sarà però trasformata da sferica a speculare ed ognuno dei due esploratori avrà però la sensazione di trovarsi davanti ad un enorme specchio per cui ogni tentativo di comunicare risulta impossibile poiché in condizioni di simmetria speculare, la materia e l antimateria avranno unicamente la prerogativa di contrastarsi continuamente. Da queste considerazioni, l Universo appare come "chiuso" in una ipersfera di cristallo da cui non è dato uscire: l interno dell Universo dell uno risulterà l esterno dell altro e viceversa. A confortare la teoria pare che nemmeno le immagini delle galassie osservate dal telescopio Hubble, ai limiti del cosmo, sarebbero state considerate solo come effetti ottici dovuti alla deflessioni di raggi luminosi da parte di masse invisibili di materia. Nota: Il telescopio spaziale Hubble (HST = Hubble Space Telescope) è posto negli strati esterni dell'atmosfera terrestre, a circa 600 chilometri di altezza, in orbita attorno alla Terra ogni 92 minuti. È stato lanciato il 24 aprile 1990 con lo Space Shuttle Discovery come progetto comune della NASA e dell'agenzia Spaziale Europea. Al di là dei personali modi di intendere il senso dell esistenza, della vita e della Fede, il modello dell Universo Simmetrico potrebbe essere sintetizzato in questo modo: 1. Il Big Bang è solo un punto di riferimento di infiniti cicli continui ed immutabili perché non può esistere nulla al di fuori del Sistema che possa mutare le cose, cioè, per definizione, l Universo stesso. 2. Tutto ciò che si osserva in natura scaturisce dal nulla, come mutamento di un qualcosa inizialmente indistinguibile che man mano ha

6 6 assunto le infinite forme conosciute nel rispetto delle leggi di causa ed effetto in un contesto di perfetta simmetria. 3. L espansione dell universo, attraverso un percorso simile al nastro di Moebius, fa incontrare ogni corpo con il suo "anti-corpo" ai "confini" del cosmo in simmetria speculare dove, attraverso un urto elastico, dà inizio alla fase di contrazione (Big Reflection). 4. Ogni energia ritorna ad incontrarsi, in simmetria sferica, con la sua anti-energia, nel punto dove era "iniziato" il tutto (Big Crunch) e lì "scompare" annullandosi per "riemergere" nuovamente in un nuovo Big Bang. 5. Tutto si riforma identicamente al ciclo precedente come sempre è stato e sempre sarà: come in un film, in cui la fine della pellicola viene ricongiunta al suo inizio. 6. Ogni essere vivente vivrà la stessa vita e compirà le stesse azioni imprigionato in una ipersfera, subendo, inesorabilmente, la legge di causa-effetto. 7. Ogni essere umano vivrà in eterno pur conoscendo la propria ed altrui morte senza però averne coscienza. Dopo la morte il tempo non si fermerà ma ripartirà veloce, così che ci si risveglierà bambini senza alcun ricordo precedente. La scoperta delle proprietà che portano il nome di August Ferdinand Moebius, ci hanno avvicinati alla filosofia orientale del doppio, alla geometria post-euclidea e al Principio di Conservazione della Fisica. Voli di fantasia, sinergia delle scienze, spigolature un modo come un altro di passare dalla vita ordinaria al controllo dettagliato della nostra esistenza, un po come avrebbe voluto Bacone, l esatto contrario delle teorie del doppio - il Ka dell antico Egitto e dei fenomeni della bilocazione di San Giuseppe da Copertino. Non lo sappiamo né forse lo sapremo mai. Ma l indagine e la domanda restano ogni giorno più lecite in un mondo che si muove alla velocità della luce. Francesco Caranti

7 7 Moebius, Incipit perfetto! i numeri oggi possono diventare codici e vettori di comunicazioni Il nostro Guru ha iniziato parlando di numeri e di quanti piacevoli misteri possano nascondere (Il Nastro di Moebius e l Universo Simmetrico). I numeri oggi possono diventare codici e anche forti vettori di comunicazioni. A volte con risultati impensabili. Seguitemi con pazienza. Moebius modestia a parte mi ritengo uno particolarmente portato a fare rebelotto (scusate: sono milanese e da queste parti rebelotto è sinonimo di confusione ) una roba che mi viene spontanea ma che ho migliorato con anni di esercizio. Devo però tributare a Moebius l onore che si deve ai maestri. Che confusionario di classe! Riesce a farlo perfino in universi paralleli tanto che uno si domanda che strategie sarebbe capace di metter su se gli affidassimo in mano una strategia di Borsa! Ma quanto a realtà romanzesca, nessuna meraviglia se il Guru Caranti la prende alla larga. Nella vita - anche senza disturbare le menate filosofiche shakespeariane su quante cose ci siano sotto le stelle - ci sono a volte coincidenze tra estremi che fanno pensare. Quindi seguiamo attentamente la cosa come ce la presenta Caranti senza alzare troppo le sopracciglia e storcere la bocca. Tra gli esempi che mi intrigano parecchio c è un ingarbugliato accoppiamento tra etichette RFID e Bibbia, addirittura il libro dell Apocalisse. Le etichette in parola sono un nuovo strumento di identificazione a mezzo radio frequenza che stentano un po a partire in quanto costano molto piu dei bar-codes, ma possono e potranno gestire un enormità di informazioni. Vedrai dunque che tecnica moderna e trascendentale si sposano e trovano conferma l uno nell altro in un modo inquietante. Seguimi su Internet dove un giorno mi sono imbattuto in un sito che a prima vista mi ha fatto sorridere: una presentazione con tanto di musichetta ossessiva e incalzante. Poi l ho guardata un altra volta e ho incominciato a verificare alcuni riscontri e ne sono rimasto turbato. Certo ai numeri e ai fatti puoi far dire tutto quello che vuoi, ma a farla breve ti darò gli elementi perché tu possa giudicare da te. Se ti colleghi al sito di Tommy, in mezzo a tanti altri file che testimoniano il suo rapporto impegnato e tormentato con il trascendentale, trovi questo divertissement <An ATM card under your skin> un chip sotto la pelle. Clicki e incomincia a raccontarti che le etichette a radio frequenza non servono più solo nei supermarkets, ti parla di una ditta USA, la ADS di Palm Springs in Florida, che spera di convincere gli Americani a farsi impiantare sotto la pelle del braccio, un microchip praticamente come facciamo coi cani. Nel mio caso mia moglie si è subito dichiarata contraria non per principi etici, ma perché teme aumentino le probabilità che mi riportino a casa, se per un caso che riterrebbe fortunato, io mi perdessi. Così in occasione di una delle recenti fiere di settore, il direttore commerciale della società della Florida che si è dichiarato <chipped> cioè impiantato, ha parlato degli enormi - a suo dire - vantaggi del sistema VeryPay. Con una semplice operazione in anestesia locale si inserisce un microchip di pochi millimetri. Comunque troppi per me che comincio a sudare quando solo devo vaccinarmi. Mi chiedo perché non andare avanti con le vecchie carte di credito. Ennò, ci dice il nostro uomo bionico, così non c è

8 8 il rischio di perderla su un taxi in qualche città in capo al mondo, o che te la freghino quando meno te l aspetti. Anche il Vice Presidente di MasterCard parla dei test in corso con le tradizionali cards, ma si aspetta quanto prima la soluzione finale, sotto la pelle tutto. L ADS spinge offrendo ai primi coraggiosi ampi sconti e facilitazioni di pagamento, lo scopo è quello intrigante di eliminare la necessità di ogni altro documento di identità, dati sanitari e fiscali inclusi. Ricordiamoci che il Grande Fratello è l invenzione di un noto scrittore americano, prima di essere un programma TV di discutibile successo. Nel frattempo MasterCard sta spingendo la moneta in plastica sui consumatori più giovani. Con la scusa di insegnare loro a gestire la spesa, limitando il rischio e quindi creando consumatori responsabili, sta offrendo una serie di prepagate dirette ai più giovani con una campagna pubblicitaria ad hoc. Loro fra l altro potrebbero essere i piu ricettivi all idea di un piercing un po particolare quale una RFID. Si sta costruendo la <cashless society>, la finanza senza contante che indubbiamente può avere i suoi vantaggi, ma con qualche costo extra, e i più pesanti sono quelli relativi alla perdita della nostra privacy. Dovremmo rinunciare ad una parte della nostra libertà nel nome della sicurezza e di garanzie di affidabilità. Personalmente in caso di emergenza civile potrei anche essere d accordo, ma impostare un economia sul totale controllo di tutti, che ne dici? L altra faccia della medaglia è ancora peggio. Senza sta benedetta RFID sono un paria, non posso fare transazioni, muoio di fame davanti ai supermarkets e se mi salvo muoio perché nessuno mi può curare. Torno coi piedi per terra e mi ricordo che si tratta solo di un file trovato in Internet, però come ti avevo anticipato ci sono dei riscontri oggettivi inquietanti. Dulcis in fundo il nostro Tommy ci cita la Bibbia, una profezia che sembra adattarsi molto bene agli scenari esposti. Apocalisse (evviva!) 13,16 puoi andartela a controllare, ma per semplicità ti riporto i passi che ho tratto dalla versione CEI: 16 Faceva sì che tutti, piccoli e grandi, ricchi e poveri, liberi e schiavi, ricevessero un marchio sulla mano destra e sulla fronte; 17 e che nessuno potesse comprare o vendere senza avere tale marchio, cioè il nome della bestia o il numero del suo nome. 18 Qui sta la sapienza. Chi ha intelligenza calcoli il numero della bestia: essa rappresenta un nome d'uomo. E tal cifra è seicentosessantasei. Che diamine c entra con la Finanza Derivata di Caranti? Già: andiamoci piano prima di dire che cose apparentemente lontane non abbiano punti in comune. Come tutto cio si possa sposare con i derivati e le opzioni, prodotti governati da rapporti matematici e precisi algoritmi inquadrati in un universo pericolosamente reale concreto e attuale, questa è la vera sfida. Il prof. Caranti ce lo spiegherà e la curiosità nel frattempo aumenta. Io, almeno, non perderò le prossime puntate. Vittorio Malvezzi

9 9 I Problemi del Millennio... se potessimo concentrare la nostra attenzione sui cicli di calcolo del computer, allora ci potremmo domandare quale realmente siano i limiti di fattibilità, cioè se possano essere stabilite a priori le regole generali... Mi è capitato di andare indietro con la memoria e di fare un salto tra i ricordi del passato, alla fine degli anni cinquanta, dentro all aula tetra e fredda della mia scuola elementare. Grembiuli neri, colletti bianchi ben stirati e il simbolo IV ricamato sul petto, rigorosamente a destra, per indicare coi numeri romani che anch io facevo parte della quarta: facile, perché l anno dopo sarebbe bastato scucire la barra alla sinistra della V per passare in quinta, l ultimo anno della scuola dell obbligo, o forse no, perché l obbligo era già stato esteso alle tre medie. I maschi scrupolosamente divisi dalle femmine al punto che l edificio stesso era stato costruito in blocchi separati, guai mai che il diavolo si fosse potuto infiltrare tra gli allievi di sesso diverso per poi distrarli da quella rigida e severa istruzione che là in quelle aule lo Stato dispensava gratuitamente! Non sempre però l attenzione di noi alunni era al massimo livello e ogni tanto si calava un po di tono tanto che il silenzio diventava brusio per poi dirompere in uno schiamazzo insopportabile, mal tollerato da un maestro inflessibile e tormentato dall ansia che il suo rigido programma formativo non venisse rispettato. E quando scattava la punizione, non si conoscevano mezze misure: si ricorreva a una terapia d urto molto efficace, ciò che in quegli anni si chiamava impropriamente numerazione. Fare una numerazione significava, per esempio, calcolare il risultato della somma dei primi 300 numeri naturali, un compito assolutamente inutile e snervante. Pare che anche a Gauss, in ben altri tempi, fosse stata inflitta una punizione simile e si dice che anch egli avesse inizialmente provato la stanchezza e la noia di questo stupido esercizio ripetitivo. Ma Gauss era Gauss e poiché i numeri li conosceva molto bene, risolse la somma = solo in qualche secondo dando prova di inusuale destrezza e costringendo il dannato maestro a ricorrere ad altro genere di punizione. Lo scolaro prodigio aveva scoperto lipperlì la formula della progressione per cui, semplificando la questione ai soli primi quattro numeri: = 10, possiamo notare che il risultato 10 si può ottenere facilmente moltiplicando l ultimo (il 4) per il successivo (5) e dividendo tutto per 2. Ecco come: = 4 x 5 : 2 = 10. Nel caso specifico del problema di Gauss, la somma dei primi 300 numeri naturali diventa questa: 300 x 301 : 2 = Messa da parte la straordinarie capacità del bambino prodigio, l esempio di questa regola di calcolo furba e veloce apre una serie di considerazioni interessanti in merito al calcolo complesso, specialmente quando questo viene utilizzato all interno del gradino superiore del software del computer, cioè il firmware. Ma il problema si allarga al punto tale che ancora oggi non si è arrivati a una conclusione definitiva e soddisfacente.

10 10 Ancor prima di entrare nei dettagli, va detto che la formula furba di Gauss - in quanto scorciatoia per abbreviare i tempi di esecuzione - fa parte di una delle 3 classi fondamentali del calcolo numerico, più precisamente di quella logaritmica. Giusto per semplificare: i calcoli di classe logaritmica, sono quelli per cui i tempi di elaborazione si accorciano in virtù di trucchi - algoritmi che per così dire abbassano il livello di difficoltà e, specialmente, ne riducono i tempi. E così anche noi, tutte le volte che riusciremo a trovare delle regole in grado di semplificare un calcolo, potremo vantarci di aver costruito un algoritmo di classe logaritmica (questi due termini bisticciano un po tra loro, quindi è bene fare attenzione a non confonderli). Fin qui niente di strano, ma non sempre si riesce a trovare qualche scorciatoia per ridurre il calcolo e allora bisogna accontentarsi di eseguire tutte le operazioni a tappeto, una dopo l altra, in perfetta sequenza, ciò che in gergo si chiama operazione di forza bruta. Come esempio di questa seconda classe di problemi, si deve pensare a ciò che succede tutte le volte che ci viene proposto, per esempio, di riordinare un semplice mazzo di carte da gioco. In realtà, in modo praticamente automatico, la nostra mente esegue un ciclo logico elementare che inizia con il confronto tra le prime due carte che ci capitano tra le mani lasciandole così come sono se la prima vale meno della seconda oppure scambiandole in caso contrario. Questo ciclo logico elementare procede fino alla fine secondo un criterio di sequenzialità. Questo sistema di Forza Bruta viene ripetuto fino a quando non sarà più necessario alcun cambio su tutta la fila delle carte ma ciò che si deve notare è che il tempo necessario per riordinare il mazzo dipende dal numero delle carte stesse: più sono le carte e più tempo occorre proporzionalmente per riordinarle. Molto dipende poi dalle condizioni di disordine iniziale (e casuale) del mazzo, cioè dagli scambi (permutazioni) che ci troveremo a fare o non fare. Questa seconda classe di calcolo è detta polinomiale. Riassumendo fin qui: 1) Le classi di calcolo con scorciatoia si chiamano logaritmiche 2) Le classi di calcolo in cui il tempo di processo è proporzionale al numero degli elementi si chiamano polinomiali. Ma la storia non finisce certo qui perché esiste anche una terza classe di calcolo per la quale vale, come esempio, un problema niente affatto banale, conosciuto come il Problema del commesso viaggiatore. Vediamo esattamente di che cosa si tratta. Supponiamo che un Commesso Viaggiatore debba visitare un certo numero di città e che abbia a disposizione la carta stradale di tutte le possibili connessioni tra una città e l altra e un certo tempo a disposizione. Dato per scontato che, per esempio, il tempo a disposizione sia di 8 ore, ci si chiede se esista un percorso che tocchi ogni città una volta soltanto in modo da visitarle tutte entro il tempo stabilito. Bene: ecco il terzo tipo di problema di calcolo: dopo la classe logaritmica e quella polinomiale entra in scena la classe di routing che si identifica attraverso la sigla TSP, dall inglese Travelling Salesman Problem. Per la soluzione del TSP occorre costruire un grafo fatto da tanti nodi in cui ciascun nodo rappresenta i clienti da visitare e la casa del commesso, e da tanti archi quanti sono i percorsi fra i nodi. Il risultato finale sarà quel ciclo ottimale che tocca tutti i nodi e che avrà la durata complessiva minore. Questo problema è molto semplice da descrivere ma non altrettanto facile da risolvere perché il numero delle soluzioni cresce molto rapidamente all aumentare del numero dei nodi ma è anche un problema di importanza pratica fondamentale se si pensa alle applicazioni nelle aziende di distribuzione e, in generale, ai trasporti.

11 11 Il TSP è anche un problema di classe decisionale poiché alla domanda se il viaggiatore sia in grado o no di rispettare i tempi prestabiliti, le uniche due risposte possibili sono Vero oppure Falso, cioè Sì oppure No, ovvero 1 oppure 0. Ma torniamo al nostro viaggiatore facendo subito un esempio. Il grafo che vedete rappresenta la zona assegnata. del numero dei nodi meno quello della città di partenza per tutti i numeri inferiori fino a 1 (il cosiddetto fattoriale). Così: 4 x 3 x 2 x 1 = 24. Vediamo i singoli casi: (di durata 36) (di durata 38) (di durata 42) (di durata 40) (di durata 40) (di durata 44) (di durata 48) (di durata 46) (di durata 48) (di durata 44) (di durata 44) (di durata 40) (di durata 38) (di durata 40) (di durata 44) (di durata 44) (di durata 38) (di durata 46) (di durata 42) (di durata 44) (di durata 36) (di durata 48) (di durata 38) (di durata 48). Il viaggiatore deve visitare quattro clienti, rappresentati dai nodi 2, 3, 4 e 5 partendo dalla propria abitazione, che corrisponde al nodo 1, per poi tornarsene a casa. I numeri sugli archi rappresentano i tempi necessari a percorrerli. Ecco le domande: In quanti modi diversi può il commesso visitare i suoi clienti? Qual è il percorso migliore? Con un po di pazienza possiamo esaminare tutte le possibilità. Le soluzioni possibili sono date dalla moltiplicazione: Le soluzioni migliori quindi sono due: e , entrambe di durata 36. Come possiamo vedere, il numero delle soluzioni cresce molto più rapidamente rispetto al numero dei nodi. E ancora una volta chiediamo aiuto ad Excel per capire come funziona la faccenda aumentando considerevolmente il numero delle città. E veramente il caos: guardate un po cosa succede con 14 città!

12 12 La colonna in rosso mostra il numero dei percorsi calcolato con la formula del fattoriale dei nodi, mentre la colonna in verde è il risultato del numero delle città elevato alla potenza. Dunque è come un po ci aspettavamo: le soluzioni possibili crescono molto più della potenza dei dati di partenza. Il problema in questione è di tipo esponenziale. In modo analogo, possiamo spostare l attenzione all interno del cicli di calcolo di un Computer per capire facilmente che mentre le classi di calcolo logaritmico (1) e polinomiale (2) non destano problemi particolari, per la classe di tipo esponenziale (3) ci si domanda quali realmente siano i limiti di fattibilità delle memorie e se comunque esista o meno una regola, un tetto, un limite di contenimento più o meno raggiungibile. Ormai l abbiamo capito bene: quando i problemi aumentano di difficoltà, diventa impossibile risolverli in un tempo ragionevole e così ci troviamo di fronte a una nuova classificazione: Problemi decisionali di classe P (polinomiali) Problemi decisionali di classe NP (non polinomiali) In definitiva, mentre i problemi P sono considerati accessibili alle risorse di calcolo, quelli NP risultano inaccessibili. Stiamo parlando della cosiddetta Congettura P = NP che rappresenta uno dei problemi matematici ancora non risolti: chi troverà la soluzione si potrà aggiudicare un premio di un milione di dollari. Lo offre il CMI (Clay Mathematics Institute) del Massachusetts la cui missione è quella di incrementare e popolarizzare le conoscenze matematiche. L Istituto è dedicato ai fondatori Landon e Lavinia Clay, prominenti personalità d affari di Boston, che hanno deciso di valorizzare e incrementare la ricerca matematica del Terzo Millennio. In pratica, chiunque di noi riuscirà a trovare un algoritmo che risolva in fretta" - cioè sulla base di tempi polinomiali tutte le domande di un problema NP potrà aggiudicarsi l ambito premio e finire come un nababbo la propria esistenza. Coraggio, forza, rimbocchiamoci le maniche ma facciamo alla svelta perché uno dei 7 problemi del Millennio - la congettura di Poincaré - è stato risolto recentemente dal russo Grigori Perelman an che, tra l altro, ha rinunciato al ritiro del premio milionario. Ecco cosa racconta Wikipedia in proposito: Tagliando la testa al toro, il 22 agosto 2006 Grigorij Perel'man ha annunciato di rifiutare la medaglia Fields. Nello stesso anno si è anche dimesso dal suo posto a San Pietroburgo, e vive quindi con la madre in una casa popolare, lontano da università e interviste, e con la sua pensione come unica fonte di sostentamento. In

13 13 una intervista precedente, ha spiegato la sua scelta così: "Non voglio essere uno scienziato da vetrina e troppi soldi in Russia generano solo violenza". Nel giugno del 2007 sembra sia stato visto nella metropolitana della città da un blogger russo, apparendo negli scatti con i capelli arruffati, la barba incolta e vecchie scarpe. L'Istituto Clay ha annunciato che Perel'man ha vinto il premio relativo alla congettura di Poincaré. Perel'man però non si è presentato a ritirare il premio a Parigi, dove l'istituto Clay ha tenuto la premiazione, ed ha successivamente annunciato di averlo rifiutato. Francesco Caranti

14 14 Fantasiose fantasie di un commesso viaggiatore... sono riuscita a vedere il millenario problema del Commesso Viaggiatore da una prospettiva un po diversa... Quando ho letto per la prima volta I problemi del Millennio sinceramente un po mi sono smarrita. Ho faticato a seguire il ragionamento, la logica sottostante. E mi sono messa nei panni di quel povero commesso viaggiatore domandandomi se tutto questo studio probabilistico avrebbe davvero potuto aiutarmi ad individuare il percorso migliore per lui senza però che mi venisse l emicrania. Poi ho sorriso ricordando un bambino di quattro anni che mi ero trovata a consolare per la scomparsa dell adorato nonno sai, vero, che il nonno ora è felice in Paradiso?. La risposta è stata: sicuro, sicurissimo che è andato in Paradiso aveva i piedi pulitissimi!. La logica dei bambini è disarmante: il Paradiso è un luogo meraviglioso, pulito, silenzioso e ordinato quindi, per ottenere il pass, è sufficiente avere i piedi puliti. Risoluzione di problemi con algoritmi di classe logaritmica o, forse, solo semplici ragionamenti deduttivi, quelli dei bambini. Ragionamenti di fronte ai quali Aristotele stesso, con i suoi sofisticati sillogismi, sarebbe rimasto spiazzato. Ma, rileggendo per la seconda volta il contributo di Caranti, sono riuscita a vedere il millenario problema del Commesso Viaggiatore da una prospettiva diversa; non mi riferisco a tutti quei problemi decisionali di classe NP ai quali non si è ancora data risposta certa, quanto piuttosto al fatto che sia stato scelto proprio un viaggiatore per cercare di risolverli. Secondo questa prospettiva, la logica del pensiero adulto ha una chance in più. Molto più complesso e intuitivo di quello del bambino, ma anche più fantasioso; potrà sembrare strano, ma alla base delle più grande intuizioni del secolo vi è la fantasia. Quella fantasia che da semplice diviene sempre più complessa e sconfina nella metafisica: basta ritornare con il pensiero alla lettura de Il Nastro di Moebius. E quanta fantasia è stata liberata intorno al tema del Viaggiatore! Franz Kafka ne Le Metamorfosi è riuscito a trasformare un commesso viaggiatore in un mostro a sei zampe senza più sogni né speranze, Arthur Miller in Morte di un commesso viaggiatore ha mostrato a quali tristi conseguenze possa portare l esasperazione di un sogno, Italo Calvino ne Se una notte d inverno un viaggiatore ha fatto cominciare al protagonista del primo capitolo un viaggio mai finito e, ai suoi lettori, ha fatto cominciare a leggere dieci libri mai finiti dentro un libro mai finito composto da capitoli i cui titoli letti in successione formano il titolo di un nuovo libro che comincerà ma, come gli altri, non troverà mai una fine. Folli vaneggiamenti quelli di Miller, Kafka e Calvino che, oltre a rendere celebri gli autori stessi, hanno dato un significato profondo alla fantasia dell uomo. Il vano inseguimento del Sogno Americano da parte del commesso viaggiatore scaturito dalla penna di Miller insegna quali brutti scherzi possa giocare la fantasia se non la si mantiene legata saldamente alla realtà; la metamorfosi tanto fantasiosa quanto imbarazzante del commesso viaggiatore di Kafka nel mostro a sei zampe ha, in realtà, riportato un nuovo ordine in una famiglia in cui regnava il caos; il viaggio mai completato dei protagonisti dell opera di Calvino, così come quello dei suoi lettori, ha fatto sì che questi ultimi si incontrassero in questa spasmodica ricerca di una fine, si conoscessero e si amassero. Dando luogo all inizio di una nuova storia che, chissà, forse è ancora in corso di svolgimento e mai finirà.

15 15 E che dire del nostro Commesso Viaggiatore che ancora si sta arrovellando nella ricerca del percorso migliore tentandone la soluzione con una congettura P = NP? Io lascio che su questo problema millenario si cimentino i matematici, i fisici e gli scienziati e lascio a loro il lauto premio tanto sudato e meritato. Mi permetto però di avvicinare con discrezione il Signor Commesso Viaggiatore e di suggerirgli la risposta che gli darebbe un bambino: Signor Commesso Viaggiatore, se si mette ai piedi un paio di scarpe da ginnastica con le ali, può raggiungere velocemente tutte le città, sbrigare la sue faccende e trovare anche il tempo di giocare un po con me. E quando sarà tornato a casa, si tolga le scarpe e si lavi bene i piedi: così riuscirà ad andare anche in Paradiso!. Erika Tassi

16 16 Il Paradosso di Schrödinger... la Realtà si realizza oltre l'indeterminazione solo quando qualcuno la osserva... Forse oggi vi stupirà sapere che se proverete a cospargere di burro la schiena del vostro gatto per poi gettarlo dalla finestra, inconsapevolmente avrete realizzato un perfetto esperimento scientifico di Moto Perpetuo. Ma poiché gli esperimenti alle volte possono anche fallire, il consiglio resta quello di non provarci, anche perché la morte del felino potrebbe rimanervi a lungo sulla coscienza. Basta solo fermarsi al ragionamento: una serie di strabilianti congetture sulle Leggi della Fisica Quantistica. Ma andiamo per ordine partendo da due principi fondamentali: Il gatto cade sempre sulle zampe (e mai di schiena) Una fetta di pane imburrato cade sempre dalla parte del burro (derivazione della legga degli eventi sfortunati, cioè della Legge di Murphy). Ecco come, volendo riunire le due leggi, si può ottenere il risultato coincidente che tanto il gatto, quanto la sua stessa schiena imburrata, dovranno cadere dalla stessa parte ma ciò è assurdo poiché tanto il quadrupede quanto il burro appartengono sempre allo stesso corpo che cade. Nell indecisione anzi, nella contraddizione delle Leggi - il gatto continuerà a girare all'infinito rimanendo a mezz'aria esattamente come un dispositivo antigravitazionale. Ovviamente abbiamo scherzato, dato che il Paradosso del Gatto Imburrato, per quanto famoso, è falso poiché si basa per la metà sulla legge di Murphy che di per sé non possiede alcun requisito scientifico (Arthur Bloch umorista e scrittore statunitense autore della Legge di Murphy 1988). Molto più serio - sempre in ambito felino - è invece l altro Paradosso del Gatto: quello proposto nel 1935 dal Fisico austriaco Erwin Schrödinger,un esperimento creato per dimostrare le limitazioni della Fisica Quantistica. Come vedremo negli appunti di oggi, l esperimento di Schrödinger darà risposta all evoluzione del cosiddetto Determinismo. Per quanto rigorosa, la dimostrazione che fa capo al Paradosso è singolare al punto che lo stesso Schrodinger ebbe a dire, nel seguito, che avrebbe preferito non aver mai incontrato quel gatto... e presto capiremo il perchè. Per introdurre questo curiosissimo argomento, occorre partire dalle leggi della Fisica Classica deterministiche - per poi arrivare a quelle della Fisica Moderna, cioè quelle Quantistiche. Chi di voi ha partecipato a una battuta di caccia avrà certamente assistito alla scena di un amico che manca il bersaglio. In questi casi, come si può immaginare, la lepre avrà fatto salti di gioia prima di darsela a gambe sana e salva e di certo non si sarà domandata il perché dell errore che le ha risparmiato la vita. Noi sappiamo perfettamente che questo errore dipende da un fucile puntato male, non certo da un proiettile impazzito che - di sua iniziativa - una volta uscito dalla canna, si è inventato una traiettoria anomala e diversa dal solito. Tutto ciò per dire che sulle principali leggi della fisica classica come quella della conservazione della traiettoria ognuno di noi nutre fiducia cieca al punto di non metterle neanche in discussione. E la stessa certezza doveva essere anche dei primitivi: se così non

17 fosse stato, nessuno di loro si sarebbe mai potuto sfamare con la caccia agli animali della foresta. Sicuramente anche i nostri antenati, per quanto inconsapevoli, debbono aver riposto la nostra stessa fiducia nei principi fondamentali del Moto, dato che una freccia scoccata da un arco ripeteva ogni volta lo stesso percorso rettilineo e regolare, sempre uguale e puntuale. Anche le gare con le balestre e le pistole si appoggiano sullo stesso principio generale della conservazione della traiettoria e dunque sulla specializzazione della mira, che altro non è se non la ripetizione della legge di Newton. Secondo questa teoria il movimento di un corpo nello spazio è determinato dalle forze che agiscono su di lui, una volta fissata la posizione e la velocità. Facendo un passo avanti, questa legge si può estrapolare in modo tale da calcolare a priori la traiettoria di un corpo in movimento senza essere costretti a seguirne visivamente lo spostamento ma molto più semplicemente, risolvendola a tavolino attraverso una equazione. Estendendo il concetto all astronomia, Newton (Isaac Newton : filosofo, matematico, fisico e alchimista) ebbe a dimostrare che anche i corpi celesti ubbidiscono alle stesse leggi che regolano il moto dei corpi terrestri e per suo merito si rese possibile prevedere con buona approssimazione la posizione degli astri, dei pianeti e delle stelle. Ma verso la prima metà dell 800, la Fisica Deterministica cominciò a mostrare alcune difficoltà. Le perplessità giungevano dal fatto che osservando il moto dei pianeti più lontani, la legge di Newton non riusciva più a spiegare l irregolarità di alcune traiettorie. Nello specifico, il problema si poneva per Urano, l'ultimo pianeta del sistema solare conosciuto a quel tempo. Applicando alla traiettoria di Urano i calcoli noti, la sua posizione reale tendeva a discostarsi parecchio da quella teorica. Si cominciò a pensare che l anomalia di Urano potesse dipendere dalla presenza di un corpo sconosciuto che, in un qualche modo, tendeva ad influenzarne la gravità. Prendendo in considerazione questo fattore di disturbo, nel 1845 l'astronomo Le Verrier (Urbain-Jean-Joseph 1811 matematico e astronomo francese) ne ipotizzò la presenza e calcolò la posizione esatta di quel corpo celeste nuovo e sconosciuto che si era dimostrato responsabile della irregolarità di Urano. E singolare come la stessa intuizione di presenza di un qualcosa di sconosciuto (Frame) avesse portato ad analoghe scoperte in tutt altro ambiente scientifico. Oltre alla impostazione della Tabella degli Elementi, si deve al chimico russo Dmitrij Ivanovič Mendeleev l intuizione che determinate posizioni della sua Tavola dovessero essere occupate da atomi di cui ancora non si conoscevano le caratteristiche ma la cui presenza in quella determinata posizione era ritenuta certa e indiscutibile e che solo il tempo e lo studio sistematico avrebbero aiutato a scoprire e codificare. La conferma all intuizione di Le Verrier venne nel 1846 quando il fisico tedesco Johann Gottfried Galle ( ) dall Osservatorio astronomico di Berlino scoprì l esistenza di un nuovo pianeta a una distanza di un solo grado dalla posizione prevista da Le Verrier. A quel nuovo pianeta fu posto il nome di Nettuno. Facile pensare che le leggi di Newton potessero essere applicate anche al microcosmo, tanto da arrivare alla massima espressione del Determinismo classico che Pierre-Simon de Laplace ( ) sintetizzò in questa celebre espressione: "Se la posizione e la quantità di moto di una particella fossero noti con precisione in un certo istante, allora, conoscendo tutte le forze agenti sulla particella stessa, il suo moto sarebbe determinato, in modo univoco, in tutti gli istanti successivi attraverso le equazioni della meccanica". Laplace era dunque sicuro che spostando il punto di osservazione dal macrocosmo al microcosmo cioè alle molecole e agli atomi le regole non sarebbero cambiate. Non solo: egli sosteneva che tutto ciò che era accaduto nel passato e tutto ciò che sarebbe successo in 17

18 18 futuro era stato già predeterminato dall inizio: nell'universo nulla era stato lasciato al caso e lo stesso Cosmo doveva funzionare come un perfetto e gigantesco Sistema di Orologeria in cui ciascun elemento doveva eseguire con precisione matematica le istruzioni programmate da sempre e ogni volta con le stesse logiche precise. Ma all'inizio del Novecento, in occasione di alcune scoperte di fenomeni che non potevano essere spiegati con le teorie fisiche allora conosciute, la visione deterministica del Cosmo cominciò a vacillare. Einstein pose in evidenza che le leggi di Newton perdevano di validità alle grandi velocità ma oltre a ciò molte questioni riguardanti la natura della radiazione fecero dubitare sulla bontà delle teorie correnti. Il vero colpo di grazia venne da un evento inatteso conseguente agli studi del moto incontrollato delle particelle: ci si stava rendendo conto che non sarebbe mai stato possibile misurare con la precisione desiderata le grandezze fisiche dei micro-elementi e che il calcolo delle traiettorie dei corpi di grandi dimensioni avrebbe fallito nelle misurazioni inferiori. Come primo espediente di emergenza, la Fisica fu costretta a ricorrere a qualcosa di meno rigido e inflessibile delle leggi di Newton. Stava nascendo la Meccanica Quantistica, quella teoria che descrive il moto degli oggetti molto piccoli solo ed esclusivamente in termini di probabilità. Per capire la nascita della Meccanica Quantistica occorre partire da una osservazione molto semplice: "Per conoscere il valore di una grandezza fisica bisogna misurarla". Ma il problema è che per misurare una grandezza fisica (come per esempio la temperatura del nostro corpo e quindi la febbre) occorre avvicinare il termometro al nostro corpo in modo da interferire direttamente con l oggetto in esame: in pratica occorre toccare materialmente quell'oggetto. Ecco il limite: il solo fatto di toccare l oggetto per fare la misurazione può influenzarne lo stato. Mentre la fisica classica ammetteva - a priori - che si poteva sempre effettuare qualsiasi misura sugli oggetti senza turbarne lo stato, la stessa teoria crollava negli esperimenti svolti su oggetti di dimensioni inferiori di tipo atomico e subatomico. Detto in parole povere: mentre il contatto fisico del termometro sulla nostra pelle non cambia la nostra temperatura, ben diversa è la reazione termica di una micro-particella quando questa viene investita da un agente misuratore. Basta pensare che la semplice illuminazione dell oggetto necessaria per visualizzare l esperimento può alterare i risultati. Per esempio, se volessimo determinare la posizione e la velocità di un elettrone per poterlo descrivere in base alle leggi di Newton, dovremmo prima di tutto vederlo e per far questo dovremmo illuminarlo. Date le esigue dimensioni dell oggetto, forse basterebbe un singolo fotone, ma già questo sarebbe troppo perché quel "quantum" di energia necessario a vederlo, nel momento in cui colpisce l elettrone, lo avrebbe già spostato dalla sua posizione originale un po come quando nel biliardo una biglia ne colpisce un altra e la mette in buca. Ne consegue che il movimento dell elettrone che è stato spostato dal raggio che lo ha illuminato, non potrà mai più seguire la sua traiettoria originale e nell esperimento successivo non sarà più nella sua posizione di partenza. Nel microcosmo basta perciò molto poco per falsare le misure e ciò significa dover rinunciare alla possibilità di determinare con precisione assoluta la struttura della materia. Questa impossibilità prende il nome di «principio di indeterminazione». Il principio di indeterminazione di Heisemberg (Werner Karl Heisenberg Nobel per la Fisica nel 1932) prevede che l'unica possibilità di descrivere il moto delle particelle di piccole dimensioni sia quella di ricorrere al metodo statistico. E un modo di indagare la struttura della materia che se da un lato presenta il vantaggio di rendere superflua la conoscenza esatta della posizione iniziale di ogni particella, dall'altro non è nemmeno più in grado di precisarne la posizione futura. All inizio di questo racconto eravamo partiti da un Paradosso tanto divertente quanto assurdo: quello del Gatto Imburrato.

19 19 In realtà, Schrödinger, propose un esperimento molto più serio e inquietante con conseguenze concettuali degne di un Paradosso Vero. Ma vediamo la descrizione esatta del suo lavoro: Un gatto viene rinchiuso in una scatola opaca assieme a una fiala di cianuro La scatola contiene sostanza radioattiva che nel momento della disintegrazione metterà in movimento un martello in grado di rompere una fiala di veleno che ucciderà il gatto E come nella nostra vita nessuno sa il giorno in cui dovrà morire - ma solo la probabilità che quell evento sia possibile a una certa fascia di età - così anche nella Fisica capita che le sostanze radioattive si trasformino in sostanze non radioattive (cioè decadano), secondo la stessa legge di probabilità, cioè quella che ci consente di prevedere la vita media dell atomo, non certo la durata del singolo atomo. Di un singolo atomo radioattivo non potremo mai conoscere il destino, ma solo la probabilità che, in un determinato momento, si trasformi in un atomo non radioattivo. La probabilità di un evento come questo è né più né meno un equazione che prende il nome di funzione d'onda. Supponiamo così che la funzione d onda dell atomo radioattivo dell esperimento ci indichi che dopo un tempo T esista la Probabilità P che quell'atomo radioattivo sia decaduto e che viceversa la probabilità che non sia decaduto sia Q. Cosa sarà successo al Gatto di Schrödinger dopo un ora esatta? Sarà morto o sarà ancora vivo? Se la probabilità P è maggiore di Q si può pensare che il Gatto sia più vivo che morto ma la certezza reale dell'uno o dell'altro evento non esiste. L'unico modo per sapere con certezza come stanno le cose è quello di aprire la scatola e guardare! Sembra veramente che il destino del gatto, chiuso nella sua scatola, dipenda esclusivamente dal nostro comportamento. Se all'apertura della scatola il Gatto risulta ancora in vita dobbiamo concludere che l'atomo radioattivo non si è ancora trasformato, per quanto la probabilità inversa Q dimostri l esatto contrario. Questo fatto è molto importante poiché nega l insieme delle teorie Deterministiche di Newton e di Laplace: il fatto di vedere il Gatto di Schrödinger vivo oppure morto ci porta a concludere che le cose in questo mondo esistono solo nel momento in cui le analizziamo di persona, non per come in assoluto avremmo voluto sintetizzarle secondo una legge fissa e immutabile, così come voleva Laplace. La vera stranezza dell esperimento di Schrödinger sta nel fatto di aver collegato un fenomeno di natura quantistica (il decadimento dell'atomo radioattivo) con un fenomeno classico (un gatto che resta in vita o che muore). E la differenza tra l Atomo e il Gatto è fondamentale poiché: Un atomo integro e un atomo decaduto rappresentano due STATI DIVERSI DELLA MATERIA (Mondo Quantistico) Un gatto vivo o un gatto morto rappresentano UNO SOLO DEI DUE STATI POSSIBILI (Mondo Classico) Dunque il nostro caro micio rinchiuso nella sua scatola ha un destino collegato a un fenomeno quantistico, e in questo senso diventa anch'esso un sistema quantistico del quale possiamo conoscere solo la probabilità del suo destino, non la certezza. Quindi il poveretto si troverà, per tutto il tempo in cui rimarrà chiuso nella scatola, in una situazione inverosimile di vita e/o di morte. L unico modo per sapere se il gatto di Schrödinger è vivo o morto è quello di aprire la scatola e per assurdo sembra quasi che siamo noi Osservatori a decidere il destino del Gatto, piuttosto che non le leggi della Fisica.

20 20 Ecco spiegato il Paradosso: se vedremo il Gatto vivo potremo stabilire che l atomo radioattivo si è trasformato, diversamente il Gatto morto ci farà pensare che l atomo è rimasto immutato. E chiaro il fatto che la teoria di Schrödinger dimostra l intervento umano dell osservazione: il mondo cambia per come lo osserviamo e lo trattiamo, non per come si presenta realmente, in altre parole: se non esistesse l'uomo non esisterebbe nemmeno l'universo coi suoi fenomeni. E vero: all inizio abbiamo scherzato col Gatto Imburrato tramite la congiunzione di una Legge vera (Statica del Gatto) con una Legge fantasiosa (Murphy aleatoria degli eventi) ma, fuori dalla burla, ancora un Gatto (quello di Schrödinger) ha spostato la nostra attenzione verso un argomento ben più serio. Vorrei ora ricomporre e richiudere le osservazioni di oggi ancora su un Terzo Gatto... una osservazione molto più frivola delle altre. Già! il Gatto è un animale molto furbo e nessuno di noi ha pensato che, durante l esperimento, avrebbe anche potuto trovare il modo di scappare! In questo caso lo Sperimentatore (cioè noi) avrebbe potuto soccombere per via del buco lasciato dal gatto. La relazione si sposta dunque sul Risultato: Intelligenza del gatto + Stupidità dello sperimentatore. Mi pare proprio che questa variante scherzosa sia ottima per pensare che poi... alla fine... esiste sempre un modo per cavarsela.... e se la Fisica Quantistica oggi ci ha messi in guardia sulle facili sperimentazioni, io penso che tante altre soluzioni molto meno impegnative sotto il profilo scientifico, siano altrettanto adatte a guardare un po di più il mondo in prospettiva. Se Heisemberg ci ha insegnato che nel fare gli esperimenti si può essere un po più flessibili, anche Schrödinger è arrivato alla stessa conclusione. Tra un Gatto Imburrato scagliato da una finestra, un Gatto a ridosso di una fiala al cianuro e un Gatto Furbo che elude l esperimento, sinceramente non saprei chi scegliere! Personalmente cerco di vedere il Mondo nella prospettiva che più mi è congeniale, forse quella che il tempo mi ha insegnato... ma sono pronto a cambiare ogni volta che si renderà necessario. A presto, per altre incredibili stranezze. Francesco Caranti

Potrei dire a quell attimo: fermati dunque, sei così bello! Goethe (Faust)

Potrei dire a quell attimo: fermati dunque, sei così bello! Goethe (Faust) IL TEMPO DI MENTINA Potrei dire a quell attimo: fermati dunque, sei così bello! Goethe (Faust) E tempo di occuparci di Mentina, la mia cuginetta che mi somiglia tantissimo; l unica differenza sta nella

Dettagli

Il mondo in cui viviamo

Il mondo in cui viviamo Il mondo in cui viviamo Il modo in cui lo vediamo/ conosciamo Dalle esperienze alle idee Dalle idee alla comunicazione delle idee Quando sono curioso di una cosa, matematica o no, io le faccio delle domande.

Dettagli

Erwin Schrödinger Che cos è la vita? La cellula vivente dal punto di vista fisico tr. it. a cura di M. Ageno, Adelphi, Milano 2008, pp.

Erwin Schrödinger Che cos è la vita? La cellula vivente dal punto di vista fisico tr. it. a cura di M. Ageno, Adelphi, Milano 2008, pp. RECENSIONI&REPORTS recensione Erwin Schrödinger Che cos è la vita? La cellula vivente dal punto di vista fisico tr. it. a cura di M. Ageno, Adelphi, Milano 2008, pp. 154, 12 «Il vasto e importante e molto

Dettagli

SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA

SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA Regoli di Nepero Moltiplicazioni In tabella Moltiplicazione a gelosia Moltiplicazioni Con i numeri arabi Regoli di Genaille Moltiplicazione

Dettagli

RITIRO PER TUTTI NATALE DEL SIGNORE LA CONVERSIONE ALLA GIOIA. Maria, Giuseppe, i pastori, i magi e...gli angeli

RITIRO PER TUTTI NATALE DEL SIGNORE LA CONVERSIONE ALLA GIOIA. Maria, Giuseppe, i pastori, i magi e...gli angeli RITIRO PER TUTTI NATALE DEL SIGNORE LA CONVERSIONE ALLA GIOIA Maria, Giuseppe, i pastori, i magi e...gli angeli Siamo abituati a pensare al Natale come una festa statica, di pace, tranquillità, davanti

Dettagli

Andiamo più a fondo nella conoscenza del Sistema Solare

Andiamo più a fondo nella conoscenza del Sistema Solare Andiamo più a fondo nella conoscenza del Sistema Solare Come abbiamo visto nelle pagine precedenti il Sistema Solare è un insieme di molti corpi celesti, diversi fra loro. La sua forma complessiva è quella

Dettagli

Ci relazioniamo dunque siamo

Ci relazioniamo dunque siamo 7_CECCHI.N 17-03-2008 10:12 Pagina 57 CONNESSIONI Ci relazioniamo dunque siamo Curiosità e trappole dell osservatore... siete voi gli insegnanti, mi insegnate voi, come fate in questa catastrofe, con il

Dettagli

Alcolismo: anche la famiglia e gli amici sono coinvolti

Alcolismo: anche la famiglia e gli amici sono coinvolti Alcolismo: anche la famiglia e gli amici sono coinvolti Informazioni e consigli per chi vive accanto ad una persona con problemi di alcol L alcolismo è una malattia che colpisce anche il contesto famigliare

Dettagli

Le classi 4^A e B di Scarperia hanno richiesto e partecipato al PROGETTO CLOWN. L esperienza, che è stata ritenuta molto positiva dalle insegnanti,

Le classi 4^A e B di Scarperia hanno richiesto e partecipato al PROGETTO CLOWN. L esperienza, che è stata ritenuta molto positiva dalle insegnanti, Le classi 4^A e B di Scarperia hanno richiesto e partecipato al PROGETTO CLOWN. L esperienza, che è stata ritenuta molto positiva dalle insegnanti, si è conclusa con una lezione aperta per i genitori.

Dettagli

La realtà non è come ci appare. carlo rovelli

La realtà non è come ci appare. carlo rovelli La realtà non è come ci appare carlo rovelli 450 a.e.v. Anassimandro cielo terra Anassimandro ridisegna la struttura del mondo Modifica il quadro concettuale in termine del quali comprendiamo i fenomeni

Dettagli

A. 5 m / s 2. B. 3 m / s 2. C. 9 m / s 2. D. 2 m / s 2. E. 1 m / s 2. Soluzione: equazione oraria: s = s0 + v0

A. 5 m / s 2. B. 3 m / s 2. C. 9 m / s 2. D. 2 m / s 2. E. 1 m / s 2. Soluzione: equazione oraria: s = s0 + v0 1 ) Un veicolo che viaggia inizialmente alla velocità di 1 Km / h frena con decelerazione costante sino a fermarsi nello spazio di m. La sua decelerazione è di circa: A. 5 m / s. B. 3 m / s. C. 9 m / s.

Dettagli

COSCIENZA COSMICA. FIRMAMENTO: Quant è grande un milione? 2012/13 novembre-dicembre 2012 Istituto Comprensivo Statale PETRITOLI

COSCIENZA COSMICA. FIRMAMENTO: Quant è grande un milione? 2012/13 novembre-dicembre 2012 Istituto Comprensivo Statale PETRITOLI COSCIENZA COSMICA FIRMAMENTO: Quant è grande un milione? Dati identificativi ANNO SCOLASTICO periodo SCUOLA DOCENTI COINVOLTI ORDINE SCUOLA DESTINATARI FORMATRICI 2012/13 novembre-dicembre 2012 Istituto

Dettagli

La Termodinamica ed I principi della Termodinamica

La Termodinamica ed I principi della Termodinamica La Termodinamica ed I principi della Termodinamica La termodinamica è quella branca della fisica che descrive le trasformazioni subite da un sistema (sia esso naturale o costruito dall uomo), in seguito

Dettagli

Gli uni e gli altri. Strategie in contesti di massa

Gli uni e gli altri. Strategie in contesti di massa Gli uni e gli altri. Strategie in contesti di massa Alessio Porretta Universita di Roma Tor Vergata Gli elementi tipici di un gioco: -un numero di agenti (o giocatori): 1,..., N -Un insieme di strategie

Dettagli

Regole per un buon Animatore

Regole per un buon Animatore Regole per un buon Animatore ORATORIO - GROSOTTO Libretto Animatori Oratorio - Grosotto Pag. 1 1. Convinzione personale: fare l animatore è una scelta di generoso servizio ai ragazzi per aiutarli a crescere.

Dettagli

storia dell umanità sarebbe veramente molto triste.

storia dell umanità sarebbe veramente molto triste. FIGLI DI DIO Cosa significa essere un figlio di Dio? E importante essere figli di Dio? Se sono figlio di Dio che differenza fa nella mia vita quotidiana? Queste sono questioni importanti ed è fondamentale

Dettagli

DAL LIBRO AL TEATRO Caduto dal basso

DAL LIBRO AL TEATRO Caduto dal basso DAL LIBRO AL TEATRO Caduto dal basso LIBERI PENSIERI PER LIBERI SENTIMENTI La riflessione circa In viaggio verso l incontro come ci è stato proposto, nasce attorno alla lettura del romanzo : C è nessuno?

Dettagli

QUESTIONARIO SUGLI STILI DI APPRENDIMENTO

QUESTIONARIO SUGLI STILI DI APPRENDIMENTO QUESTIONARIO SUGLI STILI DI APPRENDIMENTO Le seguenti affermazioni descrivono alcune abitudini di studio e modi di imparare. Decidi in quale misura ogni affermazione si applica nel tuo caso: metti una

Dettagli

IL GIOCO DEL 15. OVVERO: 1000$ PER SPOSTARE DUE BLOCCHETTI

IL GIOCO DEL 15. OVVERO: 1000$ PER SPOSTARE DUE BLOCCHETTI IL GIOCO DEL. OVVERO: 000$ PER SPOSTARE DUE BLOCCHETTI EMANUELE DELUCCHI, GIOVANNI GAIFFI, LUDOVICO PERNAZZA Molti fra i lettori si saranno divertiti a giocare al gioco del, uno dei più celebri fra i giochi

Dettagli

LA RICERCA DI DIO. Il vero aspirante cerca la conoscenza diretta delle realtà spirituali

LA RICERCA DI DIO. Il vero aspirante cerca la conoscenza diretta delle realtà spirituali LA RICERCA DI DIO Gradi della fede in Dio La maggior parte delle persone non sospetta nemmeno la reale esistenza di Dio, e naturalmente non s interessa molto a Dio. Ce ne sono altre che, sotto l influsso

Dettagli

SCUOLA DELL INFANZIA ANDERSEN SPINEA I CIRCOLO ANNO SCOLASTICO 2006/07. Documentazione a cura di Quaglietta Marica

SCUOLA DELL INFANZIA ANDERSEN SPINEA I CIRCOLO ANNO SCOLASTICO 2006/07. Documentazione a cura di Quaglietta Marica SCUOLA DELL INFANZIA ANDERSEN SPINEA I CIRCOLO ANNO SCOLASTICO 2006/07 GRUPPO ANNI 3 Novembre- maggio Documentazione a cura di Quaglietta Marica Per sviluppare Pensiero creativo e divergente Per divenire

Dettagli

2. Fabula e intreccio

2. Fabula e intreccio 2. Fabula e intreccio Abbiamo detto che un testo narrativo racconta una storia. Ora dobbiamo però precisare, all interno della storia, ciò che viene narrato e il modo in cui viene narrato. Bisogna infatti

Dettagli

Bambini oppositivi e provocatori 9 regole per sopravvivere!

Bambini oppositivi e provocatori 9 regole per sopravvivere! Anna La Prova Bambini oppositivi e provocatori 9 regole per sopravvivere! Chi sono i bambini Oppositivi e Provocatori? Sono bambini o ragazzi che sfidano l autorità, che sembrano provare piacere nel far

Dettagli

Il paracadute di Leonardo

Il paracadute di Leonardo Davide Russo Il paracadute di Leonardo Il sogno del volo dell'uomo si perde nella notte dei tempi. La storia è piena di miti e leggende di uomini che hanno sognato di librarsi nel cielo imitando il volo

Dettagli

AUTOLIVELLI (orizzontalità ottenuta in maniera automatica); LIVELLI DIGITALI (orizzontalità e lettura alla stadia ottenute in maniera automatica).

AUTOLIVELLI (orizzontalità ottenuta in maniera automatica); LIVELLI DIGITALI (orizzontalità e lettura alla stadia ottenute in maniera automatica). 3.4. I LIVELLI I livelli sono strumenti a cannocchiale orizzontale, con i quali si realizza una linea di mira orizzontale. Vengono utilizzati per misurare dislivelli con la tecnica di livellazione geometrica

Dettagli

I modelli atomici da Dalton a Bohr

I modelli atomici da Dalton a Bohr 1 Espansione 2.1 I modelli atomici da Dalton a Bohr Modello atomico di Dalton: l atomo è una particella indivisibile. Modello atomico di Dalton Nel 1808 John Dalton (Eaglesfield, 1766 Manchester, 1844)

Dettagli

33. Dora perdona il suo pessimo padre

33. Dora perdona il suo pessimo padre 33. Dora perdona il suo pessimo padre Central do Brasil (1998) di Walter Salles Il film racconta la storia di una donna cinica e spietata che grazie all affetto di un bambino ritrova la capacità di amare

Dettagli

I Grafici. La creazione di un grafico

I Grafici. La creazione di un grafico I Grafici I grafici servono per illustrare meglio un concetto o per visualizzare una situazione di fatto e pertanto la scelta del tipo di grafico assume notevole importanza. Creare grafici con Excel è

Dettagli

Meno male che c è Lucky!!! La missione del W.F.P. in Madagascar. Classe IV. Maestre: Cristina Iorio M. Emanuela Coscia

Meno male che c è Lucky!!! La missione del W.F.P. in Madagascar. Classe IV. Maestre: Cristina Iorio M. Emanuela Coscia Scuola Primaria Istituto Casa San Giuseppe Suore Vocazioniste Meno male che c è Lucky!!! La missione del W.F.P. in Madagascar Classe IV Maestre: Cristina Iorio M. Emanuela Coscia È il 19 febbraio 2011

Dettagli

Il mistero dei muoni: perché arrivano sulla terra e cosa c entra la relatività del tempo e dello spazio?

Il mistero dei muoni: perché arrivano sulla terra e cosa c entra la relatività del tempo e dello spazio? Il mistero dei muoni: perché arrivano sulla terra e cosa c entra la relatività del tempo e dello spazio? Carlo Cosmelli, Dipartimento di Fisica, Sapienza Università di Roma Abbiamo un problema, un grosso

Dettagli

Ciao!! Un cielo stellato così come lo puoi vedere con i tuoi occhi. Il cielo visto da un potente telescopio molto lontano dalle città

Ciao!! Un cielo stellato così come lo puoi vedere con i tuoi occhi. Il cielo visto da un potente telescopio molto lontano dalle città 1 Ciao!! Quando guardi il cielo ogni volta che si fa buio, se è sereno, vedi tanti piccoli punti luminosi distribuiti nel cielo notturno: le stelle. Oggi si apre l immaginario Osservatorio per guardare...

Dettagli

La sicurezza dell LHC Il Large Hadron Collider (LHC) può raggiungere un energia che nessun altro acceleratore di particelle ha mai ottenuto finora,

La sicurezza dell LHC Il Large Hadron Collider (LHC) può raggiungere un energia che nessun altro acceleratore di particelle ha mai ottenuto finora, La sicurezza dell LHC Il Large Hadron Collider (LHC) può raggiungere un energia che nessun altro acceleratore di particelle ha mai ottenuto finora, ma la natura produce di continuo energie superiori nelle

Dettagli

DAI NUMERI COMPLESSI ALLA REALTA FISICA. (in particolare gli ottonioni)

DAI NUMERI COMPLESSI ALLA REALTA FISICA. (in particolare gli ottonioni) DAI NUMERI COMPLESSI ALLA REALTA FISICA (in particolare gli ottonioni) Gruppo B. Riemann Michele Nardelli, Francesco Di Noto *Gruppo amatoriale per la ricerca matematica sui numeri primi, sulle loro congetture

Dettagli

Proposta per un Nuovo Stile di Vita.

Proposta per un Nuovo Stile di Vita. UNA BUONA NOTIZIA. I L M O N D O S I P U ò C A M B I A R E Proposta per un Nuovo Stile di Vita. Noi giovani abbiamo tra le mani le potenzialità per cambiare questo mondo oppresso da ingiustizie, abusi,

Dettagli

La dinamica delle collisioni

La dinamica delle collisioni La dinamica delle collisioni Un video: clic Un altro video: clic Analisi di un crash test (I) I filmati delle prove d impatto distruttive degli autoveicoli, dato l elevato numero dei fotogrammi al secondo,

Dettagli

Alice e la zuppa di quark e gluoni

Alice e la zuppa di quark e gluoni Alice e la zuppa di quark e gluoni Disegnatore: Jordi Boixader Storia e testo: Federico Antinori, Hans de Groot, Catherine Decosse, Yiota Foka, Yves Schutz e Christine Vanoli Produzione: Christine Vanoli

Dettagli

Commento al Vangelo. Domenica 1 giugno 2014 - Ascensione. fra Luca Minuto. Parrocchia Madonna di Loreto Chivasso

Commento al Vangelo. Domenica 1 giugno 2014 - Ascensione. fra Luca Minuto. Parrocchia Madonna di Loreto Chivasso Commento al Vangelo Domenica 1 giugno 2014 - Ascensione fra Luca Minuto Parrocchia Madonna di Loreto Chivasso Dal Vangelo secondo Matteo In quel tempo, gli undici discepoli andarono in Galilea, sul monte

Dettagli

LA STORIA DEL VECCHIO F di Patrizia Toia

LA STORIA DEL VECCHIO F di Patrizia Toia Patrizia Toia Patrizia Toia (born on 17 March 1950 in Pogliano Milanese) is an Italian politician and Member of the European Parliament for North-West with the Margherita Party, part of the Alliance of

Dettagli

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k Pordenone Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica

Dettagli

I COLORI DEL CIELO: COME SI FORMANO LE IMMAGINI ASTRONOMICHE

I COLORI DEL CIELO: COME SI FORMANO LE IMMAGINI ASTRONOMICHE I COLORI DEL CIELO: COME SI FORMANO LE IMMAGINI ASTRONOMICHE Nell ultima notte di osservazione abbiamo visto bellissime immagini della Galassia, delle sue stelle e delle nubi di gas che la compongono.

Dettagli

LA TEORIA DEL CUCCHIAIO

LA TEORIA DEL CUCCHIAIO 90 ICARO MAGGIO 2011 LA TEORIA DEL CUCCHIAIO di Christine Miserandino Per tutti/e quelli/e che hanno la vita "condizionata" da qualcosa che non è stato voluto. La mia migliore amica ed io eravamo nella

Dettagli

Q84 A1073 K92 J65 VALENTINO DOMINI

Q84 A1073 K92 J65 VALENTINO DOMINI VALENTINO DOMINI L attacco iniziale, prima azione di affrancamento della coppia controgiocante, è un privilegio e una responsabilità: molti contratti vengono battuti o realizzati proprio in rapporto a

Dettagli

PROVA DI MATEMATICA - Scuola Primaria - Classe Quinta

PROVA DI MATEMATICA - Scuola Primaria - Classe Quinta Rilevazione degli apprendimenti PROVA DI MATEMATICA - Scuola Primaria - Classe Quinta Anno Scolastico 2011 2012 PROVA DI MATEMATICA Scuola Primaria Classe Quinta Spazio per l etichetta autoadesiva ISTRUZIONI

Dettagli

IL SENSO DELLA CARITATIVA

IL SENSO DELLA CARITATIVA IL SENSO DELLA CARITATIVA SCOPO I Innanzitutto la natura nostra ci dà l'esigenza di interessarci degli altri. Quando c'è qualcosa di bello in noi, noi ci sentiamo spinti a comunicarlo agli altri. Quando

Dettagli

Non appena chiudi gli occhi comincia l avventura del sonno. Al posto della solita penombra nella stanza, volume oscuro che si interrompe qua e là,

Non appena chiudi gli occhi comincia l avventura del sonno. Al posto della solita penombra nella stanza, volume oscuro che si interrompe qua e là, Un uomo che dorme Non appena chiudi gli occhi comincia l avventura del sonno. Al posto della solita penombra nella stanza, volume oscuro che si interrompe qua e là, dove la memoria identifica senza sforzo

Dettagli

2- Quando entrambi hanno una vita di coppia soddisfacente per cui si vive l amicizia in modo genuino e disinteressato

2- Quando entrambi hanno una vita di coppia soddisfacente per cui si vive l amicizia in modo genuino e disinteressato L amicizia tra uomo e donna. Questo tipo di relazione può esistere? Che rischi comporta?quali sono invece i lati positivi? L amicizia tra uomini e donne è possibile solo in età giovanile o anche dopo?

Dettagli

AZIONE CATTOLICA ADOLESCENTI ITINERARIO FORMATIVO SKYSCRAPER SECOND GUIDA PER L EDUCATORE

AZIONE CATTOLICA ADOLESCENTI ITINERARIO FORMATIVO SKYSCRAPER SECOND GUIDA PER L EDUCATORE AZIONE CATTOLICA ADOLESCENTI ITINERARIO FORMATIVO SKYSCRAPER SECOND GUIDA PER L EDUCATORE Presentazione La guida dell educatore vuole essere uno strumento agile per preparare gli incontri con i ragazzi.

Dettagli

I principi della meccanica quantistica nella scuola secondaria Un contributo

I principi della meccanica quantistica nella scuola secondaria Un contributo I principi della meccanica quantistica nella scuola secondaria Un contributo Paolo Cavallo 10 marzo 2004 Sommario Si riassume una strategia per la presentazione dei principi della meccanica quantistica

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

LAVORO, ENERGIA E POTENZA

LAVORO, ENERGIA E POTENZA LAVORO, ENERGIA E POTENZA Nel linguaggio comune, la parola lavoro è applicata a qualsiasi forma di attività, fisica o mentale, che sia in grado di produrre un risultato. In fisica la parola lavoro ha un

Dettagli

OBIETTIVI DELL ATTIVITA FISICA DEI BAMBINI DAI 6 AGLI 11 ANNI SECONDA PARTE LA CORSA

OBIETTIVI DELL ATTIVITA FISICA DEI BAMBINI DAI 6 AGLI 11 ANNI SECONDA PARTE LA CORSA OBIETTIVI DELL ATTIVITA FISICA DEI BAMBINI DAI 6 AGLI 11 ANNI SECONDA PARTE LA CORSA Dopo avere visto e valutato le capacità fisiche di base che occorrono alla prestazione sportiva e cioè Capacità Condizionali

Dettagli

A Ferrara, 14 miliardi di anni fa

A Ferrara, 14 miliardi di anni fa A Ferrara, 14 miliardi di anni fa 1 L eredità di Copernico Quale è la relazione fra l uomo e l universo per ciò che riguarda: x : lo spazio t : il tempo m: la materia m t C X 2 Un viaggio nel tempo t di

Dettagli

rancore Vita libera, abbastanza libera, e quindi restituita, nostra unica occasione finalmente afferrata. Una vita libera dal rancore.

rancore Vita libera, abbastanza libera, e quindi restituita, nostra unica occasione finalmente afferrata. Una vita libera dal rancore. Commozione Si commuove il corpo. A sorpresa, prima che l opportunità, la ragionevolezza, la buona educazione, la paura, la fretta, il decoro, la dignità, l egoismo possano alzare il muro. Si commuove a

Dettagli

Teoria quantistica della conduzione nei solidi e modello a bande

Teoria quantistica della conduzione nei solidi e modello a bande Teoria quantistica della conduzione nei solidi e modello a bande Obiettivi - Descrivere il comportamento quantistico di un elettrone in un cristallo unidimensionale - Spiegare l origine delle bande di

Dettagli

SETTE MOSSE PER LIBERARSI DALL ANSIA

SETTE MOSSE PER LIBERARSI DALL ANSIA LIBRO IN ASSAGGIO SETTE MOSSE PER LIBERARSI DALL ANSIA DI ROBERT L. LEAHY INTRODUZIONE Le sette regole delle persone molto inquiete Arrovellarvi in continuazione, pensando e ripensando al peggio, è la

Dettagli

pianeti terrestri pianeti gioviani migliaia di asteroidi (nella fascia degli asteroidi tra Marte e Giove)

pianeti terrestri pianeti gioviani migliaia di asteroidi (nella fascia degli asteroidi tra Marte e Giove) mappa 3. Il sistema solare IL SISTEMA SOLARE il Sole Mercurio pianeti terrestri Venere Terra Marte 8 pianeti Giove Il Sistema solare 69 satelliti principali pianeti gioviani Saturno Urano Nettuno migliaia

Dettagli

Gioco d Azzardo Patologico (GAP): anche la famiglia e gli amici sono coinvolti

Gioco d Azzardo Patologico (GAP): anche la famiglia e gli amici sono coinvolti Gioco d Azzardo Patologico (GAP): anche la famiglia e gli amici sono coinvolti Informazioni e consigli per chi vive accanto ad una persona con problemi di gioco d azzardo patologico Testo redatto sulla

Dettagli

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE TELECOMUNICAZIONI (TLC) Tele (lontano) Comunicare (inviare informazioni) Comunicare a distanza Generico sistema di telecomunicazione (TLC) Segnale non elettrico Segnale elettrico TRASMESSO s x (t) Sorgente

Dettagli

Il colore dei miei pensieri. Pierluigi De Rosa

Il colore dei miei pensieri. Pierluigi De Rosa Il colore dei miei pensieri Pierluigi De Rosa Il colore dei miei pensieri Pierluigi De Rosa 2007 Scrivere.info Tutti i diritti di riproduzione, con qualsiasi mezzo, sono riservati. In copertina: Yacht

Dettagli

L=F x s lavoro motore massimo

L=F x s lavoro motore massimo 1 IL LAVORO Nel linguaggio scientifico la parola lavoro indica una grandezza fisica ben determinata. Un uomo che sposta un libro da uno scaffale basso ad uno più alto è un fenomeno in cui c è una forza

Dettagli

IL DIALOGO NELL ARTE - L ARTE DEL DIALOGO

IL DIALOGO NELL ARTE - L ARTE DEL DIALOGO IL DIALOGO NELL ARTE - L ARTE DEL DIALOGO P. F. Fumagalli, 31.10.2104 Il Dialogo è una componente essenziale dell essere umano nel mondo, in qualsiasi cultura alla quale si voglia fare riferimento: si

Dettagli

Milano, Corso di Porta Ticinese, 18. Terzo piano, interno 7.

Milano, Corso di Porta Ticinese, 18. Terzo piano, interno 7. 2 Dov è Piero Ferrari e perché non arriva E P I S O D I O 25 Milano, Corso di Porta Ticinese, 18. Terzo piano, interno 7. 1 Leggi più volte il testo e segna le risposte corrette. 1. Piero abita in un appartamento

Dettagli

Come trovare clienti e ottenere contatti profilati e ordini in 24 ore!

Come trovare clienti e ottenere contatti profilati e ordini in 24 ore! Come trovare clienti e ottenere contatti profilati e ordini in 24 ore! oppure La Pubblicità su Google Come funziona? Sergio Minozzi Imprenditore di informatica da più di 20 anni. Per 12 anni ha lavorato

Dettagli

Fin dove andrà il clonaggio?

Fin dove andrà il clonaggio? Fin dove andrà il clonaggio? Mark Post, il padrone della sezione di fisiologia dell Università di Maastricht, nei Paesi Bassi, ha dichiarato durante una conferenza tenuta a Vancouver, in Canada, che aveva

Dettagli

Per una città governabile. Nuove metodologie di lavoro per gestire la complessità e la partecipazione.

Per una città governabile. Nuove metodologie di lavoro per gestire la complessità e la partecipazione. Per una città governabile. Nuove metodologie di lavoro per gestire la complessità e la partecipazione. MICHELE EMILIANO Sindaco del Comune di Bari 12 maggio 2006 Innanzitutto benvenuti a tutti i nostri

Dettagli

IL MOTO. 1 - Il moto dipende dal riferimento.

IL MOTO. 1 - Il moto dipende dal riferimento. 1 IL MOTO. 1 - Il moto dipende dal riferimento. Quando un corpo è in movimento? Osservando la figura precedente appare chiaro che ELISA è ferma rispetto a DAVIDE, che è insieme a lei sul treno; mentre

Dettagli

Un abbraccio a tutti voi Ornella e Enrico

Un abbraccio a tutti voi Ornella e Enrico SASHA La nostra storia é molto molto recente ed é stata fin da subito un piccolo "miracolo" perche' quando abbiamo contattato l' Associazione nel mese di Novembre ci é stato detto che ormai era troppo

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

L : L/2 = 1 : ½ = 2 : 1

L : L/2 = 1 : ½ = 2 : 1 LA SCALA PITAGORICA (e altre scale) 1 IL MONOCORDO I Greci, già circa 500 anni prima dell inizio dell era cristiana, utilizzavano un semplice strumento: il monocordo. Nel monocordo, un ponticello mobile

Dettagli

I numeri che si ottengono successivamente sono 98-2 = 96 4 = 92 8 = 84 16 = 68 32 = 36 e ci si ferma perché non possibile togliere 64

I numeri che si ottengono successivamente sono 98-2 = 96 4 = 92 8 = 84 16 = 68 32 = 36 e ci si ferma perché non possibile togliere 64 Problemini e indovinelli 2 Le palline da tennis In uno scatolone ci sono dei tubi che contengono ciascuno 4 palline da tennis.approfittando di una offerta speciale puoi acquistare 4 tubi spendendo 20.

Dettagli

CAPITOLO 2 GLI AGGETTIVI A. LEGGETE IL SEGUENTE BRANO E SOTTOLINEATE GLI AGGETTIVI

CAPITOLO 2 GLI AGGETTIVI A. LEGGETE IL SEGUENTE BRANO E SOTTOLINEATE GLI AGGETTIVI CAPITOLO 2 GLI AGGETTIVI A. LEGGETE IL SEGUENTE BRANO E SOTTOLINEATE GLI AGGETTIVI La mia casa ideale è vicino al mare. Ha un salotto grande e luminoso con molte poltrone comode e un divano grande e comodo.

Dettagli

CON MARIA PREPARIAMOCI AD ACCOGLIERE IL SIGNORE

CON MARIA PREPARIAMOCI AD ACCOGLIERE IL SIGNORE AzioneCattolicaItaliana ACR dell ArcidiocesidiBologna duegiornidispiritualitàinavvento CONMARIA PREPARIAMOCIADACCOGLIEREILSIGNORE Tutta l Azione Cattolica ha come tema dell anno l accoglienza. Anche la

Dettagli

IL LATO OSCURO DELL UNIVERSO dov e` la materia che non vediamo? Elena Zucca. INAF - Osservatorio Astronomico di Bologna

IL LATO OSCURO DELL UNIVERSO dov e` la materia che non vediamo? Elena Zucca. INAF - Osservatorio Astronomico di Bologna IL LATO OSCURO DELL UNIVERSO dov e` la materia che non vediamo? Elena Zucca INAF - Osservatorio Astronomico di Bologna Ma l Universo è costituito solo da materia luminosa? La forza di gravità Galileo

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Intenzione dell autore - Riflessioni e problematiche suggerite dal libro

Intenzione dell autore - Riflessioni e problematiche suggerite dal libro Intenzione dell autore - Riflessioni e problematiche suggerite dal libro Il romanzo Tra donne sole è stato scritto da Pavese quindici mesi prima della sua morte, nel 1949. La protagonista, Clelia, è una

Dettagli

TEORIA DEL SÉ E CICLO DEL CONTATTO

TEORIA DEL SÉ E CICLO DEL CONTATTO TEORIA DEL SÉ E CICLO DEL CONTATTO di Sergio Mazzei Direttore dell Istituto Gestalt e Body Work TEORIA DEL SÉ Per organismo nella psicoterapia della Gestalt si intende l individuo che è in relazione con

Dettagli

Bambini vecchiette signori e signore venite a giocare con tutti i colori (2 volte)

Bambini vecchiette signori e signore venite a giocare con tutti i colori (2 volte) La canzone dei colori Rosso rosso il cane che salta il fosso giallo giallo il gallo che va a cavallo blu blu la barca che va su e giù blu blu la barca che va su e giù Arancio arancio il grosso cappello

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA PROGRAMMA DI MATEMATICA E FISICA Classe VA scientifico MATEMATICA MODULO 1 ESPONENZIALI E LOGARITMI 1. Potenze con esponente reale; 2. La funzione esponenziale: proprietà e grafico; 3. Definizione di logaritmo;

Dettagli

Se fossi donna... Se fossi donna... Se fossi donna... Se fossi donna... Se fossi donna...

Se fossi donna... Se fossi donna... Se fossi donna... Se fossi donna... Se fossi donna... Se fossi donna molto probabilmente avrei un comportamento diverso. Il mio andamento scolastico non è dei migliori forse a causa dei miei interessi (calcio,videogiochi, wrestling ) e forse mi applicherei

Dettagli

Porto di mare senz'acqua

Porto di mare senz'acqua Settembre 2014 Porto di mare senz'acqua Nella comunità di Piquiá passa un onda di ospiti lunga alcuni mesi Qualcuno se ne è già andato. Altri restano a tempo indeterminato D a qualche tempo a questa parte,

Dettagli

Che cos è la luce? (Luce, colori, visioni.quale sarà mai il loro segreto?) Prof. Gianluca Todisco

Che cos è la luce? (Luce, colori, visioni.quale sarà mai il loro segreto?) Prof. Gianluca Todisco Che cos è la luce? (Luce, colori, visioni.quale sarà mai il loro segreto?) 1 LA LUCE NELLA STORIA Nell antica Grecia c era chi (i pitagorici) pensavano che ci fossero dei fili sottili che partono dagli

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

SVILUPPO IN SERIE DI FOURIER

SVILUPPO IN SERIE DI FOURIER SVILUPPO IN SERIE DI FOURIER Cenni Storici (Wikipedia) Jean Baptiste Joseph Fourier ( nato a Auxerre il 21 marzo 1768 e morto a Parigi il 16 maggio 1830 ) è stato un matematico e fisico, ma è conosciuto

Dettagli

Le prossime 6 domande fanno riferimento alla seguente tavola di orario ferroviario

Le prossime 6 domande fanno riferimento alla seguente tavola di orario ferroviario Esercizi lezioni 00_05 Pag.1 Esercizi relativi alle lezioni dalla 0 alla 5. 1. Qual è il fattore di conversione da miglia a chilometri? 2. Un tempo si correva in Italia una famosa gara automobilistica:

Dettagli

TELEFONO AZZURRO. dedicato ai bambini COS E IL BULLISMO? IL BULLISMO?

TELEFONO AZZURRO. dedicato ai bambini COS E IL BULLISMO? IL BULLISMO? COS E IL BULLISMO? IL BULLISMO? 1 Ehi, ti e mai capitato di assistere o essere coinvolto in situazioni di prepotenza?... lo sai cos e il bullismo? Prova a leggere queste pagine. Ti potranno essere utili.

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE - Matematica - Griglie di valutazione Materia: Matematica Obiettivi disciplinari Gli obiettivi indicati si riferiscono all intero percorso della classe quarta

Dettagli

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014)

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) Le grandezze fisiche. Metodo sperimentale di Galilei. Concetto di grandezza fisica e della sua misura. Il Sistema internazionale di Unità

Dettagli

Analisi della comunicazione del gioco nella sua evoluzione

Analisi della comunicazione del gioco nella sua evoluzione Nel nostro Paese il gioco ha sempre avuto radici profonde - Caratteristiche degli italiani in genere - Fattori difficilmente riconducibili a valutazioni precise (dal momento che propensione al guadagno

Dettagli

UD 1.1 - LE NORME SOCIALI

UD 1.1 - LE NORME SOCIALI UD 1.1 - LE NORME SOCIALI Vivere in un mare di norme La nostra vita si svolge in un mondo di norme affermava in un suo famoso libro il grande filosofo protagonista del ventesimo secolo Norberto Bobbio.

Dettagli

Cognome... Nome... LE CORRENTI MARINE

Cognome... Nome... LE CORRENTI MARINE Cognome... Nome... LE CORRENTI MARINE Le correnti marine sono masse d acqua che si spostano in superficie o in profondità negli oceani: sono paragonabili a enormi fiumi che scorrono lentamente (in media

Dettagli

VENDI QUELLO CHE HAI E SEGUIMI. Commento al Vangelo di p. Alberto Maggi OSM

VENDI QUELLO CHE HAI E SEGUIMI. Commento al Vangelo di p. Alberto Maggi OSM XXVIII TEMPO ORDINARIO 11 ottobre 2009 VENDI QUELLO CHE HAI E SEGUIMI Commento al Vangelo di p. Alberto Maggi OSM Mc 10, 17-30 [In quel tempo], mentre Gesù andava per la strada, un tale gli corse incontro

Dettagli