Esercizi di Metodi e Modelli per l Ingegneria del Software

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi di Metodi e Modelli per l Ingegneria del Software"

Transcript

1 Esercizi di Metodi e Modelli per l Ingegneria del Software May 26, 2010 NOTA: Quanto segue sono esempi di esercizi che non devono essere considerati esaustivi: altri esercizi sono ovviamente possibili e non sono da escludere. Nella prova scritta sono probabili domande teoriche (non corrispondenti cioe allo svolgimento di esercizi). 1 Transition Systems Dati due automi 1. il primo con stati s 1 = {P } ed s 2 = { P }; stato iniziale s 1 e transizioni s 1 s 1, s 1 s 2, s 2 s 1, s 2 s 2, o un loro sottoinsieme, 2. il secondo con stati s 3 = {Q, R}, s 4 = { Q, R}, s 5 = {Q, R}; stato iniziale s 3 e transizioni s 3 s 4, s 4 s 5, s 5 s 3, Domande: 1. Si determini il prodotto sincrono ed asincrono degli automi 2. determinare se esiste uno stato del prodotto (a)sincrono che renda vero P R. 3. scrivere (se possibile), anche in linguaggio naturale, una proprieta di safety/liveness violata dal prodotto (a)sincrono. 1

2 2 Temporal Logics 1. Dato un automa con 4 stati e transizioni: s1 s2; s2 s2; s2 s3; s3 s2; s3 s4; dire quale delle seguenti affermazioni sono vere e quali sono false. (a) La formula LTL GF ( Q) e soddisfatta da tutte le interpretazioni (b) La formula CTL EGAF ( Q) e soddisfatta da tutte le interpretazioni (c) Esiste una interpretazione LTL che soddisfa F (P Q). (d) Esiste una interpretazione CTL che soddisfa EF (P Q). (e) La formula LTL GF (Q) e soddisfatta da tutte le interpretazioni (f) La formula CTL AGEF (Q) e soddisfatta da tutte le interpretazioni (g) La formula LTL F G(P Q) e soddisfatta da tutte le interpretazioni (h) La formula CTL EF AG(P Q) e soddisfatta da tutte le interpretazioni (i) La formula LTL GF ( P Q) e soddisfatta da tutte le interpretazioni (j) La formula CTL AGAF ( P Q) e soddisfatta da tutte le interpretazioni 2. Dati i 4 stati: e l interpretazione LTL M = s1, s2, s3, s4, s3, s4, s3, s4,..., dire quale fra le seguenti formule LT L sono vere e quali sono false in M. 2

3 (a) (b) (c) (d) (e) GF (GP (Q XQ)) F G(P (Q XQ)) F ( P Q) GF (P XP (Q XQ)) GF ( P ) X( P ) P U(P Q) 3. stesso esercizio di prima, solo che si considera l interpretazione CTL con stato iniziale s 1 e formule ottenute dalle precedenti prenettendo A o E agli operatori modali. 4. Dati i 4 stati: e l interpretazione LTL M = s1, s2, s3, s4, s2, s3, s4, s2, s3, s4, s2,..., dire quale fra le seguenti formule LT L sono vere e quali sono false in M. (a) (b) (c) (d) (e) GF (Q XQ) F G(Q XQ) F ( P Q) GF (P XP ) GF ( P ) X( P ) F ( P U(P Q)) 5. stesso esercizio di prima, solo che si considera l interpretazione CTL con stato iniziale s 1 e formule ottenute dalle precedenti prenettendo A o E agli operatori modali. 3

4 3 CTL Model Checing Dati gli automi della sezione precedenti e le formule CTL considerate negli esercizi precedenti, determinare l insieme degli stati in cui valgono tali formule e le corrispondenti sottoformule. 4 Symbolic model checking Dati gli automi di Sezione 2 1. Si rappresenti simbolicamente la loro relazione di transizione 2. Viceversa, data la relazione di transizione simbolica determinata al punto precedente, si determini l automa. 3. Si rappresenti la relazione di transizione determinata come un OBDD definendo e precisando un ordinamento tra le variabili 4. Considerato un OBDD determinato al punto precedente, si determini l OBDD corrispondente ottenuto facendo la quantificazione esistenziale/universale della prima/seconda variabile nell ordinamento. 5. Si scriva la formula proposizionale (senza quantificatori) corrispondente alla pre-image o post-image dello stato s 1, s 2 dell automa considerato. Si cerchi di semplificare la formula risultante. 6. Data la rappresentazione simbolica della relazione di transizione di un automa (ad esempio, quelle degli automi considerati), determinare la formula booleana che rappresenta l insieme degli stati in cui valgono le formule CTL delle sezioni precedenti. 5 SAT based bounded model checking Dati gli automi di Sezione 2 1. Si rappresenti simbolicamente la loro relazione di transizione 2. Si scriva (se possibile) una safety property in LTL che sia falsa ad es. per k = 3 e vera per k = 2 3. Si scriva la formula proposizionale corrispondente alla verifica della safety property determinata al passo precedente per k = 3. 4

5 4. Si detemini un assegnamento che soddisfa la formula precedente. 5

Ragionamento Automatico Model checking. Lezione 12 Ragionamento Automatico Carlucci Aiello, 2004/05Lezione 12 0. Sommario. Formulazione del problema

Ragionamento Automatico Model checking. Lezione 12 Ragionamento Automatico Carlucci Aiello, 2004/05Lezione 12 0. Sommario. Formulazione del problema Sommario Ragionamento Automatico Model checking Capitolo 3 paragrafo 6 del libro di M. Huth e M. Ryan: Logic in Computer Science: Modelling and reasoning about systems (Second Edition) Cambridge University

Dettagli

Metodi formali per la verifica dell affidabilità di sistemi software (e hardware) (Peled, Software Reliability Methods, cap. 1) Importanza della

Metodi formali per la verifica dell affidabilità di sistemi software (e hardware) (Peled, Software Reliability Methods, cap. 1) Importanza della Metodi formali per la verifica dell affidabilità di sistemi software (e hardware) (Peled, Software Reliability Methods, cap. 1) Importanza della verifica di sistemi (safety-critical, commercially critical,

Dettagli

Prefazione. Introduzione

Prefazione. Introduzione Prefazione Introduzione XI XIII 1 Comportamento a stati finiti di un sistema embedded 3 1.1 Richiami su automi a stati finiti riconoscitori di linguaggi... 4 1.2 Grammatiche............................

Dettagli

MODEL CHECKING COS È E COME SI APPLICA

MODEL CHECKING COS È E COME SI APPLICA MODEL CHECKING COS È E COME SI APPLICA Il model checking ha dimostrato di essere una tecnologia di successo per verificare la correttezza dei requisiti nella progettazione di un consistente numero di sistemi

Dettagli

Università degli Studi di Napoli Federico II. Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica

Università degli Studi di Napoli Federico II. Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Università degli Studi di Napoli Federico II Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Anno Accademico 2009/2010 Appunti di Calcolabilità e Complessità Lezione 9: Introduzione alle logiche

Dettagli

Il Problema della Raggiungibilita per gli Automi Ibridi. Tiziano Villa

Il Problema della Raggiungibilita per gli Automi Ibridi. Tiziano Villa Il Problema della Raggiungibilita per gli Automi Ibridi Tiziano Villa Universita di Verona, Febbraio 2015 1 Sommario Il problema della raggiungibilita Sistemi di transizione Relazione di equivalenza Bisimulazione

Dettagli

Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale

Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale di Francesco Maria Milizia francescomilizia@libero.it Model Checking vuol dire cercare di stabilire se una formula è vera

Dettagli

Tecniche di Specifica e di Verifica. Introduzione

Tecniche di Specifica e di Verifica. Introduzione Tecniche di Specifica e di Verifica Introduzione 1 Esrcitazioni Esercizi per casa Durante la prima metà Esercizi di verifica Durante la seconda metà Prevedono l uso del tool NuSMV. 2 Materiale per il corso

Dettagli

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. Universitá di Bologna

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. <sacerdot@cs.unibo.it> Universitá di Bologna Linguaggi 18: Semantica della logica del prim ordine Universitá di Bologna 11/04/2011 Outline Semantica della logica del prim ordine 1 Semantica della logica del prim ordine Semantica

Dettagli

Algebra di Boole ed Elementi di Logica

Algebra di Boole ed Elementi di Logica Algebra di Boole ed Elementi di Logica 53 Cenni all algebra di Boole L algebra di Boole (inventata da G. Boole, britannico, seconda metà 8), o algebra della logica, si basa su operazioni logiche Le operazioni

Dettagli

Convalida e Verifica

Convalida e Verifica Convalida e Verifica Convalida e Verifica Convalida: attività volta ad assicurare che il SW sia conforme ai requisiti dell utente. Verifica: attività volta ad assicurare che il SW sia conforme alle specifiche

Dettagli

Indice. 4 CTL 37 4.1 Introduzione... 37

Indice. 4 CTL 37 4.1 Introduzione... 37 Indice 1 Introduzione 3 1.1 Verifica di sistemi......................... 3 1.2 Metodi formali.......................... 4 1.2.1 Simulazione........................ 4 1.2.2 Testing..........................

Dettagli

Combinazione di procedure di decisione nella verifica formale di software

Combinazione di procedure di decisione nella verifica formale di software Combinazione di procedure di decisione nella verifica formale di software Lorenzo Platania Tesi presentata per il conseguimento del titolo di Dottore in Ingegneria Informatica Relatore Correlatore Chiar.

Dettagli

Elementi di Informatica e Programmazione

Elementi di Informatica e Programmazione Elementi di Informatica e Programmazione Il concetto di Algoritmo e di Calcolatore Corsi di Laurea in: Ingegneria Civile Ingegneria per l Ambiente e il Territorio Università degli Studi di Brescia Cos

Dettagli

Fasi del ciclo di vita del software (riassunto) Progetto: generalità. Progetto e realizzazione (riassunto)

Fasi del ciclo di vita del software (riassunto) Progetto: generalità. Progetto e realizzazione (riassunto) Università degli Studi di Roma La Sapienza Facoltà di Ingegneria Sede di Latina Laurea in Ingegneria dell Informazione Fasi del ciclo di vita del software (riassunto) Corso di PROGETTAZIONE DEL SOFTWARE

Dettagli

I Modelli della Ricerca Operativa

I Modelli della Ricerca Operativa Capitolo 1 I Modelli della Ricerca Operativa 1.1 L approccio modellistico Il termine modello è di solito usato per indicare una costruzione artificiale realizzata per evidenziare proprietà specifiche di

Dettagli

Timed automata per applicazioni real-time

Timed automata per applicazioni real-time Timed automata per applicazioni real-time Tesina di Metodi Formali nell Ingegneria del Software a.a. 2007-2008 SAPIENZA- Università di Roma Autori: Manuela Salvatori Ivan Secci Supervisore: prof. Toni

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

(anno accademico 2008-09)

(anno accademico 2008-09) Calcolo relazionale Prof Alberto Belussi Prof. Alberto Belussi (anno accademico 2008-09) Calcolo relazionale E un linguaggio di interrogazione o e dichiarativo: at specifica le proprietà del risultato

Dettagli

AUTOMAZIONE INDUSTRIALE

AUTOMAZIONE INDUSTRIALE AUTOMAZIONE INDUSTRIALE Docente: Stefano Vitturi Ricercatore C.N.R. Istituto di Elettronica e di Ingegneria dell Informazione e delle Telecomunicazioni IEIIT - C.N.R. Unità Staccata presso il Dipartimento

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

UNIVERSITÀ DI PISA. Studio ed implementazione di un algoritmo per generare i prodotti validi in Product Family Engineering

UNIVERSITÀ DI PISA. Studio ed implementazione di un algoritmo per generare i prodotti validi in Product Family Engineering UNIVERSITÀ DI PISA Facoltà di Scienze, Matematiche, Fisiche e Naturali Corso di Laurea Specialistica in Informatica Tesi di Laurea Studio ed implementazione di un algoritmo per generare i prodotti validi

Dettagli

Logica del primo ordine

Logica del primo ordine Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A7_4 V1.3 Logica del primo ordine Il contenuto del documento è liberamente utilizzabile dagli studenti, per studio

Dettagli

Alcune nozioni di base di Logica Matematica

Alcune nozioni di base di Logica Matematica Alcune nozioni di base di Logica Matematica Ad uso del corsi di Programmazione I e II Nicola Galesi Dipartimento di Informatica Sapienza Universitá Roma November 1, 2007 Questa é una breve raccolta di

Dettagli

Ingegneria del Software 21. Verifica e validazione. Dipartimento di Informatica Università di Pisa A.A. 2014/15

Ingegneria del Software 21. Verifica e validazione. Dipartimento di Informatica Università di Pisa A.A. 2014/15 Ingegneria del Software 21. Verifica e validazione Dipartimento di Informatica Università di Pisa A.A. 2014/15 roadmap Concetti e terminologia Verifica, validazione, integrazione e collaudo Verifica statica

Dettagli

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni.

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. Albero semantico Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. A differenza dell albero sintattico (che analizza la formula da un punto di vista puramente

Dettagli

Analisi e specifica dei requisiti

Analisi e specifica dei requisiti Capitolo 3 Analisi e specifica dei requisiti In questo capitolo presentiamo alcuni linguaggi e metodi usati nella fase di analisi e specifica dei requisiti. I requisiti descrivono ciò che l utente si aspetta

Dettagli

Analisi matriciale delle reti di Petri (P/T) - sifoni e trappole -

Analisi matriciale delle reti di Petri (P/T) - sifoni e trappole - Analisi matriciale delle reti di Petri (P/T) - sifoni e trappole - - richiami preliminari sulle proprietà strutturali - Abbiamo visto che alcune caratteristiche dei sistemi dinamici (DES compresi) non

Dettagli

4. Operazioni binarie, gruppi e campi.

4. Operazioni binarie, gruppi e campi. 1 4. Operazioni binarie, gruppi e campi. 4.1 Definizione. Diremo - operazione binaria ovunque definita in A B a valori in C ogni funzione f : A B C - operazione binaria ovunque definita in A a valori in

Dettagli

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2)

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Algebra e Geometria Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Traccia delle lezioni che saranno svolte nell anno accademico 2012/13 I seguenti appunti

Dettagli

Correttezza. Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1. Dispensa 10. A. Miola Novembre 2007

Correttezza. Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1. Dispensa 10. A. Miola Novembre 2007 Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1 Dispensa 10 Correttezza A. Miola Novembre 2007 http://www.dia.uniroma3.it/~java/fondinf1/ Correttezza 1 Contenuti Introduzione alla correttezza

Dettagli

Il Modello Relazionale

Il Modello Relazionale Il Modello Relazionale Il modello relazionale 1 Il modello relazionale Proposto da E. F. Codd nel 1970 per favorire l indipendenza dei dati e reso disponibile come modello logico in DBMS reali nel 1981

Dettagli

Verifica del codice con Interpretazione Astratta

Verifica del codice con Interpretazione Astratta Verifica del codice con Interpretazione Astratta Daniele Grasso grasso@dsi.unifi.it grasso.dan@gmail.com Università di Firenze, D.S.I., Firenze, Italy December 15, 2009 D.Grasso (Università di Firenze)

Dettagli

x y z F x y z F 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 F = x z + y z + yz + xyz G = wyz + vw z + vwy + vwz + v w y z Sommario

x y z F x y z F 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 F = x z + y z + yz + xyz G = wyz + vw z + vwy + vwz + v w y z Sommario Esercitazione di Calcolatori Elettronici Prof. Gian Luca Corso di Laurea in Ingegneria Elettronica Sommario Mappe di Karnaugh Analisi e sintesi di reti combinatorie Analisi e sintesi di reti sequenziali

Dettagli

Esercitazione di Calcolatori Elettronici Ing. Battista Biggio. Corso di Laurea in Ingegneria Elettronica. Esercitazione 1 (Capitolo 2) Reti Logiche

Esercitazione di Calcolatori Elettronici Ing. Battista Biggio. Corso di Laurea in Ingegneria Elettronica. Esercitazione 1 (Capitolo 2) Reti Logiche Esercitazione di Calcolatori Elettronici Ing. Battista Biggio Corso di Laurea in Ingegneria Elettronica Esercitazione 1 (Capitolo 2) Reti Logiche Sommario Mappe di Karnaugh Analisi e sintesi di reti combinatorie

Dettagli

L INNOVAZIONE SCIENTIFICO-TECNOLOGICA NEI PROCESSI PRODUTTIVI

L INNOVAZIONE SCIENTIFICO-TECNOLOGICA NEI PROCESSI PRODUTTIVI L INNOVAZIONE SCIENTIFICO-TECNOLOGICA NEI PROCESSI PRODUTTIVI Scienza ed industria hanno oggi costituito legami molto forti di collaborazione che hanno portato innovazione tecnologica sia a livello organizzativo-amministrativo

Dettagli

Controllo Remoto tramite Telefono Cellulare

Controllo Remoto tramite Telefono Cellulare I.T.I. Modesto PANETTI B A R I Via Re David, 186-70125 BARI 080-542.54.12 - Fax 080-542.64.32 Internet http://www.itispanetti.it email : BATF05000C@istruzione.it A.S. 2009/2010 LABORATORIO DI TELECOMUNICAZIONI

Dettagli

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Andrea Bobbio Anno Accademico 2000-2001 Algebra Booleana 2 Calcolatore come rete logica Il calcolatore può essere visto come una rete logica

Dettagli

Automi Automi finiti: macchine a stati su sistemi di transizioni finiti Modellare con TS e specificare con automi: si usa lo stesso tipo di

Automi Automi finiti: macchine a stati su sistemi di transizioni finiti Modellare con TS e specificare con automi: si usa lo stesso tipo di Automi Automi finiti: macchine a stati su sistemi di transizioni finiti Modellare con TS e specificare con automi: si usa lo stesso tipo di rappresentazione per descrivere programmi e specifiche. ω-automi:

Dettagli

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Dispensa 05 La rappresentazione dell informazione Carla Limongelli Ottobre 2011 http://www.dia.uniroma3.it/~java/fondinf/ La rappresentazione

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

Reti sequenziali sincrone

Reti sequenziali sincrone Reti sequenziali sincrone Un approccio strutturato (7.1-7.3, 7.5-7.6) Modelli di reti sincrone Analisi di reti sincrone Descrizioni e sintesi di reti sequenziali sincrone Sintesi con flip-flop D, DE, T

Dettagli

Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta

Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta Il concetto di similitudine è innato: riconosciamo lo stesso oggetto se è più o meno distante

Dettagli

Capitolo 2. Operazione di limite

Capitolo 2. Operazione di limite Capitolo 2 Operazione di ite In questo capitolo vogliamo occuparci dell operazione di ite, strumento indispensabile per scoprire molte proprietà delle funzioni. D ora in avanti riguarderemo i domini A

Dettagli

Algebra booleana. Si dice enunciato una proposizione che può essere soltanto vera o falsa.

Algebra booleana. Si dice enunciato una proposizione che può essere soltanto vera o falsa. Algebra booleana Nel lavoro di programmazione capita spesso di dover ricorrere ai principi della logica degli enunciati e occorre conoscere i concetti di base dell algebra delle proposizioni. L algebra

Dettagli

CAPITOLO 3 TRASFORMARE FORMULE E DEDURRE DA TEORIE.

CAPITOLO 3 TRASFORMARE FORMULE E DEDURRE DA TEORIE. pag. 1 Capitolo 3 CAPITOLO 3 TRASFORMARE FORMULE E DEDURRE DA TEORIE. 1. Sistemi di trasformazione. La nozione di relazione binaria che abbiamo già esaminato nel capitolo precedente è anche alla base della

Dettagli

IL MODELLO RELAZIONALE

IL MODELLO RELAZIONALE IL MODELLO RELAZIONALE E i vincoli per le basi di dati relazionali 2 La storia Introdotto nel 1970 da E. F. Ted Codd http://en.wikipedia.org/wiki/edgar_f._codd (centro ricerche IBM) Codd, E.F. (1970).

Dettagli

Introduzione alla verifica automatica

Introduzione alla verifica automatica Sistemi digitali Introduzione alla verifica automatica Utilizzati in quasi tutte le attività umane Complessità elevata semplici sistemi hanno milioni di linee di codice Tempi di realizzazione sempre più

Dettagli

Sulla monotonia delle funzioni reali di una variabile reale

Sulla monotonia delle funzioni reali di una variabile reale Liceo G. B. Vico - Napoli Sulla monotonia delle funzioni reali di una variabile reale Prof. Giuseppe Caputo Premetto due teoremi come prerequisiti necessari per la comprensione di quanto verrà esposto

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano Breve introduzione storica Nel 1854, il prof. Boole pubblica un trattato ormai famosissimo: Le leggi del pensiero. Obiettivo finale del trattato è di far nascere la matematica dell intelletto umano, un

Dettagli

Anno 1. Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi)

Anno 1. Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi) Anno 1 Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi) 1 Introduzione In questa lezione imparerai a utilizzare le diverse tipologie di relazione e a distinguerle a seconda delle

Dettagli

Modellazione di sistema

Modellazione di sistema Corso di Laurea Specialistica in Ingegneria Informatica Corso di Ingegneria del Software A. A. 2008 - Modellazione di sistema E. TINELLI Contenuti Approcci di analisi Linguaggi di specifica Modelli di

Dettagli

Architetture software

Architetture software Corso di Laurea Magistrale in Ingegneria Informatica Corso di Ingegneria del A. A. 2013-2014 Architettura software 1 Architetture software Sommario Definizioni 2 Architettura Definizione. L architettura

Dettagli

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE LE SUCCESSIONI 1. COS E UNA SUCCESSIONE La sequenza costituisce un esempio di SUCCESSIONE. Ecco un altro esempio di successione: Una successione è dunque una sequenza infinita di numeri reali (ma potrebbe

Dettagli

Esercitazioni per il corso di Logica Matematica

Esercitazioni per il corso di Logica Matematica Esercitazioni per il corso di Logica Matematica Luca Motto Ros 14 marzo 2005 Nota importante. Queste pagine contengono appunti personali dell esercitatore e sono messe a disposizione nel caso possano risultare

Dettagli

CONCETTO DI LIMITE DI UNA FUNZIONE REALE

CONCETTO DI LIMITE DI UNA FUNZIONE REALE CONCETTO DI LIMITE DI UNA FUNZIONE REALE Il limite di una funzione è uno dei concetti fondamentali dell'analisi matematica. Tramite questo concetto viene formalizzata la nozione di funzione continua e

Dettagli

Lezione 2 Circuiti logici. Mauro Piccolo piccolo@di.unito.it

Lezione 2 Circuiti logici. Mauro Piccolo piccolo@di.unito.it Lezione 2 Circuiti logici Mauro Piccolo piccolo@di.unito.it Bit e configurazioni di bit Bit: una cifra binaria (binary digit) 0 oppure 1 Sequenze di bit per rappresentare l'informazione Numeri Caratteri

Dettagli

I livelli di progettazione possono essere così schematizzati: Esistono tre tipi diversi di modelli logici: Modello gerarchico: Esempio SPECIFICHE

I livelli di progettazione possono essere così schematizzati: Esistono tre tipi diversi di modelli logici: Modello gerarchico: Esempio SPECIFICHE I DATABASE o basi di dati possono essere definiti come una collezione di dati gestita dai DBMS. Tali basi di dati devono possedere determinati requisiti, definiti come specifiche, necessarie per il processo

Dettagli

Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( )

Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( ) Algebra di Boole Circuiti logici: componenti hardware preposti all'elaborazione delle informazioni binarie. PORTE LOGICHE (logical gate): circuiti di base. Allo scopo di descrivere i comportamenti dei

Dettagli

CURRICOLO FORMATIVO CLASSI PRIME

CURRICOLO FORMATIVO CLASSI PRIME CURRICOLO FORMATIVO CLASSI PRIME Disciplina Indicatori Descrittori Ascoltare, comprendere e comunicare oralmente Esprimere oralmente le proprie emozioni ed esperienze mediante linguaggi diversi verbali

Dettagli

x u v(p(x, fx) q(u, v)), e poi

x u v(p(x, fx) q(u, v)), e poi 0.1. Skolemizzazione. Ogni enunciato F (o insieme di enunciati Γ) è equisoddisfacibile ad un enunciato universale (o insieme di enunciati universali) in un linguaggio estensione del linguaggio di F (di

Dettagli

La Logica Proposizionale. (Algebra di Boole)

La Logica Proposizionale. (Algebra di Boole) 1 ISTITUTO DI ISTRUZIONE SUPERIORE ANGIOY La Logica Proposizionale (Algebra di Boole) Prof. G. Ciaschetti 1. Cenni storici Sin dagli antichi greci, la logica è intesa come lo studio del logos, che in greco

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

Elementi di topologia della retta

Elementi di topologia della retta Elementi di topologia della retta nome insieme definizione l insieme è un concetto primitivo che si accetta come intuitivamente noto secondo George Cantor, il padre della teoria degli insiemi: Per insieme

Dettagli

Sistemi Web Tolleranti ai Guasti

Sistemi Web Tolleranti ai Guasti Sistemi Web Tolleranti ai Guasti Candidato: Paolo Romano Relatore: Prof. Salvatore Tucci Correlatore: Prof. Bruno Ciciani Sommario Il problema: garantire semantica exactly once alle transazioni Web. Sistema

Dettagli

Problemi di Programmazione Lineare Intera

Problemi di Programmazione Lineare Intera Capitolo 4 Problemi di Programmazione Lineare Intera La Programmazione Lineare Intera (PLI) tratta il problema della massimizzazione (minimizzazione) di una funzione di più variabili, soggetta a vincoli

Dettagli

Tecnologie e Progettazione dei sistemi Informatici e di Telecomunicazioni Scheda Recupero Estivo Obiettivo

Tecnologie e Progettazione dei sistemi Informatici e di Telecomunicazioni Scheda Recupero Estivo Obiettivo Tecnologie e Progettazione dei sistemi Informatici e di Telecomunicazioni Scheda Recupero Estivo Classe IIIG Il recupero estivo nella materia sarà valutato con un test scritto, durante i giorni dedicati

Dettagli

Qualità del software. Tecniche di Programmazione 2009/10. Giovanni A. Cignoni - http://www.di.unipi.it/~giovanni/ 1. contenuti. definizione di qualità

Qualità del software. Tecniche di Programmazione 2009/10. Giovanni A. Cignoni - http://www.di.unipi.it/~giovanni/ 1. contenuti. definizione di qualità Qualità del software Tecniche di Programmazione Lez. 05 Università di Firenze a.a. 2009/10, I semestre 1/33 contenuti Qualità? Definizioni Il prodotto software Modelli della qualità per il sw: ISO/IEC

Dettagli

1 Applicazioni Lineari tra Spazi Vettoriali

1 Applicazioni Lineari tra Spazi Vettoriali 1 Applicazioni Lineari tra Spazi Vettoriali Definizione 1 (Applicazioni lineari) Si chiama applicazione lineare una applicazione tra uno spazio vettoriale ed uno spazio vettoriale sul campo tale che "!$%!

Dettagli

Linguaggi di Programmazione I Lezione 5

Linguaggi di Programmazione I Lezione 5 Linguaggi di Programmazione I Lezione 5 Prof. Marcello Sette mailto://marcello.sette@gmail.com http://sette.dnsalias.org 1 aprile 2008 Diagrammi UML 3 UML: richiami..........................................................

Dettagli

CURRICOLO DI MATEMATICA CLASSE PRIMA

CURRICOLO DI MATEMATICA CLASSE PRIMA CURRICOLO DI MATEMATICA CLASSE PRIMA TRAGUARDI DI COMPETENZA NUCLEI FONDANTI OBIETTIVI DI APPRENDIMENTO CONOSCITIVA IL NUMERO CARATTERISTICHE Quantità entro il numero 20 Cardinalità Posizionalità RELAZIONI

Dettagli

Programmazione modulare a.s.2015-2016

Programmazione modulare a.s.2015-2016 Programmazione modulare a.s.015-016 Indirizzo:Informatica \Disciplina: Telecomunicazioni Prof. MAIO Patrizia Rosi Filippo Classe:3 A 3 B Informatica ore settimanali 3 di cui di laboratorio) Libro di testo:telecomunicazioni

Dettagli

Sistemi e Tecnologie per l Automazione LS

Sistemi e Tecnologie per l Automazione LS Sistemi e Tecnologie per l Automazione LS (Corso da 60 ore, 6CFU) C.D.L. SPECIALISTICA IN INGEGNERIA INFORMATICA C.D.L. SPECIALISTICA IN INGEGNERIA ELETTRONICA E DELLE TELECOMUNICAZIONI SECONDA FACOLTÀ

Dettagli

Vincoli di integrità

Vincoli di integrità Vincoli di integrità Non tutte le istanze di basi di dati sintatticamente corrette rappresentano informazioni plausibili per l applicazione di interesse Studenti Matricola Nome Nascita 276545 Rossi 23-04-72?

Dettagli

TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA

TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA SCUOLA PRIMARIA DI CORTE FRANCA MATEMATICA CLASSE QUINTA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA L ALUNNO SVILUPPA UN ATTEGGIAMENTO POSITIVO RISPETTO ALLA MATEMATICA,

Dettagli

39 Il linguaggio grafico a contatti

39 Il linguaggio grafico a contatti 39 Il linguaggio grafico a contatti Diagramma a contatti, ladder, diagramma a scala sono nomi diversi usati per indicare la stessa cosa, il codice grafico per la programmazione dei PLC con il linguaggio

Dettagli

Elementi di Psicometria

Elementi di Psicometria Elementi di Psicometria E2-Riepilogo finale vers. 1.2 Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca 2010-2011 G. Rossi (Dip. Psicologia) ElemPsico 2010-2011

Dettagli

LE REGOLE GENERALI DI CALCOLO DELLE PROBABILITA : COME SI DIMOSTRANO CON I TRE ASSIOMI DELLA PROBABILITA?

LE REGOLE GENERALI DI CALCOLO DELLE PROBABILITA : COME SI DIMOSTRANO CON I TRE ASSIOMI DELLA PROBABILITA? INDICE (lezione17.04.07 LE REGOLE GENERALI DI CALCOLO DELLE PROBABILIA : COME SI DIMOSRANO CON I RE ASSIOMI DELLA PROBABILIA?.1 Raccordo con le regole di calcolo delle probabilità già viste nelle lezioni

Dettagli

Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) Algebre di Boole. 1. Definizione e proprietá

Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) Algebre di Boole. 1. Definizione e proprietá Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) [# Aii [10 pagine]] Algebre di Boole Un algebra di Boole è una struttura 1. Definizione e proprietá B =< B,,, ν, 0, 1 > in cui B è un insieme non

Dettagli

SAPIENZA Università di Roma Facoltà di Ingegneria

SAPIENZA Università di Roma Facoltà di Ingegneria SAPIENZA Università di Roma Facoltà di Ingegneria Tesina di Metodi formali nell ingegneria del software Autori: Piacentini Vanda - Rocco Germano Anno accademico 2006/2007 MODELLAZIONE DEL SISTEMA DI COMUNICAZIONE

Dettagli

Algebra di Boole. Le operazioni, nell algebra booleana sono basate su questi tre operatori: AND ( ), OR ( + ),NOT ( )

Algebra di Boole. Le operazioni, nell algebra booleana sono basate su questi tre operatori: AND ( ), OR ( + ),NOT ( ) Algebra di Boole L algebra di Boole prende il nome da George Boole, matematico inglese (1815-1864), che pubblicò un libro nel 1854, nel quale vennero formulati i principi dell'algebra oggi conosciuta sotto

Dettagli

Il software: natura e qualità

Il software: natura e qualità Sommario Il software: natura e qualità Leggere Cap. 2 Ghezzi et al. Natura e peculiarità del software Classificazione delle qualità del software Qualità del prodotto e del processo Qualità interne ed esterne

Dettagli

Anno 3. Funzioni: dominio, codominio e campo di esistenza

Anno 3. Funzioni: dominio, codominio e campo di esistenza Anno 3 Funzioni: dominio, codominio e campo di esistenza 1 Introduzione In questa lezione parleremo delle funzioni. Ne daremo una definizione e impareremo a studiarne il dominio in relazione alle diverse

Dettagli

13. Ciclo di Vita e Processi di Sviluppo

13. Ciclo di Vita e Processi di Sviluppo 13. Ciclo di Vita e Processi di Sviluppo come posso procedere nello sviluppo? Andrea Polini Ingegneria del Software Corso di Laurea in Informatica (Ingegneria del Software) 13. Ciclo di Vita e Processi

Dettagli

INFORMATICA DI BASE. Data Processing, elaborazione elettronica dei dati). In

INFORMATICA DI BASE. Data Processing, elaborazione elettronica dei dati). In INFORMATICA DI BASE L Informatica rappresenta l insieme delle discipline e delle tecnologie relative allo studio, progettazione, realizzazione ed impiego di macchine che si occupano della raccolta e del

Dettagli

Compito Scritto di Ingegneria del Software. 17 settembre 2010. Parte teorica, punti 14. Tempo a disposizione: 1 ora

Compito Scritto di Ingegneria del Software. 17 settembre 2010. Parte teorica, punti 14. Tempo a disposizione: 1 ora Compito Scritto di Ingegneria del Software 17 settembre 2010 Parte teorica, punti 14 Tempo a disposizione: 1 ora Esercizio 1 Si descriano i metodi agili per lo siluppo di software. PUNTI 7 Esercizio 2

Dettagli

Ingegneria del Software: UML Class Diagram

Ingegneria del Software: UML Class Diagram Ingegneria del Software: UML Class Diagram Due on Mercoledì, Aprile 1, 2015 Claudio Menghi, Alessandro Rizzi 1 Contents Ingegneria del Software (Claudio Menghi, Alessandro Rizzi ): UML Class Diagram 1

Dettagli

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado)

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado) L esito della prossima estrazione del lotto L esito del lancio di una moneta o di un dado Il sesso di un nascituro, così come il suo peso alla nascita o la sua altezza.. Il tempo di attesa ad uno sportello

Dettagli

Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme:

Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme: Lezione 1 Gli Insiemi La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme: degli iscritti ad un corso di laurea delle stelle in cielo dei punti di un piano

Dettagli

L anello dei polinomi

L anello dei polinomi L anello dei polinomi Sia R un anello commutativo con identità. È possibile costruire un anello commutativo unitario, che si denota con R[x], che contiene R (come sottoanello) e un elemento x non appartenente

Dettagli

Tecniche di DM: Link analysis e Association discovery

Tecniche di DM: Link analysis e Association discovery Tecniche di DM: Link analysis e Association discovery Vincenzo Antonio Manganaro vincenzomang@virgilio.it, www.statistica.too.it Indice 1 Architettura di un generico algoritmo di DM. 2 2 Regole di associazione:

Dettagli

Vincoli di Integrità Approccio dichiarativo alla loro implementazione

Vincoli di Integrità Approccio dichiarativo alla loro implementazione Vincoli di Integrità Approccio dichiarativo alla loro implementazione Antonella Poggi Dipartimento di informatica e Sistemistica SAPIENZA Università di Roma Progetto di Applicazioni Software Anno accademico

Dettagli

AREA FORMAZIONE PROGRAMMAZIONE E SVILUPPO RELAZIONE VALUTAZIONE DI FINE CORSO QUESTIONARI DI GRADIMENTO CORSI DI INFORMATICA 2004.

AREA FORMAZIONE PROGRAMMAZIONE E SVILUPPO RELAZIONE VALUTAZIONE DI FINE CORSO QUESTIONARI DI GRADIMENTO CORSI DI INFORMATICA 2004. UMACROAREA RISORSE UMANE AREA FORMAZIONE PROGRAMMAZIONE E SVILUPPO RELAZIONE DI FINE CORSO QUESTIONARI DI GRADIMENTO CORSI DI INFORMATICA 2004. Nel corso dei mesi di novembre e dicembre dello scorso anno

Dettagli

Progetti strategici regionali. Elena Canciani elena.canciani@welfare.fvg.it

Progetti strategici regionali. Elena Canciani elena.canciani@welfare.fvg.it Sacile 27 giugno 2013 Progetti strategici regionali Elena Canciani elena.canciani@welfare.fvg.it Progettualità dal 2009 sono stati finanziati 3 progetti strategici regionali L.R. 26/2005 art.22 interventi

Dettagli

Modelli della concorrenza. Lucia Pomello. Re# di Petri: proprietà di comportamento e verifica stru6urale

Modelli della concorrenza. Lucia Pomello. Re# di Petri: proprietà di comportamento e verifica stru6urale Modelli della concorrenza Lucia Pomello Re# di Petri: proprietà di comportamento e verifica stru6urale NOTA Se tutti i posti di una rete P/T hanno capacità finita k, allora la rete è k-limitata (ogni

Dettagli

Automi. Sono così esempi di automi una lavatrice, un distributore automatico di bibite, un interruttore, una calcolatrice tascabile,...

Automi. Sono così esempi di automi una lavatrice, un distributore automatico di bibite, un interruttore, una calcolatrice tascabile,... Automi Con il termine automa 1 s intende un qualunque dispositivo o un suo modello, un qualunque oggetto, che esegue da se stesso un particolare compito, sulla base degli stimoli od ordini ricevuti detti

Dettagli

Le Macchine di Turing

Le Macchine di Turing Le Macchine di Turing Come è fatta una MdT? Una MdT è definita da: un nastro una testina uno stato interno un programma uno stato iniziale Il nastro Il nastro è infinito suddiviso in celle In una cella

Dettagli

Use Case Driven Object Modeling: ICONIX

Use Case Driven Object Modeling: ICONIX Use Case Driven Object Modeling: ICONIX Un esempio di specifica, analisi, progetto e sviluppo utilizzando ICONIX Ditta di Noleggio Dvd Un sistema per la gestione di una ditta di noleggio dvd che ha più

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 14 marzo 2013 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2013.html IL PARI O DISPARI I II S T S (-1, 1) (1, -1)

Dettagli