Programma svolto nel laboratorio di elettronica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Programma svolto nel laboratorio di elettronica"

Transcript

1 Classi 4ª B inf. e 4ª C inf. as 2008/09 Programma svolto nel laboratorio di elettronica Ripasso: circuiti in continua studiati con Thevenin Porte logiche OR e AND a diodi Circuiti RC e CR in regime sinusoidale Diodo raddrizzatore Carica e scarica condensatore Diodo zener Porte NOT e NOR con transistor Amplificatori operazionali: configurazione invertente configurazione non invertente Transistor BJT: polarizzazione amplificazione

2 Marco Ferricelli 4ª B inf. Teorema di Thevenin #1 Req calcolata tramite Icc Determinare Vab utilizzando il Teorema di Thevenin: R1 1,5k + R2 2,7k VS1 15 R6 1,5k A R V -1,45V B R3 3,9k R5 12k Intendiamo risolvere codesto circuito con il teorema di Thevenin. La Vab del circuito è 1,45V e sarà la stessa che dimostreremo con il circuito finale. Circuito equivalente di Thevenin finale: + VS2-5,15 Req 3,86k R6 1,5k In questo circuito, verifichiamo che la tensione di Vab del circuito semplificato con Thevenin, è identica a quella del circuito di partenza. + V -1,44V Circuito per determinare Veq: R1 1,5k + R2 2,7k VS1 15 A + V -5,15V B R3 3,9k Questo è il calcolo di Veq di Thevenin (Vab a vuoto). R4 820 R5 12k Circuito per determinare Icc: R1 1,5k + R2 2,7k VS1 15 A + A -1,34mA B R3 3,9k Determinata Icc, tramite la seguente formula, calcoliamo R equivalente di Thevenin. Req=Veq/Icc=3,86KΩ R4 820 R5 12k

3 30/3/09 Lamarca Jessica - 4ª B inf Teorema di thevenin #2 Circuito con tre generatori Determinare la V AB e I 1 utilizzando thevenin Si applica thevenin due volte contemporaneamente : nella parte sinistra del circuito, tagliando nei punti A e A, e nella parte destra tagliando nei punti B e B. (guardare pag 2) Circuito finale per calcolare la VAB Applico Kirchhoff per calcolare la I1 E1=R1*I1 + R2* I2 Equazione alla maglia sinistra I2= I1-13 Equazione al nodo A Svolgo i calcoli.. E 1 = R 1 * I 1 +R 2 * (I 1 -I 3 ) I 1 =[E 1 +(R 2 *I 3 )]/(R 1 +R 2 ) I 1 = [5+ (2,7*(-0,38)]/(3,3+2,7) I 1 =[5+(-1,01)]/6 = 0,665 ma I 3 =(Vsx-Vdx)/(Rsx+R 3 +Rdx)= -0,38 ma V AB = R 3 * I 3 = -1,46 V

4 Calcolo Req e Veq sinistra R eqsx = R 1 //R 2 = 1,49 KΩ I= E 1 /(R 1 +R 2 )= 0,833 ma V eqsx = R 2 * I= 2,25 V Simulazione di Veqsx Calcolo Req e Veq destra R eqdx = R 4 //(R 5 +R 6 ) = 5,34 KΩ I= (E 2 +E 3 )/(R 4 +R 5 +R 6 )=1,06 ma V eqdx =E 2 -R 4 * I= 6,28 V Simulazione di Veqdx

5 in1 PORTA OR Mirko Nardella 4 C informatica D1 in2 out V1 5 batteria D2 1k R1 Quando la tensione di V1 è minore di 5V, il diodo D1 non conduce e in uscita ho una tensione pari a quella della batteria(5v) meno 0,7V (la tensione ai capi del diodo ). Quando la tensione di V1 è maggiore di 5V, il diodo D2 non conduce ed è collegata alla batteria.

6 Circuito porta AND con diodi Sabatino Antonio 4C informatica In questo circuito è riportata una porta AND a diodi. Vin > 5V D1 polarizzato direttamente conduce = cortocircuito D2 polarizzato inversamente non conduce = circuito aperto Conclusione: Vout = 5V Vin < 5v D1 polarizzato inversamente non conduce = circuito aperto D2 polarizzato direttamente conduce = cortocircuito Conclusione: Vout = Vin

7 Jessica Tortorelli 4Ci Circuito RC in regime sinusoidale Vom=0,728 V T=2,249m 2,372 = -0,123 ms L analisi del circuito è il seguente: 1) Il segnale di uscita e attenuato rispetto al segnale di entrata cioè l ampiezza delle due onde non è la stessa, perché l ampiezza dell onda in uscita (linea nera) e minore rispetto all ampiezza dell onda di entrata (linea nera spezzata ) 2) L onda di entrata e sfasata rispetto all onda di uscita 3) L attenuazione vale V(out)/V(in) = (0,728/1,000) = ) Lo sfasamento φ = ( T/T)*360 = T * f * 360 = - 0,123m * 1k *360 = -44,28 Nei primi riquadri gialli il primo valore indica l ascissa cioè il tempo mentre il secondo valore indica l ordinata cioè l ampiezza. Lo sfasamento che c e tra la tensione di uscita e di entrata è di 0,123.

8 Marolda Francesca 4Ci CIRCUITO CR IN REGIME SINUSOIDALE Nei riquadri gialli il primo valore indica l ascissa cioè il tempo, mentre il secondo valore indica l ordinata cioè l ampiezza. Lo sfasamento che c è tra la tensione di uscita e la tensione di ingresso è di 0,129m. T= 2,249m-2,120m = 0,129ms. ϕ = ( T / T) x 360 = T* f * 360 = 0,129 *1k * 360 = 46,44 L uscita rispetto all ingresso è attenuata in quanto l ampiezza è ridotta rispetto a quella del segnale d ingresso. Inoltre si nota che l uscita è in anticipo rispetto al segnale di entrata della quantità ϕ indicata in precedenza. vout (uscita) = linea continua vin (entrata) =linea tratteggiata

9 Diodo raddrizzatore #1 Cognome e nome classe Vi>0 Il diodo è polarizzato direttamente e quindi conduce (si comporta come un cortocircuito). Vout=Vin Vi<0 Il diodo è polarizzato inversamente e quindi non conduce (si comporta come un circuito aperto). Vout=0 linea tratteggiata Vin linea continua Vout

10 Mauro Sonia 4Ci DIODO RADDRIZZATORE #2 Vimax = 15V f = 100Hz R = 1kΩ Diodo = 1N4002 Quando la tensione d ingresso è > 0,7 V il diodo conduce e la corrente che passa attraverso il diodo produce sulla resistenza una tensione che coincide con quella d ingresso diminuita della caduta di tensione sul diodo che è pari a 0,7. Quando la tensione d ingresso è < 0,7 V il diodo non fa passare la corrente e quindi la tensione di uscita che coincide con la caduta di tensione sulla resistenza vale 0 in quanto il prodotto I*R=0. Vin = linea tratteggiata Vout = linea continua

11 Diodo raddrizzatore #3 Compare Paola 4C informatica Vin >5V (Tensione della batteria) Il diodo è polarizzato direttamente Il diodo si comporta come un cortocircuito, quindi Vout=Vin Vin<5V Il diodo è polarizzato inversamente Il diodo si comporta come un circuito aperto, quindi Vout=5V Vin=linea tratteggiata Vout=linea continua

12 Di Francesco Guido-4Ci Relazione del diodo raddrizzatore #D4 Vin>-5v : Quando la tensione sull anodo è minore di quella sul catodo il diodo non conduce e la tensione di uscita coincide con quella della batteria. Il diodo è polarizzato inversamente e quindi si comporta come un circuito aperto. Vin<-5v : Quando la tensione sull anodo è maggiore di quella sul catodo il diodo conduce e la tensione di uscita coincide con quella di ingresso. Il diodo è polarizzato direttamente e quindi si comporta come un cortocircuito. Vin= linea tratteggiata Vout= linea continua

13 Mango Alessandra 4 Cinfo Circuito: DIODO RADDRIZZATORE #5 VALORI: Vi=15V R=1k D=1N4002 E=5V F=100Hz Grafico: Vin è rappresentata dalla linea tratteggiata Vout è rappresentata dalla linea continua CASO1: Vi < 5V Quando la tensione d ingresso è inferiore alla tensione della batteria (5V) il diodo non conduce(quindi equivale ad un circuito aperto),il punto d uscita è scollegato dalla batteria,perciò la tensione in uscita segue l andamento di quella d ingresso. CASO2: Vi > 5V Quando la tensione d ingresso è superiore di 0.7V alla tensione della batteria il diodo conduce (quindi equivale ad un cortocircuito)quindi il punto d uscita è collegato ad essa, perciò la tensione d uscita è costretta a assumere il valore della batteria (5V) più la caduta di tensione sul diodo che dalla simulazione risulta essere di 0.65V (anziché 0.7V).

14 De Pace Giada 4Ci Diodo raddrizzatore #6 Vimax=15V R=1kΩ D=1N4002 f=100hz E=5V il diodo conduce quando la tensione d ingresso è superiore a 5V, e l uscita e collegata alla batteria e il suo valore è 5 V e di conseguenza non segue l andamento del segnale d ingresso. Quando invece non conduce perché la tensione d ingresso non supera i 5 V l uscita non è collegata alla batteria e di conseguenza l uscita segue l andamento del segnale di ingresso. Vin = linea tratteggiata Vout = linea continua

15 Galasso Mario 4Ci Diodo raddrizzatore (#7) Vimax = 1,5 V R = 1 kω D 1N4002 E = 5 V f = 100 Hz Quando la tensione di ingresso è positiva il diodo conduce e la tensione di uscita coincide con la tensione di ingresso diminuita di 0.7V. Quando la tensione di ingresso è negativa il diodo non conduce e di conseguenza la tensione di uscita è pari a 0 (I*R=0V). Vin=. linea tratteggiata Vout=. linea continua

16 Boscaro Moreno Relazione elettronica Circuito D8: Diodo Raddrizzatore Quando la tensione di ingresso è inferiore alla tensione di massa il diodo non conduce quindi l uscite è scollegata dalla massa e può seguire l andamento della tensione d ingresso, come si può vedere nella simulazione. Quando invece la tensione d ingresso è superiore alla tensione di soglia del diodo che è 0.7 V Il diodo conduce e collega il punto d uscita alla massa infatti nella simulazione vediamo che c è un dislivello di circa 0,6 V rispetto alla massa. Nella simulazione Vin è tratteggiata, mentre Vout è continua!

17

18 Medina Jorge Miguel - 4 Cinf Carica e Scarica Condensatore #1 SQUARE V1 in 10K R1 out C1 10n carica e scarica C CARICA SCARICA t/τ % % 1 63,21 36, ,47 13, ,02 4, ,17 1, ,33 0, ,995 0,005 La Formula generale della Carica e Scarica di un condensatore è: (-t/ τ) V C =V F -(V F -V I )*e Carica: V I = 0V V F = 10V τ = RC = 0,1 ms Il condensatore si carica fino al 63% della tensione massima nel primo τ, poi si carica sempre meno fino a raggiungere il 99% della tensione massima nel quinto τ. Scarica : V I = 10V V F = 0V τ = RC = 0,1 ms Il condensatore si scarica fino al 37% della tensione massima nel primo τ, poi si scarica sempre meno fino a scaricarsi quasi completamente nel quinto τ. Vin: linea tratteggiata Vout: linea continua

19 Caobianco Alessio Classe 4 C inf Carica e Scarica Condensatore #2: in R1 10K out V1 C1 10n R2 10K (-t/ τ) V C =V F -(V F -V I )*e La costante di tempo nel caso di questo circuito la calcolo applicando la formula: C*Rp = C*(R1*R2/(R1+R2)) Dal grafico di questo circuito mi accorgo che a causa della presenza delle due resistenze la costante di tempo assume un valore maggiore, mentre invece la carica del condensatore è dimezzata rispetto alla tensione massima del circuito, perché viene dimezzata ai capi delle resistenze R1 e R2. Carica: V I = 0 V V F = 5 V τ =Rp*C= 50 ms In questa fase osservo che nel primo τ il condensatore si carica del 63% rispetto alla metà della tensione massima, nel secondo τ si carica in maniera più lineare fino al raggiungimento del 93 % della metà della tensione massima. Scarica: V I = 5 V V F = 0 V τ =Rp*C= 50 ms Mentre in questa fase nel primo τ si scarica del 37% rispetto alla metà della tensione massima, nel secondo τ invece si scarica in maniera constante fino al raggiungimento della tensione minima Micro-Cap 8 Evaluation Version C2-Caobianco.CIR m 0.200m 0.400m 0.600m 0.800m 1.000m v(vout) (V) v(vin) (V) T (Secs)

20 Carica scarica condensatore #3 Riversa Ignazio 4 Cinf V F =V F -(V F -V I )*e (-t/τ) V F = V finale; V I = V iniziale; τ = tao = R*C; Carica: V I = 0 V V F = 4,75 V ((10 V 0,7)/2) C = 10 nf Req = R1//R2 = 5 kω τ = Req*C = 5 k*10 n = 50*10-6 = 50 µs Scarica: V I = 4,75 V (il valore finale della carica) V F = 0 V C = 10 nf Req = R2 = 10 kω (perchè il circuito è aperto) τ = Req*C = 10k*10n = 100*10-6 = 100 µs Vin = linea tratteggiata; Vout = linea continua;

21 Diodo di Zener Il diodo Zener funziona in 3 casi: 1. Polarizzazione diretta: funziona come un diodo normale 2. Polarizzazione inversa (V<Vzener): funziona come un circuito aperto 3. Polarizzazione inversa (V>Vzener): stabilizza ai suoi capi una tensione pari a quella di Zener (si comporta come una batteria di tensione pari a Vz con il positivo sul catodo) Linea tratteggiata = Vin Linea continua = Vout

22 Porte logiche a transistor porta NOT con BJT porta NOR con 2 BJT

23 Circuito Invertente #1 Mirko Salvia Questo è un amplificatore operazionale in configurazione invertente. Analizzando le forme d onda di entrata e di uscita, possiamo notare che l uscita viene amplificata e invertita secondo il risultato della formula: Av = -(R2)/(R1)

24 Circuito Invertente #2 Mirko Salvia Questo è un amplificatore operazionale in configurazione invertente. Analizzando le forme d onda di entrata e di uscita, possiamo notare che l uscita viene amplificata e invertita secondo il risultato della formula: Av = -(R2)/(R1) In questo caso però la R2 vale 18k quindi avremmo un valore di amplificazione pari a 18. Però come possiamo vedere dalla forma d onda in uscita l amplificazione si arresta intorno a 14.

25 Circuito Non Invertente #1 Caobianco Alessio Questo è un amplificatore operazionale in configurazione non invertente. Analizzando le forme d onda di entrata e di uscita, possiamo notare che l uscita viene amplificata secondo il risultato della formula: Av = 1+(R2/R1)

26 Circuito Non Invertente #2 Caobianco Alessio Questo è un amplificatore operazionale in configurazione non invertente. Analizzando le forme d onda di entrata e di uscita, possiamo notare che l uscita viene amplificata secondo il risultato della formula: Av = 1+(R2/R1) In questo caso però la R2 vale 18k quindi avremmo un valore di amplificazione pari a 19. Però come possiamo vedere dalla forma d onda in uscita l amplificazione si arresta intorno a 14.

27 BJT Si vuole dimensionare una rete di polarizzazione automatica per un BJT BC108B con le seguenti caratteristiche: Vcc = 10 V Ic = 2 ma R B = R 1 // R 2 V BB = V CC * R 2 / (R 1 +R 2 ) Calcolo delle 4 resistenze Si pone V CE = V CC / 2 V(R E ) = V CC / 10 V BE = 0.65 V I E = I C Dal data sheet h FE = 300 R E = V(R E ) / I E = 500 Ω normalizzata 470 Ω EMU V CC = R C *I C + V CE + R E *I E R C =.. EMI V BB = R B *I B + V BE + R E *I E R 1, R 2 =..

28 Verificare sperimentalmente e tramite la simulazione il punto di lavoro e l amplificazione (sia con il condensatore C E che senza). Confrontare i risultati ottenuti con l analisi teorica. punto di lavoro progetto misura simulazione Vce 5 V 4.88 V Ic 2 ma (*) 2.25 ma Vbe 0.65 V 0.62 V (*) la Ic è stata rilevata con il multimetro misurando la tensione su Rc e dividendo per il valore di Rc

29 amplificazione senza C E teoria misura simulazione Av = Vo/Vi

30 amplificazione con C E teoria misura simulazione Av = Vo/Vi - h fe * R P / h ie (**) 95.7 (**) non rilevabile con gli strumenti a nostra disposizione

31 Bipolar Junction Transistors ============================ Instance: Q1 Using model: BC108B IB 7.803u IC 2.255m VBE m VBC VCE BETADC GM m RPI 3.097K h ie RX RO K CPI p CMU 3.307p CBX CJS BETAAC h fe FT MEG

FUNZIONAMENTO DI UN BJT

FUNZIONAMENTO DI UN BJT IL TRANSISTOR BJT Il transistor inventato nel 1947, dai ricercatori Bardeen e Brattain, è il componente simbolo dell elettronica. Ideato in un primo momento, come sostituto delle valvole a vuoto per amplificare

Dettagli

Introduzione all elettronica

Introduzione all elettronica Introduzione all elettronica L elettronica nacque agli inizi del 1900 con l invenzione del primo componente elettronico, il diodo (1904) seguito poi dal triodo (1906) i cosiddetti tubi a vuoto. Questa

Dettagli

VERIFICA DEI PRINCIPI DI KIRCHHOFF, DEL PRINCIPIO DI SOVRAPPOSIZIONE DEGLI EFFETTI, DEL TEOREMA DI MILLMAN

VERIFICA DEI PRINCIPI DI KIRCHHOFF, DEL PRINCIPIO DI SOVRAPPOSIZIONE DEGLI EFFETTI, DEL TEOREMA DI MILLMAN FCA D PNCP D KCHHOFF, DL PNCPO D SOAPPOSZON DGL FFTT, DL TOMA D MLLMAN Un qualunque circuito lineare (in cui agiscono più generatori) può essere risolto applicando i due principi di Kirchhoff e risolvendo

Dettagli

TRANSITORI BJT visto dal basso

TRANSITORI BJT visto dal basso TRANSITORI BJT visto dal basso Il transistore BJT viene indicato con il simbolo in alto a sinistra, mentre nella figura a destra abbiamo riportato la vista dal basso e laterale di un dispositivo reale.

Dettagli

Cenni di Elettronica non Lineare

Cenni di Elettronica non Lineare 1 Cenni di Elettronica non Lineare RUOLO DELL ELETTRONICA NON LINEARE La differenza principale tra l elettronica lineare e quella non-lineare risiede nel tipo di informazione che viene elaborata. L elettronica

Dettagli

DE e DTE: PROVA SCRITTA DEL 26 Gennaio 2015

DE e DTE: PROVA SCRITTA DEL 26 Gennaio 2015 DE e DTE: PROVA SCRITTA DEL 26 Gennaio 2015 ESERCIZIO 1 (DE,DTE) Un transistore bipolare n + pn con N Abase = N Dcollettore = 10 16 cm 3, µ n = 0.09 m 2 /Vs, µ p = 0.035 m 2 /Vs, τ n = τ p = 10 6 s, S=1

Dettagli

Prof. Antonino Cucinotta LABORATORIO DI ELETTRONICA CIRCUITI RADDRIZZATORI

Prof. Antonino Cucinotta LABORATORIO DI ELETTRONICA CIRCUITI RADDRIZZATORI Materiale e strumenti: Prof. Antonino Cucinotta LABORATORIO DI ELETTRONICA CIRCUITI RADDRIZZATORI -Diodo raddrizzatore 1N4001 (50 V 1A) -Ponte raddrizzatore da 50 V 1 A -Condensatori elettrolitici da 1000

Dettagli

Le Armoniche INTRODUZIONE RIFASAMENTO DEI TRASFORMATORI - MT / BT

Le Armoniche INTRODUZIONE RIFASAMENTO DEI TRASFORMATORI - MT / BT Le Armoniche INTRODUZIONE Data una grandezza sinusoidale (fondamentale) si definisce armonica una grandezza sinusoidale di frequenza multipla. L ordine dell armonica è il rapporto tra la sua frequenza

Dettagli

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante Circuiti Elettrici Schema riassuntivo Leggi fondamentali dei circuiti elettrici lineari Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante La conseguenza

Dettagli

Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale

Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale Circuiti Elettrici Corrente elettrica Legge di Ohm Elementi di circuito: resistori, generatori di differenza di potenziale Leggi di Kirchhoff Elementi di circuito: voltmetri, amperometri, condensatori

Dettagli

Elettronica delle Telecomunicazioni Esercizi cap 2: Circuiti con Ampl. Oper. 2.1 Analisi di amplificatore AC con Amplificatore Operazionale reale

Elettronica delle Telecomunicazioni Esercizi cap 2: Circuiti con Ampl. Oper. 2.1 Analisi di amplificatore AC con Amplificatore Operazionale reale 2. Analisi di amplificatore AC con Amplificatore Operazionale reale Un amplificatore è realizzato con un LM74, con Ad = 00 db, polo di Ad a 0 Hz. La controreazione determina un guadagno ideale pari a 00.

Dettagli

LABORATORIO I-A. Cenni sui circuiti elettrici in corrente continua

LABORATORIO I-A. Cenni sui circuiti elettrici in corrente continua 1 UNIVERSITÀ DIGENOVA FACOLTÀDISCIENZEM.F.N. LABORATORIO IA Cenni sui circuiti elettrici in corrente continua Anno Accademico 2001 2002 2 Capitolo 1 Richiami sui fenomeni elettrici Esperienze elementari

Dettagli

CONOSCERE I TRANSISTOR

CONOSCERE I TRANSISTOR ONOSR I TRANSISTOR Il transistor è il nome di un semiconduttore utilizzato in elettronica per amplificare qualsiasi tipo di segnale elettrico, cioè dalla assa Frequenza alla Radio Frequenza. Per quanti

Dettagli

L'amplificatore operazionale - principi teorici

L'amplificatore operazionale - principi teorici L'amplificatore operazionale - principi teorici Cos'è? L'amplificatore operazionale è un circuito integrato che produce in uscita una tensione pari alla differenza dei suoi due ingressi moltiplicata per

Dettagli

GRANDEZZE ALTERNATE SINUSOIDALI

GRANDEZZE ALTERNATE SINUSOIDALI GRANDEZZE ALTERNATE SINUSOIDALI 1 Nel campo elettrotecnico-elettronico, per indicare una qualsiasi grandezza elettrica si usa molto spesso il termine di segnale. L insieme dei valori istantanei assunti

Dettagli

ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione.

ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione. ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione. COMPETENZE MINIME- INDIRIZZO : ELETTROTECNICA ED AUTOMAZIONE 1) CORSO ORDINARIO Disciplina: ELETTROTECNICA

Dettagli

1 LA CORRENTE ELETTRICA CONTINUA

1 LA CORRENTE ELETTRICA CONTINUA 1 LA CORRENTE ELETTRICA CONTINUA Un conduttore ideale all equilibrio elettrostatico ha un campo elettrico nullo al suo interno. Cosa succede se viene generato un campo elettrico diverso da zero al suo

Dettagli

Strumenti Elettronici Analogici/Numerici

Strumenti Elettronici Analogici/Numerici Facoltà di Ingegneria Università degli Studi di Firenze Dipartimento di Elettronica e Telecomunicazioni Strumenti Elettronici Analogici/Numerici Ing. Andrea Zanobini Dipartimento di Elettronica e Telecomunicazioni

Dettagli

Progetto di un alimentatore con Vo = +5 V e Io = 1 A

Progetto di un alimentatore con Vo = +5 V e Io = 1 A Progetto di un alimentatore con o +5 e Io A U LM7805/TO IN OUT S F T 5 4 8 - ~ ~ + + C GND + C + C3 3 R D LED Si presuppongono noti i contenuti dei documenti Ponte di Graetz Circuito raddrizzatore duale

Dettagli

I.T.I. A. MALIGNANI UDINE CLASSI 3 e ELT MATERIA: ELETTROTECNICA PROGRAMMA PREVENTIVO

I.T.I. A. MALIGNANI UDINE CLASSI 3 e ELT MATERIA: ELETTROTECNICA PROGRAMMA PREVENTIVO CORRENTE CONTINUA: FENOMENI FISICI E PRINCIPI FONDAMENTALI - Richiami sulle unità di misura e sui sistemi di unità di misura. - Cenni sulla struttura e sulle proprietà elettriche della materia. - Le cariche

Dettagli

PROGETTO ALIMENTATORE VARIABILE CON LM 317. di Adriano Gandolfo www.adrirobot.it

PROGETTO ALIMENTATORE VARIABILE CON LM 317. di Adriano Gandolfo www.adrirobot.it PROGETTO ALIMENTATORE VARIABILE CON LM 37 di Adriano Gandolfo www.adrirobot.it L'integrato LM37 Questo integrato, che ha dimensioni identiche a quelle di un normale transistor di media potenza tipo TO.0,

Dettagli

PRINCIPI BASILARI DI ELETTROTECNICA

PRINCIPI BASILARI DI ELETTROTECNICA PRINCIPI BASILARI DI ELETTROTECNICA Prerequisiti - Impiego di Multipli e Sottomultipli nelle equazioni - Equazioni lineari di primo grado e capacità di ricavare le formule inverse - nozioni base di fisica

Dettagli

GENERALITA SUI CONVERTITORI DAC E ADC CONVERTITORI DIGITALE-ANALOGICO DAC

GENERALITA SUI CONVERTITORI DAC E ADC CONVERTITORI DIGITALE-ANALOGICO DAC I.T.I. Modesto PANETTI A R I ia Re David, 86-8-54.54. - 75 ARI Fax 8-54.64.3 Internet http://www.itispanetti.it email : ATF5C@istruzione.it Tesina sviluppata dall alunno Antonio Gonnella della classe 5

Dettagli

GRUPPO DI CONTINUITA' 12 V - BATTERIA BACKUP

GRUPPO DI CONTINUITA' 12 V - BATTERIA BACKUP GRUPPO DI CONTINUITA' 12 V - BATTERIA BACKUP Salve, questo circuito nasce dall'esigenza pratica di garantire continuità di funzionamento in caso di blackout (accidentale o provocato da malintenzionati)

Dettagli

Radioastronomia. Come costruirsi un radiotelescopio

Radioastronomia. Come costruirsi un radiotelescopio Radioastronomia Come costruirsi un radiotelescopio Come posso costruire un radiotelescopio? Non esiste un unica risposta a tale domanda, molti sono i progetti che si possono fare in base al tipo di ricerca

Dettagli

LATCH E FLIP-FLOP. Fig. 1 D-latch trasparente per ck=1

LATCH E FLIP-FLOP. Fig. 1 D-latch trasparente per ck=1 LATCH E FLIPFLOP. I latch ed i flipflop sono gli elementi fondamentali per la realizzazione di sistemi sequenziali. In entrambi i circuiti la temporizzazione è affidata ad un opportuno segnale di cadenza

Dettagli

Sistemi di controllo (ad anello chiuso)

Sistemi di controllo (ad anello chiuso) SISTMI DI CONTOLLO...2 Nodo di confronto...2 Blocco di retroazione...2 Sistema (vero e proprio)...2 Funzione di trasferimento del sistema ad anello chiuso...3 Funzione di trasferimento del sistema ad anello

Dettagli

Circuiti in Corrente Continua (direct current=dc) RIASSUNTO: La carica elettrica La corrente elettrica Il Potenziale Elettrico La legge di Ohm Il

Circuiti in Corrente Continua (direct current=dc) RIASSUNTO: La carica elettrica La corrente elettrica Il Potenziale Elettrico La legge di Ohm Il Circuiti in Corrente Continua direct currentdc ASSUNTO: La carica elettrica La corrente elettrica l Potenziale Elettrico La legge di Ohm l resistore codice dei colori esistenze in serie ed in parallelo

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca Trascrizione del testo e redazione delle soluzioni di Paolo Cavallo. La prova Il candidato svolga una relazione

Dettagli

1. Diodi. figura 1. figura 2

1. Diodi. figura 1. figura 2 1. Diodi 1.1. Funzionamento 1.1.1. Drogaggio 1.1.2. Campo elettrico di buil-in 1.1.3. Larghezza della zona di svuotamento 1.1.4. Curve caratteristiche Polarizzazione Polarizzazione diretta Polarizzazione

Dettagli

Protezione dai contatti indiretti

Protezione dai contatti indiretti Protezione dai contatti indiretti Se una persona entra in contatto contemporaneamente con due parti di un impianto a potenziale diverso si trova sottoposto ad una tensione che può essere pericolosa. l

Dettagli

GRANDEZZE SINUSOIDALI

GRANDEZZE SINUSOIDALI GRANDEE SINUSOIDALI INDICE -Grandezze variabili. -Grandezze periodiche. 3-Parametri delle grandezze periodiche. 4-Grandezze alternate. 5-Grandezze sinusoidali. 6-Parametri delle grandezze sinusoidali.

Dettagli

Curve di risonanza di un circuito

Curve di risonanza di un circuito Zuccarello Francesco Laboratorio di Fisica II Curve di risonanza di un circuito I [ma] 9 8 7 6 5 4 3 0 C = 00 nf 0 5 0 5 w [KHz] RLC - Serie A.A.003-004 Indice Introduzione pag. 3 Presupposti Teorici 5

Dettagli

FILTRI PASSIVI. Un filtro elettronico seleziona i segnali in ingresso in base alla frequenza.

FILTRI PASSIVI. Un filtro elettronico seleziona i segnali in ingresso in base alla frequenza. FILTRI PASSIVI Un filtro è un sistema dotato di ingresso e uscita in grado di operare una trasmissione selezionata di ciò che viene ad esso applicato. Un filtro elettronico seleziona i segnali in ingresso

Dettagli

bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non cambiano mai segno

bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non cambiano mai segno Parametri dei segnali periodici I segnali, periodici e non periodici, si suddividono in: bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non

Dettagli

IL SAMPLE AND HOLD UNIVERSITÀ DEGLI STUDI DI MILANO. Progetto di Fondamenti di Automatica. PROF.: M. Lazzaroni

IL SAMPLE AND HOLD UNIVERSITÀ DEGLI STUDI DI MILANO. Progetto di Fondamenti di Automatica. PROF.: M. Lazzaroni UNIVERSITÀ DEGLI STUDI DI MILANO FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Informatica IL SAMPLE AND HOLD Progetto di Fondamenti di Automatica PROF.: M. Lazzaroni Anno Accademico

Dettagli

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t;

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t; CAPITOLO CIRCUITI IN CORRENTE CONTINUA Definizioni Dato un conduttore filiforme ed una sua sezione normale S si definisce: Corrente elettrica i Q = (1) t dove Q è la carica che attraversa la sezione S

Dettagli

COORDINAMENTO PER MATERIE SETTEMBRE 2013 MATERIA DI NUOVA INTRODUZIONE PER EFFETTO DELLA RIFORMA

COORDINAMENTO PER MATERIE SETTEMBRE 2013 MATERIA DI NUOVA INTRODUZIONE PER EFFETTO DELLA RIFORMA Pagina 1 di 5 COORDINAMENTO PER MATERIE SETTEMBRE 2013 MATERIA DI NUOVA INTRODUZIONE PER EFFETTO DELLA RIFORMA AREA DISCIPLINARE : Indirizzo Informatica e Telecomunicazioni, articolazione Informatica.

Dettagli

ELCART MANUALE DI ISTRUZIONI MULTIMETRO DIGITALE 9/8220 NI-4100

ELCART MANUALE DI ISTRUZIONI MULTIMETRO DIGITALE 9/8220 NI-4100 ART. 9/8220 PAGINA 1 DI 10 MANUALE DI ISTRUZIONI MULTIMETRO DIGITALE 9/8220 NI-4100 INDICE 1. ISTRUZIONI GENERALI 1.1 Precauzioni di sicurezza 1.1.1 Fasi preliminari 1.1.2 Utilizzo 1.1.3 Simboli 1.1.4

Dettagli

Esperimentatori: Durata dell esperimento: Data di effettuazione: Materiale a disposizione:

Esperimentatori: Durata dell esperimento: Data di effettuazione: Materiale a disposizione: Misura di resistenza con il metodo voltamperometrico. Esperimentatori: Marco Erculiani (n matricola 454922 v.o.) Noro Ivan (n matricola 458656 v.o.) Durata dell esperimento: 3 ore (dalle ore 9:00 alle

Dettagli

1. Determinazione del valore di una resistenza mediante misura voltamperometrica

1. Determinazione del valore di una resistenza mediante misura voltamperometrica 1. Determinazione del valore di una resistenza mediante misura voltamperometrica in corrente continua Si hanno a disposizione : 1 alimentatore di potenza in corrente continua PS 2 multimetri digitali 1

Dettagli

AmpEQ. Amplificatore equlizzato atto a compensare la disequalizzazione provocata da lunghe tratte di cavi coassiali

AmpEQ. Amplificatore equlizzato atto a compensare la disequalizzazione provocata da lunghe tratte di cavi coassiali AmpEQ Amplificatore equlizzato atto a compensare la disequalizzazione provocata da lunghe tratte di cavi coassiali GAI04 Memo Series Alessandro Scalambra Rev: Sergio Mariotti, Jader Monari I.N.A.F GAI04-FR-2.0

Dettagli

Capitolo 7. Circuiti magnetici

Capitolo 7. Circuiti magnetici Capitolo 7. Circuiti magnetici Esercizio 7.1 Dato il circuito in figura 7.1 funzionante in regime stazionario, sono noti: R1 = 7.333 Ω, R2 = 2 Ω, R3 = 7 Ω δ1 = 1 mm, δ2 = 1.3 mm, δ3 = 1.5 mm Α = 8 cm 2,

Dettagli

LA CORRENTE ELETTRICA CONTINUA

LA CORRENTE ELETTRICA CONTINUA LA CORRENTE ELETTRICA CONTINUA (Fenomeno, indipendente dal tempo, che si osserva nei corpi conduttori quando le cariche elettriche fluiscono in essi.) Un conduttore metallico è in equilibrio elettrostatico

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Elettronica Circuiti nel dominio del tempo

Elettronica Circuiti nel dominio del tempo Elettronica Circuiti nel dominio del tempo Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Circuiti nel dominio del tempo 14 aprile 211

Dettagli

Elettronica Analogica. Luxx Luca Carabetta. Nello studio dell elettronica analogica ci serviamo di alcune grandezze:

Elettronica Analogica. Luxx Luca Carabetta. Nello studio dell elettronica analogica ci serviamo di alcune grandezze: Grandezze elettriche Serie e Parallelo Legge di Ohm, Principi di Kirchhoff Elettronica Analogica Luxx Luca Carabetta Premessa L elettronica Analogica, si appoggia su segnali che possono avere infiniti

Dettagli

nica Cagliari ) m Viene detto (1) Dal sistema dell energia Un possibile

nica Cagliari ) m Viene detto (1) Dal sistema dell energia Un possibile Viene detto sistema polifase un sistema costituito da più tensioni o da più correnti sinusoidali, sfasate l una rispetto all altra. Un sistema polifase è simmetrico quando le grandezze sinusoidali hanno

Dettagli

MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA

MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA ANDREA USAI Dipartimento di Informatica e Sistemistica Antonio Ruberti Andrea Usai (D.I.S. Antonio Ruberti ) Laboratorio di Automatica

Dettagli

U.D. 6.2 CONTROLLO DI VELOCITÀ DI UN MOTORE IN CORRENTE ALTERNATA

U.D. 6.2 CONTROLLO DI VELOCITÀ DI UN MOTORE IN CORRENTE ALTERNATA U.D. 6.2 CONTROLLO DI VELOCITÀ DI UN MOTORE IN CORRENTE ALTERNATA Mod. 6 Applicazioni dei sistemi di controllo 6.2.1 - Generalità 6.2.2 - Scelta del convertitore di frequenza (Inverter) 6.2.3 - Confronto

Dettagli

ELABORAZIONE DEL VALORE MEDIO NELLE MISURE ELETTRONICHE

ELABORAZIONE DEL VALORE MEDIO NELLE MISURE ELETTRONICHE NOTE PER IL TECNICO ELABORAZIONE DEL VALORE MEDIO NELLE MISURE ELETTRONICHE da BRUEL & KJAER Le cosiddette «application notes» pubblicate a cura della Bruel & Kjaer, nota Fabbrica danese specializzata

Dettagli

Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015

Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015 Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015 Piano di lavoro annuale Materia : Fisica Classi Quinte Blocchi tematici Competenze Traguardi formativi

Dettagli

Appunti di Misure Elettriche Richiami vari Quantità elettriche corrente ampere elettroni

Appunti di Misure Elettriche Richiami vari Quantità elettriche corrente ampere elettroni Appunti di Misure Elettriche Richiami vari QUANTITÀ ELETTRICHE... 1 Corrente... 1 Tensione... 2 Resistenza... 3 Polarità... 3 Potenza... 4 CORRENTE ALTERNATA... 4 Generalità... 4 Valore efficace... 5 Valore

Dettagli

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE a cura di G. SIMONELLI Nel motore a corrente continua si distinguono un sistema di eccitazione o sistema induttore che è fisicamente

Dettagli

ESERCIZI DI ELETTROTECNICA

ESERCIZI DI ELETTROTECNICA 1 esercizi in corrente continua completamente svolti ESERCIZI DI ELETTROTECNICA IN CORRENTE CONTINUA ( completamente svolti ) a cura del Prof. Michele ZIMOTTI 1 2 esercizi in corrente continua completamente

Dettagli

Corrente elettrica (regime stazionario)

Corrente elettrica (regime stazionario) Corrente elettrica (regime stazionario) Metalli Corrente elettrica Legge di Ohm Resistori Collegamento di resistori Generatori di forza elettromotrice Metalli Struttura cristallina: ripetizione di unita`

Dettagli

Classe 3 D Bucci Arianna Evangelista Andrea Palombo Leonardo Ricci Alessia Progetto di Scienze a.s. 2013/2014. Prof.ssa Piacentini Veronica

Classe 3 D Bucci Arianna Evangelista Andrea Palombo Leonardo Ricci Alessia Progetto di Scienze a.s. 2013/2014. Prof.ssa Piacentini Veronica Classe 3 D Bucci Arianna Evangelista Andrea Palombo Leonardo Ricci Alessia Progetto di Scienze a.s. 2013/2014 Prof.ssa Piacentini Veronica La corrente elettrica La corrente elettrica è un flusso di elettroni

Dettagli

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente 1.1 Il motore a corrente continua Il motore a corrente continua, chiamato così perché per funzionare deve essere alimentato con tensione e corrente costante, è costituito, come gli altri motori da due

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

Lo schema a blocchi di uno spettrofotometro

Lo schema a blocchi di uno spettrofotometro Prof.ssa Grazia Maria La Torre è il seguente: Lo schema a blocchi di uno spettrofotometro SORGENTE SISTEMA DISPERSIVO CELLA PORTACAMPIONI RIVELATORE REGISTRATORE LA SORGENTE delle radiazioni elettromagnetiche

Dettagli

Interruttori ABB per applicazioni in corrente continua

Interruttori ABB per applicazioni in corrente continua Settembre 2007 1SDC007104G0901 Interruttori ABB per applicazioni in corrente continua Interruttori ABB per applicazioni in corrente continua Indice 1 Introduzione... 2 2 Generalità sulla corrente continua...

Dettagli

SOCCORRITORE IN CORRENTE CONTINUA Rev. 1 Serie SE

SOCCORRITORE IN CORRENTE CONTINUA Rev. 1 Serie SE Le apparecchiature di questa serie, sono frutto di una lunga esperienza maturata nel settore dei gruppi di continuità oltre che in questo specifico. La tecnologia on-line doppia conversione, assicura la

Dettagli

Alimentazione Switching con due schede ATX.

Alimentazione Switching con due schede ATX. Alimentazione Switching con due schede ATX. Alimentatore Switching finito 1 Introduzione...2 2 Realizzazione supporto...2 3 Realizzazione Elettrica...5 4 Realizzazione meccanica...7 5 Montaggio finale...9

Dettagli

Dispensa sulle funzioni trigonometriche

Dispensa sulle funzioni trigonometriche Sapienza Universita di Roma Dipartimento di Scienze di Base e Applicate per l Ingegneria Sezione di Matematica Dispensa sulle funzioni trigonometriche Paola Loreti e Cristina Pocci A. A. 00-0 Dispensa

Dettagli

L OSCILLOSCOPIO. L oscilloscopio è il più utile e versatile strumento di misura per il test delle apparecchiature e dei

L OSCILLOSCOPIO. L oscilloscopio è il più utile e versatile strumento di misura per il test delle apparecchiature e dei L OSCILLOSCOPIO L oscilloscopio è il più utile e versatile strumento di misura per il test delle apparecchiature e dei circuiti elettronici. Nel suo uso abituale esso ci consente di vedere le forme d onda

Dettagli

Esercizi e considerazioni pratiche sulla legge di ohm e la potenza

Esercizi e considerazioni pratiche sulla legge di ohm e la potenza Esercizi e considerazioni pratiche sulla legge di ohm e la potenza Come detto precedentemente la legge di ohm lega la tensione e la corrente con un altro parametro detto "resistenza". Di seguito sono presenti

Dettagli

Forma d onda rettangolare non alternativa.

Forma d onda rettangolare non alternativa. Forma d onda rettangolare non alternativa. Lo studio della forma d onda rettangolare è utile, perché consente di conoscere il contenuto armonico di un segnale digitale. FIGURA 33 Forma d onda rettangolare.

Dettagli

Elementi di analisi delle reti elettriche. Sommario

Elementi di analisi delle reti elettriche. Sommario I.T.I.S. "Antonio Meucci" di Roma Elementi di analisi delle reti elettriche a cura del Prof. Mauro Perotti Anno Scolastico 2009-2010 Sommario 1. Note sulla simbologia...4 2. Il generatore (e l utilizzatore)

Dettagli

Le misure di energia elettrica

Le misure di energia elettrica Le misure di energia elettrica Ing. Marco Laracca Dipartimento di Ingegneria Elettrica e dell Informazione Università degli Studi di Cassino e del Lazio Meridionale Misure di energia elettrica La misura

Dettagli

Programmazione Modulare

Programmazione Modulare Indirizzo: BIENNIO Programmazione Modulare Disciplina: FISICA Classe: 2 a D Ore settimanali previste: (2 ore Teoria 1 ora Laboratorio) Prerequisiti per l'accesso alla PARTE D: Effetti delle forze. Scomposizione

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli

IMPIANTI ELETTTRICI parte II

IMPIANTI ELETTTRICI parte II IMPIANTI ELETTTRICI parte II di Delucca Ing. Diego PROTEZIONE DI UN IMPIANTO DAI SOVRACCARICHI E DAI CORTO CIRCUITI Una corrente I che passa in un cavo di sezione S, di portata IZ è chiamata di sovracorrente

Dettagli

Alma Mater Studiorum - Università di Bologna

Alma Mater Studiorum - Università di Bologna Alma Mater Studiorum - Università di Bologna Facoltà di Ingegneria Corso di laurea specialistica in Ingegneria Elettrica AZIONAMENTI ELETTRICI ANALISI E SIMULAZIONE DI UN CONVERTITORE A TRE LIVELLI PER

Dettagli

Calcolo delle linee elettriche a corrente continua

Calcolo delle linee elettriche a corrente continua Calcolo delle linee elettriche a corrente continua Il calcolo elettrico delle linee a corrente continua ha come scopo quello di determinare la sezione di rame della linea stessa e la distanza tra le sottostazioni,

Dettagli

La corrente elettrica

La corrente elettrica PROGRAMMA OPERATIVO NAZIONALE Fondo Sociale Europeo "Competenze per lo Sviluppo" Obiettivo C-Azione C1: Dall esperienza alla legge: la Fisica in Laboratorio La corrente elettrica Sommario 1) Corrente elettrica

Dettagli

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione 1. L elettrone ha una massa di 9.1 10-31 kg ed una carica elettrica di -1.6 10-19 C. Ricordando che la forza gravitazionale

Dettagli

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE TELECOMUNICAZIONI (TLC) Tele (lontano) Comunicare (inviare informazioni) Comunicare a distanza Generico sistema di telecomunicazione (TLC) Segnale non elettrico Segnale elettrico TRASMESSO s x (t) Sorgente

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

I motori elettrici più diffusi

I motori elettrici più diffusi I motori elettrici più diffusi Corrente continua Trifase ad induzione Altri Motori: Monofase Rotore avvolto (Collettore) Sincroni AC Servomotori Passo Passo Motore in Corrente Continua Gli avvolgimenti

Dettagli

Impianto elettrico nelle applicazioni aeronautiche. ITIS Ferentino Trasporti e Logistica Costruzione del Mezzo Aeronautico

Impianto elettrico nelle applicazioni aeronautiche. ITIS Ferentino Trasporti e Logistica Costruzione del Mezzo Aeronautico Impianto elettrico nelle applicazioni aeronautiche ITIS Ferentino Trasporti e Logistica Costruzione del Mezzo Aeronautico prof. Gianluca Venturi Indice generale Richiami delle leggi principali...2 La prima

Dettagli

Motori Elettrici. Principi fisici. Legge di Lenz: se in un circuito elettrico il flusso concatenato varia nel tempo si genera una tensione

Motori Elettrici. Principi fisici. Legge di Lenz: se in un circuito elettrico il flusso concatenato varia nel tempo si genera una tensione Motori Elettrici Principi fisici Legge di Lenz: se in un circuito elettrico il flusso concatenato varia nel tempo si genera una tensione Legge di Biot-Savart: un conduttore percorso da corrente di intensità

Dettagli

Introduzione. Classificazione delle non linearità

Introduzione. Classificazione delle non linearità Introduzione Accade spesso di dover studiare un sistema di controllo in cui sono presenti sottosistemi non lineari. Alcuni di tali sottosistemi sono descritti da equazioni differenziali non lineari, ad

Dettagli

Appunti di. Misure elettroniche Prof. Ferrero Andrea Pierenrico. Fiandrino Claudio

Appunti di. Misure elettroniche Prof. Ferrero Andrea Pierenrico. Fiandrino Claudio Appunti di Misure elettroniche Prof. Ferrero Andrea Pierenrico Fiandrino Claudio 8 luglio 2009 1 Indice 1 Incertezze 4 1.1 Nozioni di metrologia....................... 4 1.2 Tipi di incertezze.........................

Dettagli

SVILUPPO IN SERIE DI FOURIER

SVILUPPO IN SERIE DI FOURIER SVILUPPO IN SERIE DI FOURIER Cenni Storici (Wikipedia) Jean Baptiste Joseph Fourier ( nato a Auxerre il 21 marzo 1768 e morto a Parigi il 16 maggio 1830 ) è stato un matematico e fisico, ma è conosciuto

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

Technical Support Bulletin No. 15 Problemi Strumentazione

Technical Support Bulletin No. 15 Problemi Strumentazione Technical Support Bulletin No. 15 Problemi Strumentazione Sommario! Introduzione! Risoluzione dei problemi di lettura/visualizzazione! Risoluzione dei problemi sugli ingressi digitali! Risoluzione di problemi

Dettagli

Analisi in regime sinusoidale (parte V)

Analisi in regime sinusoidale (parte V) Appunti di Elettrotecnica Analisi in regime sinusoidale (parte ) Teorema sul massimo trasferimento di potenza attiva... alore della massima potenza attiva assorbita: rendimento del circuito3 Esempio...3

Dettagli

Filtri attivi del primo ordine

Filtri attivi del primo ordine Filtri attivi del primo ordine Una sintesi non esaustiva degli aspetti essenziali (*) per gli allievi della 4 A A T.I.E. 08-09 (pillole per il ripasso dell argomento, da assumere in forti dosi) (*) La

Dettagli

EM-LAB MISURE ELETTROMAGNETICHE: DAL LABORATORIO TRADIZIONALE A QUELLO REAL-TIME Una guida alla preparazione delle esperienze

EM-LAB MISURE ELETTROMAGNETICHE: DAL LABORATORIO TRADIZIONALE A QUELLO REAL-TIME Una guida alla preparazione delle esperienze LICEO SCIENTIFICO DI STATO G. GALILEI PESCARA (PE) EM-LAB MISURE ELETTROMAGNETICHE: DAL LABORATORIO TRADIZIONALE A QUELLO REAL-TIME Una guida alla preparazione delle esperienze Laboratorio di fisica on-line

Dettagli

2. FONDAMENTI DELLA TECNOLOGIA

2. FONDAMENTI DELLA TECNOLOGIA 2. FONDAMENTI DELLA TECNOLOGIA 2.1 Principio del processo La saldatura a resistenza a pressione si fonda sulla produzione di una giunzione intima, per effetto dell energia termica e meccanica. L energia

Dettagli

Una scuola vuole monitorare la potenza elettrica continua di un pannello fotovoltaico

Una scuola vuole monitorare la potenza elettrica continua di un pannello fotovoltaico ESAME DI STATO PER ISTITUTI PROFESSIONALI Corso di Ordinamento Indirizzo: Tecnico delle industrie elettroniche Tema di: Elettronica, telecomunicazioni ed applicazioni Gaetano D Antona Il tema proposto

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

Teoria quantistica della conduzione nei solidi e modello a bande

Teoria quantistica della conduzione nei solidi e modello a bande Teoria quantistica della conduzione nei solidi e modello a bande Obiettivi - Descrivere il comportamento quantistico di un elettrone in un cristallo unidimensionale - Spiegare l origine delle bande di

Dettagli

Manuale d Istruzioni. Extech EX820 Pinza Amperometrica 1000 A RMS con Termometro IR

Manuale d Istruzioni. Extech EX820 Pinza Amperometrica 1000 A RMS con Termometro IR Manuale d Istruzioni Extech EX820 Pinza Amperometrica 1000 A RMS con Termometro IR Introduzione Congratulazioni per aver acquistato la Pinza Amperometrica Extech EX820 da 1000 A RMS. Questo strumento misura

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

Controllare un nastro trasportatore fischertechnik con Arduino

Controllare un nastro trasportatore fischertechnik con Arduino TITOLO ESPERIENZA: Controllare un nastro trasportatore fischertechnik con Arduino PRODOTTI UTILIZZATI: OBIETTIVO: AUTORE: RINGRAZIAMENTI: Interfacciare e controllare un modello di nastro trasportatore

Dettagli

Compressori serie P Dispositivi elettrici (PA-05-02-I)

Compressori serie P Dispositivi elettrici (PA-05-02-I) Compressori serie P Dispositivi elettrici (PA-05-02-I) 5. MOTORE ELETTRICO 2 Generalità 2 CONFIGURAZIONE PART-WINDING 2 CONFIGURAZIONE STELLA-TRIANGOLO 3 Isolamento del motore elettrico 5 Dispositivi di

Dettagli

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg.

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg. Spingete per 4 secondi una slitta dove si trova seduta la vostra sorellina. Il peso di slitta+sorella è di 40 kg. La spinta che applicate F S è in modulo pari a 60 Newton. La slitta inizialmente è ferma,

Dettagli

Gli attuatori. Breve rassegna di alcuni modelli o dispositivi di attuatori nel processo di controllo

Gli attuatori. Breve rassegna di alcuni modelli o dispositivi di attuatori nel processo di controllo Gli attuatori Breve rassegna di alcuni modelli o dispositivi di attuatori nel processo di controllo ATTUATORI Definizione: in una catena di controllo automatico l attuatore è il dispositivo che riceve

Dettagli

THE WORLD OF DC/DC-CONVERTERS. SCEGLIERE UN CONVERTITORE DC / DC Convertitori DC/DC, quali sono i criteri più importanti?

THE WORLD OF DC/DC-CONVERTERS. SCEGLIERE UN CONVERTITORE DC / DC Convertitori DC/DC, quali sono i criteri più importanti? SCEGLIERE UN CONVERTITORE DC / DC Convertitori DC/DC, quali sono i criteri più importanti? Un convertitore DC / DC è utilizzato, generalmente, quando la tensione di alimentazione disponibile non è compatibile

Dettagli