Docente: Anna Valeria Germinario. Università di Bari. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 1 / 22

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Docente: Anna Valeria Germinario. Università di Bari. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 1 / 22"

Transcript

1 Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Calcolo differenziale e approssimazioni, formula di Taylor Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di Bari) Analisi Matematica ITPS 1 / 22

2 Outline 1 Differenziale e approssimazione lineare 2 Formula di Taylor MacLaurin con resto di Peano 3 La formula di Taylor-MacLaurin con resto di Lagrange 4 Serie di Taylor A.V.Germinario (Università di Bari) Analisi Matematica ITPS 2 / 22

3 Differenziale e approssimazione lineare Approssimazione lineare Operazione di linearizzazione: approssimare una funzione non lineare tramite una funzione lineare, ottenendo informazioni sull errore commesso. Caso tipico: incremento di una funzione. Sia f : (a, b) R una funzione derivabile in x 0 (a, b) e diamo ad x 0 un incremento dx (che assumiamo molto piccolo in valore assoluto, cioè dx 1). In conseguenza f subisce un incremento f(x 0 ) = f(x 0 + dx) f(x 0 ). In generale f(x 0 ) non è proporzionale a dx (ossia non è lineare rispetto a dx). A.V.Germinario (Università di Bari) Analisi Matematica ITPS 3 / 22

4 Differenziale e approssimazione lineare Differenziale Invece, risulta essere proporzionale a dx l incremento di f lungo la retta tangente al grafico di f in x 0. Infatti tale incremento è uguale a f (x 0 )dx. Definizione Sia f : (a, b) R una funzione derivabile in x 0 (a, b). Si chiama differenziale di f in x 0 (e si denota con df(x 0 )) l incremento di lungo f lungo la retta tangente al grafico di f in x 0 : df(x 0 ) = f (x 0 )dx. Qual è l errore che si commette approssimando f in un intorno di x 0 con df(x 0 )? A.V.Germinario (Università di Bari) Analisi Matematica ITPS 4 / 22

5 Differenziale e approssimazione lineare Differenziale Sappiamo che f(x 0 + dx) f(x 0 ) dx f (x 0 ) per dx 0 da cui f(x 0 + dx) f(x 0 ) f (x 0 ) = ε(dx) dx ove ε(dx) 0 per dx 0. Quindi f(x 0 + dx) f(x 0 ) = f (x 0 )dx + dx ε(dx) f(x 0 ) = df(x 0 ) + dx ε(dx) ove dx ε(dx) è una funzione che divisa per dx tende a 0 cioè dx ε(dx) è un infinitesimo di ordine superiore rispetto a dx. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 5 / 22

6 Differenziale e approssimazione lineare o piccolo Una simbologia utile in questa circostanza: Definizione Siano f e g due funzioni definite in un intorno di x 0. Se f(x) lim x x 0 g(x) = 0 si scrive f(x) = o(g(x)) per x x 0 e si legge f(x) è un o piccolo di g(x). A.V.Germinario (Università di Bari) Analisi Matematica ITPS 6 / 22

7 Differenziale e approssimazione lineare Se g(x) è un infinitesimo per x x 0, f(x) = o(g(x)) significa che f(x) è un infinitesimo di ordine superiore rispetto a g(x). Dunque si ha f(x 0 ) = df(x 0 ) + o(dx) per dx 0. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 7 / 22

8 Differenziale e approssimazione lineare o grande Una definizione simile a quella di o piccolo, utile per lo studio della complessità degli algoritmi. Definizione Siano f e g due funzioni definite in un intorno di x 0. Se esiste M > 0 tale che si scrive f(x) g(x) M definitivamente per x x 0 f(x) = O(g(x)) per x x 0 e si legge f(x) è un o grande di g(x). Se per x x 0, f(x) = o(g(x)) allora f(x) = O(g(x)) A.V.Germinario (Università di Bari) Analisi Matematica ITPS 8 / 22

9 Differenziale e approssimazione lineare Relazione tra o piccolo e asintotico Teorema Sono equivalenti: 1 f(x) g(x) per x x 0 ; 2 f(x) = g(x) + o(g(x)) per x x 0. I limiti notevoli si possono rileggere tramite uguaglianze che coinvolgono o piccolo : sen x = x + o(x) per x 0; e x 1 = x + o(x) per x 0; 1 cos x = 1 2 x2 + o(x 2 ) per x 0. In modo equivalente, per x 0 cos x = x2 + o(x 2 ). A.V.Germinario (Università di Bari) Analisi Matematica ITPS 9 / 22

10 Formula di Taylor MacLaurin con resto di Peano Formula di Taylor MacLaurin con resto di Peano Vogliamo ora generalizzare il procedimento di approssimazione per linearizzazione a quello di approssimazione polinomiale. Più precisamente, se f è derivabile n volte, esiste un polinomio di grado n che in un intorno di un punto fissato x 0 approssima la funzione meglio della sua retta tangente? Primo passo: individuare un polinomio che abbia tutte le derivate fino all ordine n uguali a quelle di f in x 0. Secondo passo: provare che il polinomio trovato approssima bene f in un intorno di x 0. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 10 / 22

11 Formula di Taylor MacLaurin con resto di Peano Polinomio di MacLaurin Per semplicità, consideriamo prima il caso in cui x 0 = 0. Teorema Data una funzione f derivabile n volte in x = 0, esiste uno ed un solo polinomio T n di grado n tale che Inoltre tale polinomio è dato da T (k) n (0) = f (k) (0) k = 0,..., n. T n (x) = n k=0 f (k) (0) x k k! e si chiama polinomio di MacLaurin di f(x) di grado n. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 11 / 22

12 Formula di Taylor MacLaurin con resto di Peano Formula di MacLaurin all ordine n con resto secondo Peano Il polinomio T n approssima bene f in un intorno di 0. Teorema Sia f : (a, b) R una funzione derivabile n volte in 0 (a, b). Allora il polinomio di Maclaurin di grado n T n verifica f(x) = T n (x) + o(x n ) per x 0. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 12 / 22

13 Formula di Taylor MacLaurin con resto di Peano Formula di Taylor all ordine n con resto di Peano Quanto detto di può generalizzare al caso x 0 0. Data una funzione f derivabile n volte in x 0, il suo polinomio di Taylor in x 0 è dato da Teorema T n,x0 (x) = n k=0 Vale il risultato di approssimazione. f (k) (x 0 ) (x x 0 ) k. k! Sia f : (a, b) R una funzione derivabile n volte in x 0 (a, b). Allora f(x) = T n,x0 (x) + o((x x 0 ) n ) per x x 0. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 13 / 22

14 Formula di Taylor MacLaurin con resto di Peano Formula di MacLaurin di ordine n per alcune funzioni elementari. e x = n k=0 log(1 + x) = sen x = cos x = arctg x = 1 k! xk + o(x n ) per x 0; n k=0 n k=0 n ( 1) k 1 x k + o(x n ) per x 0; k k=1 ( 1) k (2k + 1)! x2k+1 + o(x 2n+2 ) per x 0; ( 1) k (2k)! x2k + o(x 2n+1 ) per x 0; n k=0 ( 1) k 2k + 1 x2k+1 + o(x 2n+2 ) per x 0. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 14 / 22

15 La formula di Taylor-MacLaurin con resto di Lagrange La formula di Taylor-MacLaurin con resto di Lagrange Nelle applicazioni, si utilizza il polinomio di Taylor per approssimare una funzione f in un intorno di un punto fissato. Occorre stimare l errore commesso E n (x) = f(x) T n (x). Teorema (Formula di Taylor con resto di Lagrange) Sia f : [a, b] R una funzione derivabile n + 1 volte in [a, b] e x 0 [a, b]. Allora, per ogni x [a, b], x x 0, esiste c compreso tra x 0 e x tale che f(x) = T n,x0 (x) + f (n+1) (c) (n + 1)! (x x 0) n+1. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 15 / 22

16 La formula di Taylor-MacLaurin con resto di Lagrange La formula di Taylor-MacLaurin con resto di Lagrange Per n = 0 la formula di Taylor con resto di Lagrange è il teorema di Lagrange. L errore E n (x) è dunque dato da f (n+1) (c) (n + 1)! (x x 0) n+1 detto resto secondo Lagrange. Il punto c dipende da x 0, x e n ed è compreso tra x 0 e x. Se si riesce a provare che esiste M > 0 tale che f (n+1) (t) M per ogni t compreso tra x 0 e x allora f(x) T n,x0 (x) M (n + 1)! x x 0 n+1 che è una stima dell errore di approssimazione commesso. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 16 / 22

17 La formula di Taylor-MacLaurin con resto di Lagrange Formula di Taylor e convessità La formula di Taylor con resto di Lagrange è per n = 1 diventa f(x) = f(x 0 ) + f (x 0 )(x x 0 ) + f (c) (x x 0 ) 2 2! ove c è compreso tra x e x 0. Se f è convessa in un intorno di x 0 allora f(x) f(x 0 ) + f (x 0 )(x x 0 ) quindi il grafico di f si mantiene al di sopra della retta tangente a f in x 0. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 17 / 22

18 Serie di Taylor Serie di Taylor La formula di Taylor con resto di Lagrange si può scrivere come ove f(x) = n k=0 f (k) (x 0 ) (x x 0 ) k + E n (x) k! E n (x) = f (n+1) (c) (n + 1)! (x x 0) n+1 e c è un opportuno numero compreso tra x e x 0 A.V.Germinario (Università di Bari) Analisi Matematica ITPS 18 / 22

19 Serie di Taylor Serie di Taylor Se f ha derivate di ogni ordine si può considerare la serie (di potenze) k=0 f (k) (x 0 ) (x x 0 ) k. (1) k! Definizione La serie di potenze in (1), se ben definita, è detta serie di Taylor della funzione f centrata in x 0. Il polinomio di Taylor di f rappresenta la somma parziale della serie di Taylor di f. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 19 / 22

20 Serie di Taylor Convergenza Problema: stabilire se esiste un intorno di x 0 in cui vale l uguaglianza f(x) = k=0 f (k) (x 0 ) (x x 0 ) k. (2) k! Definizione Se la (2) è soddisfatta per ogni x in un certo intervallo I (contenente x 0 ) si dice che f è sviluppabile in serie di Taylor in I. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 20 / 22

21 Serie di Taylor Convergenza Osservazioni: Come per ogni serie si potenze, può accadere che I = R o che I = {x 0 } o che I sia un intorno di x 0 del tipo (x 0 δ, x 0 + δ). Una funzione f è sviluppabile in serie di Taylor in I se per ogni x in I E n (x) 0 per n +. Esempi: e x, sen x, cos x sono sviluppabili in serie di Taylor in R. Esistono funzioni che non sono sviluppabili in serie di Taylor. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 21 / 22

22 Serie di Taylor Esempio La funzione definita da f(x) = { e 1/x2 se x 0 0 se x = 0 non è sviluppabile in serie di Taylor di punto iniziale x 0 = 0. A.V.Germinario (Università di Bari) Analisi Matematica ITPS 22 / 22

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA I - 11 Febbraio 2011, ore 8.30

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA I - 11 Febbraio 2011, ore 8.30 Esame di ANALISI MATEMATICA I - 11 Febbraio 2011, ore 830 A ESERCIZIO 1 (8 punti) Data la funzione = 1 + sin x 2 2 x (a) determinare lo sviluppo di MacLaurin al terzo ordine della funzione ; (b) determinare

Dettagli

1 Serie di Taylor di una funzione

1 Serie di Taylor di una funzione Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 7 SERIE E POLINOMI DI TAYLOR Serie di Taylor di una funzione. Definizione di serie di Taylor Sia f(x) una funzione definita

Dettagli

SIMULAZIONE TEST ESAME - 1

SIMULAZIONE TEST ESAME - 1 SIMULAZIONE TEST ESAME - 1 1. Il dominio della funzione f(x) = log (x2 + 1)(4 x 2 ) (x 2 2x + 1) è: (a) ( 2, 2) (b) ( 2, 1) (1, 2) (c) (, 2) (2, + ) (d) [ 2, 1) (1, 2] (e) R \{1} 2. La funzione f : R R

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2015/16)

Diario del corso di Analisi Matematica 1 (a.a. 2015/16) Diario del corso di Analisi Matematica (a.a. 205/6) 4 settembre 205 ( ora) Presentazione del corso. 6 settembre 205 (2 ore) Numeri naturali, interi, razionali, reali. 2 non è razionale. Introduzione alle

Dettagli

Le derivate versione 4

Le derivate versione 4 Le derivate versione 4 Roberto Boggiani 2 luglio 2003 Riciami di geometria analitica Dalla geometria analitica sulla retta sappiamo ce dati due punti del piano A(x, y ) e B(x 2, y 2 ) con x x 2 la retta

Dettagli

Applicazioni del calcolo differenziale allo studio delle funzioni

Applicazioni del calcolo differenziale allo studio delle funzioni Capitolo 9 9.1 Crescenza e decrescenza in piccolo; massimi e minimi relativi Sia y = f(x) una funzione definita nell intervallo A; su di essa non facciamo, per ora, alcuna particolare ipotesi (né di continuità,

Dettagli

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI Abbiamo studiato successioni e serie numeriche, ora vogliamo studiare successioni e serie di funzioni. Dato un insieme A R, chiamiamo successione di funzioni

Dettagli

Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI)

Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI) 1 Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI) Approssimazioni di Taylor BPS, Capitolo 5, pagine 256 268 Approssimazione lineare, il simbolo

Dettagli

Esame di Analisi Matematica prova scritta del 23 settembre 2013

Esame di Analisi Matematica prova scritta del 23 settembre 2013 Esame di Analisi Matematica prova scritta del 23 settembre 2013 1. Determinare dominio, limiti significativi, intervalli di monotonia della funzione f (x) = (2x + 3) 2 e x/2 e tracciarne il grafico. In

Dettagli

Università degli Studi di Catania A.A. 2012-2013. Corso di laurea in Ingegneria Industriale

Università degli Studi di Catania A.A. 2012-2013. Corso di laurea in Ingegneria Industriale Università degli Studi di Catania A.A. 2012-2013 Corso di laurea in Ingegneria Industriale Corso di Analisi Matematica I (A-E) (Prof. A.Villani) Elenco delle dimostrazioni che possono essere richieste

Dettagli

COGNOME e NOME: FIRMA: MATRICOLA:

COGNOME e NOME: FIRMA: MATRICOLA: Anno Accademico 04/ 05 Corsi di Analisi Matematica I Proff. A. Villani, R. Cirmi e F. Faraci) Prova d Esame del giorno 6 febbraio 05 Prima prova scritta compito A) Non sono consentiti formulari, appunti,

Dettagli

sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche.

sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche. sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche. Potenze e percentuali Sezione 0.3: Disuguaglianze Sezione

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

MODALITA E DATE DEGLI ESAMI

MODALITA E DATE DEGLI ESAMI A.A. 2015/16 CORSO DI ANALISI MATEMATICA 1 PER I CORSI DI LAUREA IN MATEMATICA E FISICA I semestre, 12 crediti Teoria: 9 crediti, tenuti da me Esercitazioni: 3 crediti, tenuti dal Dott. Bruno Scardamaglia

Dettagli

Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio

Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio. Funzioni e insiemi numerici.4 Verificare che (A B) (A B) = (A A ) B. ) Sia (a, b) (A B) (A B). Allora a (A A ) e b B, da cui (a,

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

UNIVERSITA DEGLI STUDI DI GENOVA Facoltà di Scienze M. F. N.

UNIVERSITA DEGLI STUDI DI GENOVA Facoltà di Scienze M. F. N. ARGOMENTO DELLA LEZIONE N.1 Infiniti e infinitesimi Definizioni confronto. ARGOMENTO DELLA LEZIONE N.2 Ordine di infinitesiomo e di infinito Formula di Taylor con resto di Peano Addì 28.2.11 Addì 3.3.11

Dettagli

Prove d'esame a.a. 20082009

Prove d'esame a.a. 20082009 Prove d'esame aa 008009 Andrea Corli settembre 0 Sono qui raccolti i testi delle prove d'esame assegnati nell'aa 00809, relativi al Corso di Analisi Matematica I (trimestrale, 6 crediti), Laurea in Ingegneria

Dettagli

Equazioni non lineari

Equazioni non lineari Equazioni non lineari Data una funzione f : [a, b] R si cerca α [a, b] tale che f (α) = 0. I metodi numerici per la risoluzione di questo problema sono metodi iterativi. Teorema Data una funzione continua

Dettagli

CONCETTO DI LIMITE DI UNA FUNZIONE REALE

CONCETTO DI LIMITE DI UNA FUNZIONE REALE CONCETTO DI LIMITE DI UNA FUNZIONE REALE Il limite di una funzione è uno dei concetti fondamentali dell'analisi matematica. Tramite questo concetto viene formalizzata la nozione di funzione continua e

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

ESERCITAZIONI DI ANALISI 1 FOGLIO 1 FOGLIO 2 FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI. Marco Pezzulla

ESERCITAZIONI DI ANALISI 1 FOGLIO 1 FOGLIO 2 FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI. Marco Pezzulla ESERCITAZIONI DI ANALISI FOGLIO FOGLIO FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI Marco Pezzulla gennaio 05 FOGLIO. Determinare il dominio e il segno della funzione ( ) f(x) arccos x x + π/3.

Dettagli

COGNOME e NOME: FIRMA: MATRICOLA:

COGNOME e NOME: FIRMA: MATRICOLA: Anno Accademico 203/ 204 Corsi di Analisi Matematica I (Proff A Villani e F Faraci) Prova d Esame del giorno 6 febbraio 204 Prima prova scritta (compito A) Non sono consentiti formulari, appunti, libri

Dettagli

2 Argomenti introduttivi e generali

2 Argomenti introduttivi e generali 1 Note Oltre agli esercizi di questa lista si consiglia di svolgere quelli segnalati o assegnati sul registro e genericamente quelli presentati dal libro come esercizio o come esempio sugli argomenti svolti

Dettagli

a) Osserviamo innanzi tutto che dev essere x > 0. Pertanto il dominio è ]0, + [. b) Poniamo t = log x. Innanzi tutto si ha:

a) Osserviamo innanzi tutto che dev essere x > 0. Pertanto il dominio è ]0, + [. b) Poniamo t = log x. Innanzi tutto si ha: ESERCIZIO - Data la funzione f (x) = (log x) 6 7(log x) 5 + 2(log x) 4, si chiede di: a) calcolare il dominio di f ; ( punto) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire

Dettagli

Attenzione: i programmi sono cambiati negli anni. Non tutti gli esercizi nella presente raccolta riguardano argomenti trattati.

Attenzione: i programmi sono cambiati negli anni. Non tutti gli esercizi nella presente raccolta riguardano argomenti trattati. Si raccolgono qui temi d esame, esercizi e domande di teoria dati negli anni 3-4 nei corsi di Analisi Matematica I presso il DTG di Vicenza. Il materiale è stato reso disponibile dai docenti che hanno

Dettagli

Programmazione Matematica classe V A. Finalità

Programmazione Matematica classe V A. Finalità Finalità Acquisire una formazione culturale equilibrata in ambito scientifico; comprendere i nodi fondamentali dello sviluppo del pensiero scientifico, anche in una dimensione storica, e i nessi tra i

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0.

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0. Numeri Complessi. Siano z = + i e z 2 = i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 2. Siano z = 2 5 + i 2 e z 2 = 5 2 2i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 3. Ricordando che, se z è un numero complesso,

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t) CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare

Dettagli

ANALISI MATEMATICA 1 Corso di Ingegneria Gestionale A.A. 2010/11 Docente: Alessandro Morando Esercitazioni: Anna Mambretti

ANALISI MATEMATICA 1 Corso di Ingegneria Gestionale A.A. 2010/11 Docente: Alessandro Morando Esercitazioni: Anna Mambretti ANALISI MATEMATICA 1 Corso di Ingegneria Gestionale A.A. 2010/11 Docente: Alessandro Morando Esercitazioni: Anna Mambretti Scopo del corso: fornire alcuni strumenti di base del calcolo differenziale e

Dettagli

SERIE NUMERICHE. prof. Antonio Greco 6-11-2013

SERIE NUMERICHE. prof. Antonio Greco 6-11-2013 SERIE NUMERICHE prof. Antonio Greco 6--203 Indice Motivazioni........... 3 Definizione........... 3 Errore tipico........... 3 Un osservazione utile...... 3 Condizione necessaria...... 4 Serie armonica.........

Dettagli

Analisi 2. Argomenti. Raffaele D. Facendola

Analisi 2. Argomenti. Raffaele D. Facendola Analisi 2 Argomenti Successioni di funzioni Definizione Convergenza puntuale Proprietà della convergenza puntuale Convergenza uniforme Continuità e limitatezza Teorema della continuità del limite Teorema

Dettagli

Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi)

Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi) Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi) Via Firenze, 51 - Tel. 0587/213400 - Fax 0587/52742 http://www.itcgfermi.it E-mail: mail@itcgfermi.it PIANO DI LAVORO Prof. FRUZZETTI

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

PROGRAMMA DI MATEMATICA

PROGRAMMA DI MATEMATICA PROGRAMMA DI MATEMATICA A.S. 2014-2015 CLASSE IV SEZ. B INDIRIZZO SIA PROF. Orlando Rocco Carmelo ODULO MODULO ORD. ARGOMENT O 1 SEZ 1 FUNZIONI E LIMITIDI FUNZIONI ARGOMENTO 1 TOMO E SEZ 1 FUNZIONI E LIMITIDI

Dettagli

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE. A. A. 2014-2015 L. Doretti

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE. A. A. 2014-2015 L. Doretti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE A. A. 2014-2015 L. Doretti 1 Il concetto di derivata di una funzione è uno dei più importanti e fecondi di tutta la matematica sia per

Dettagli

Matematica 1 - Corso di Laurea in Ingegneria Meccanica

Matematica 1 - Corso di Laurea in Ingegneria Meccanica Matematica 1 - Corso di Laurea in Ingegneria Meccanica Esercitazione su massimi e minimi vincolati 9 dicembre 005 Esercizio 1. Considerare l insieme C = {(x,y) R : (x + y ) = x } e dire se è una curva

Dettagli

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0.

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0. Numeri Complessi. Siano z = + i e z 2 = i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 2. Siano z = 2 5 + i 2 e z 2 = 5 2 2i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 3. Ricordando che, se z è un numero complesso,

Dettagli

COORDINAMENTO PER MATERIE SETTEMBRE 2013

COORDINAMENTO PER MATERIE SETTEMBRE 2013 Pagina 1 di 6 COORDINAMENTO PER MATERIE SETTEMBRE 2013 MATERIA DI NUOVA INTRODUZIONE PER EFFETTO DELLA RIFORMA AREA DISCIPLINARE [ ] Biennio, Attività e Insegnamenti di area generale (Settore Tecnologico)

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

Alcune note sulle serie di potenze 1

Alcune note sulle serie di potenze 1 Alcune note sulle serie di potenze Contents G. Falqui Preliminari 2 Serie di potenze 3 3 Rappresentazione di funzioni mediante serie di potenze 7 3. Esempi notevoli........................... 9 3.2 Formula

Dettagli

I appello - 24 Marzo 2006

I appello - 24 Marzo 2006 Facoltà di Ingegneria - Corso di Laurea in Ing. Energetica e Gestionale A.A.2005/2006 I appello - 24 Marzo 2006 Risolvere gli esercizi motivando tutte le risposte. I.) Studiare la convergenza puntuale,

Dettagli

Corso di Laurea in Ingegneria Civile Analisi Matematica I

Corso di Laurea in Ingegneria Civile Analisi Matematica I Corso di Laurea in Ingegneria Civile Analisi Matematica I Lezioni A.A. 2003/2004, prof. G. Stefani primo semiperiodo 22/9/03-8/11/03 Testo consigliato: Robert A. Adams - Calcolo differenziale 1 - Casa

Dettagli

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0.

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0. Numeri Complessi. Siano z = + i e z 2 = i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 2. Siano z = 2 5 + i 2 e z 2 = 5 2 2i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 3. Ricordando che, se z è un numero complesso,

Dettagli

Corso di Analisi Matematica. Successioni e serie numeriche

Corso di Analisi Matematica. Successioni e serie numeriche a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Successioni e serie numeriche Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

Facoltà di Economia. Anno Accademico 2009-2010 - Programma del Corso. Matematica Generale (PROGRAMMA EFFETTIVAMENTE SVOLTO)

Facoltà di Economia. Anno Accademico 2009-2010 - Programma del Corso. Matematica Generale (PROGRAMMA EFFETTIVAMENTE SVOLTO) Insegnamento Docente Corso di Laurea CFU 8 Lingua di Insegnamento Italiano Semestre di svolgimento Primo Tipologia Fondamentale SSD SECS-S/06 Codice di Ateneo Anno di Corso Primo Matematica Generale (PROGRAMMA

Dettagli

21. Studio del grafico di una funzione: esercizi

21. Studio del grafico di una funzione: esercizi 1. Studio del grafico di una funzione: esercizi Esercizio 1.6. Studiare ciascuna delle seguenti funzioni in base allo schema di pagina 194, eseguendo anche il computo della derivata seconda e lo studio

Dettagli

L. Pandolfi. Lezioni di Analisi Matematica 2

L. Pandolfi. Lezioni di Analisi Matematica 2 L. Pandolfi Lezioni di Analisi Matematica 2 i Il testo presenta tre blocchi principali di argomenti: A Successioni e serie numeriche e di funzioni: Cap., e 2. B Questa parte consta di due, da studiarsi

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi)

Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi) Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi) Via Firenze, 51 - Tel. 0587/213400 - Fax 0587/52742 http://www.itcgfermi.it E-mail: mail@itcgfermi.it PIANO DI LAVORO Prof. Fogli

Dettagli

7 - Esercitazione sulle derivate

7 - Esercitazione sulle derivate 7 - Esercitazione sulle derivate Luigi Starace gennaio 0 Indice Dimostrare il teorema 5.5.3.a................................................b............................................... Dimostrazioni.a

Dettagli

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012 Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 211/212 Ricordare: una funzione lipschitziana tra spazi metrici manda insiemi limitati in insiemi limitati; se il dominio di una funzione

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Equazioni non lineari

Equazioni non lineari Dipartimento di Matematica tel. 011 0907503 stefano.berrone@polito.it http://calvino.polito.it/~sberrone Laboratorio di modellazione e progettazione materiali Trovare il valore x R tale che f (x) = 0,

Dettagli

Direzione Centrale Educazione e Istruzione Settore Scuole Paritarie e Case Vacanza Civico Polo Scolastico Alessandro Manzoni PROGRAMMA PREVENTIVO

Direzione Centrale Educazione e Istruzione Settore Scuole Paritarie e Case Vacanza Civico Polo Scolastico Alessandro Manzoni PROGRAMMA PREVENTIVO PAGINA: 1 PROGRAMMA PREVENTIVO A.S. 2014/ 2015 Scuola LICEO LINGUISTICO TEATRO ALLA SCALA DOCENTE BASSO RICCI MARIA MATERIA MATEMATICA Classe Quinta. Sezione A. PAGINA: 2 Finalità -Leggere il testo matematico

Dettagli

4 Funzioni di due o più variabili reali

4 Funzioni di due o più variabili reali 4 Funzioni di due o più variabili reali Dopo aver studiato in dettaglio le funzioni di una variabile reale, affrontiamo ora alcuni aspetti della teoria delle funzioni di due o più variabili reali. La nostra

Dettagli

Programma di Matematica

Programma di Matematica Programma di Matematica Modulo 1. Topologia in R 2. Funzioni in R 3. Limite e continuità di una funzione Unità didattiche Struttura algebrica di R Insiemi reali limitati e illimitati Intorno di un punto

Dettagli

Esercizi di Analisi Matematica I

Esercizi di Analisi Matematica I Esercizi di Analisi Matematica I Andrea Corli e Alessia Ascanelli gennaio 9 Indice Introduzione iii Nozioni preliminari. Fattoriali e binomiali..................................... Progressioni..........................................

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO PROGRAMMA CONSUNTIVO a.s. 2014/2015 MATERIA MATEMATICA CLASSE DOCENTE 5^ SEZIONE D DI LEO CLELIA Liceo Scientifico delle Scienze Applicate ORE DI LEZIONE 4 **************** OBIETTIVI saper definire e classificare

Dettagli

Grafico qualitativo di una funzione reale di variabile reale

Grafico qualitativo di una funzione reale di variabile reale Grafico qualitativo di una funzione reale di variabile reale Mauro Saita 1 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Dicembre 2014 Indice 1 Qualè il grafico

Dettagli

PIANO DI LAVORO DEL PROFESSORE

PIANO DI LAVORO DEL PROFESSORE ISTITUTO DI ISTRUZIONE SUPERIORE STATALE IRIS VERSARI - Cesano Maderno (MB) PIANO DI LAVORO DEL PROFESSORE Indirizzo: LICEO SCIENTIFICO MATERIA: MATEMATICA ANNO SCOLASTICO: 2014-2015 PROF: MASSIMO BANFI

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

UNIVERSITÀ DEGLI STUDI DI FERRARA

UNIVERSITÀ DEGLI STUDI DI FERRARA UNIVERSITÀ DEGLI STUDI DI FERRARA Anno Accademico 2012/2013 REGISTRO DELL ATTIVITÀ DIDATTICA Docente: ANDREOTTI MIRCO Titolo del corso: MATEMATICA ED ELEMENTI DI STATISTICA Corso: CORSO UFFICIALE Corso

Dettagli

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati.

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati. PROGRAMMA di Fondamenti di Analisi Matematica 2 (DEFINITIVO) A.A. 2010-2011, Paola Mannucci, Canale 2 Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica

Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica Nome... N. Matricola... Ancona, 29 marzo 2014 1. (7 punti) Studiare la funzione determinandone: f(x) = e x x il dominio;

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI

Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Attività didattica ANALISI MATEMATICA [2000] Periodo di svolgimento:

Dettagli

Matematica generale CTF

Matematica generale CTF Successioni numeriche 19 agosto 2015 Definizione di successione Monotonìa e limitatezza Forme indeterminate Successioni infinitesime Comportamento asintotico Criterio del rapporto per le successioni Definizione

Dettagli

Interpolazione ed approssimazione di funzioni

Interpolazione ed approssimazione di funzioni Interpolazione ed approssimazione di funzioni Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 9 novembre 2007 Outline 1 Polinomi Valutazione di un polinomio Algoritmo di Horner

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

Richiami sulle derivate parziali e definizione di gradiente di una funzione, sulle derivate direzionali. Regola della catena per funzioni composte.

Richiami sulle derivate parziali e definizione di gradiente di una funzione, sulle derivate direzionali. Regola della catena per funzioni composte. PROGRAMMA di Fondamenti di Analisi Matematica 2 (che sarà svolto fino al 7 gennaio 2013) A.A. 2012-2013, Paola Mannucci e Claudio Marchi, Canali 1 e 2 Ingegneria Gestionale, Meccanica-Meccatronica, Vicenza

Dettagli

Determinare il dominio e la derivata delle seguenti funzioni e studiarne la monotonia ed eventuali massimi/minimi. ( ) x + 2.

Determinare il dominio e la derivata delle seguenti funzioni e studiarne la monotonia ed eventuali massimi/minimi. ( ) x + 2. Determinare il dominio e la derivata delle seguenti funzioni e studiarne la monotonia ed eventuali massimi/minimi (1) (2) (3) (4) f (x) = log ( ) x + 2 x 1 f (x) = x exp( x 3 ) ( f (x) = arctan x ) x 1

Dettagli

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano Capitolo 4: Ottimizzazione non lineare non vincolata parte II E. Amaldi DEIB, Politecnico di Milano 4.3 Algoritmi iterativi e convergenza Programma non lineare (PNL): min f(x) s.v. g i (x) 0 1 i m x S

Dettagli

Corso di Matematica per CTF Appello 15/12/2010

Corso di Matematica per CTF Appello 15/12/2010 Appello 15/12/2010 Svolgere i seguenti esercizi: 1) Calcolare entrambi i limiti: a) lim(1 x) 1 e x 1 ; x 0 x log 2 x b) lim x 1 1 cos(x 1). 2) Data la funzione: f(x) = x log x determinarne dominio, eventuali

Dettagli

CLASSI PRIME tecnico 4 ORE

CLASSI PRIME tecnico 4 ORE PIANO ANNUALE a.s. 2012/2013 CLASSI PRIME tecnico 4 ORE Settembre Ottobre Novembre dicembre dicembre gennaio- 15 aprile 15 aprile 15 maggio Somministrazione di test di ingresso. Insiemi numerici Operazioni

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (0/07/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/07/03) Università di Verona - Laurea in Biotecnologie

Dettagli

Università degli Studi di Trento Facoltà di Scienze Cognitive. Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata

Università degli Studi di Trento Facoltà di Scienze Cognitive. Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata Università degli Studi di Trento Facoltà di Scienze Cognitive Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata Commenti alle lezioni del CORSO DI ANALISI MATEMATICA a.a. 2005/2006

Dettagli

Disciplina: MATEMATICA e COMPLEMENTI di MATEMATICA - ore settimanali 3 Docente prof. Domenico QUARANTA. Quadro sintetico dei Moduli

Disciplina: MATEMATICA e COMPLEMENTI di MATEMATICA - ore settimanali 3 Docente prof. Domenico QUARANTA. Quadro sintetico dei Moduli Classe 5S Sede di Alberobello A.S. 2015/2016 Indirizzo di studio Art. Produzione e Trasformazione Disciplina: MATEMATICA e COMPLEMENTI di MATEMATICA - ore settimanali 3 Docente prof. Domenico QUARANTA

Dettagli

Registro dell'insegnamento

Registro dell'insegnamento Registro dell'insegnamento Anno accademico 2015/2016 Prof. MATTEO FOCARDI Settore inquadramento MAT/05 - ANALISI MATEMATICA REGISTRO Scuola Scienze della Salute Umana NON CHIUSO Dipartimento Matematica

Dettagli

Liceo scientifico Albert Einstein. Anno scolastico 2009-2010. Classe V H. Lavoro svolto dalla prof.ssa Irene Galbiati. Materia: MATEMATICA

Liceo scientifico Albert Einstein. Anno scolastico 2009-2010. Classe V H. Lavoro svolto dalla prof.ssa Irene Galbiati. Materia: MATEMATICA Liceo scientifico Albert Einstein Anno scolastico 2009-2010 Classe V H Lavoro svolto dalla prof.ssa Irene Galbiati Materia: MATEMATICA PROGRAMMA DI MATEMATICA CLASSE V H Contenuti Ripasso dei prerequisiti

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

Esercizi svolti su serie di Fourier

Esercizi svolti su serie di Fourier Esercizi svolti su serie di Fourier Esercizio. (Onda quadra. Determinare i coefficienti di Fourier della funzione x [, f(x = x [, prolungata a una funzione -periodica su R (d ora in poi denoteremo con

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

Quesiti di Analisi Matematica A

Quesiti di Analisi Matematica A Quesiti di Analisi Matematica A Presentiamo una raccolta di quesiti per la preparazione alla prova orale del modulo di Analisi Matematica A. Per una buona preparazione é consigliabile rispondere ad alta

Dettagli

Esami d Analisi Matematica 1. Filippo De Mari e Marina Venturino

Esami d Analisi Matematica 1. Filippo De Mari e Marina Venturino Esami d Analisi Matematica 1 Filippo De Mari e Marina Venturino Indice Parte 1. ANNO ACCADEMICO 1999-000 5 1. Corso di Studi in Ingegneria Meccanica 5 Parte. ANNO ACCADEMICO 001-00 15 1. Corso di Studi

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE I.T.C. GEOMETRI L. EINAUDI - MURAVERA - CLASSE 4A AFM

ISTITUTO DI ISTRUZIONE SUPERIORE I.T.C. GEOMETRI L. EINAUDI - MURAVERA - CLASSE 4A AFM ISTITUTO DI ISTRUZIONE SUPERIORE I.T.C. GEOMETRI L. EINAUDI - MURAVERA - CLASSE 4A AFM MATEMATICA DOCENTI Marina Pilia Enrico Sedda PROGRAMMA A.S. 2014/2015 PROGRAMMA DI MATEMATICA CLASSE 4A AFM ANNO SCOLASTICO

Dettagli

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico Competenza matematica n. BIENNIO, BIENNIO Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico, rappresentandole anche sotto forma grafica BIENNIO BIENNIO Operare sui dati comprendendone

Dettagli

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA Istituto Istruzione Superiore A. Venturi Modena Liceo artistico - Istituto Professionale Grafica Via Rainusso, 66-41124 MODENA Sede di riferimento (Via de Servi, 21-41121 MODENA) tel. 059-222156 / 245330

Dettagli

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B FUNZIONI Definizione 1 Dati due insiemi A e B, si chiama funzione da A a B una legge che ad ogni elemento di A associa un (solo) elemento di B. L insieme A si chiama dominio della funzione e l insieme

Dettagli

Università di Pisa - Corso di Laurea in Matematica Corso di Analisi Matematica 1 Informazioni

Università di Pisa - Corso di Laurea in Matematica Corso di Analisi Matematica 1 Informazioni Università di Pisa - Corso di Laurea in Matematica Corso di Analisi Matematica 1 Informazioni Supporto alla didattica Il corso avrà il supporto di un giovane collaboratore (raggiungibile sul web alla pagina

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 2012/2013 12 febbraio 2013

Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 2012/2013 12 febbraio 2013 Tempo massimo 2 ore. Consegnare solamente la bella copia. Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 212/213 12 febbraio 213 1. Disegnare il grafico della funzione: [1

Dettagli