LEZIONE 23. Esempio Si consideri la matrice (si veda l Esempio ) A =

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0"

Transcript

1 LEZIONE Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi autovettori Definizione 2311 Siano k = R, C e A k n,n La matrice A si dice diagonalizzabile su k se esistono n autovettori di A linearmente indipendenti Quando, come spesso accade, il campo su cui si lavora è fissato, si parla semplicemente di matrice diagonalizzabile omettendo l indicazione del campo Osservazione 2312 Chiaramente ogni matrice diagonale D è diagonalizzabile! Infatti se λ λ D = λ n allora DE j,1 = λ j E j,1, dunque esistono n autovettori di D linearmente indipendenti, precisamente E 1,1,, E n,1 k n,1 Esempio 2313 Si consideri la matrice (si veda l Esempio 2225) A = R 3,3, è diagonalizzabile: infatti, come visto nell Esempio 2225, A ha idue autovalori ±3 e E A (3) = L( t ( )) R 3,1, E A ( 3) = L( t ( ), t ( )) R 3,1 Si noti che i vettori P 1 = t ( ), P 2 = t ( ) e P 3 = t ( ) sono linermente indipendenti Infatti la matrice avente tali vettori come righe, ha rango 3 Concludiamo che B = (P 1, P 2, P 3 ) è una base di R 3,1 formata da autovettori di A 1 Typeset by AMS-TEX

2 2 231 DIAGONALIZZAZIONE DI MATRICI Sia k = R, C: ricordo che gli autovalori di A k n,n sono le radici λ 1,, λ h k del polinomio caratteristico p A (t) Inoltre ad ognuno degli autovalori λ i k di A rimangono associati due numeri interi non negativi, la sua molteplicità algebrica m a (λ, A) e la sua molteplicità geometrica m g (λ, A) La somma delle molteplicità delle radici di un polinomio è pari al grado del polinomio stesso Quindi, se λ 1,, λ h sono a due e a due distinti, risulta m a (λ 1, A) + + m a (λ h, A) n, e, se vale l uguaglianza, tutte le radici di p A (t) devono essere in k Quindi, se λ 1,, λ h k sono le radici di p A (t), tenendo conto della Proposizione 2222, al massimo possiamo determinare m g (λ 1, A) + + m g (λ h, A) m a (λ 1, A) + + m a (λ h, A) n autovettori linearmente indipendenti Se vale l uguaglianza, tutte le radici λ di p A (t) devono essere in k e si deve avere m g (λ, A) = m a (λ, A) per ognuna di esse In particolare, se o non tutte le radici di p a (t) sono in k oppure se lo sono ma esiste almeno una di esse per cui m g (λ, A) < m a (λ, A), la matrice A non è diagonalizzabile Esempio 2314 Si considerino le matrici di R 3,3 A 1 = , A 2 = Nell Esempio 2226 abbiamo visto che A 1 ha come autovalori i numeri 1 e 2 e che m a (2, A) = 1 = m g (2, A), m a (1, A) = 2 > 1 = m g (1, A) Nell Esempio 2227 abbiamo visto che A 2 ha come unico autovalore in R il numero 0 e che m a (0, A) = 1 = m g (0, A) Invece su C tale matrice ha i numeri 0, 2 + i e 2 i come autovalori e m a (0, A) = 1 = m g (0, A), m a (2 + i, A) = 1 = m g (2 + i, A), m a (2 i, A) = 1 = m g (2 i, A) Concludiamo che A 1 non è diagonalizzabile su R Per quanto riguarda A 2 è evidente che essa non è diagonalizzabile su R Se, invece si pensa a A C 3,3, si verifica facilmente che E A2 (2 + i) = L( t ( 2i i 1 2 )) e E A2 (2 i) = L( t ( 2i i )) Poiché E A2 (0) = L( t ( )) e le tre matrici t ( 2i i 1 2 ), t ( 2i i ), t ( ) sono linearmente indipendenti, segue che A 2, come matrice a coefficienti in C, risulta essere diagonalizzabile Supponiamo che λ 1,, λ h k siano le radici di p A (t) in k a due a due distinte e siano P i E A (λ i ), per i = 1,, h vettori non nulli Se ci fosse una relazione di dipendenza lineare fra tali vettori P 1,, P h uno di loro sarebbe combinazione lineare di quelli che lo precedono (si veda la Proposizione 1628 ii)) Sia q il minimo intero per cui ciò accade:

3 LEZIONE 23 3 allora P q = α 1 P α q 1 P q 1 ed almeno uno fra α 1,, α q 1 deve essere non nullo, altrimenti P q = 0 n,1 Segue che α 1 λ q P α q 1 λ q P q 1 = λ q (α 1 P α q 1 P q 1 ) = da cui si ricava = λ q P q = AP q = A(α 1 P α q 1 P q 1 ) = = α 1 AP α q 1 AP q 1 = α 1 λ 1 P α q 1 λ q 1 P q 1, α 1 (λ q λ 1 )P α q 1 (λ q λ q 1 )P q 1 = 0 n,1 : poiché, per ipotesi, P 1,, P q 1 sono linearmente indipendenti e λ q λ i 0, i = 1,, q 1, segue che deve essere α 1 = = α q 1 = 0 Concludiamo allora che Proposizione 2315 Siano k = R, C e A k n,n Se λ 1,, λ h k sono autovalori a due a due distinti di A e P i E A (λ i ) \ { 0 n,1 }, i = 1,, h, allora i vettori P 1,, P h sono linearmente indipendenti Concludiamo questo paragrafo con il seguente risultato fondamentale Proposizione 2316 Siano k = R, C e A k n,n La matrice A è diagonalizzabile su k se e solo se valgono le due seguenti condizioni: i) tutte le radici di p A (t) sono in k; ii) per ogni radice λ k di p a (t) risulta m a (λ, A) = m g (λ, A) Dimostrazione Se A è diagonalizzabile abbiamo già dimostrato che devono valere le affermazioni i) ed ii) Viceversa supponiamo che esse siano verificate Siano λ 1,, λ h le radici a due a due distinte di p A (t) e sia (P j,1,, P j,mj ) basi di E A (λ j ) per j = 1,, h (quindi m j = m g (λ j, A)) Per ipotesi i vettori P i,j con j = 1,, h e i = 1,, m j sono esattamente Per verificare che m g (λ 1, A) + + m g (λ h, A) = m a (λ 1, A) + + m a (λ h, A) = n B = (P 1,1,, P 1,m1, P 2,1,, P 2,m2,, P h,mh ) è una base di k n,1, basta verificare che tali vettori sono linearmente indipendenti Supponiamo che esista una relazione di dipendenza lineare fra tali vettori, diciamo α 1,1 P 1,1 + + α 1,m1 P 1,m1 + α 2,1 P 2,1 + + α 2,m1 P 2,m2 + + α h,mh P h,mh = 0 n,1 Poiché α j,1 P j,1 + + α j,m1 P j,mj E A (λ j ), per la Proposizione 2236 si dovrebbe avere che α j,1 P j,1 + + α j,m1 P j,mj = 0 n,1, il che è assurdo perché (P 1,j,, P mj,j) è base di E A (λ j )

4 4 231 DIAGONALIZZAZIONE DI MATRICI Chiariamo il motivo per cui si parla di matrici diagonalizzabili Supponiamo che k = R, C e sia A k n,n diagonalizzabile Siano λ 1,, λ n le radici, non necessariamente distinte, di p A (t) (che sono tutte in k per ipotesi) e P j E A (λ j ) autovettori linearmente indipendenti di A Sia P k n,n la matrice avente P j come j esima colonna: allora AP j = λ j P j, j = 1,, n Quindi AP = P D ove D è la matrice diagonale avente nell ordine λ 1,, λ n come entrate diagonali Per costruzione P è invertibile Concludiamo che se A k n,n è diagonalizzabile allora esiste P k n,n invertibile tale che P 1 AP = D sia diagonale Viceversa, se ciò accade, procedendo a ritroso con il ragionamento sopra, si verifica che A è diagonalizzabile, che P ha per colonne n autovettori di A linearmente indipendenti e che l elemento j esimo sulla diagonale di D è esattamente l autovalore corrispondente alla colonna j esima di P Quindi le matrici diagonalizzabili sono tutte e sole le matrici A k n,n per cui esiste P k n,n invertibile tale che P 1 AP sia diagonale Una definizione importante in algebra lineare è la seguente Definizione 2317 Siano A, B k n,n A si dice simile a B, e si scrive A B, se esiste P k n,n invertibile tale che P 1 AP = B Quindi, in base alla definizione di cui sopra, segue che una matrice A k n,n è diagonalizzabile se e solo se è simile ad una matrice diagonale Esempio 2318 Riprendiamo la matrice A dell Esempio A = R 2,2 3 4 Nell Esempio 2224 abbiamo visto che i suoi autovalori sono 2 e 5 e che E A (2) = L( t ( 2 1 )), E A ( 5) = L( t ( 1 3 )) Sia 2 1 P 1 = 1 3 P 1 è invertibile e AP 1 = P 1 D, ovvero P1 1 AP 1 = D, con 2 0 D = 0 5 Allo stesso risultato saremmo arrivati prendendo in luogo della matrice P 1 sopra indicata la matrice 2 2 P 2 = 1 6 Invece presa risulta P 3 = P 1 3 AP 3 = ( 1 )

5 LEZIONE 23 5 Esempio 2319 Riprendiamo la matrice A dell Esempio 2225 A = R 3, Nell Esempio 2225 si è verificato che gli autovalori di A sono ±3 e che si ha E A (3) = L( t ( )), E A ( 3) = L( t ( ), t ( )) Siano P 1 = 1 1 0, P 2 = , P 3 = Per i = 1, 2, 3, le matrici P i sono invertibili e P 1 i AP i = D i, con D 1 = , D 2 = , D 3 = Diagonalizzazione di matrici simmetriche Come visto nel paragrafo precedente, il fatto che una matrice sia diagonalizzabile o meno non può essere, in generale, stabilito a priori ma solo dopo lo studio dei suoi autospazi C è però una classe di matrici la cui diagonalizzabilità è assicurata da un risultato generale di cui omettiamo la dimostrazione e su cui torneremo nelle prossime lezioni Proposizione 2321 Sia A Sim n (R) Allora A è diagonalizzabile su R Si noti che la proposizione precedente assicura la diagonalizzabilità su R, cioè l esistenza di una matrice invertibile P R n,n tale che P 1 AP = D R n,n sia diagonale Esempio 2322 Sia A = Risulta t 1 1 p A (t) = 1 t t = t3 + 3t + 2 = (t + 1) 2 (t 2), Concludiamo che gli autovalori di A sono 1 e 2: inoltre per la Proposizione 2321 m a ( 1, A) = m g ( 1, A) = 2 e m a (2, A) = m g (2, A) = 1

6 6 233 IL TEOREMA DI CAYLEY HAMILTON Per determinare E A ( 1) risolviamo il sistema x y = z 0 Quindi E A ( 1) = L( t ( ), t ( )) Per determinare E A (2) risolviamo il sistema x y = z 0 Quindi E A (2) = L( t ( )) Posto P = risulta P 1 AP = Osservazione 2323 Per renderci conto della potenza della Proposizione 2321 osserviamo che, spesso, è assai difficile determinare esattamente gli autovalori di una matrice: può però essere utile poternme determinare la diagonalizzabilità Per esempio 21 3/ /4 π e /4 e 1 1/11 3/2 π A = è senza dubbio diagonalizzabile perché simmetrica a coefficienti reali 233 Il teorema di Cayley Hamilton Siano k = R, C ed A k n,n : le n matrici I n, A, A 2,, A n2 1, A n2 sono necessariamente linearmente dipendenti poiché dim k (k n,n ) = n 2 Da ciò deduciamo l esistenza di α n 2, α n2 1, α n2 2, α 1, α 0 k tali che Si consideri il polinomio α 0 A n2 + α 1 A n α n2 2A 2 + α n2 1A + α n 2I n = 0 n,n p(t) = α 0 t n2 + α 1 t n α n 2 2t 2 + α n 2 1t + α n 2 k[t] : quanto osservato sopra viene spesso riassunto affermando che A è radice di p(t) o, anche, che p(a) = 0 n,n Poiché le matrici A, A 2,, A n2 1, A n2 non sono arbitrarie ma sono potenze di una stessa matrice, è lecito domandarsi se non esista un polinomio di grado più basso di cui A sia radice: a questa domanda risponde il Teorema di Cayley Hamilton di cui omettiamo la dimostrazione

7 LEZIONE 23 7 Proposizione 2331 Siano k = R, C e A k n,n p A (t) Ciò significa che se Allora la matrice A è radice di p A (t) = ( 1) n t n + a 1 t n 1 + a 2 t n a n 1 t + a n, allora (2332) p A (A) = ( 1) n A n + a 1 A n 1 + a 2 A n a n 1 A + a n I n = 0 n,n Tale osservazione permette di introdurre un nuovo metodo di inversione di matrici Infatti se A è invertibile allora a n = det(a) 0, dunque dall Equazione (2332) otteniamo cioè 1 a n (( 1) n 1 A n 1 a 1 A n 2 a 2 A n 3 + a n 1 I n )A = I n, (2333) A 1 = 1 a n (( 1) n 1 A n 1 a 1 A n 2 a 2 A n 3 + a n 1 I n ) Esempio 2334 Si consideri la matrice a b A = c d Allora p A (t) = t 2 (a + d)t + ad bc, dunque se ad bc 0, segue dalla Formula (2333) che A 1 1 = ad bc ( A + (a + d)i 1 d b 2) = ad bc c a Esempio 2335 Si consideri la matrice A = Abbiamo visto nell Esempio 2225 che p A (t) = (t 3)(t+3) 2 = t 3 3t 2 +9t+27, quindi A ha autovalori ±3 con m a (3, A) = 1 e m a ( 3, A) = 2, in particolare det(a) = 3( 3) 2 = 27, sicché A è invertibile: inoltre abbiamo anche visto che A è diagonalizzabile Per quanto osservato nel paragrafo precedente esiste P R 3,3 invertibile tale che P 1 AP = D = , 0 0 3

8 8 233 IL TEOREMA DI CAYLEY HAMILTON quindi A = P DP 1 da cui si ottiene A 2 = P DP 1 P DP 1 = P D 2 P 1 = P (9I 3 )P 1 = 9P P 1 = 9I 3, perciò A 1 = 1 27 (A2 + 3A 9I 3 ) = 1 9 A = Ricordo che una matrice A k n,n si dice nilpotente se A N = 0 n,n per qualche intero positivo N Un altra interessante conseguenza del Teorema di Cayley Hamilton è il seguente Corollario 2336 Sia k = R, C A k n,n è nilpotente se e solo se ha 0 come unico autovalore e m a (0, A) = n Dimostrazione A k n,n ha 0 come unico autovalore e m a (0, A) = n se e solo se t n divide il polinomio caratteristico p A (t) di A cioè se e solo se p A (t) = ( 1) n t n Supponiamo allora che sia p A (t) = ( 1) n t n Per la Proposizione 2321 segue allora che 0 n,n = p A (A) = ( 1) n A n, cioè A è nilpotente Viceversa supponiamo che esista un intero positivo N tale che A N = 0 n,n Questa è un uguaglianza su k C Se λ C è una qualsiasi radice di p A (t), allora λ è un autovalore di A vista come matrice ad entrate complesse, dunque esiste X C n,1 \{ 0 n,1 } tale che AX = λx Moltiplicando ambo i membri di tale identità per A N 1 otteniamo allora che 0 n,n = A N X = λ N X da cui segue che λ = 0 è l unica radice in C di p A (t), necessariuamente con molteplicità n Esempio 2337 Si consideri la matrice A = Si ha 2 t 5 8 p A (t) = 1 4 t t = t3, quindi A 3 = 0 3,3

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

Diagonalizzazione di matrici e applicazioni lineari

Diagonalizzazione di matrici e applicazioni lineari CAPITOLO 9 Diagonalizzazione di matrici e applicazioni lineari Esercizio 9.1. Verificare che v = (1, 0, 0, 1) è autovettore dell applicazione lineare T così definita T(x 1,x 2,x 3,x 4 ) = (2x 1 2x 3, x

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

LEZIONE 17. B : kn k m.

LEZIONE 17. B : kn k m. LEZIONE 17 17.1. Isomorfismi tra spazi vettoriali finitamente generati. Applichiamo quanto visto nella lezione precedente ad isomorfismi fra spazi vettoriali di dimensione finita. Proposizione 17.1.1.

Dettagli

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Esame di Geometria (Prof. F. Tovena) Argomenti: Proprietà di nucleo e immagine di una applicazione lineare. dim V = dim

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE110 A.A. 2014-2015 - Docente: Prof. Angelo Felice Lopez Tutori: Federico Campanini e Giulia Salustri Soluzioni Tutorato 13

Dettagli

Algebra Lineare e Geometria

Algebra Lineare e Geometria Algebra Lineare e Geometria Corso di Laurea in Ingegneria Elettronica A.A. 2013-2014 Prova d esame del 16/06/2014. 1) a) Determinare la matrice associata all applicazione lineare T : R 3 R 4 definita da

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI Esercizi Esercizio 1. Sia f: R 3 R 2 (x, y, z) (x + 2y + z, y + z). (1) Verificare che f è lineare. (2) Determinare una base di ker(f) e stabilire se f è iniettiva. (3) Calcolare w

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Parte 6. Applicazioni lineari

Parte 6. Applicazioni lineari Parte 6 Applicazioni lineari A Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Applicazioni fra insiemi, 2 Applicazioni lineari tra spazi vettoriali, 2 3 Applicazioni lineari da R n a R

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

Lezione Diagonalizzazione di matrici

Lezione Diagonalizzazione di matrici Lezione 2 2. Diagonalizzazione di matrici Come visto nella precedente lezione, in generale, data una matrice A 2 K n,n con K = R, C,nonèimmediatocheesistasempreunabasecostituitadasuoiautovettori. Definizione

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

1 Applicazioni Lineari tra Spazi Vettoriali

1 Applicazioni Lineari tra Spazi Vettoriali 1 Applicazioni Lineari tra Spazi Vettoriali Definizione 1 (Applicazioni lineari) Si chiama applicazione lineare una applicazione tra uno spazio vettoriale ed uno spazio vettoriale sul campo tale che "!$%!

Dettagli

LEZIONE 16. Proposizione 16.1.2. Siano V e W spazi vettoriali su k = R, C. Se f: V W

LEZIONE 16. Proposizione 16.1.2. Siano V e W spazi vettoriali su k = R, C. Se f: V W LEZIONE 16 16.1. Applicazioni lineari iniettive e suriettive. Ricordo le seguenti due definizioni valide per applicazioni di qualsiasi tipo ϕ: X Y fra due insiemi. L applicazione ϕ si dice iniettiva se

Dettagli

CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA

CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA COGNOME NOME CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA SIMULAZIONE SCRITTO DI MATEMATICA DISCRETA, SECONDA PARTE Per ottenere la sufficienza bisogna rispondere in modo corretto ad almeno

Dettagli

STRUTTURE ALGEBRICHE

STRUTTURE ALGEBRICHE STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente operazione), oppure legge di composizione interna. Per definizione

Dettagli

Applicazioni lineari

Applicazioni lineari Applicazioni lineari Esempi di applicazioni lineari Definizione. Se V e W sono spazi vettoriali, una applicazione lineare è una funzione f: V W tale che, per ogni v, w V e per ogni a, b R si abbia f(av

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

ESERCIZI APPLICAZIONI LINEARI

ESERCIZI APPLICAZIONI LINEARI ESERCIZI APPLICAZIONI LINEARI PAOLO FACCIN 1. Esercizi sulle applicazioni lineari 1.1. Definizioni sulle applicazioni lineari. Siano V, e W spazi vettoriali, con rispettive basi B V := (v 1 v n) e B W

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

1 Serie di Taylor di una funzione

1 Serie di Taylor di una funzione Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 7 SERIE E POLINOMI DI TAYLOR Serie di Taylor di una funzione. Definizione di serie di Taylor Sia f(x) una funzione definita

Dettagli

Equazioni alle differenze finite (cenni).

Equazioni alle differenze finite (cenni). AL 011. Equazioni alle differenze finite (cenni). Sia a n } n IN una successione di numeri reali. (Qui usiamo la convenzione IN = 0, 1,,...}). Diremo che è una successione ricorsiva o definita per ricorrenza

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 203-4 I sistemi lineari Generalità sui sistemi lineari Molti problemi dell ingegneria, della fisica, della chimica, dell informatica e dell economia, si modellizzano

Dettagli

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24 Contenuto Endomorfismi auto-aggiunti. Matrici simmetriche. Il teorema spettrale Gli autovalori di una matrice simmetrica sono tutti reali. (Dimostrazione fatta usando i numeri complessi). Dimostrazione

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

Matematica generale CTF

Matematica generale CTF Successioni numeriche 19 agosto 2015 Definizione di successione Monotonìa e limitatezza Forme indeterminate Successioni infinitesime Comportamento asintotico Criterio del rapporto per le successioni Definizione

Dettagli

Lezione 9: Cambio di base

Lezione 9: Cambio di base Lezione 9: Cambio di base In questa lezione vogliamo affrontare uno degli argomenti piu ostici per lo studente e cioè il cambio di base all interno di uno spazio vettoriale, inoltre cercheremo di capire

Dettagli

Matematica generale CTF

Matematica generale CTF Equazioni differenziali 9 dicembre 2015 Si chiamano equazioni differenziali quelle equazioni le cui incognite non sono variabili reali ma funzioni di una o più variabili. Le equazioni differenziali possono

Dettagli

Spazi lineari - PARTE II - Felice Iavernaro. Dipartimento di Matematica Università di Bari. 9 e 16 Marzo 2007

Spazi lineari - PARTE II - Felice Iavernaro. Dipartimento di Matematica Università di Bari. 9 e 16 Marzo 2007 Spazi lineari - PARTE II - Felice Iavernaro Dipartimento di Matematica Università di Bari 9 e 16 Marzo 2007 Felice Iavernaro (Univ. Bari) Spazi lineari 9-16/03/2007 1 / 17 Condizionamento dei sistemi lineari

Dettagli

Autovalori e Autovettori

Autovalori e Autovettori Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2008-2009 Autovalori e Autovettori Definizione Siano A C nxn, λ C, e x C n, x 0, tali che Ax = λx. (1) Allora

Dettagli

2. Leggi finanziarie di capitalizzazione

2. Leggi finanziarie di capitalizzazione 2. Leggi finanziarie di capitalizzazione Si chiama legge finanziaria di capitalizzazione una funzione atta a definire il montante M(t accumulato al tempo generico t da un capitale C: M(t = F(C, t C t M

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Terzo Appello del corso di Geometria e Algebra II Parte - Docente F. Flamini, Roma, 7/09/2007 SVOLGIMENTO COMPITO III APPELLO

Dettagli

DOMINI A FATTORIZZAZIONE UNICA

DOMINI A FATTORIZZAZIONE UNICA DOMINI A FATTORIZZAZIONE UNICA CORSO DI ALGEBRA, A.A. 2012-2013 Nel seguito D indicherà sempre un dominio d integrità cioè un anello commutativo con unità privo di divisori dello zero. Indicheremo con

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. L : V W

Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. L : V W Matematica B - a.a 2006/07 p. 1 Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. Definizione 1. La funzione L : V W si dice una applicazione

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine

Dettagli

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Versione ottobre novembre 2008 Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Contenuto 1. Applicazioni lineari 2. L insieme delle

Dettagli

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI Abbiamo studiato successioni e serie numeriche, ora vogliamo studiare successioni e serie di funzioni. Dato un insieme A R, chiamiamo successione di funzioni

Dettagli

LEZIONE 31. B i : R n R. R m,n, x = (x 1,..., x n ). Allora sappiamo che è definita. j=1. a i,j x j.

LEZIONE 31. B i : R n R. R m,n, x = (x 1,..., x n ). Allora sappiamo che è definita. j=1. a i,j x j. LEZIONE 31 31.1. Domini di funzioni di più variabili. Sia ora U R n e consideriamo una funzione f: U R m. Una tale funzione associa a x = (x 1,..., x n ) U un elemento f(x 1,..., x n ) R m : tale elemento

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

risulta (x) = 1 se x < 0.

risulta (x) = 1 se x < 0. Questo file si pone come obiettivo quello di mostrarvi come lo studio di una funzione reale di una variabile reale, nella cui espressione compare un qualche valore assoluto, possa essere svolto senza necessariamente

Dettagli

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3.

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3. 7 LEZIONE 7 Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2 2 6x, x3 +2x 2 6x, 3x + x2 2, x3 +2x +3. Le derivate sono rispettivamente,

Dettagli

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE LE SUCCESSIONI 1. COS E UNA SUCCESSIONE La sequenza costituisce un esempio di SUCCESSIONE. Ecco un altro esempio di successione: Una successione è dunque una sequenza infinita di numeri reali (ma potrebbe

Dettagli

u 1 u k che rappresenta formalmente la somma degli infiniti numeri (14.1), ordinati al crescere del loro indice. I numeri u k

u 1 u k che rappresenta formalmente la somma degli infiniti numeri (14.1), ordinati al crescere del loro indice. I numeri u k Capitolo 4 Serie numeriche 4. Serie convergenti, divergenti, indeterminate Data una successione di numeri reali si chiama serie ad essa relativa il simbolo u +... + u +... u, u 2,..., u,..., (4.) oppure

Dettagli

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E). MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica

Dettagli

ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura

ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura Cognome Nome Matricola ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura (Primo appello/ii prova parziale 15/6/15 - Chiarellotto-Urbinati) Per la II prova: solo esercizi

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Le equazioni Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Definizione e caratteristiche Chiamiamo equazione l uguaglianza tra due espressioni algebriche,

Dettagli

L anello dei polinomi

L anello dei polinomi L anello dei polinomi Sia R un anello commutativo con identità. È possibile costruire un anello commutativo unitario, che si denota con R[x], che contiene R (come sottoanello) e un elemento x non appartenente

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA (Classe 7) Corso di Matematica per l Economia (Prof. F. Eugeni) TEST DI INGRESSO Teramo, ottobre 00 SEZIONE

Dettagli

1 Alcuni criteri di convergenza per serie a termini non negativi

1 Alcuni criteri di convergenza per serie a termini non negativi Alcuni criteri di convergenza per serie a termini non negativi (Criterio del rapporto.) Consideriamo la serie a (.) a termini positivi (ossia a > 0, =, 2,...). Supponiamo che esista il seguente ite a +

Dettagli

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f).

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f). Due Matrici A,B. Ker f = ker g. 1- Ridurre a scala A e B e faccio il sistema. 2 Se Vengono gli stessi valori allora, i ker sono uguali. Cauchy 1 autovalore, 1- Metto a matrice x1(0),x2(0),x3(0) e la chiamo

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura Primo Esonero del corso di Geometria Docente F. Flamini, Roma, 2//28 SOLUZIONI COMPITO I ESONERO Esercizio.

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t) CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare

Dettagli

Esercizi di Macroeconomia per il corso di Economia Politica

Esercizi di Macroeconomia per il corso di Economia Politica Esercizi di Macroeconomia per il corso di Economia Politica (Gli esercizi sono suddivisi in base ai capitoli del testo di De Vincenti) CAPITOLO 3. IL MERCATO DEI BENI NEL MODELLO REDDITO-SPESA Esercizio.

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

Luigi Piroddi piroddi@elet.polimi.it

Luigi Piroddi piroddi@elet.polimi.it Automazione industriale dispense del corso 10. Reti di Petri: analisi strutturale Luigi Piroddi piroddi@elet.polimi.it Analisi strutturale Un alternativa all analisi esaustiva basata sul grafo di raggiungibilità,

Dettagli

Nel seguito, senza ulteriormente specificarlo, A indicherà un anello commutativo con identità.

Nel seguito, senza ulteriormente specificarlo, A indicherà un anello commutativo con identità. 1 ANELLI Definizione 1.1. Sia A un insieme su cui sono definite due operazioni +,. (A, +, ) si dice Anello se (A, +) è un gruppo abeliano è associativa valgono le leggi distributive, cioè se a, b, c A

Dettagli

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU 9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A LU 9.1 Il metodo di Gauss Come si è visto nella sezione 3.3, per la risoluzione di un sistema lineare si può considerare al posto

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dottssa MC De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Corso di Calcolo Numerico - Dottssa MC De Bonis

Dettagli

ESERCITAZIONE (7-11-13) Ing. Stefano Botelli

ESERCITAZIONE (7-11-13) Ing. Stefano Botelli FONDAMENTI di AUTOMATICA ESERCITAZIONE (7-11-13) Ing. Stefano Botelli NB in presenza di matrici 3x3 bisogna intuire che esiste un metodo risolutivo particolare perchè non verrà mai richiesto a lezione

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag. SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno

Dettagli

FUNZIONE REALE DI UNA VARIABILE

FUNZIONE REALE DI UNA VARIABILE FUNZIONE REALE DI UNA VARIABILE Funzione: legge che ad ogni elemento di un insieme D (Dominio) tale che D R, fa corrispondere un elemento y R ( R = Codominio ). f : D R : f () = y ; La funzione f(): A

Dettagli

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010 elementi di teoria dei grafi anno acc. 2009/2010 Grafi semplici Un grafo semplice G è una coppia ordinata (V(G), L(G)), ove V(G) è un insieme finito e non vuoto di elementi detti vertici o nodi di G, mentre

Dettagli

Funzioni. Parte prima. Daniele Serra

Funzioni. Parte prima. Daniele Serra Funzioni Parte prima Daniele Serra Nota: questi appunti non sostituiscono in alcun modo le lezioni del prof. Favilli, né alcun libro di testo. Sono piuttosto da intendersi a integrazione di entrambi. 1

Dettagli

Prova parziale di Geometria e Topologia I - 5 mag 2008 (U1-03, 13:30 16:30) 1/8. Cognome:... Nome:... Matricola:...

Prova parziale di Geometria e Topologia I - 5 mag 2008 (U1-03, 13:30 16:30) 1/8. Cognome:... Nome:... Matricola:... Prova parziale di Geometria e Topologia I - 5 mag 2008 (U1-03, 13:30 16:30) 1/8 Cognome:................ Nome:................ Matricola:................ (Dare una dimostrazione esauriente di tutte le

Dettagli

Kangourou della Matematica 2014 finale nazionale italiana Mirabilandia, 12 maggio 2014

Kangourou della Matematica 2014 finale nazionale italiana Mirabilandia, 12 maggio 2014 Kangourou della Matematica 2014 finale nazionale italiana Mirabilandia, 12 maggio 2014 LIVELLO STUDENT K,M N CD BC A S1. (5 punti ) In figura si vede una circonferenza della quale i segmenti AB, BC e CD

Dettagli

LA MASSIMIZZAZIONE DEL PROFITTO ATTRAVERSO LA FISSAZIONE DEL PREZZO IN FUNZIONE DELLE QUANTITÀ

LA MASSIMIZZAZIONE DEL PROFITTO ATTRAVERSO LA FISSAZIONE DEL PREZZO IN FUNZIONE DELLE QUANTITÀ LA MASSIMIZZAZIONE DEL PROFITTO ATTRAVERSO LA FISSAZIONE DEL PREZZO IN FUNZIONE DELLE QUANTITÀ In questa Appendice mostreremo come trovare la tariffa in due parti che massimizza i profitti di Clearvoice,

Dettagli

Anno 3. Funzioni: dominio, codominio e campo di esistenza

Anno 3. Funzioni: dominio, codominio e campo di esistenza Anno 3 Funzioni: dominio, codominio e campo di esistenza 1 Introduzione In questa lezione parleremo delle funzioni. Ne daremo una definizione e impareremo a studiarne il dominio in relazione alle diverse

Dettagli

Applicazioni del calcolo differenziale allo studio delle funzioni

Applicazioni del calcolo differenziale allo studio delle funzioni Capitolo 9 9.1 Crescenza e decrescenza in piccolo; massimi e minimi relativi Sia y = f(x) una funzione definita nell intervallo A; su di essa non facciamo, per ora, alcuna particolare ipotesi (né di continuità,

Dettagli

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA...

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA... 15 febbraio 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

( x) ( x) 0. Equazioni irrazionali

( x) ( x) 0. Equazioni irrazionali Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Il principio di induzione e i numeri naturali.

Il principio di induzione e i numeri naturali. Il principio di induzione e i numeri naturali. Il principio di induzione è un potente strumento di dimostrazione, al quale si ricorre ogni volta che si debba dimostrare una proprietà in un numero infinito

Dettagli

Lezione 6 Nucleo, Immagine e Teorema della Dimensione. 1 Definizione di Nucleo e Immagine

Lezione 6 Nucleo, Immagine e Teorema della Dimensione. 1 Definizione di Nucleo e Immagine Lezione 6 Nucleo, Immagine e Teorema della Dimensione In questa lezione entriamo nel vivo della teoria delle applicazioni lineari. Per una applicazione lineare L : V W definiamo e impariamo a calcolare

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

Determinante e inversa di una matrice

Determinante e inversa di una matrice CPITOLO 6 Determinante e inversa di una matrice Esercizio 6.. Calcolare il determinante delle seguenti matrici: 3 3 = B = 0 3 7 C = 0 D = 0 F = 0 0 3 4 0 3 4 3 Esercizio 6.. Calcolare il determinante delle

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

Lezione 6. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive.

Lezione 6. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive. Lezione 6 Prerequisiti: L'insieme dei numeri interi. Lezione 5. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive. Questa è la prima lezione dedicata all'anello

Dettagli

Sulla monotonia delle funzioni reali di una variabile reale

Sulla monotonia delle funzioni reali di una variabile reale Liceo G. B. Vico - Napoli Sulla monotonia delle funzioni reali di una variabile reale Prof. Giuseppe Caputo Premetto due teoremi come prerequisiti necessari per la comprensione di quanto verrà esposto

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0.

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0. EQUAZIONI E DISEQUAZIONI Le uguaglianze fra espressioni numeriche si chiamano equazioni. Cercare le soluzioni dell equazione vuol dire cercare quelle combinazioni delle lettere che vi compaiono che la

Dettagli