1. Funzioni reali di una variabile reale

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1. Funzioni reali di una variabile reale"

Transcript

1 Di cosa parleremo In questo capitolo introduttivo ci occuperemo di funzioni reali di una variabile reale; precisamente, daremo dei criteri per la determinazione del campo di esistenza delle varie tipologie di funzioni e ci occuperemo di concetti quali simmetria e periodicità. Razionali Algebriche Irrazionali Intere Fratte Intere Fratte Funzioni Logaritmiche Trascendenti Esponenziali Goniometriche 5

2 1) Classificazione delle funzioni Siano X e Y due sottoinsiemi dell insieme R dei numeri reali, per funzione reale di una variabile reale si intende una legge in base alla quale a ogni elemento X si associano uno o più elementi y di Y. Se a ogni valore della variabile (detta variabile indipendente) si fa corrispondere un solo valore della variabile y (detta variabile dipendente), la funzione si dice univoca (o monodroma); in caso contrario, cioè, se ad almeno un valore della si fanno corrispondere più valori della y, la funzione si dice polivoca (o polidroma). Nel seguito, si farà sempre riferimento alle funzioni univoche. A indicare la legge di corrispondenza da X verso Y descritta da una funzione, si adopera la notazione: 6 y = f() dove e y sono, rispettivamente, le variabili indipendente e dipendente, e f rappresenta la legge di corrispondenza descritta dalla funzione. L insieme X è detto dominio di definizione (o campo di esistenza) della funzione; l insieme Y prende il nome di codominio. Nell ambito delle funzioni univoche, si è soliti dare la seguente classificazione: funzioni algebriche; funzioni trascendenti. Una funzione si dice algebrica se in essa figurano soltanto operazioni algebriche, cioè, addizione, sottrazione, moltiplicazione, divisione, potenza e radice di monomi e polinomi. Le funzioni non algebriche prendono il nome di trascendenti; a tale insieme appartengono le funzioni logaritmiche, esponenziali e goniometriche. Le funzioni algebriche possono essere: razionali (intere o fratte); irrazionali (intere o fratte). Si dicono razionali quelle funzioni algebriche nelle quali non figurano radici di monomi o polinomi; se, viceversa, in una funzione alge-

3 brica figura almeno un operazione di estrazione di radice di un monomio o polinomio, la funzione si dice irrazionale. L aggettivo fratta o intera sta a indicare la presenza, o meno, di monomi o polinomi al denominatore di una frazione. Esempi È algebrica razionale intera (o polinomiale) la funzione: y = ; mentre è algebrica razionale fratta la funzione: y = ; è algebrica irrazionale intera la funzione: 3 4 y = mentre è algebrica irrazionale fratta la funzione: y = + ; + infine, è trascendente la funzione: 1 y = ln sen ) Simmetrie e periodicità Una funzione reale di una variabile reale y = f ( ) è: dispari se è simmetrica rispetto all origine, cioè se: ( )= ( ) f f pari se è simmetrica rispetto all asse y, cioè se: ( )= ( ) f f 7

4 Una funzione reale di una variabile reale è periodica se esiste T > 0 tale che: 8 ( )= ( ) per ogni f + T f Le funzioni trascendenti sono periodiche. Il periodo delle funzioni seno, coseno, secante e cosecante è l intera circonferenza, ossia π radianti; il periodo della tangente e della cotangente è metà circonferenza, ossia π radianti. 3) Campo di esistenza Sia data una funzione reale di una variabile reale y = f(), il campo di esistenza, o dominio, della funzione è l intervallo dei valori di per i quali la funzione assume significato. Per determinare il campo di esistenza di una funzione è utile tener conto delle seguenti regole o indicazioni: a) nelle funzioni fratte tutti i denominatori delle frazioni devono essere diversi da 0; b) nelle funzioni irrazionali i radicandi delle radici con indice pari devono essere 0; c) nelle funzioni trascendenti logaritmiche gli argomenti dei logaritmi devono essere > 0; d) nelle funzioni trascendenti goniometriche si distingue: gli argomenti delle funzioni circolari inverse arcoseno e arcocoseno devono appartenere all intervallo [-1, 1]; gli argomenti della funzione tangente devono essere diversi da ( ) π, con k N k + 1 ; gli argomenti della funzione cotangente devono essere diversi da kπ con k N. Nell ambito della determinazione del campo di esistenza di una stessa funzione, è possibile che alcune delle condizioni sopra descritte vadano imposte contemporaneamente; ciò, tradotto in termini algebrici,

5 equivale a risolvere un sistema di disequazioni, ciascuna delle quali corrisponde a una delle condizioni imposte. 4) Funzioni limitate Una funzione y = f() definita in un dato intervallo [a, b] si dice ivi limitata, se, per ogni valore di appartenente al suddetto intervallo, esiste un numero P positivo tale che: La funzione è: f ( ) P limitata superiormente se, nell intervallo [a, b] esiste un punto in cui la funzione assume valore M che è non minore dei valori assunti negli altri punti; limitata inferiormente se, nell intervallo [a, b] esiste un punto in cui la funzione assume valore m che è non maggiore dei valori assunti negli altri punti. 5) Funzioni crescenti e decrescenti Sia data una funzione y = f(), considerati due punti qualsiasi 1 e di un dato intervallo [a, b], essa si dice: crescente se 1 < f( 1 ) f( ); costante se 1 < f( 1 ) = f( ); decrescente se 1 < f( 1 ) f( ); strettamente crescente se 1 < f( 1 ) < f( ); strettamente decrescente se 1 < f( 1 ) > f( ). Si dicono monotòne le funzioni crescenti, decrescenti, non decrescenti o non crescenti, ossia le funzioni che variano sempre in uno stesso verso. 6) Funzioni composte Sia data la funzione: y = f (z) 9

6 dove z non è variabile indipendente, ma a sua volta funzione z = g() della variabile indipendente, si ha che la funzione: 10 ( ) y = f g( ) si dice funzione composta di f e di g. Esercizio n. 1 Determinare l espressione analitica della funzione composta f g( ) f( ) = e g( ) = sen ( ) delle due funzioni: Entrambe le funzioni hanno dominio e codominio coincidente con l insieme dei numeri reali. La funzione composta è la funzione: f( g( ) )=( sen ) = sen Esercizio n. Determinare le espressioni analitiche delle funzioni composte f( g( ) ) e g( f( ) ) delle due funzioni: f( ) = + g( ) = 1e e Le due funzioni hanno entrambe dominio coincidente con l insieme dei numeri reali. La funzione composta di f su g è: La funzione composta di g su f è: ( )=( ) + = + f g( ) e 1 e 1 g f( ) ( ( + ) )= e = e 7) Funzioni invertibili Sia data una funzione: y = f() 1 1 essa si dice invertibile in un intervallo chiuso [a, b] se a ogni valore della in [a, b] corrisponde uno e un solo valore di y in [a', b'], dove a' e b' sono il minimo e il massimo della funzione nell intervallo [a, b], e

7 viceversa a ogni valore di y in [a', b'] corrisponde uno e un solo valore di in [a, b]. La funzione è, pertanto, invertibile nell intervallo [a, b], se è continua in [a, b] ed è sempre crescente o sempre decrescente in detto intervallo. La funzione inversa si indica in questo modo: = f 1 (y) Negli esercizi che seguono si chiederà di determinare il campo di esistenza della funzione data e/o le coordinate degli eventuali punti di intersezione con gli assi. Queste ultime si determinano risolvendo i due sistemi: = 0 y f = ( ) e y = 0 y f = ( ) Un cenno a parte meritano le funzioni iperboliche che, più volte, saranno trattate nel volume. Funzioni iperboliche Le funzioni iperboliche sono così definite: e e e + e e e senh = ; cosh = ; tanh = e + e La funzione senh è strettamente crescente e quindi invertibile. La funzione inversa è chiamata settsenh (settore-seno iperbolico), ovvero senh 1 o anche arcsenh. Essa può e ricavarsi esplicitando rispetto a y l equazione: = y e ; ricavando e y dalla prece- dente espressione si ha: y y 1 e 1 y y y y = e = e = e 1 e e 1= 0 y y e e ponendo e y = z si ottiene l equazione di secondo grado: z z 1= 0 z, = ± y 11

8 1 scartando la radice negativa (z è non negativo): ( ) e y = y= senh 1 = ln L insieme di definizione della precedente funzione è tutto l insieme dei numeri reali R. Allo stesso modo si ricava l inversa della funzione cosh. Essendo questa strettamente decrescente per valori negativi della variabile, strettamente crescente per valori positivi, non è invertibile. È però invertibile la sua restrizione ai valori positivi della variabile. Ripetendo il procedimento precedente si ricava: ( ) cosh 1 = ln + 1 La funzione cosh 1 o arcosh è definita per 1. La funzione tanh è strettamente crescente in tutto R, quindi invertibile. Sempre con procedimento analogo a quello usato per ricavare l inversa del senh, si ottiene: tanh 1+ = ln La funzione è definita per 1 < < 1. Esercizio n. 1 Determinare il campo di esistenza della funzione: f( )= 3 Si tratta di una funzione irrazionale in cui per il polinomio sotto radice deve essere: 3 0 Risolvendo si ha che la disuguaglianza è verificata per: per cui, il campo di esistenza è: 1e 3 CE.. =, 1 3, +

9 Esercizio n. Sia data la funzione: determinarne: f( )= 1 il campo di esistenza; le coordinate degli eventuali punti di intersezione con gli assi. La funzione è irrazionale fratta. 1. Per quanto concerne il campo di esistenza, deve aversi: 1> 0 < 1 > 1 quindi: C. E. = ], 1] [1, + [. Per le intersezioni con gli assi si ha che l origine è esclusa dal campo di esistenza, quindi la curva non interseca l asse y; inoltre, il numeratore della funzione si annulla solo per = 0, punto escluso dal campo di esistenza. Ne consegue che non vi sono intersezioni con gli assi cartesiani. Esercizio n. 3 Sia data la funzione: determinarne: -1 f( ) = 3 3 il campo di esistenza; le coordinate degli eventuali punti di intersezione con gli assi. Si tratta di una funzione trascendente. 1. Per quanto concerne il campo di esistenza, deve aversi: quindi: C. E. = [1, + [ 13

10 . Per le intersezioni con gli assi si ha che l origine è esclusa dal campo di esistenza, quindi la curva non interseca l asse y; per y = 0, si ha: = 0 = 1 ne consegue che la curva interseca l asse nel punto di coordinate (1; 0). Esercizio n. 4 Sia data la funzione: determinarne: f( )= e 1 il campo di esistenza; le coordinate degli eventuali punti di intersezione con gli assi. Si tratta di una funzione trascendente. 1. Per quanto concerne il campo di esistenza, essendo f( ) funzione fratta affinché non si annulli il denominatore deve essere: In definitiva, si ha: e 0 e ln CE.. R ln. Per le intersezioni con gli assi si distingue: Per = 0 si ha: = { } 1 y = = 1 1 La funzione interseca l asse delle y nel punto di coordinate (0,-1). Per y = 0 si ha: impossibile. Non c è intersezione con l asse delle. 1 e 0 =

11 Test di verifica 1. Stabilire qual è il campo di esistenza della funzione: e 1 f ( )= e + 1 considerando che la funzione e 1 per ogni R. a) ], 1] [ 1, + [ b) R c) ], 1] d) 1, + [ [. Stabilire qual è il campo di esistenza della funzione: f ( )= a) ], 0] [, + [ b) ], ] [, + [ c) R d), ] ] 8 3. Stabilire qual è il punto di intersezione della funzione di cui al quesito precedente con uno degli assi. ( ) ( ; ) ( ; ) a) 0 ; b) 00 c) 0 d) la funzione non presenta intersezioni con gli assi. 15

...in tasca. Esercizi svolti di Analisi matematica... area PK 21/1

...in tasca. Esercizi svolti di Analisi matematica... area PK 21/1 PK 1/1 Esercizi svolti di Analisi matematica... area...in tasca Funzioni reali di una variabile reale Limiti e continuità di funzioni reali di una variabile reale Derivate di funzioni reali di una variabile

Dettagli

f : A B NOTAZIONE DELLE FUNZIONI x associa A D y è l immagine di x : y = f (x) (variabile dipendente)

f : A B NOTAZIONE DELLE FUNZIONI x associa A D y è l immagine di x : y = f (x) (variabile dipendente) Funzioni Dati due insiemi non vuoti A e B, si chiama funzione da A a B una relazione tra i due insiemi che a ogni elemento di A fa corrispondere uno e un solo elemento di B. A B NOTAZIONE DELLE FUNZIONI

Dettagli

Unità Didattica N 2 Le funzioni

Unità Didattica N 2 Le funzioni Unità Didattica N Le funzioni 1 Unità Didattica N Le funzioni 05) Definizione di applicazione o funzione o mappa. 06) Classificazione delle funzioni numeriche 07) Estremi di una funzione, funzioni limitate.

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione. 3. Le funzioni reali di variabile reale. 4. L espressione

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Esercizi di Matematica. Studio di Funzioni

Esercizi di Matematica. Studio di Funzioni Esercizi di Matematica Studio di Funzioni CONSIDERAZIONI GENERALI Ad ogni funzione corrisponde un grafico, quindi studiare una funzione significa determinare il suo grafico. Per le conoscenze fin qui acquisite,

Dettagli

Le funzioni reali di una variabile reale

Le funzioni reali di una variabile reale Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

Esempi di funzione...

Esempi di funzione... Funzioni Dati due insiemi non vuoti A e B, si chiama applicazione o funzione da A a B una relazione tra i due insiemi che a ogni elemento di A fa corrispondere uno e un solo elemento di B. A B Esempi di

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione.. Funzioni iniettive, suriettive e biiettive.. Le funzioni

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei, Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente (non decrescente) in un intervallo I se f ( 1 ) < f ( ) (f ( 1 ) f ( )), quando 1

Dettagli

x dove fx ( ) assume tali valori si dice punto di massimo o di

x dove fx ( ) assume tali valori si dice punto di massimo o di 7. Funzioni limitate ed illimitate, funzioni inverse Definizione: Una funzione f: A Bsi dice limitata superiormente od inferiormente se il suo condominio è un insieme limitato superiormente od inferiormente.

Dettagli

Funzioni e grafici. prof. Andres Manzini

Funzioni e grafici. prof. Andres Manzini Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione Definizione Si dice funzione (o applicazione)

Dettagli

Introduzione. Test d ingresso

Introduzione. Test d ingresso Indice Introduzione Test d ingresso v vii 1 Insiemi e numeri 1 1.1 Insiemi... 1 1.2 Operazionicongliinsiemi... 3 1.3 Insieminumerici,operazioni... 7 1.4 Potenze... 11 1.5 Intervalli... 12 1.6 Valoreassolutoedistanza...

Dettagli

INTRODUZIONE ALL ANALISI MATEMATICA

INTRODUZIONE ALL ANALISI MATEMATICA INTRODUZIONE ALL ANALISI MATEMATICA Intervalli e intorni Funzioni in R e classificazione Proprietà delle funzioni: pari e dispari monotone periodiche Intervallo Un intervallo di estremi a e b è un insieme

Dettagli

Introduzione alla II edizione. Introduzione. Test d ingresso

Introduzione alla II edizione. Introduzione. Test d ingresso Indice Introduzione alla II edizione Introduzione Test d ingresso v vii ix 1 Insiemi e numeri 1 1.1 Insiemi... 1 1.2 Operazionicongliinsiemi... 3 1.3 Insieminumerici,operazioni... 7 1.4 Potenze... 11 1.5

Dettagli

FUNZIONI NUMERICHE. Funzione numerica

FUNZIONI NUMERICHE. Funzione numerica Funzione numerica FUNZIONI NUMERICHE Una funzione si dice numerica se gli insiemi A e B sono insiemi numerici, cioè N (insieme dei numeri naturali), Z (insieme dei numeri relativi), Q (insieme dei numeri

Dettagli

FUNZIONI E INSIEMI DI DEFINIZIONE

FUNZIONI E INSIEMI DI DEFINIZIONE FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge

Dettagli

CLASSE 1B INSIEMI NUMERICI:

CLASSE 1B INSIEMI NUMERICI: IIS Via Silvestri 301 -Roma Plesso Volta. Indirizzo Elettronica ed Elettrotecnica Programma svolto di Matematica a.s. 2018/2019 Prof.ssa Claudia Dennetta CLASSE 1B INSIEMI NUMERICI: Numeri naturali: Le

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1 Unità Didattica N Le Funzioni Univoche Sintesi 1 Unità Didattica N Le funzioni univoche 01) Definizione di applicazione o funzione o mappa 0) Classificazione delle funzioni numeriche 03) Insieme di definizione

Dettagli

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Matematica Funzioni Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Le Funzioni e loro caratteristiche Introduzione L analisi di diversi fenomeni della natura o la risoluzione di problemi

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al più un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

MATEMATICA. a.a. 2014/15. 1a. Funzioni (II parte):

MATEMATICA. a.a. 2014/15. 1a. Funzioni (II parte): MATEMATICA a.a. 014/15 1a. Funzioni (II parte): Funzioni iniettive, suriettive, bigettive. Funzioni reali. Campo di esistenza. Funzioni pari e dispari Funzione iniettiva y=f() 1 3 X 4 y 6 Y y y 1 y 3 y

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

Funzioni di una variabile reale

Funzioni di una variabile reale Capitolo. Introduzione Nella matematica, ed in molte delle sue applicazioni scientifiche e tecniche, si ha molto spesso la necessità di considerare grandezze variabili. L esistenza di una grandezza variabile

Dettagli

Programmazione per Obiettivi Minimi. Matematica Primo anno

Programmazione per Obiettivi Minimi. Matematica Primo anno Programmazione per Obiettivi Minimi Matematica Primo anno Saper operare in N, Z e Q. Conoscere e saper applicare le proprietà delle potenze con esponente intero e relativo. Saper operare con i monomi.

Dettagli

Appunti di Matematica 5 - Funzioni - Funzioni. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B

Appunti di Matematica 5 - Funzioni - Funzioni. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B Funzioni Deinizione di unzione : una unzione che associa ad ogni elemento : A B, con A e B insiemi non vuoti, è una legge A uno e un solo elemento y B y = () y viene chiamato immagine di e indicato anche

Dettagli

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica Tutorial - Studio di una funzione reale di variabile reale f : x R y = f (x) R Una funzione può essere: - 1 - algebrica ( razionale o irrazionale, intera o fratta) Classificare la trascendentale ( esponenziale,

Dettagli

Progetto Matematica in Rete - Funzioni - FUNZIONI. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B

Progetto Matematica in Rete - Funzioni - FUNZIONI. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B FUNZIONI Deinizione di unzione : una unzione che associa ad ogni elemento : A B, con A e B insiemi non vuoti, è una legge A uno e un solo elemento y B y () y viene chiamato immagine di e indicato anche

Dettagli

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n Si tratta del quadrato di un binomio. Si ha pertanto (x m y n ) 2 = x 2m 2x m y n + y 2n 4. La divisione (x 3 3x 2 + 5x 2) : (x 2) ha Q(x) = x 2 x + 3 e R = 4 Dalla divisione tra i polinomi risulta (x

Dettagli

Programma di MATEMATICA

Programma di MATEMATICA Classe 3B Indirizzo ELETTRONICA ED ELETTROTECNICA 1. MODULO 1: GEOMETRIA ANALITICA La parabola: la parabola come luogo geometrico del piano. Rappresentazione della parabola nel piano cartesiano e ricerca

Dettagli

Indice. Prefazione. Fattorizzazione di A + B Fattorizzazione di trinomi particolari 22 2

Indice. Prefazione. Fattorizzazione di A + B Fattorizzazione di trinomi particolari 22 2 Prefazione XI Test di ingresso 1 Capitolo 1 Insiemi numerici, intervalli e intorni 5 1.1 Introduzione 5 1.2 Insiemi generici 5 1.2.1 Relazioni e operazioni tra insiemi 7 1.3 Insiemi numerici 8 1.3.1 Rappresentazione

Dettagli

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto.

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto. Classe: TERZA (Liceo Artistico) Pagina 1 / 2 della Matematica La scomposizione dei polinomi in fattori primi L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la

Dettagli

Verso il concetto di funzione

Verso il concetto di funzione Verso il concetto di funzione Il termine funzione già appare in alcuni scritti del matematico Leibniz (1646-1716). Tuttavia, in un primo momento tale termine venne usato in riferimento a espressioni analitiche

Dettagli

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R.

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R. ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE PREMESSA Ai fini dello studio di una funzione la prima operazione da compiere è quella di determinare il suo dominio, ovvero l' insieme valori

Dettagli

MATEMATICA MATURITA LINGUISTICA. Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz

MATEMATICA MATURITA LINGUISTICA. Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz MATEMATICA MATURITA LINGUISTICA Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz 1 MATEMATICA MATURITA LINGUISTICA 1. CLASSIFICAZIONE FUNZIONI FUNZIONI ALGEBRICHE (in cui compaiono le quattro operazioni):

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ CAPITL 7 [numerazione araa] [numerazione devanagari] [numerazione cinese] LE FUNZINI E LE LR PRPRIETÀ IL PREZZ GIUST gni volta che acquistiamo un prodotto o un servizio, paghiamo in camio una certa cifra

Dettagli

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico 2015-2016 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le

Dettagli

Istituto Tecnico Nautico San Giorgio - Genova - Anno scolastico PROGRAMMA SVOLTO DI MATEMATICA

Istituto Tecnico Nautico San Giorgio - Genova - Anno scolastico PROGRAMMA SVOLTO DI MATEMATICA Classe: 1 a C Libro di testo: Bergamini Trifone Barozzi Matematica verde vol. 1 ed. Zanichelli Insiemi Definizione di insieme, rappresentazione grafica, tabulare, caratteristica di un insieme Gli insiemi

Dettagli

Programma svolto a.s. 2017/2018 Classe 1H Materia: Matematica Docente: De Rossi Francesco

Programma svolto a.s. 2017/2018 Classe 1H Materia: Matematica Docente: De Rossi Francesco Classe 1H Materia: Matematica Docente: De Rossi Francesco - Matematica multimediale. bianco Vol 1 Autori: M. Bergamini, G. Barozzi Casa Editrice: Zanichelli codice ISBN 978888334671 Capitolo 1 Insiemi

Dettagli

ISTITUTO TECNICO NAUTICO SAN GIORGIO. Anno scolastico 2011/12. Classe I Sezione E. Programma di Matematica. Docente: Pasquale Roberta.

ISTITUTO TECNICO NAUTICO SAN GIORGIO. Anno scolastico 2011/12. Classe I Sezione E. Programma di Matematica. Docente: Pasquale Roberta. Anno scolastico 2011/12 Classe I Sezione E Insiemistica. - Concetto di insieme e rappresentazione di un insieme. - Sottoinsiemi - Principali operazioni fra insiemi: unione, intersezione, complementare

Dettagli

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III SYLLABUS DI MATEMATICA Liceo Linguistico Classe III LE EQUAZIONI DI SECONDO GRADO Le equazioni di secondo grado e la loro risoluzione. La formula ridotta. Equazioni pure, spurie e monomie. Le relazioni

Dettagli

I.T.T.L. BUCCARI CAGLIARI PROGRAMMA DI MATEMATICA E COMPLEMENTI DOCENTE: PODDA GIAMPAOLO

I.T.T.L. BUCCARI CAGLIARI PROGRAMMA DI MATEMATICA E COMPLEMENTI DOCENTE: PODDA GIAMPAOLO I.T.T.L. BUCCARI CAGLIARI ANNO SCOLASTICO 2017/201 8 CLASSE II I E PROGRAMMA DI MATEMATICA E COMPLEMENTI DOCENTE: PODDA GIAMPAOLO IL PIANO CARTESIANO L ascissa di un punto su una retta: la distanza di

Dettagli

Esercitazione 2 - Soluzioni

Esercitazione 2 - Soluzioni Esercitazione - Soluzioni Francesco Davì ottobre 0 Esercizio (a) Si deve avere + x 0 x, che è verificato x R, in quanto il valore del modulo di un espressione non è mai negativo. L espressione al numeratore

Dettagli

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2 Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 8: Studio di funzioni Studio

Dettagli

Programma di MATEMATICA

Programma di MATEMATICA Classe 1 a E Indirizzo COSTRUZIONI, AMBIENTE E TERRITORIO Cap. 1 I NUMERI NATURALI I numeri naturali le quattro operazioni multipli e divisori le potenze e le relative proprietà espressioni numeriche la

Dettagli

Istituto d Istruzione Superiore Francesco Algarotti

Istituto d Istruzione Superiore Francesco Algarotti Classe: 1 M Docente: Antonio M. Povelato CAPITOLO 1 - Insiemi e numeri naturali Concetti primitivi di insieme e di elemento. Relazioni di appartenenza, inclusione e eguaglianza tra insiemi. Rappresentazione

Dettagli

y = tgx, la funzione reciproca e la funzione inversa di ciascuna di esse risultano rispettivamente avere le seguenti equazioni:

y = tgx, la funzione reciproca e la funzione inversa di ciascuna di esse risultano rispettivamente avere le seguenti equazioni: Classe 3^D a.s. 200/20 APPUNTI DA INTEGRARE ALLA LEZIONE DEL 0/2/0 LA FUNZIONE RECIPROCA E LA FUNZIONE INVERSA Partendo dalle funzioni trigonometriche fondamentali y = senx, y = cos x, y = tgx, la funzione

Dettagli

CLASSIFICAZIONE DELLE FUNZIONI - TEORIA

CLASSIFICAZIONE DELLE FUNZIONI - TEORIA CLASSIFICAZIONE DELLE FUNZIONI - TEORIA Razionali Intere Fratte 9 9 6 Intere Algebriche indice pari Fratte Irrazionali Intere Funzioni indice dispari Fratte log( 1 logaritmiche ) Goniometriche sen cos

Dettagli

Funzioni. Definizione Dominio e codominio Rappresentazione grafica Classificazione Esempi di grafici Esercizi

Funzioni. Definizione Dominio e codominio Rappresentazione grafica Classificazione Esempi di grafici Esercizi Funzioni Definizione Dominio e codominio Rappresentazione grafica Classificazione Esempi di grafici Esercizi Materia: Matematica Autore: Mario De Leo Definizioni Una quantità il cui valore può essere cambiato

Dettagli

Roberto Galimberti MATEMATICA

Roberto Galimberti MATEMATICA Docente Materia Classe Roberto Galimberti MATEMATICA 4L Programmazione Preventiva Anno Scolastico 2011-2012 Data 31/12/11 Obiettivi Cognitivi Minimi conoscere la definizione di circonferenza come luogo

Dettagli

ISTITUTO TECNICO DEI TRASPORTI E LOGISTICA

ISTITUTO TECNICO DEI TRASPORTI E LOGISTICA ISTITUTO TECNICO DEI TRASPORTI E LOGISTICA NAUTICO SAN GIORGIO NAUTICO C.COLOMBO PROGRAMMA SVOLTO NELLA CLASSE IAA MATERIA : MATEMATICA INSEGNANTE : PROF. Simona TRESCA Programma di Algebra: U.D. 1 : I

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente in (a, b) se f ( 1 ) f ( ) quando 1

Dettagli

Programma Svolto CONTENUTI DISCIPLINARI SVOLTI PRIMO QUADRIMESTRE ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE. Anno scolastico

Programma Svolto CONTENUTI DISCIPLINARI SVOLTI PRIMO QUADRIMESTRE ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE. Anno scolastico ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE I.T.C.G. L. EINAUDI LICEO SCIENTIFICO G. BRUNO MURAVERA Programma Svolto Anno scolastico 2016-2017 DISCIPLINA : Matematica CLASSI PRIME SEZ. B Corso SCIENZE APPLICATE

Dettagli

Istituto Tecnico Statale per il Turismo "Francesco Algarotti" Classe: 3 Sez. A A. S. 2018/19 PROGRAMMA DI MATEMATICA

Istituto Tecnico Statale per il Turismo Francesco Algarotti Classe: 3 Sez. A A. S. 2018/19 PROGRAMMA DI MATEMATICA Classe: 3 Sez. A A. S. 2018/19 Libro di testo: Bergamini Trifone Barozzi Matematica.bianco (2 vol.) Bergamini Trifone Barozzi Matematica.rosso (vol. 3s) Volume 2 Ripasso. Scomposizione in fattori primi

Dettagli

Analisi Matematica. Alcune funzioni elementari

Analisi Matematica. Alcune funzioni elementari a.a. 2014/2015 Laurea triennale in Informatica Analisi Matematica Alcune funzioni elementari Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti.

Dettagli

I.S.I.S.S. G. GALILEI PIANO DI LAVORO ANNUALE A. S. 2018/2019

I.S.I.S.S. G. GALILEI PIANO DI LAVORO ANNUALE A. S. 2018/2019 I.S.I.S.S. G. GALILEI PIANO DI LAVORO ANNUALE A. S. 2018/2019 Disciplina: MATEMATICA Classe: 3B RIM Docenti: Chiara Montali Indice degli argomenti Modulo n Titolo del modulo Durata (ore) 3.0 RECUPERO E

Dettagli

Contenuti del programma di Matematica. Classe Terza

Contenuti del programma di Matematica. Classe Terza Contenuti del programma di Matematica Classe Terza A.S. 2014/2015 Tema Contenuti GEOMETRIA Misura della lunghezza della circonferenza e NEL PIANO area del cerchio. COMLEMENT Equazioni e disequazioni con

Dettagli

Verica di Matematica su dominio e segno di una funzione [TEST 1]

Verica di Matematica su dominio e segno di una funzione [TEST 1] Verica di Matematica su dominio e segno di una funzione [TEST 1] 1. Esporre le principali caratteristiche della funzione logaritmica dopo averla denita. y = log a x 2. Spiegare come si calcola il dominio

Dettagli

Funzioni iperboliche.

Funzioni iperboliche. Funzioni iperboliche. 1 Definzione Si consideri l iperbole equilatera di equazione x y = 1. 1) Com è noto il suo grafico presenta due asintoti nelle rette di equazione y = ±x ed interseca l asse delle

Dettagli

Istituto Tecnico Statale per il Turismo "Francesco Algarotti" Classe: 3 Sez. A A. S. 2017/18 PROGRAMMA DI MATEMATICA

Istituto Tecnico Statale per il Turismo Francesco Algarotti Classe: 3 Sez. A A. S. 2017/18 PROGRAMMA DI MATEMATICA Classe: 3 Sez. A A. S. 2017/18 Libro di testo: Bergamini Trifone Barozzi Matematica.bianco (2 vol.) Bergamini Trifone Barozzi Matematica.rosso (vol. 3s) Volume 2 Ripasso. Scomposizione in fattori primi

Dettagli

SCHEDA PROGRAMMA SVOLTO A.S. 2017/18 Classe 1^ e 2^ Ps (serale)

SCHEDA PROGRAMMA SVOLTO A.S. 2017/18 Classe 1^ e 2^ Ps (serale) Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna ISTITUTO DI ISTRUZIONE SUPERIORE BUCCARI MARCONI Indirizzi: Trasporti Marittimi / Apparati ed Impianti

Dettagli

Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 2012/2013 docente: Elena Polastri,

Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 2012/2013 docente: Elena Polastri, Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 202/203 docente: Elena Polastri, plslne@unife.it Studio di funzione con indicazione degli asintoti e grafico probabile Studiare

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA III Parziale - Compito C 6/5/5 A. A. 4 5 ) Studiare la seguente funzione polinomiale:

Dettagli

CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI

CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE I.T.C.G. L. EINAUDI LICEO SCIENTIFICO G. BRUNO CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI ANNO SCOLASTICO 2016/2017 RICHIAMI DI ARITMETICA

Dettagli

FUNZIONI. Per introdurre correttamente il significato di funzione è necessario fare una breve panoramica sulla definizione di insieme.

FUNZIONI. Per introdurre correttamente il significato di funzione è necessario fare una breve panoramica sulla definizione di insieme. 1 FUNZIONI Per introdurre correttamente il significato di funzione è necessario fare una breve panoramica sulla definizione di insieme. Insiemi Un insieme è un raggruppamento di oggetti di qualsiasi natura.

Dettagli

Programma svolto a.s. 2018/2019 Classe 1H Materia: Matematica Docente: De Rossi Francesco

Programma svolto a.s. 2018/2019 Classe 1H Materia: Matematica Docente: De Rossi Francesco Programma svolto a.s. 2018/2019 Classe 1H Materia: Matematica Docente: De Rossi Francesco - Matematica multimediale. bianco Vol 1 Autori: M. Bergamini, G. Barozzi Casa Editrice: Zanichelli codice ISBN

Dettagli

Programma di MATEMATICA

Programma di MATEMATICA Classe 1 a E Indirizzo COSTRUZIONI, AMBIENTE E TERRITORIO Cap. 1 I NUMERI NATURALI I numeri naturali le quattro operazioni multipli e divisori le potenze e le relative proprietà espressioni numeriche la

Dettagli

Mauro Saita Grafici qualitativi di funzioni reali di variabile reale

Mauro Saita Grafici qualitativi di funzioni reali di variabile reale Mauro Saita Grafici qualitativi di funzioni reali di variabile reale Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Ottobre 2017 1 Indice 1 Qual è il grafico della

Dettagli

Istituto di Istruzione Secondaria Superiore Statale «Via Silvestri 301» Programma di MATEMATICA

Istituto di Istruzione Secondaria Superiore Statale «Via Silvestri 301» Programma di MATEMATICA 1. MODULO 1: RICHIAMI DI CALCOLO LETTERALE La scomposizione di polinomi e le operazioni con le frazioni algebriche 2. MODULO 2: LE EQUAZIONI Istituto di Istruzione Secondaria Superiore Statale Classe 1

Dettagli

G1. Generalità sulle funzioni

G1. Generalità sulle funzioni G. Generalità sulle funzioni G. Notazioni utilizzate Dati due numeri detti estremi dell intervallo, l intervallo è l insieme dei numeri reali compresi tra essi. Per esempio con la notazione

Dettagli

IPSSEOA "PiETRO PIAZZA" - PALERMO. Programma svolto di Matematica. Anno scolastico 2016/2017

IPSSEOA PiETRO PIAZZA - PALERMO. Programma svolto di Matematica. Anno scolastico 2016/2017 IPSSEOA "PiETRO PIAZZA" - PALERMO Programma svolto di Matematica Classe: 1 A_ 1 Periodo Didattico )t. s;. - :,., 4 " - 4.UDA1: INSIEMINUMERICI L'insieme dei numeri naturali : Operazioni, proprieta delle

Dettagli

IIS Via Silvestri 301. Plesso Volta. Programma di Matematica Indirizzo Elettronica ed Elettrotecnica a.s. 2016/17

IIS Via Silvestri 301. Plesso Volta. Programma di Matematica Indirizzo Elettronica ed Elettrotecnica a.s. 2016/17 IIS Via Silvestri 301. Plesso Volta. Programma di Matematica Indirizzo Elettronica ed Elettrotecnica a.s. 2016/17 Classe 1A MODULO 1: I NUMERI NATURALI 1. Le operazioni definite nell insieme dei numeri

Dettagli

ISTITUTO TECNICO INDUSTRIALE G. FERRARIS

ISTITUTO TECNICO INDUSTRIALE G. FERRARIS ISTITUTO TECNICO INDUSTRIALE G. FERRARIS EMPOLI PIANO DI LAVORO PROF. BICCI ANDREA CONSIGLIO DI CLASSE 3 SEZ. B Informatica INDIRIZZO INFORMATICO ANNO SCOLASTICO 2015-2016 MATERIE MATEMATICA (tre ore settimanali)

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE G. CIGNA G. BARUFFI F. GARELLI MONDOVI Anno Scolastico 2018/2019. Programma svolto di MATEMATICA

ISTITUTO DI ISTRUZIONE SUPERIORE G. CIGNA G. BARUFFI F. GARELLI MONDOVI Anno Scolastico 2018/2019. Programma svolto di MATEMATICA ISTITUTO DI ISTRUZIONE SUPERIORE G. CIGNA G. BARUFFI F. GARELLI MONDOVI Anno Scolastico 018/019 Classe: ^MC/A Docente: SERGIACOMI NICOLETTA Programma svolto di MATEMATICA CONTENUTI Nucleo tematico 1: Richiami

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE

FUNZIONI REALI DI UNA VARIABILE REALE FUNZIONI REALI DI UNA VARIABILE REALE Vogliamo ora limitare la nostra attenzione a quelle funzioni che hanno come insieme di partenza e di arrivo un sottoinsieme dei numeri reali, cioè A, B R. Es6. Funzione

Dettagli

Programmazione disciplinare: Matematica 4 anno

Programmazione disciplinare: Matematica 4 anno Programmazione disciplinare: Matematica 4 anno CONTENUTI RISULTATI DI APPRENDIMENTO (Competenze) CONOSCENZE ABILITA TEMPI (settimane) Intervalli limitati e illimitati in R Saper riconoscere intervalli

Dettagli

Programmazione disciplinare: Matematica 4 anno

Programmazione disciplinare: Matematica 4 anno Programmazione disciplinare: Matematica 4 anno CONTENUTI Intervalli limitati e illimitati in R RISULTATI DI APPRENDIMENTO (Competenze) CONOSCENZE ABILITA TEMPI (settimane) Saper riconoscere intervalli

Dettagli

CLASSE I D. Anno scolastico 2017/2018

CLASSE I D. Anno scolastico 2017/2018 PROGRAMMA DI MATEMATICA Prof. MINARDA ELISABETTA CLASSE I D Anno scolastico 2017/2018 ARITMETICA: L insieme dei numeri naturali- Operazioni- Calcolo del M.C.D e del m.c.m- I sistemi di numerazione. L insieme

Dettagli

PROGRAMMA SVOLTO A.S. 2018/2019 Classe: 1^A Amministrazione Finanza e Marketing Disciplina: Matematica Prof. Andrea Vianello

PROGRAMMA SVOLTO A.S. 2018/2019 Classe: 1^A Amministrazione Finanza e Marketing Disciplina: Matematica Prof. Andrea Vianello Classe: 1^A Amministrazione Finanza e Marketing Mod.1 Calcolo numerico Insiemistica: significato di insieme, intersezione, unione, appartenenza. Gli insiemi numerici N, Z, Q e R. Multipli e divisori di

Dettagli

Coordinate cartesiane nel piano

Coordinate cartesiane nel piano Coordinate cartesiane nel piano O = (0, 0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

3. Segni della funzione (positività e negatività)

3. Segni della funzione (positività e negatività) . Segni della funzione (positività e negatività) Questo punto, qualora sia possibile algebricamente, ci permette di stabilire il segno che assume la variabile dipendente y (che esprime il valore della

Dettagli

STUDIO DEL GRAFICO DI UNA FUNZIONE

STUDIO DEL GRAFICO DI UNA FUNZIONE STUDIO DEL GRAFICO DI UNA FUNZIONE PROF.SSA ROSSELLA PISCOPO 2 di 35 Indice 1 SCHEMA PER LO STUDIO DEL GRAFICO DI FUNZIONE... 4 2 ESEMPI... 11 2.1 2.2 2.3 2.4 2.5 2.6 FUNZIONE ESPONENZIALE... 11 FUNZIONE

Dettagli

M.Bramanti, C.D.Pagani, S.Salsa Matematica. Calcolo infinitesimale e algebra lineare. Ed. Zanichelli. Bologna 2004, Seconda Edizione.

M.Bramanti, C.D.Pagani, S.Salsa Matematica. Calcolo infinitesimale e algebra lineare. Ed. Zanichelli. Bologna 2004, Seconda Edizione. Programma dettagliato di ANALISI MATEMATICA 1 Ingegneria per l Ambiente e il Territorio Ingegneria Civile (dalla letta P alla Z) Università degli Studi di Cagliari Anno Accademico 2007/2008 Docente: R.

Dettagli

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006 Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..

Dettagli

ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE I.T.C.G. L. EINAUDI

ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE I.T.C.G. L. EINAUDI CLASSE 1 B AFM 1. L ARITMETICA E L ALGEBRA DEI NUMERI I numeri naturali: che cosa sono, a cosa servono. Operazioni con i numeri naturali e loro proprietà: addizione, sottrazione, moltiplicazione, divisione,

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio Studio di Funzione

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio Studio di Funzione Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio 2017 Studio di Funzione 1. Si consideri la funzione reale di variabile reale così definita f() = 2 + 4. (a) Determinare

Dettagli

SCHEDA PROGRAMMA SVOLTO Classe 1^ Ps (serale)

SCHEDA PROGRAMMA SVOLTO Classe 1^ Ps (serale) Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna ISTITUTO DI ISTRUZIONE SUPERIORE BUCCARI MARCONI Indirizzi: Trasporti Marittimi / Apparati ed Impianti

Dettagli

PROGRAMMAZIONE III Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 30

PROGRAMMAZIONE III Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 30 PROGRAMMAZIONE III Geometri ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 30 B Geometria analitica 32 C Goniometria 30 D Trigonometria

Dettagli

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari Secondo modulo: Algebra Obiettivi 1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari 2. risolvere equazioni intere e frazionarie di primo grado, secondo grado, grado superiore

Dettagli

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera?

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera? Calcolo letterale 1. Quale delle seguenti affermazioni è vera? (a) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (b) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (XX) (c) m.c.m.(49a b 3 c, 4a 3 bc ) = 49a bc

Dettagli

- le disequazioni di grado superiore al secondo: disequazioni biquadratiche, binomie e trinomie

- le disequazioni di grado superiore al secondo: disequazioni biquadratiche, binomie e trinomie LICEO ARTISTICO STATALE BRUNO MUNARI, CREMONA Anno scolastico 2011-2012 PROGRAMMA SVOLTO DI MATEMATICA CLASSE IV A Ripasso: le disequazioni e le loro proprietà: (pag. 2, Volume SL 1) - gli intervalli limitati

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

Istituto Fogazzaro. Programma di Matemetica. Anno Scolastico 2014/2015. Classe III. Equazioni di II grado

Istituto Fogazzaro. Programma di Matemetica. Anno Scolastico 2014/2015. Classe III. Equazioni di II grado Programma di Matemetica Anno Scolastico 2014/2015 Classe III Equazioni di II grado Equazioni di secondo grado complete, formula risolutiva Scomposizione di un equazione di II grado Equazioni di secondo

Dettagli

Riunione 18/11/2014 h.15.00

Riunione 18/11/2014 h.15.00 Riunione 18/11/2014 h.15.00 Principali Scadenze 24 novembre 2014 Inizio iscrizione su Portale dello Studente 10 gennaio 2015 Chiusura iscrizioni e pagamento (25,00 euro) 21 gennaio 2015 primo incontro

Dettagli

FUNZIONI E LORO PROPRIETÀ. V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G.

FUNZIONI E LORO PROPRIETÀ. V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G. FUNZIONI E LORO PROPRIETÀ 1 V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G. A1 DEFINIZIONE DI FUNZIONE 2 Diapositiva 2 A1 Autore; 08/09/2015 DEFINIZIONE DI FUNZIONE X Y E una funzione! g a b c d e f.1.2.3.4

Dettagli

PROGRAMMA DI MATEMATICA

PROGRAMMA DI MATEMATICA PROGRAMMA DI MATEMATICA Classe 1 A /1 B GRAFICA anno scolastico 2015-2016 La teoria degli insiemi Il concetto di insieme, il simbolo di appartenenza, la rappresentazione grafica di Eulero- Venn, la rappresentazione

Dettagli

2 Numeri complessi. 3 Lo spazio euclideo R N. 4 Topologia di R N

2 Numeri complessi. 3 Lo spazio euclideo R N. 4 Topologia di R N PROGRAMMA DI ANALISI MATEMATICA L-A Corsi di Laurea in Ing. Informatica, Ing. dell Automazione, Ing. Elettrica (Prof. Ravaglia) Anno Accademico 2007/08 Simboli: I= introduzione intuitiva, D = definizione,

Dettagli