y = tgx, la funzione reciproca e la funzione inversa di ciascuna di esse risultano rispettivamente avere le seguenti equazioni:

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "y = tgx, la funzione reciproca e la funzione inversa di ciascuna di esse risultano rispettivamente avere le seguenti equazioni:"

Transcript

1 Classe 3^D a.s. 200/20 APPUNTI DA INTEGRARE ALLA LEZIONE DEL 0/2/0 LA FUNZIONE RECIPROCA E LA FUNZIONE INVERSA Partendo dalle funzioni trigonometriche fondamentali y = senx, y = cos x, y = tgx, la funzione reciproca e la funzione inversa di ciascuna di esse risultano rispettivamente avere le seguenti equazioni: y = cosecx senx y = sec x cos x y = cot gx y = arcsenx y = arccos x y = arctgx tgx diamo la definizione geometrica (sulla circonferenza goniometrica) di cosecante, secante e cotangente di un angolo: A cura di prof.ssa MINA Maria Letizia Redatti e pubblicati in data 4/2/0

2 Classe 3^D a.s. 200/20 APPUNTI DA INTEGRARE ALLA LEZIONE DEL 0/2/0 A cura di prof.ssa MINA Maria Letizia 2 Redatti e pubblicati in data 4/2/0

3 Classe 3^D a.s. 200/20 APPUNTI DA INTEGRARE ALLA LEZIONE DEL 0/2/0 Prima di trattare le funzioni trigonometriche reciproche ed inverse delle funzioni trigonometriche fondamentali, diamo alcuni concetti essenziali: f F FUNZIONE INIETTIVA: una funzione f : D C si dice iniettiva se elementi distinti del dominio hanno immagini distinte ovvero se ad ogni elemento del codominio corrisponde al più un elemento distinto del dominio; in simboli, x2 D : 2 ( x ) f ( ) : D C è iniettiva sse x x x f x ; 2 se una funzione reale di variabile reale è iniettiva, allora tracciando sul suo piano cartesiano una qualsiasi retta parallela all asse x, questa intersecherà il grafico della funzione al più una volta. F FUNZIONE SURIETTIVA: una funzione f D C f D coincide con il codominio ovvero quando ogni elemento y del codominio C è immagine di almeno un elemento x del dominio D; in simboli ( x) y f : D C è suriettiva sse y C, x D/ f = : si dice suriettiva quando l insieme delle immagini ( ) F FUNZIONE BIIETTIVA: una funzione sua funzione inversa sarà Osserviamo ancora che: f : C D. f : D C si dice biiettiva se è sia iniettiva che suriettiva; una funzione biiettiva è invertibile è la F se nell intorno di un punto c la funzione y = f (x) è positiva/negativa, allora il limite della funzione per x c mantiene lo stesso segno della funzione; F se lim f ( x) = 0, allora lim = x c x c f ( x ) A cura di prof.ssa MINA Maria Letizia 3 Redatti e pubblicati in data 4/2/0

4 Classe 3^D a.s. 200/20 APPUNTI DA INTEGRARE ALLA LEZIONE DEL 0/2/0 Funzione trigonometrica fondamentale Funzione reciproca Funzione inversa y = senx y = arcsenx D = ( ; ) y = = cos ecx D = [ ; senx [ ; D = { x R / x kπ, k Z} π π ; 2 2 ; ; ( [ ) operando una restrizione della funzione seno all intervallo π π ;, è garantita la biiettività della funzione seno dunque la 2 2 sua invertibilità; la funzione inversa del seno, cioè l arcoseno, avrà come dominio il codominio della funzione seno e come codominio il dominio della funzione seno ristretta all intervallo π π ; ; 2 2 A cura di prof.ssa MINA Maria Letizia 4 Redatti e pubblicati in data 4/2/0

5 Classe 3^D a.s. 200/20 APPUNTI DA INTEGRARE ALLA LEZIONE DEL 0/2/0 se consideriamo solo la sinusoide se consideriamo solo la sinusoide il grafico della funzione arcoseno si può ottenere applicando al grafico della funzione seno, ristretta all opportuno intervallo, la simmetria rispetto alla bisettrice del primo e terzo quadrante, D = 0;2π D = x R / x kπ, k Z,0 k 2 ovvero [ [ ; { } ( ; [ ; ) π π π π senx : ; S y= x [ ; arcsenx : [ ; ; osserviamo che: lim senx = 0 x 0 lim senx = 0 lim senx = 0 x π x π x 2π lim senx = 0 osserviamo che: lim = x 0 senx lim = x π senx lim = x π senx lim = x 2π senx A cura di prof.ssa MINA Maria Letizia 5 Redatti e pubblicati in data 4/2/0

6 Classe 3^D a.s. 200/20 APPUNTI DA INTEGRARE ALLA LEZIONE DEL 0/2/0 gli zeri della funzione seno sono i valori da escludere nel dominio della funzione cosecante; π sen = 2 π sen 3 = 2 π = cosec = π 2 sen 2 π = cosec 3 = π 2 sen 3 2 la funzione seno periodo T = 2π è periodica di la funzione seno e la funzione cosecante hanno in comune tutti e soli i punti che, nel grafico della funzione seno, hanno ordinata ± ; la funzione cosecante è periodica di periodo T = 2π A cura di prof.ssa MINA Maria Letizia 6 Redatti e pubblicati in data 4/2/0

7 Classe 3^D a.s. 200/20 APPUNTI DA INTEGRARE ALLA LEZIONE DEL 0/2/0 y = cos x y = arccos x y = = sec x D = ( ; ) cos x D = [ ; [ ; π [ 0;π D = x R / x ( 2k ), k Z 2 operando una restrizione della funzione coseno all intervallo ( ; [ ; ) [ 0 ;π, è garantita la biiettività della funzione coseno dunque la se consideriamo solo la cosinusoide se consideriamo solo la sinusoide sua invertibilità; la funzione inversa del coseno, cioè l arcocoseno, avrà come dominio il codominio della funzione coseno e come codominio il dominio della funzione coseno D = [ 0;2π π ristretta all intervallo [ 0 ;π; ; x R / x ( 2k ), k Z, [ D = 0 k ( ; [ ; ) 2 A cura di prof.ssa MINA Maria Letizia 7 Redatti e pubblicati in data 4/2/0

8 Classe 3^D a.s. 200/20 APPUNTI DA INTEGRARE ALLA LEZIONE DEL 0/2/0 il grafico della funzione arcocoseno si può ottenere applicando al grafico della funzione coseno, ristretta all opportuno intervallo, la simmetria rispetto alla bisettrice del primo e terzo quadrante, ovvero cos x : [ 0; π [ ; arccos x : [ ; [ 0;π S y= x gli zeri della funzione coseno sono i valori da escludere nel dominio della funzione secante; la funzione coseno e la funzione secante hanno in comune tutti e soli i punti che, nel grafico della funzione coseno, hanno ordinata ± ; la funzione secante è periodica di periodo T = 2π. A cura di prof.ssa MINA Maria Letizia 8 Redatti e pubblicati in data 4/2/0

9 Classe 3^D a.s. 200/20 APPUNTI DA INTEGRARE ALLA LEZIONE DEL 0/2/0 y = tgx D = x R / x ( ; ) ( 2k ) π, k Z 2 y = = cot gx tgx D = { x R / x k, k Z} ( ; ) y = arctgx π ( ; ) π π operando una restrizione della funzione tangente all intervallo D = ; 2 2 π π ; 2 2, è garantita la biiettività della funzione tangente dunque la sua invertibilità; la funzione inversa della tangente, cioè l arcotangente, avrà come dominio il codominio della funzione tangente e come codominio il dominio della funzione tangente ristretta all intervallo π π ; ; 2 2 A cura di prof.ssa MINA Maria Letizia 9 Redatti e pubblicati in data 4/2/0

10 Classe 3^D a.s. 200/20 APPUNTI DA INTEGRARE ALLA LEZIONE DEL 0/2/0 se consideriamo solo la tangentoide x R / x D = k 0 ( ; ) ( 2k ) π, k Z, 2 se consideriamo solo la tangentoide x R / x kπ, k Z, D = 0 k 2 ( ; ) il grafico della funzione arcotangente si può ottenere applicando al grafico della funzione tangente, ristretta all opportuno intervallo, la simmetria rispetto alla bisettrice del primo e terzo quadrante, ovvero π π π π tgx : ; S = 2 2 y x 2 2 ( ; ) arctgx : ( ; ) ; gli zeri della funzione tangente sono i valori da escludere nel dominio della funzione cotangente; la funzione cotangente è periodica di periodo T = π A cura di prof.ssa MINA Maria Letizia 0 Redatti e pubblicati in data 4/2/0

11 Classe 3^D a.s. 200/20 APPUNTI DA INTEGRARE ALLA LEZIONE DEL 0/2/0 A cura di prof.ssa MINA Maria Letizia Redatti e pubblicati in data 4/2/0

LE FUNZIONI TRIGONOMETRICHE. Prof.ssa CaterinaVespia

LE FUNZIONI TRIGONOMETRICHE. Prof.ssa CaterinaVespia LE FUNZIONI TRIGONOMETRICHE 1 LE FUNZIONI SENO E COSENO Detto P il punto sulla circonferenza che è associato all angolo α, e H il punto della proiezione di P sull asse delle x, si definisce: coseno seno

Dettagli

Anno 5 Funzioni inverse e funzioni composte

Anno 5 Funzioni inverse e funzioni composte Anno 5 Funzioni inverse e funzioni composte 1 Introduzione In questa lezione impareremo a definire e ricercare le funzioni inverse e le funzioni composte. Al termine di questa lezione sarai in grado di:

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

Note di trigonometria

Note di trigonometria Note di trigonometria Daniel Gessuti indice Elementi di Trigonometria Seno, coseno e tangente Relazione fondamentale Secante, cosecante e cotangente 3 Le funzioni seno, coseno e tangente e le loro inverse

Dettagli

Classe 3 Sezione Indirizzo Liceo delle Scienze Applicate

Classe 3 Sezione Indirizzo Liceo delle Scienze Applicate Alessandria, Settembre 2016 Anno scolastico 2016/2017 A Classe 3 Sezione C Indirizzo Liceo delle Scienze Applicate Materia Matematica Docente/i Nome e cognome PierCarlo Barbierato Nome e cognome Firma

Dettagli

Anno 4 Funzioni goniometriche: definizioni e grafici

Anno 4 Funzioni goniometriche: definizioni e grafici Anno 4 Funzioni goniometriche: definizioni e grafici 1 Introduzione In questa lezione descriveremo le funzioni goniometriche. Forniremo le definizioni delle principali funzioni goniometriche e ne disegneremo

Dettagli

f: x R sen x [0, 1] g: x R cos x [0, 1] 1.Il dominio della funzione sen x è R. 1. Il dominio della funzione cos x è R.

f: x R sen x [0, 1] g: x R cos x [0, 1] 1.Il dominio della funzione sen x è R. 1. Il dominio della funzione cos x è R. Le funzioni seno e coseno. Ogni numero reale è la misura in radianti di un angolo goniometrico; pertanto possiamo definire il seno e il coseno di un numero reale ricorrendo al seno e coseno dell angolo

Dettagli

Verso il concetto di funzione

Verso il concetto di funzione Verso il concetto di funzione Il termine funzione già appare in alcuni scritti del matematico Leibniz (1646-1716). Tuttavia, in un primo momento tale termine venne usato in riferimento a espressioni analitiche

Dettagli

Progetto Matematica in Rete - Funzioni - FUNZIONI. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B

Progetto Matematica in Rete - Funzioni - FUNZIONI. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B FUNZIONI Deinizione di unzione : una unzione che associa ad ogni elemento : A B, con A e B insiemi non vuoti, è una legge A uno e un solo elemento y B y () y viene chiamato immagine di e indicato anche

Dettagli

Programma di Matematica Anno Scolastico 2012/2013 Classe III G

Programma di Matematica Anno Scolastico 2012/2013 Classe III G Liceo Scientifico Statale G. BATTAGLINI Corso Umberto I 74100 Taranto Programma di Matematica Anno Scolastico 2012/2013 Classe III G Prof. Paolo Pantano Richiami di Algebra Equazioni e disequazioni Definizioni.

Dettagli

- le disequazioni di grado superiore al secondo: disequazioni biquadratiche, binomie e trinomie

- le disequazioni di grado superiore al secondo: disequazioni biquadratiche, binomie e trinomie LICEO ARTISTICO STATALE BRUNO MUNARI, CREMONA Anno scolastico 2011-2012 PROGRAMMA SVOLTO DI MATEMATICA CLASSE IV A Ripasso: le disequazioni e le loro proprietà: (pag. 2, Volume SL 1) - gli intervalli limitati

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Crescente Decrescente Crescente Estremi di una funzione f ( ) f ( c) per ogni in [a, b]. f ( ) f ( d) per ogni

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente in (a, b) se f ( 1 ) f ( ) quando 1

Dettagli

FUNZIONI E LORO PROPRIETÀ. V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G.

FUNZIONI E LORO PROPRIETÀ. V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G. FUNZIONI E LORO PROPRIETÀ 1 V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G. A1 DEFINIZIONE DI FUNZIONE 2 Diapositiva 2 A1 Autore; 08/09/2015 DEFINIZIONE DI FUNZIONE X Y E una funzione! g a b c d e f.1.2.3.4

Dettagli

Le funzioni periodiche e il ritmo della vita Molti fenomeni naturali hanno un andamento ciclico ( o periodico), cioè ad intervalli di tempo fissati,

Le funzioni periodiche e il ritmo della vita Molti fenomeni naturali hanno un andamento ciclico ( o periodico), cioè ad intervalli di tempo fissati, Le funzioni periodiche e il ritmo della vita Molti fenomeni naturali hanno un andamento ciclico ( o periodico), cioè ad intervalli di tempo fissati, detti periodi, si ripetono con le stesse modalità: il

Dettagli

Contenuti del programma di Matematica. Classe Terza

Contenuti del programma di Matematica. Classe Terza Contenuti del programma di Matematica Classe Terza A.S. 2014/2015 Tema Contenuti GEOMETRIA Misura della lunghezza della circonferenza e NEL PIANO area del cerchio. COMLEMENT Equazioni e disequazioni con

Dettagli

FUNZIONI E INSIEMI DI DEFINIZIONE

FUNZIONI E INSIEMI DI DEFINIZIONE FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei, Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente (non decrescente) in un intervallo I se f ( 1 ) < f ( ) (f ( 1 ) f ( )), quando 1

Dettagli

Equazioni e disequazioni goniometriche

Equazioni e disequazioni goniometriche 1 Equazioni e disequazioni goniometriche Restrizione di una funzione Nel definire la funzione logaritmica come inversa di quella esponenziale, avevamo ricordato che: Una funzione è invertibile se e soltanto

Dettagli

x dove fx ( ) assume tali valori si dice punto di massimo o di

x dove fx ( ) assume tali valori si dice punto di massimo o di 7. Funzioni limitate ed illimitate, funzioni inverse Definizione: Una funzione f: A Bsi dice limitata superiormente od inferiormente se il suo condominio è un insieme limitato superiormente od inferiormente.

Dettagli

1. Funzioni reali di una variabile reale

1. Funzioni reali di una variabile reale Di cosa parleremo In questo capitolo introduttivo ci occuperemo di funzioni reali di una variabile reale; precisamente, daremo dei criteri per la determinazione del campo di esistenza delle varie tipologie

Dettagli

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI.

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI. Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI Giovanni Villani FUNZIONI ELEMENTARI Funzione potenza con esponente n N Si definisce

Dettagli

Ottavio Serra Esercizi di calcolo 2 Funzioni invertibili

Ottavio Serra Esercizi di calcolo 2 Funzioni invertibili Ottavio Serra Esercizi di calcolo Funzioni invertibili Una funzione f: A B iniettiva e suriettiva è biunivoca e perciò invertibile. Ricordo che f è iniettiva se per tutti gli, y di A, f() = f(y) implica

Dettagli

FUNZIONI GONIOMETRICHE

FUNZIONI GONIOMETRICHE FUNZIONI GONIOMETRICHE ANGOLI Col termine angolo indichiamo la parte di piano limitata da due semirette aventi la stessa origine, chiamata vertice. Possiamo definire anche l angolo come la parte di piano

Dettagli

Dato un angolo α e il suo complementare (π/2 α) il seno del complementare equivale a:

Dato un angolo α e il suo complementare (π/2 α) il seno del complementare equivale a: 6651 6652 6653 6654 6655 6656 6657 6658 L'equazione 2 senx 1 = 0 per 0 x < 2π ha: A) una soluzione B) quattro soluzioni C) solo due soluzioni D) infinite soluzioni Dato l'angolo α di 90, si può affermare

Dettagli

Programma di Matematica Liceo Scientifico A. Romita Classe: 4G a.s.:2015 / 2016

Programma di Matematica Liceo Scientifico A. Romita Classe: 4G a.s.:2015 / 2016 Programma di Matematica Liceo Scientifico A. Romita Classe: 4G a.s.:2015 / 2016 Le funzioni goniometriche La misura degli angoli Gli angoli e la loro ampiezza La misura in gradi La misura i radianti Dai

Dettagli

Corso di Analisi Matematica. Funzioni continue

Corso di Analisi Matematica. Funzioni continue a.a. 203/204 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni continue Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti.

Dettagli

Anno Scolastico:

Anno Scolastico: LICEO SCIENTIFICO DI STATO "G. BATTAGLINI" TARANTO PROGRAMMA DI MATEMATICA svolto nella Classe III Sezione A. Anno Scolastico: 2012-2013. Docente: Francesco Pantano. 1. Disequazioni. Richiami sulle disequazioni

Dettagli

PROGRAMMA SVOLTO E INDICAZIONI LAVORO ESTIVO. a. s CLASSE IIIC. Insegnante Pellegrino Innocenza. Disciplina MATEMATICA

PROGRAMMA SVOLTO E INDICAZIONI LAVORO ESTIVO. a. s CLASSE IIIC. Insegnante Pellegrino Innocenza. Disciplina MATEMATICA PROGRAMMA SVOLTO E INDICAZIONI LAVORO ESTIVO a. s. 2016-2017 CLASSE IIIC Insegnante Pellegrino Innocenza Disciplina MATEMATICA PROGRAMMA SVOLTO Equazioni e disequazioni algebriche Ripasso di equazioni

Dettagli

LE FUNZIONI GONIOMETRICHE: SENO, COSENO E TANGENTE

LE FUNZIONI GONIOMETRICHE: SENO, COSENO E TANGENTE LE FUNZIONI GONIOMETRICHE: SENO, COSENO E TANGENTE 1. LE FUNZIONI SENO E COSENO LE FUNZIONI SENO, COSENO E TANGENTE DEFINIZIONE Seno e coseno Consideriamo la circonferenza goniometrica e un angolo orientato

Dettagli

Trigonometria: breve riepilogo.

Trigonometria: breve riepilogo. Corso di laurea in Matematica Corso di Analisi Matematica - Dott.ssa Sandra Lucente Trigonometria: breve riepilogo. Definizioni iniziali Saper misurare un angolo in gradi sessagesimali, saper svolgere

Dettagli

Andamento e periodo delle funzioni goniometriche

Andamento e periodo delle funzioni goniometriche Andamento e periodo delle funzioni goniometriche In questa dispensa ricaviamo gli andamenti delle funzioni goniometriche seno, coseno, tangente e cotangente tra 0 e 360, detti, rispettivamente, sinusoide,

Dettagli

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto.

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto. Classe: TERZA (Liceo Artistico) Pagina 1 / 2 della Matematica La scomposizione dei polinomi in fattori primi L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la

Dettagli

1. FUNZIONI IN UNA VARIABILE

1. FUNZIONI IN UNA VARIABILE 1. FUNZIONI IN UNA VARIABILE Definizione: Dati due insiemi A, B chiamiamo funzione da A in B ogni, f, applicazione (legge, corrispondenza) che associa ad ogni elemento di A uno ed uno solo elemento di

Dettagli

Funzioni (parte II).

Funzioni (parte II). Funzioni (parte II). Paola Mannucci e Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 21 ottobre 214 Paola Mannucci e Alvise Sommariva Introduzione. 1/ 55 Funzioni trigonometriche.

Dettagli

MATEMATICA. a.a. 2014/15. 1a. Funzioni (II parte):

MATEMATICA. a.a. 2014/15. 1a. Funzioni (II parte): MATEMATICA a.a. 014/15 1a. Funzioni (II parte): Funzioni iniettive, suriettive, bigettive. Funzioni reali. Campo di esistenza. Funzioni pari e dispari Funzione iniettiva y=f() 1 3 X 4 y 6 Y y y 1 y 3 y

Dettagli

SCHEDA OBIETTIVI MINIMI. Materia:MATEMATICA

SCHEDA OBIETTIVI MINIMI. Materia:MATEMATICA Pag. 1 di 5 SCHEDA OBIETTIVI MINIMI Materia:MATEMATICA Classi QUARTA A e QUARTA B Spec.: LICEO DELLE SCIENZE APPLICATE a.s: 2016 / 2017 4 3 2 1 Presidente di dipartimento 0 DOC DS Maria Grazia Gillone

Dettagli

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Matematica Funzioni Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Le Funzioni e loro caratteristiche Introduzione L analisi di diversi fenomeni della natura o la risoluzione di problemi

Dettagli

Funzioni e grafici. prof. Andres Manzini

Funzioni e grafici. prof. Andres Manzini Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione Definizione Si dice funzione (o applicazione)

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA. PROGRAMMA DI Matematica. Classe IVB. Anno Scolastico

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA. PROGRAMMA DI Matematica. Classe IVB. Anno Scolastico LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI Matematica Classe IVB Anno Scolastico 2014-2015 Insegnante: Prof.ssa La Salandra Incoronata 1 Le coniche nella discussione dei problemi (Richiami)

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

Unità Didattica N 2 Le funzioni

Unità Didattica N 2 Le funzioni Unità Didattica N Le funzioni 1 Unità Didattica N Le funzioni 05) Definizione di applicazione o funzione o mappa. 06) Classificazione delle funzioni numeriche 07) Estremi di una funzione, funzioni limitate.

Dettagli

Liceo Scientifico G. Galilei Siena Anno scolastico PROGRAMMA SVOLTO MATEMATICA INSEGNANTE: De Nicola Maria CLASSE I C

Liceo Scientifico G. Galilei Siena Anno scolastico PROGRAMMA SVOLTO MATEMATICA INSEGNANTE: De Nicola Maria CLASSE I C Liceo Scientifico G. Galilei Siena Anno scolastico 2015-16 PROGRAMMA SVOLTO MATEMATICA INSEGNANTE: De Nicola Maria ALGEBRA I numeri CLASSE I C I numeri naturali: definizione, ordinamento e rappresentazione

Dettagli

Funzioni. Capitolo Concetti preliminari. Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo

Funzioni. Capitolo Concetti preliminari. Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo Capitolo Funzioni. Concetti preliminari Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo f : A B, una corrispondenza che associa ad ogni elemento A un unico

Dettagli

PROGRAMMA di MATEMATICA

PROGRAMMA di MATEMATICA Liceo Scientifico F. Lussana - Bergamo PROGRAMMA di MATEMATICA Classe 3^ F a.s. 2013/14 - Docente: Marcella Cotroneo Libro di testo : Leonardo Sasso "Nuova Matematica a colori 3" - Petrini Ore settimanali

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE

FUNZIONI REALI DI UNA VARIABILE REALE FUNZIONI REALI DI UNA VARIABILE REALE Vogliamo ora limitare la nostra attenzione a quelle funzioni che hanno come insieme di partenza e di arrivo un sottoinsieme dei numeri reali, cioè A, B R. Es6. Funzione

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

MATEMATICA COMPLEMENTI DI MATEMATICA

MATEMATICA COMPLEMENTI DI MATEMATICA ISTITUTO TECNICO TECNOLOGICO STATALE G. e M. MONTANI FERMO Anno Scolastico 2014/ 15 PROGRAMMA SVOLTO DI Disciplina: MATEMATICA Classe di Concorso A047 3 ore settimanali Disciplina: COMPLEMENTI DI MATEMATICA

Dettagli

LICEO SCIENTIFICO STATALE GOBETTI - SEGRE DI TORINO. Anno scolastico Docente: Professor GILITOS LORENZO

LICEO SCIENTIFICO STATALE GOBETTI - SEGRE DI TORINO. Anno scolastico Docente: Professor GILITOS LORENZO LICEO SCIENTIFICO STATALE GOBETTI SEGRE Via Maria Vittoria n. 39/bis 10123 Torino Tel. 011/817.41.57 011/839.52.19 - Fax 011/839.58.97 e-mail: dirigente@liceogobetti.it Succursale Via. Giulia di Barolo

Dettagli

PROGRAMMAZIONE GENERALE MATEMATICA-INFORMATICA a.s

PROGRAMMAZIONE GENERALE MATEMATICA-INFORMATICA a.s PROGRAMMAZIONE GENERALE MATEMATICA-INFORMATICA a.s. 2013-2014 GINNASIO CLASSI 4 sez. A-B-C SCIENZE UMANE CLASSI 1 sez. A-B-C-D-E-F Aritmetica e algebra Il primo anno sarà dedicato al passaggio dal calcolo

Dettagli

EQUAZIONI E DISEQUAZIONI GONIOMETRICHE

EQUAZIONI E DISEQUAZIONI GONIOMETRICHE EQUAZIONI E DISEQUAZIONI GONIOMETRICHE Prerequisiti Saper risolvere le equazioni algebriche. Conoscere le definizioni delle funzioni goniometriche. Conoscere i valori delle funzioni goniometriche per gli

Dettagli

Funzioni elementari. per ogni x R. 1 se n =0

Funzioni elementari. per ogni x R. 1 se n =0 Funzioni elementari 1 Funzioni elementari...pag. 1 1.1. Potenze ad esponente naturale...pag. 1 1.2. Potenze ad esponente intero negativo...pag. 2 1.3. Potenze ad esponente razionale positivo non intero...pag.

Dettagli

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE CORSO DI TECNOLOGIE E TECNICHE DI RARESENTAZIONI GRAFICHE ER L ISTITUTO TECNICO SETTORE TECNOLOGICO Agraria, Agroalimentare e Agroindustria classe seconda ARTE RIMA Disegno del rilievo Unità Didattica:

Dettagli

ISTITUTO TECNICO TECNOLOGICO STATALE G.

ISTITUTO TECNICO TECNOLOGICO STATALE G. ISTITUTO TECNICO TECNOLOGICO STATALE G. e M. MONTANI FERMO Anno Scolastico 2015/ 16 PROGRAMMA SVOLTO DI MATEMATICA 3 ore settimanali COMPLEMENTI DI MATEMATICA 1 ora settimanale Classe: 3^ INFORMATICA sez.

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca

Ministero dell Istruzione, dell Università e della Ricerca Ministero dell Istruzione, dell Università e della Ricerca Istituto d Istruzione Secondaria Superiore di II^ Grado LICEO ARTISTICO A. FRATTINI Via Valverde, 2-21100 Varese tel: 0332820670 fax: 0332820470

Dettagli

Matematica I, Funzione inversa. Funzioni elementari (II).

Matematica I, Funzione inversa. Funzioni elementari (II). Matematica I, 02.10.2012 Funzione inversa. Funzioni elementari (II). 1. Sia f : A B una funzione reale di variabile reale (A, B R); se f e biiettiva, allora la posizione f 1 (b) = unico elemento a A tale

Dettagli

LA GONIOMETRIA. Questa unità didattica è rivolta a studenti del 4 anno del Liceo Scientifico tradizionale. Le ore settimanali previste sono 3.

LA GONIOMETRIA. Questa unità didattica è rivolta a studenti del 4 anno del Liceo Scientifico tradizionale. Le ore settimanali previste sono 3. LA GONIOMETRIA. Destinatari Specializzando Caterina Mazzoni Questa unità didattica è rivolta a studenti del 4 anno del Liceo Scientifico tradizionale. Le ore settimanali previste sono 3.. Inquadramento

Dettagli

Liceo Scientifico Statale Leonardo da Vinci Reggio Calabria. PROGRAMMA DI MATEMATICA Per la classe IV sez.d Anno scolastico 2012/13

Liceo Scientifico Statale Leonardo da Vinci Reggio Calabria. PROGRAMMA DI MATEMATICA Per la classe IV sez.d Anno scolastico 2012/13 Liceo Scientifico Statale Leonardo da Vinci Reggio Calabria PROGRAMMA DI MATEMATICA Per la classe IV sez.d Anno scolastico 2012/13 Modulo 1: Le coniche Geometria elementare retta e circonferenza nel piano

Dettagli

Esercizi per le vacanze - Classe 3C Prof. Forieri Claudio. Disequazioni. + 3x. x x x

Esercizi per le vacanze - Classe 3C Prof. Forieri Claudio. Disequazioni. + 3x. x x x Esercizi per le vacanze - Classe C Prof. Forieri Claudio Disequazioni Risolvi le seguenti disequazioni: 1. ( 5)( + )( ) > 0. ( + 1) > 0. ( + 5) >. 1 1 1 + + < 0 ( 5)( + ) 5. > 0 1 6. + = 7. 1 > 1 ( + 1)(

Dettagli

01 LE FUNZIONI GONIOMETRICHE

01 LE FUNZIONI GONIOMETRICHE 0 LE FUNZIONI GONIOMETRICHE. LA MISURA DEGLI ANGOLI ESERCIZI Esprimi in forma sessadecimale le seguenti misure di angoli. A 4 9 ; 8 56 6 ; 57 59 B 44 ; 78 56 ; 9 4 0.,57 ; 8,97 ; 57,0. 4,4 ; 7,5 ; 9,569

Dettagli

ISTITUTO TECNICO INDUSTRIALE G. FERRARIS

ISTITUTO TECNICO INDUSTRIALE G. FERRARIS ISTITUTO TECNICO INDUSTRIALE G. FERRARIS EMPOLI PIANO DI LAVORO PROF. BICCI ANDREA CONSIGLIO DI CLASSE 3 SEZ. B Informatica INDIRIZZO INFORMATICO ANNO SCOLASTICO 2015-2016 MATERIE MATEMATICA (tre ore settimanali)

Dettagli

Introduzione. Test d ingresso

Introduzione. Test d ingresso Indice Introduzione Test d ingresso v vii 1 Insiemi e numeri 1 1.1 Insiemi... 1 1.2 Operazionicongliinsiemi... 3 1.3 Insieminumerici,operazioni... 7 1.4 Potenze... 11 1.5 Intervalli... 12 1.6 Valoreassolutoedistanza...

Dettagli

Funzioni elementari. Tutorial di Barberis Paola - agg grafici con GEOGebra - software open source

Funzioni elementari. Tutorial di Barberis Paola - agg grafici con GEOGebra - software open source Funzioni elementari Proporzionalità diretta e inversa Retta, funzione identità e funzione costante Parabola, funzione quadratica e cubica Funzione omografica Funzione esponenziale e logaritmica Funzioni

Dettagli

05 - Funzioni di una Variabile

05 - Funzioni di una Variabile Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 05 - Funzioni di una Variabile Anno Accademico 2015/2016

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

Disequazioni goniometriche

Disequazioni goniometriche Disequazioni goniometriche Si definiscono disequazioni goniometriche le disequazioni nelle quali l angolo incognito è espresso mediante funzioni goniometriche (seno, coseno, tangente etc.). Per le disequazioni

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

APPUNTI DI GONIOMETRIA

APPUNTI DI GONIOMETRIA APPUNTI DI GONIOMETRIA RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice angolo ciascuna delle due parti in cui un piano è diviso da due semirette aventi la stessa origine. Definizione: Dicesi

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE A. MARTINI - SCHIO MATEMATICA

ISTITUTO ISTRUZIONE SUPERIORE A. MARTINI - SCHIO MATEMATICA ISTITUTO ISTRUZIONE SUPERIORE A. MARTINI - SCHIO LICEO ARTISTICO - Dipartimento di Matematica e Fisica MATEMATICA Finalità della Matematica nel triennio è di proseguire e ampliare il processo di preparazione

Dettagli

Università degli Studi Di Salerno FACOLTÀ DI SCIENZE MATEMATICHE E FISICHE NATURALI. Corso di Analisi Matematica A.A. 2009 / 2010.

Università degli Studi Di Salerno FACOLTÀ DI SCIENZE MATEMATICHE E FISICHE NATURALI. Corso di Analisi Matematica A.A. 2009 / 2010. Università degli Studi Di Salerno FACOLTÀ DI SCIENZE MATEMATICHE E FISICHE NATURALI Corso di Analisi Matematica A.A. 009 / 00 Le Funzioni Fabio Memoli indice Il Concetto di Funzione Funzioni Reali Di Variabile

Dettagli

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1 Unità Didattica N Le Funzioni Univoche Sintesi 1 Unità Didattica N Le funzioni univoche 01) Definizione di applicazione o funzione o mappa 0) Classificazione delle funzioni numeriche 03) Insieme di definizione

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Analisi Matematica 1 Schema provvisorio delle lezioni A. A. 2015/16 1 Distribuzione degli argomenti delle lezioni Argomento ore tot Numeri reali 11 11 Numeri complessi 1 12 Spazio euclideo 2 14 Topologia

Dettagli

Teoria in sintesi 10. Teoria in sintesi 14

Teoria in sintesi 10. Teoria in sintesi 14 Indice L attività di recupero Funzioni goniometriche Teoria in sintesi 0 Obiettivo Calcolare il valore di espressioni goniometriche in seno e coseno Obiettivo Determinare massimo e minimo di funzioni goniometriche

Dettagli

Programma Didattico Annuale

Programma Didattico Annuale LICEO STATALE SCIENTIFICO - LINGUISTICO - CLASSICO GALILEO GALILEI - LEGNANO PdQ - 7.06 Ediz.: 1 Rev.: 0 Data 02/09/05 Alleg.: D01 PROG. M2 PROCEDURA della QUALITA' Programma Didattico Annuale Anno Scolastico

Dettagli

PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA

PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA PROGRAMMAZIONE DISCIPLINARE PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA CLASSE TERZA IPC COMPETENZE 42) Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico

Dettagli

Le funzioni reali di una variabile reale

Le funzioni reali di una variabile reale Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B

Dettagli

I LICEO CLASSICO. Le equazioni e le disequazioni di II grado e di grado superiore

I LICEO CLASSICO. Le equazioni e le disequazioni di II grado e di grado superiore CONOSCENZE indirizzo CLASSICO I LICEO CLASSICO Le equazioni e le disequazioni di II grado e di grado superiore Equazioni di secondo grado incomplete; equazioni di secondo grado complete; formula risolutiva

Dettagli

Trigonometria angoli e misure

Trigonometria angoli e misure Trigonometria angoli e misure ITIS Feltrinelli anno scolastico 27-28 R. Folgieri 27-28 1 Angoli e gradi Due semirette che condividono la stessa origine danno luogo ad un angolo. Le due semirette (che si

Dettagli

FENOMENI PERIODICI E FUNZIONI TRIGONOMETRICHE

FENOMENI PERIODICI E FUNZIONI TRIGONOMETRICHE FENOMENI PERIODICI E FUNZIONI TRIGONOMETRICHE f: R R è detta funzione periodica di periodo T>0 se per ogni x R f(x+t) = f(x) Gli angoli hanno natura periodica: un angolo di 30 o un angolo di 30 +360 =

Dettagli

Stampa Preventivo. A.S Pagina 1 di 6

Stampa Preventivo. A.S Pagina 1 di 6 Stampa Preventivo A.S. 2009-2010 Pagina 1 di 6 Insegnante VISINTIN ANTONELLA Classe 4AL Materia matematica preventivo consuntivo 95 0 titolo modulo 4.1 Disequazioni 4.2 Funzioni 4.3 Goniometria e trigonometria

Dettagli

Indice. Prefazione. Fattorizzazione di A + B Fattorizzazione di trinomi particolari 22 2

Indice. Prefazione. Fattorizzazione di A + B Fattorizzazione di trinomi particolari 22 2 Prefazione XI Test di ingresso 1 Capitolo 1 Insiemi numerici, intervalli e intorni 5 1.1 Introduzione 5 1.2 Insiemi generici 5 1.2.1 Relazioni e operazioni tra insiemi 7 1.3 Insiemi numerici 8 1.3.1 Rappresentazione

Dettagli

PROGRAMMAZIONE DISCIPLINARE LICEO LINGUISTICO MATEMATICA

PROGRAMMAZIONE DISCIPLINARE LICEO LINGUISTICO MATEMATICA PROGRAMMAZIONE DISCIPLINARE PROGRAMMAZIONE DISCIPLINARE LICEO LINGUISTICO MATEMATICA CLASSE TERZA 1. 1. Competenze: le specifiche competenze di base disciplinari previste dalla Riforma (Linee Guida e/o

Dettagli

NOTE DI TRIGONOMETRIA

NOTE DI TRIGONOMETRIA NOTE DI TRIGONOMETRIA 18 settembre 007 1 Introduzione In queste note, essenzialmente basate su [1], vengono richiamate le definizioni e le proprietà delle funzioni trigonometriche. Un buon libro di liceo

Dettagli

PIANO di LAVORO CLASSE 3 C

PIANO di LAVORO CLASSE 3 C Istituto di Istruzione Superiore Statale Carlo Emilio Gadda Presidenza e Segreteria: v. Nazionale 6 43045 Fornovo di Taro (PR) Tel. 0525 400229 Fax 0525 39300 E-mail: ssitsos@scuole.pr.it Sito web: www.itsosgadda.it

Dettagli

Liceo Scientifico A. Romita Programma di Matematica Anno scolastico 2016/2017 Prof.ssa Santella Mariagrazia

Liceo Scientifico A. Romita Programma di Matematica Anno scolastico 2016/2017 Prof.ssa Santella Mariagrazia Liceo Scientifico A. Romita Programma di Matematica Anno scolastico 2016/2017 Prof.ssa Santella Mariagrazia Classe III sez. A Modulo 1 Unità didattica 1 Ripetizione della risoluzione delle equazioni di

Dettagli

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe III C ESERCIZI ESTIVI 2013/14

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe III C ESERCIZI ESTIVI 2013/14 Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Classe III C ESERCIZI ESTIVI 013/14 ALUNNO CLASSE ESEGUI TUTTI GLI ESERCIZI SU UN FOGLIO PROTOCOLLO O UN QUADERNO. Ulteriore

Dettagli

Corso multimediale di matematica

Corso multimediale di matematica 2006 GNIMETRIA rof. Calogero Contrino Sia dato un generico angolo acuto ab di vertice e lati a, b. Si consideri su uno dei suoi lati (p.e. il secondo) una generica sequenza di punti (anche infinita),,.

Dettagli

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni Le Funzioni Modulo Esponenziali Logaritmiche Definizione di modulo o valore assoluto Se x è un generico numero reale, il suo modulo o valore assoluto è: x = x se x 0 -x se x

Dettagli

2ALS. Lavoro estivo in preparazione all esame di settembre per gli studenti con debito formativo in Matematica.

2ALS. Lavoro estivo in preparazione all esame di settembre per gli studenti con debito formativo in Matematica. 2ALS Lavoro estivo in preparazione all esame di settembre per gli studenti con debito formativo in Matematica. Si consiglia il libro: Matematica-recupero dei debiti formativi e ripasso estivo 2 ISBN 978-88-24741279

Dettagli

Corso multimediale di matematica

Corso multimediale di matematica 2006 GNIMETRIA rof. Calogero Contrino Sia dato un generico angolo acuto ab di vertice e lati a, b. Si consideri su uno dei suoi lati (p.e. il secondo) una generica sequenza di punti (anche infinita),,.

Dettagli

SENO, COSENO E TANGENTE DI UN ANGOLO

SENO, COSENO E TANGENTE DI UN ANGOLO Goniometria e trigonometria Misurare gli angoli nel sistema circolare L unità di misura del sistema circolare è il radiante def. Un radiante è la misura di un angolo alla circonferenza che sottende un

Dettagli

Stampa Preventivo. A.S. 2009-2010 Pagina 1 di 7

Stampa Preventivo. A.S. 2009-2010 Pagina 1 di 7 Stampa Preventivo A.S. 2009-2010 Pagina 1 di 7 Insegnante MIANI LUCIO Classe 4LTS Materia matematica preventivo consuntivo 96 0 titolo modulo 1. Funzione esponenziale e logaritmica 2. Le coniche 3. Disequazioni

Dettagli

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III SYLLABUS DI MATEMATICA Liceo Linguistico Classe III LE EQUAZIONI DI SECONDO GRADO Le equazioni di secondo grado e la loro risoluzione. La formula ridotta. Equazioni pure, spurie e monomie. Le relazioni

Dettagli

Liceo G.B. Vico Corsico

Liceo G.B. Vico Corsico Liceo G.B. Vico Corsico Classe: 3A Materia: MATEMATICA Insegnante: Nicola Moriello Testo utilizzato: Bergamini Trifone Barozzi: Manuale blu.0 di Matematica Moduli S, L, O, Q, Beta ed. Zanichelli 1) Programma

Dettagli

Funzioni goniometriche

Funzioni goniometriche Funzioni goniometriche In questa dispensa vengono introdotte le definizioni delle funzioni goniometriche. Preliminarmente si introducono le convenzioni sull orientazione degli angoli e sulla loro rappresentazione

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE J.C. MAXWELL Data Pag. di PROGRAMMA SVOLTO. Docente : Varano Franco Antonio.

ISTITUTO DI ISTRUZIONE SUPERIORE J.C. MAXWELL Data Pag. di PROGRAMMA SVOLTO. Docente : Varano Franco Antonio. Materia: Matematica. Docente : Varano Franco Antonio. Classe : 3 C Liceo Scientifico, opzione Scienze Applicate. ATTIVITA CONTENUTI PERIODO / DURATA LE ISOMETRIE. LE FUNZIONI. LA RETTA. Le isometrie, la

Dettagli

Esercizi sulle Funzioni

Esercizi sulle Funzioni AM0 - A.A. 03/4 ALFONSO SORRENTINO Esercizi sulle Funzioni Esercizio svolto. Trovare i domini di definizione delle seguenti funzioni: a) f) sin + cos ; b) g) log ) ; c) h) sin + e sin. Soluzione. a) La

Dettagli

Corso di Analisi Matematica. Funzioni reali di variabile reale

Corso di Analisi Matematica. Funzioni reali di variabile reale a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni reali di variabile reale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli