Appunti di Geometria Analitica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Appunti di Geometria Analitica"

Transcript

1 Appunti di Geometria Analitica

2 Indice 1 Spazio affine ed euclideo Spazio affine Spazio euclideo Geometria nel piano affine ed euclideo 3.1 Equazioni di una retta Reciproca posizione di due rette Fascio di rette Angoli e distanze nel piano euclideo Simmetrie Coordinate omogenee nel piano La circonferenza Esercizi non svolti Trasformazioni nel piano euclideo Traslazioni Rotazioni Rototraslazioni Esercizi non svolti Curve algebriche piane e punti multipli Intersezione di due curve Molteplicitá di un punto Le coniche Definizione Polaritá rispetto ad una conica Classificazione di una conica Fascio di coniche Diametri e centro di una conica Classificazione delle coniche proiettive i

3 INDICE ii 5.7 Classificazione delle coniche euclidee Esercizi non svolti Rette e piani nello spazio affine ed euclideo Equazioni di un piano Reciproca posizione di due piani Fascio di piani Stella di piani Equazioni di una retta Rette complanari Reciproca posizione tra una retta ed un piano Calcolo dei parametri direttori di una retta Coordinate omogenee nello spazio Angoli nello spazio euclideo Distanze nello spazio euclideo Elementi complessi nello spazio Esercizi non svolti Le quadriche Definizione Quadriche generali Quadriche specializzate Quadriche riducibili Esercizi non svolti La sfera Definizione Sezioni piane Fascio di sfere Esercizi non svolti Cenni sulle superfici di rotazione Definizione e calcolo Esercizi svolti Figure e disegni relativi ai capitoli precedenti. 88

4 Capitolo 1 Spazio affine ed euclideo. 1.1 Spazio affine. Siano V uno spazio vettoriale di dimensione n sul campo K, A un insieme non vuoto e f : A A V una applicazione che gode delle seguenti proprietá: i) per ogni P A e v V esiste Q A tale che f(p, Q) = v; ii) per ogni P 1, P, P 3 A vale la seguente uguaglianza f(p 1, P 3 ) = f(p 1, P ) + f(p, P 3 ). La struttura (A, f) prende il nome di spazio affine associato allo spazio vettoriale V. In uno spazio affine valgono le seguenti proprietá: 1) f(a, A) = 0; ) f(a, B) = 0 se e solo se A = B; 3) f(a, B) = f(b, A). Si definisce dimensione di uno spazio affine A il numero intero n che indica la dimensione dello spazio vettoriale V a cui A é associato. Sia B = e 1, e,.., e n } una base di V e fissiamo un punto O A. Diciamo sistema di riferimento di A, il sistema (O, e 1,.., e n ) in modo tale che le coordinate di un qualsiasi punto P A siano le componenti rispetto alla base B del vettore f(o, P ) cioé se OP = x 1 e x n e n allora le coordinate di P sono (x 1,.., x n ). In particolare se P = (x 1,.., x n ) e Q = (y 1,.., y n ) sono punti di A, allora vale la seguente: P Q = P O + OQ = (y 1 x 1,..., y n x n ). Scegliamo V = R, allora ogni vettore di V é individuato da una coppia di componenti rispetto alla base B = e 1, e }. Lo spazio affine associato a V = R, in cui ogni punto é 1

5 CAPITOLO 1. SPAZIO AFFINE ED EUCLIDEO. individuato da una coppia di coordinate, P = (x 1, x ) tali che OP = x 1 e 1 + x e, é detto piano affine. Sia ora V = R 3, allora ogni vettore di V é individuato da una terna di componenti rispetto alla base B = e 1, e, e 3 }. Nello spazio affine associato a V = R 3 ogni punto é individuato da una terna di coordinate, P = (x 1, x, x 3 ) tali che OP = x 1 e 1 + x e + x 3 e Spazio euclideo. Sia V uno spazio vettoriale di dimensione n sul campo K e sia E uno spazio affine associato a V. Nel caso V sia uno spazio vettoriale euclideo, cioé dotato di un prodotto interno, allora E prende il nome di spazio euclideo associato a V. La struttura di E é identica a quella dello spazio affine A, eccetto che per la presenza del prodotto interno in V, la quale permette di introdurre i concetti di angolo, distanze ed ortogonalitá. Da ció deriva la possibilitá di scegliere in E un riferimento (O, e 1,.., e n ) che sia formato da vettori ortonormali, cioé e 1,.., e n } é una base ortonormale di V. Tale base é quella rispetto alla quale il prodotto interno in V puó essere espresso come prodotto scalare standard. In altre parole, se v = (x 1,.., x n ) e w = (y 1,., y n ) sono vettori in V : Siano ora P, Q E tali che < v, w >= x 1 y 1 + x y x n y n. OP = x 1 e x n e n OQ = y 1 e y n e n. La distanza tra i punti P e Q é pari al modulo del vettore P Q, quindi δ(p, Q) = (y 1 x 1 ) (y n x n ). Consideriamo infine due vettori v, w V di componenti v = (x 1,..., x n ) w = (y 1,..., y n ). Dalla definizione di prodotto scalare si ha che < v, w >= v w cos(ϕ) = x 1 y x n y n dove ϕ é l angolo compreso tra i due vettori. Quindi ne deriva che x 1 y x n y n cos(ϕ) =. x x n y yn Scegliamo V = R, allora ogni vettore di V é individuato da una coppia di componenti rispetto alla base ortonormale B = e 1, e }. Lo spazio euclideo associato a V = R, in cui ogni punto é individuato da una coppia di coordinate, P = (x 1, x ) tali che OP = x 1 e 1 + x e, é detto piano euclideo.

6 Capitolo Geometria nel piano affine ed euclideo Siano V = R e A lo spazio affine associato a V. Indichiamo con i, j} una base di V e con (O, i, j) un riferimento in A. Ogni punto P A é individuato dalle coordinate (x, y) rispetto al riferimento dato, tali che OP = xi + yj. Diremo assi coordinati quelle rette passanti per O, concordi e parallele ai vettori i, j..1 Equazioni di una retta. Ogni retta del piano puó essere individuata da un suo punto P 0 = (x 0, y 0 ) e da un vettore v = (l, m) ad essa parallelo. Quindi ogni punto P = (x, y) della retta é tale che il vettore OP dipenda da OP 0 e v cioé OP = OP 0 + tv. Al variare del parametro t si ottengono tutti i punti della retta: x = x0 + tl y = y 0 + tm che sono dette equazioni parametriche della retta. Gli elementi della coppia (l, m) sono detti parametri direttori della retta. In particolare se si conoscono due punti della retta P 1 = (x 1, y 1 ) e P = (x, y ), il vettore P 1 P é parallelo alla retta e quindi (l, m) = (x x 1, y y 1 ) e l equazione si puó ottenere nel modo seguente: x = x1 + t(x x 1 ) y = y 1 + t(y y 1 ) da cui t = x x 1 x x 1 = y y 1 y y 1 t = x x 1 l = y y 1 m 3

7 CAPITOLO. GEOMETRIA NEL PIANO AFFINE ED EUCLIDEO 4 che é detta equazione a catena di una retta. Da tali espressioni, eliminando il parametro t, otteniamo che possiamo riscrivere mx mx 0 ly + ly 0 = 0 ax + by + c = 0 che é l equazione lineare (implicita) che rappresenta la retta in coordinate affini. Diremo che due rette sono parallele se esse hanno i parametri direttori proporzionali (in particolare identici). Si noti che quando la retta é espressa in forma implicita, i suoi parametri direttori sono dati dalla coppia (l, m) = (b, a). Dalla forma implicita ax + by + c = 0 di una retta, ricaviamo la forma detta esplicita: y = mx + q, per m = a e q = c. b b Abbiamo visto come l equazione della retta passante per i due punti P 1 = (x 1, y 1 ) e P = (x, y ) si scriva x x 1 = y y 1 x x 1 y y 1 che equivale alla (x x 1 )(y y 1 ) (y y 1 )(x x 1 ) = 0 cioé x x 1 y y 1 x x 1 y y 1 = 0. Quest ultima si puó riscrivere anche nel modo seguente: x y 1 x 1 y 1 1 = 0. x y 1 Diremo allora che il punto P 3 = (x 3, y 3 ) é allineato con i punti P 1 e P se x 3 y 3 1 x 1 y 1 1 x y 1 = 0.. Reciproca posizione di due rette. Siano r : ax + by + c = 0 e r : a x + b y + c = 0 due rette. I punti in comune alle due rette sono le soluzioni del sistema lineare ax + by + c = 0 a x + b y + c = 0

8 CAPITOLO. GEOMETRIA NEL PIANO AFFINE ED EUCLIDEO 5 nelle incognite x, y. Le matrici associate al sistema sono A = [ a b a b ], C = [ a b c a b c Se rango(a) = rango(c) = 1, allora le due rette sono coincidenti poiché ax + by + c = α(a x + b y + c ), per un opportuno α R. Se rango(a) = rango(c) =, allora il sistema ammette una sola soluzione cioé le due rette sono incidenti. Se rango(a) = 1 e rango(c) =, allora il sistema é incompatibile e le due rette non hanno punti in comune, cioé sono parallele. Ció si verifica quando a a = b b c c. Allora possiamo dire che le due rette sono parallele quando a b = a b. Il rapporto a b é detto coefficiente direttore (o angolare) della retta, quindi due rette sono parallele se hanno lo stesso coefficiente direttore. ]..3 Fascio di rette. Siano r : ax + by + c = 0 e r : a x + b y + c = 0 due rette distinte. La totalitá delle rette di equazione λ(ax + by + c) + ϱ(a x + b y + c ) = 0 al variare dei parametri reali λ e ϱ, é detta fascio di rette. Si possono verificare due casi: r e r sono incidenti in un punto, ed allora tutte le rette del fascio hanno in comune quel punto, si parla di fascio proprio. Oppure r e r sono tra loro parallele, ed allora tutte le rette del fascio sono tra loro parallele, si parla di fascio improprio. Supponiamo allora di avere una terza retta r : a x + b y + c = 0 ed analizziamo in quale casi essa appartiene al fascio individuato da r e r. In pratica si deve studiare il sistema ax + by + c = 0 a x + b y + c = 0 a x + b y + c = 0 nelle incognite x, y. Le matrici associate al sistema sono A = a b a b a b, C = a b c a b c a b c.

9 CAPITOLO. GEOMETRIA NEL PIANO AFFINE ED EUCLIDEO 6 Se rango(a) = rango(c) =, allora il sistema ammette una sola soluzione, cioé le tre rette hanno un punto in comune: esse appartengono ad un fascio proprio. Se rango(a) = 1 e rango(c) =, allora il sistema é incompatibile ed le tre rette sono parallele: esse appartengono ad un fascio improprio. Possiamo concludere allora che la condizione necessaria e sufficiente affinché le tre rette appartengano allo stesso fascio (proprio o improprio che sia) é che la matrice abbia rango. a b c a b c a b c.4 Angoli e distanze nel piano euclideo. Fissiamo nello spazio euclideo un riferimento cartesiano ortogonale OXY di centro O e versori i, j, rispettivamente per gli assi X, Y. Chiameremo coseni direttori di una retta r, i coseni degli angoli che la retta forma con gli assi coordinati. Se la retta é individuata dai parametri direttori (l, m), i suoi coseni direttori saranno: l α = cos(r, X) + l + m, l l + m } m β = cos(r, Y ) + l + m, m l + m } Consideriamo ora due rette ed individuiamole tramite i rispettivi parametri direttori: r = (l, m) e r = (l, m ). Indichiamo con v e v due vettori paralleli rispettivamente a r e r, uno di componenti (l, m) e l altro (l, m ). L angolo tra le due rette é lo stesso formato dai due vettori: cos(r, r ) = cos(v, v ll + mm ) + l + m l + m, ll + mm l + m l }. + m Quindi le due rette sono ortogonali se ll + mm = 0. Siano P 1 = (x 1, y 1 ) e P = (x, y ) due punti del piano. La distanza tra i punti P 1 e P é il modulo del vettore P 1 P : δ(p 1, P ) = (x x 1 ) + (y y 1 ). Consideriamo ora il punto P 1 = (x 1, y 1, z 1 ) e la retta r : ax+by +c = 0. La distanza di P 1 da r é pari alla lunghezza del segmento P 1 Q 1, dove Q 1 é il punto proiezione ortogonale di P 1 su r: δ(p 1, r) = ax 1 + by 1 + c a + b

10 CAPITOLO. GEOMETRIA NEL PIANO AFFINE ED EUCLIDEO 7.5 Simmetrie. Due punti P 1 = (x 1, y 1 ) e P = (x, y ) sono simmetrici rispetto al punto Q = (a, b), se Q é il punto medio del segmento P 1 P, cioé se a = x 1 + x, b = y 1 + y. Quindi, dato un punto P 1 = (x 1, x ), per determinare le coordinate (x, y ) del suo simmetrico P rispetto al punto Q = (a, b), é sufficiente calcolare x = a x 1, y = b y 1. Consideriamo ora il punto P 1 = (x 1, y 1 ) e la retta r : y = mx + q. Consideriamo una qualsiasi retta del fascio di centro P 1 : y y 1 = k(x x 1 ) al variare del parametro reale k otteniamo tutte le rette passanti per P 1. Fissiamo una retta r di tale fascio e sia Q = r r. Il punto P, simmetrico di P 1 rispetto a Q, é detto il simmetrico di P 1 rispetto alla retta r, lungo la direzione individuata dalla retta r. Quindi uno stesso punto puó avere infiniti simmetrici rispetto ed una retta che non lo contenga. Esempio.5.1 Siano P = (1, 1) e r : x y = 4. Determiniamo il simmetrico di P rispetto a r lungo la direzione di coefficiente k = 3. Svolg. La retta r del fascio di centro P e coefficiente angolare 3 é r : y 1 = 3(x 1) y 3x + = 0. Il punto Q = r r é dato dalle soluzioni del sistema y 3x + = 0 x y 4 = 0 dal quale otteniamo Q = ( 1, 5). Il simmetrico di P rispetto a Q é P = (x, y) x = 1 = 3 y = 10 1 = 11 P = ( 3, 11). Concludiamo con la definizione di asse di un segmento AB: esso é la retta perpendicolare ad AB e passante per il suo punto medio:

11 CAPITOLO. GEOMETRIA NEL PIANO AFFINE ED EUCLIDEO 8 Esempio.5. Siano A = (1, 1) e B = (, 3). Calcoliamo l asse del segmento AB. Svolg. Il vettore AB ha componenti ( 1, 4), quindi una retta ad esso ortogonale ha come parametri direttori, la coppia (b, a) = ( 4, 1). Il punto medio di AB é Q = ( 3, 1). Quindi l asse del segmento AB ha equazione: y 1 = 1 4 (x 3 ) cioé x + 8y + 11 = 0..6 Coordinate omogenee nel piano. Sia P = (x, y) un punto del piano. Diremo che (x 1, x, x 3 ) sono le coordinate omogenee di P se x 1 x 3 = x e x x 3 = y. Nel caso x 3 0 le precedenti scritture hanno evidentemente un senso, e diremo che il putno é proprio. Ogni punto proprio (x, y) puó banalmente essere individuato da una terna di coordinate omogenee (x, y, 1). Inoltre due terne tra loro proporzionali individuano lo stesso punto nel piano. Nel caso il punto P sia individuato dalla terna (x, y, 0) esso verrá detto improprio. L insieme dei punti impropri del piano forma una retta detta retta impropria, la cui equazione é x 3 = 0. Consideriamo ora la retta r : ax + by + c = 0, nel passaggio alle coordinate omogenee, la sua equazione diventa a x 1 + b x + c = 0 x 3 x 3 cioé ax 1 + bx + cx 3 = 0. Tale retta avrá uno ed un solo punto di intersezione con la retta impropria, e sará detto il punto improprio di r. É noto che tutti e soli i punti di r sono quelli le cui coordinate soddisfino l equazione ax 1 +bx +cx 3 = 0. Tra questi punti c é anche il punto improprio di coordinate omogenee (b, a, 0). Ma similmente ogni punto improprio del tipo (αb, αa, 0) soddisfa la precedente equazione, quindi un punto improprio é unico a meno di un fattore di proporzionalitá. In altre parole, due qualsiasi terne (x, y, 0) e (z, t, 0) tra loro proporzionali, individuano il medesimo punto improprio. In particolare il punto improprio (b, a, 0) della retta r si puó riscrivere come (1, a b, 0) (dividendo la terna per b). La seconda coordinata non é altro che il coefficiente angolare

12 CAPITOLO. GEOMETRIA NEL PIANO AFFINE ED EUCLIDEO 9 delle retta. Concludiamo allora che rette parallele hanno lo stesso punto improprio (poiché hanno lo stesso coefficiente angolare)..7 La circonferenza. Sia C = (α, β) un punto del piano e sia r un numero reale positivo. Diciamo circonferenza di centro C e raggio r, il luogo dei punti del piano la cui distanza da C é pari a r. Sia P = (x, y) un punto qualsiasi della circonferenza: δ(p, C) = (x α) + (y β) = r da cui otteniamo (quadrando e riordinando): (x α) + (y β) = r x + y + ax + by + c = 0. In questúltima equazione compaiono i coefficienti legati alle coordinate del centro e alla lunghezza del raggio r: α = a, β = b, r = 1 a + b 4c Esempio.7.1 Determinare la circonferenza di centro C = (1, 1) e raggio r = 3. Svolg. Applicando la definizione, l equazione é (x 1) + (y 1) = 9 x + y x y 7 = 0 Esempio.7. Determinare centro e raggio della circonferenza x +y 4x y + = 0. Svolg. Il centro C ha coordinate α = 4, β = 3, da cui C = (, 1). Il raggio é r = = 1 1 = 3. Osservazione. La circonferenza é l unica curva di secondo grado nel piano che contenga i due seguenti punti impropri: (1, i, 0) e (1, i, 0) detti punti ciclici. Circonferenza per tre punti. Consideriamo tre punti P 1 = (x 1, y 1 ), P = (x, y ) e P 3 = (x 3, y 3 ) non allineati cioé x 1 y 1 1 x y 1 0. x 3 y 3 1

13 CAPITOLO. GEOMETRIA NEL PIANO AFFINE ED EUCLIDEO 10 Per ottenere la circonferenza passante per i tre punti dobbiamo sostituire le coordinate dei punti alla generica equazione di una circonferenza. In tale caso la circonferenza contenente i tre punti é unica. Infatti il sistema lineare che dobbiamo risolvere nelle incognite (a, b, c) ha rango 3. x 1 + y 1 + ax 1 + by 1 + c = 0 x + y + ax + by + c = 0 x 3 + y 3 + ax 3 + by 3 + c = 0 Esempio.7.3 Determinare la circonferenza contenente i punti (1, ), (1, 8), (5, 0). Svolg. Il sistema lineare da risolvere é a + b + c = a + 8b + c = a + c = 0 a + b + c = 5 a + 8b + c = 65 5a + c = 5 le cui soluzioni sono a = 10, b = 10, c = 5 e l equazione della circonferenza é x + y 10x 10y + 5 = 0. Esiste un altro metodo per determinare l unica circonferenza passante per i tre punti e si basa sul fatto che l asse di un segmento che ha per estremi due punti di un circonferenza, certamente contiene il centro della circonferenza. Lo esponiamo riproponendo l esempio precedente: Esempio.7.4 Determinare la circonferenza contenente i punti A = (1, ), B = (1, 8), C = (5, 0). Svolg. Consideriamo l asse del segmento AB, che ha equazione y 5 = 0 e passa per il centro della circonferenza. Calcoliamo ora l asse del segmento AC, esso é y x + 5 = 0. Quindi il centro della circonferenza é il punto comune a tali due rette: y 5 = 0 y x + 5 = 0 la cui soluzione é O = (5, 5).

14 CAPITOLO. GEOMETRIA NEL PIANO AFFINE ED EUCLIDEO 11 Il raggio della circonferenza é pari alla distanza del centro da uno qualsiasi dei tre punti noti, per esempio: r = δ(oc) = 5 = 5 per cui l equazione della circonferenza é (x 5) + (y 5) = 5 x + y 10x 10y + 5 = 0..8 Esercizi non svolti. Esercizio.8.1 Nel piano euclideo determinare il punto simmetrico di P (4, 3) rispetto al punto Q(1, 1). Esercizio.8. Nel piano euclideo determinare il punto simmetrico di P (1, 1) rispetto alla retta r : x y + 4 = 0 lungo la direzione ortogonale a r. Esercizio.8.3 Nel piano euclideo determinare il punto simmetrico di P (1, 3) rispetto alla retta r : x y + 1 = 0 lungo la direzione (, 1, 0) (cioé lungo la retta di parametri direttori (, 1) e passante per P ). Esercizio.8.4 Siano A(, 1) e B(3, ) punti del piano euclideo. Determinare l asse del segmento AB. Esercizio.8.5 Determinare la circonferenza passante per i punti (0, ), (1, 1), (, 1). Esercizio.8.6 Determinare il centro ed il raggio della circonferenza x + y 3x + y 1 = 0. Esercizio.8.7 Siano r : x y + 3 = 0 e s : x = t, y = t + due rette nel piano. Determinare i coseni direttori di entrambe le rette ed inoltre il coseno dell angolo tra di esse compreso. Esercizio.8.8 Siano r : x = 3t 1, y = t + 5 l equazione in forma parametrica di una retta nel piano e P (1, 1) un punto esterno ad essa. Determinare: a) L equazione in forma implicita (equazione affine) della retta. b) La distanza tra il punto P e la retta r. c) La retta passante per P ed ortogonale a r. d) La retta passante per P e parallela a r.

15 Capitolo 3 Trasformazioni nel piano euclideo. 3.1 Traslazioni. In un riferimento cartesiano OXY del piano euclideo, siano (x, y) le coordinate del punto P. Supponiamo di considerare un secondo riferimento O X Y in cui gli assi X, Y siano paralleli rispettivamente a X e Y ed il punto O abbia coordinate (a, b) rispetto a OXY. Denotiamo (x, y ) le coordinate di P rispetto al riferimento O X Y. La relazione che intercorre tra le due coppie di coordinate di P é la seguente: x = x a y = y b e le formule inverse sono x = x + a y = y + b. Esercizio Sia P ( 1, 3) nel sistema di riferimento cartesiano OXY, O (1, ) e X, Y assi paralleli rispettivamente a X e Y e passanti per O. Sia inoltre r : 3x + y 1 = 0 rispetto a OXY. Determiniamo le coordinate di P e l equazione di r rispetto al riferimento O X Y. Svolg. Le equazioni di traslazione sono x = x a y = y b dove (a, b) sono le coordinate del nuovo centro del riferimento, ed applicandole nel nostro caso otteniamo le coordinate di P x = 1 1 = y = 3 = 1. 1

16 CAPITOLO 3. TRASFORMAZIONI NEL PIANO EUCLIDEO. 13 Le formule inverse sono da cui otteniamo l equazione della retta x = x + a y = y + b r : 3(x + 1) + (y + ) 1 = 0 3x + y + 4 = Rotazioni. Siano (x, y) le coordinate del punto P nel riferimento OXY. Consideriamo ora una secondo riferimento OX Y in cui gli assi X e Y siano ruotati in senso antiorario di un angolo φ rispetto agli assi X e Y. Per determinare le coordinate (x, y ) di P nel secondo riferimento, ricordiamo che esse sono le componenti del vettore OP. Esprimiamo tali componenti rispetto alle due coppie di versori, i, j in OXY, i, j in OX Y : OP = x i + y j OP = xi + yj. Quindi possiamo richiamare quanto detto in relazione al cambiamento di base in uno spazio vettoriale: [ ] [ ] x x = A y y dove A é la matrice di cambiamento di base. Nel nostro caso abbiamo che [ ] cos(φ) sen(φ) A = sen(φ) cos(φ) cioé e le formule inverse sono [ ] [ ] [ ] x cos(φ) sen(φ) x = y sen(φ) cos(φ) y [ ] [ ] x cos(φ) sen(φ) y = sen(φ) cos(φ) [ x y ] da cui x = xcos(φ) + ysen(φ) y = xsen(φ) + ycos(φ). Si noti che le due matrici usate per il cambiamento di base sono l una la trasposta dell altra, ma anche l una l inversa dell altra, infatti sono entrambe matrici ortogonali.

17 CAPITOLO 3. TRASFORMAZIONI NEL PIANO EUCLIDEO. 14 Esercizio 3..1 Siano P (1, 1) in OXY e X, Y assi passanti per O e ruotati di π in 4 senso antiorario rispetto a X, Y. Sia inoltre r : x + 3y = 0 rispetto al riferimento OXY. Determiniamo le coordinate di P e l equazione di r rispetto a OX Y. Svolg. Le equazioni di rotazione sono [ ] [ x cos(φ) sen(φ) y = sen(φ) cos(φ) ] [ x y ] da cui x = xcos(φ) + ysen(φ) y = xsen(φ) + ycos(φ). Le formule inverse sono [ x y ] [ ] [ cos(φ) sen(φ) x = sen(φ) cos(φ) y ] da cui x = x cos(φ) y sen(φ) y = x sen(φ) + y cos(φ). Nel nostro caso le coordinate di P sono x = (x + y) = (1 1) = 0 y = ( x + y) = ( 1 1) = e l equazione della retta é r : (x y ) + 3 (x + y ) = 0 r : 5 x + y 4 = Rototraslazioni. Siano (x, y) le coordinate di P in OXY e consideriamo un riferimento O X Y in cui O abbia coordinate (a, b) rispetto a OXY e tale che gli assi X e Y siano ruotati in senso antiorario di un angolo φ rispetto a X e Y. Determiniamo le coordinate (x, y ) di P nel secondo riferimento. Effettuiamo prima una traslazione OXY O X Y

18 CAPITOLO 3. TRASFORMAZIONI NEL PIANO EUCLIDEO. 15 x = x a y = y b. Successivamente operiamo con una rotazione O X Y O X Y [ ] [ ] x cos(φ) sen(φ) y = sen(φ) cos(φ) [ x a y b ed inversamente abbiamo che: [ ] [ ] [ ] x a cos(φ) sen(φ) x = y b sen(φ) cos(φ) y ] cioé [ x y ] [ cos(φ) sen(φ) = sen(φ) cos(φ) ] [ x y ] + [ a b ]. Esercizio Siano P (3, 1) e O (1, ) in OXY e X, Y assi passanti per O e ruotati di π in senso antiorario rispetto a X, Y. Sia inoltre r : x + y 3 = 0 rispetto al 4 riferimento OXY. Determiniamo le coordinate di P e l equazione di r rispetto a O X Y. Svolg. Le equazioni di rototraslazione sono [ ] [ x cos(φ) sen(φ) y = sen(φ) cos(φ) ] [ x a y b ] da cui x = (x a)cos(φ) + (y b)sen(φ) y = (x a)sen(φ) + (y b)cos(φ). Le formule inverse sono [ ] [ ] [ ] x cos(φ) sen(φ) x = y sen(φ) cos(φ) y + da cui Nel nostro caso le coordinate di P sono x = x cos(φ) y sen(φ) + a y = x sen(φ) + y cos(φ) + b. [ a b x = (x a + y b) = ( 3) = y = ( x + a + y b) = ( 3) = 5 ]

19 CAPITOLO 3. TRASFORMAZIONI NEL PIANO EUCLIDEO. 16 e l equazione della retta é r : ( (x y ) + 1) + ( (x + y ) + ) 3 = 0 r : 3 x y + = Esercizi non svolti. Esercizio Siano OXY un sistema di riferimento ortogonale nel piano euclideo, P un punto di coordinate ( 1, 3) rispetto a OXY e r una retta di equazione x 3y + 1 = 0 in OXY. Determinare le coordinate di P e l equazione di r in un secondo sistema di riferimento O X Y nei seguenti casi: a) O ha coordinate (1, ) rispetto a OXY e gli assi X, Y sono paralleli agli assi X, Y (traslazione). b) O = O e gli assi X, Y sono ruotati di un angolo α = π in senso antiorario rispetto 3 a X, Y (rotazione). c) O ha coordinate (1, 1) rispetto a OXY e gli assi X, Y sono ruotati di un angolo α = π in senso antiorario rispetto a X, Y (rototraslazione). 6 Esercizio 3.4. Siano OXY un sistema di riferimento ortogonale nel piano euclideo e γ : x + y 3x + y 1 = 0 una circonferenza la cui equazione é espressa rispetto a OXY. Determinare l equazione di γ in un secondo sistema di riferimento O X Y nel caso i cui O abbia coordinate (, 1) rispetto a OXY e gli assi X, Y siano ruotati di un angolo α = π in senso antiorario rispetto a X, Y. 4

20 Capitolo 4 Curve algebriche piane e punti multipli. 4.1 Intersezione di due curve. Due polinomi f(x, y) e g(x, y) nelle variabili x, y a coefficienti reali, sono detti proporzionali se esiste a R tale che f(x, y) = ag(x, y). Tale proporzionalitá é una relazione di equivalenza. Una curva algebrica γ é una classe di equivalenza di polinomi cioé se f(x, y) é un polinomio rapresentante della classe, allora l equazione f(x, y) = 0 é rappresentativa della curva γ. Il grado di una curva é il grado del polinomio che la rappresenta. Teorema Siano γ : f(x, y) = 0 e δ : g(x, y) = 0 due curve algebriche rispettivamente di gradi n e m. Allora esse hanno n m punti in comune eccetto il caso in cui hanno infiniti punti in comune. Come caso particolare consideriamo quello in cui γ : f(x, y) = 0 sia una curva di grado n e δ : g(x, y) = 0 sia una curva di grado 1, cioé una retta. Allora γ e δ hanno n punti in comune eccetto quando δ sia una componente di γ cioé f(x, y) = g(x, y) h(x, y), dove h(x, y) é un polinomio di grado n 1. Per esempio γ : x 3 3xy = 0 e δ : y 1 = 0 hanno in comune i seguenti 3 punti : (0, 1), ( 3, 1), ( 3, 1). Al contrario γ : x 3 + x y xy + x y + y = 0 e δ : x + y = 0 hanno in comune infiniti punti, cioé tutti quelli di δ, quindi la retta δ é una componente di γ, infatti x 3 + x y xy + x y + y = (x + y) (x y + 1). 4. Molteplicitá di un punto. Sia γ : f(x, y) = 0 una curva algebrica di grado n e sia P 0 (x 0, y 0 ) un punto di γ. 17

21 CAPITOLO 4. CURVE ALGEBRICHE PIANE E PUNTI MULTIPLI. 18 Consideriamo una generica retta r : y y 0 = m(x x 0 ) passante per P 0. La retta r e la curva γ hanno in comune n punti, non necessariamente tutti distinti, almeno uno dei quali é proprio P 0. Diciamo che r e γ hanno molteplicitá di intersezione M nel punto P 0 se (x 0, y 0 ) é una soluzione di molteplicitá M per il sistema f(x, y) = 0 y y 0 = m(x x 0 ). Esempio 4..1 Sia γ : x 3 y = 0 e siano P 0 = (0, 0) e r : x y = 0. Determiniamo la molteplicitá di intersezione tra γ e r nel punto P 0. Il sistema x 3 y = 0 x y = 0 ha le tre soluzioni (1, 1) con molteplicitá 1, (0, 0) con molteplicitá. Quindi nel punto P 0 le due curve hanno molteplicitá di intersezione M = (e nel punto (1, 1) hanno molteplicitá di intersezione 1). Consideriamo ora una generica retta r i del fascio di centro P 0. Ciascuna delle rette r i ha una molteplicitá di intersezione M i con γ in P 0. Diremo molteplicitá di P 0 per la curva γ, il minimo di tali M i. Il punto P 0 é detto semplice se minm i } = 1, é detto punto multiplo se minm i }, in particolare é detto doppio se minm i } =, triplo se minm i } = 3, quadruplo se minm i } = 4, etc. etc. Esercizio 4..1 Sia γ : x 3 x + y = 0 una cubica in OXY. Determiniamo la molteplicitá di P (0, 0) γ. Svolg. Sia r la generica retta passante per P : y = mx. Per ottenere la molteplicitá di P dobbiamo intersecare r con γ. x 3 x + y = 0 y = mx x 3 x + m x = 0 y = mx in cui la soluzione (0, 0) é doppia, quindi P é un punto doppio per γ. Esercizio 4.. Sia γ : (x +y ) +3x y y 3 = 0 una quartica in OXY. Determiniamo la molteplicitá di P (0, 0) γ. Svolg. Sia r la generica retta passante per P : y = mx.

22 CAPITOLO 4. CURVE ALGEBRICHE PIANE E PUNTI MULTIPLI. 19 Per ottenere la molteplicitá di P dobbiamo intersecare r con γ. (x + y ) + 3x y y 3 = 0 y = mx (x + m x ) + 3mx 3 m 3 x 3 = 0 y = mx x 3 (x + m 4 x + m x + 3m m 3 ) = 0 y = mx in cui la soluzione (0, 0) é tripla, quindi P é un punto triplo per γ. Esercizio 4..3 Sia la curva di sesto grado γ : (x + y ) 3 4x y = 0 in OXY. Determiniamo la molteplicitá di P (0, 0) γ. Svolg. Sia r la generica retta passante per P : y = mx. Per ottenere la molteplicitá di P dobbiamo intersecare r con γ. (x + y ) 3 4x y = 0 y = mx (x + m x ) 3 4m x 4 = 0 y = mx x 4 (x + m 6 x + 3m x + 3m 4 x 4m ) = 0 y = mx in cui la soluzione (0, 0) é quadrupla, quindi P é un punto quadruplo per γ.

23 Capitolo 5 Le coniche. 5.1 Definizione. Una curva algebrica γ : f(x, y) = 0 di secondo grado é detta conica, quindi si puó rappresentare tramite l equazione: f(x, y) = ax + bxy + cy + dx + ey + f = 0 dove a, b, c, d, e, f R. In coordinate omogenee la curva é rappresentata da un polinomio omogeneo e l equazione diventa: f(x 1, x, x 3 ) = a 11 x 1 + a 1 x 1 x + a x + a 13 x 1 x 3 + a 3 x x 3 + a 33 x 3 = 0 dove a ij R, per ogni i e j. Si noti che anche il prodotto di due polinomi di primo grado determina un polinomio rappresentante di una conica. In tale caso la conica é l unione delle due rette rappresentate dai due polinomi di primo grado. Consideriamo ora la matrice simmetrica di ordine 3, formata con i coefficienti dell equazione della conica in coordinate omogenee: ed indichiamo X = x 1 x x 3 A = conica puó essere riscritta in forma compatta: a 11 a 1 a 13 a 1 a a 3 a 13 a 3 a 33 il vettore delle coordinate omogenee, allora l equazione della f(x 1, x, x 3 ) = X T A X = 0 ed il polinomio f(x 1, x, x 3 ) é una forma quadratica in R 3, di matrice associata A. 0

24 CAPITOLO 5. LE CONICHE. 1 Esempio L equazione x + y xy + x 1 = 0 rappresenta una conica nel piano La matrice associata alla conica é A = Diremo che una conica γ : f(x, y) = 0 é riducibile se essa é composta da due rette cioé se esistono due polinomi di primo grado g(x, y) e h(x, y) tali che f(x, y) = g(x, y) h(x, y). Teorema Sia γ una conica con matrice associata A. Le seguenti affermazioni sono equivalenti: i) La conica γ é riducibile. ii) La conica γ ha almeno un punto doppio. iii) det(a) = Polaritá rispetto ad una conica. Sia γ : X T A X = 0 una conica non riducibile. Definiamo polaritá rispetto a γ la corrispondenza biunivoca che associa ad ogni punto X = (x 1, x, x 3) del piano, una retta r la cui equazione é data da X T A X = 0. La retta r é detta rella polare di X rispetto a γ, il punto X é detto polo della retta r rispetto a γ. Un caso particolare é quello in cui il punto X appartiene alla conica. Quando si verifica ció allora la retta polare di X é esattamente la tangente alla conica in X. Consideriamo r la retta polare del punto X rispetto alla conica γ. Sia X un qualsiasi punto di r. Anche di tale punto é possibile costruire la retta polare rispetto alla conica γ. Diciamo r tale retta polare. Una proprietá, detta recipprocitá, garantisce che X r. Riassumendo potremmo dire che se un punto X appartiene alla polare di un altro punto X, allora X appartiene alla polare di X. Diremo che i punti X e X sono tra loro coniugati, ed analogamente che le rette r e r sono tra loro coniugate. Un punto é detto autoconiugato se appartiene alla propria polare. Tutti e soli i punti autoconiugati rispetto ad una conica sono quelli della conica stessa. Una retta é detta autoconiugata se contiene il proprio polo. Tutte e sole le rette autoconiugate rispetto ad una conica, sono le tangenti alla conica stessa. 5.3 Classificazione di una conica. Sia γ : X T A X = 0 una conica nel piano. Se intersechiamo γ con la retta impropria x 3 = 0 otteniamo ovviamente soluzioni, cioé i due punti impropri della conica.

25 CAPITOLO 5. LE CONICHE. Una conica con due punti impropri reali e distinti é detta Iperbole. Una conica con due punti impropri reali e coincidenti é detta Parabola. Una conica con due punti impropri complessi coniugati é detta ellisse. In altre parole la retta impropria é secante all iperbole, tangente alla parabola, esterna all ellisse. Consideriamo il sistema XT A X = 0 x 3 = 0 a11 x 1 + a 1 x 1 x + a x = 0 x 3 = 0. Il discriminante del sistema é = a 1 a 11 a, da cui > 0 Iperbole = 0 Parabola < 0 Ellisse In particolare se indichiamo con A 33 il complemento algebrico dell elemento a 33 della matrice A, notiamo che A 33 =, quindi A 33 > 0 Ellisse A 33 = 0 Parabola A 33 < 0 Iperbole.. Osservazione. Tutte e sole le coniche che contengono i punti ciclici (1, i, 0) e (1, i, 0) sono le circonferenze (che sono particolari ellissi). 5.4 Fascio di coniche. Siano γ 1 : f 1 (x 1, x, x 3 ) = 0 e γ : f (x 1, x, x 3 ) = 0 due coniche distinte. Poiché sono curve di secondo grado, escludendo il caso in cui siano entrambe riducibili con una retta in comune, esse hanno 4 punti A, B, C, D in comune (distinti o no, reali o no). Il caso generale é quello in cui A, B, C, D sono tutti tra loro distinti. Nel caso in cui si abbia A = B e C, D distinti, allora le due coniche hanno una tangente comune ad entrambe (γ 1 e γ sono chiamate coniche tangenti), ed é la retta tangente nel punto A = B. Nel caso si abbia A = B e C = D allora le due coniche hanno due rette tangenti in comune (γ 1 e γ sono chiamate coniche bitangenti), e sono le tangenti nel punto A = B ed in C = D. Nel caso si abbia A = B = C allora le due coniche hanno una retta tangente in comune (γ 1 e γ sono chiamate coniche osculatrici), ed é la tangente nel punto A = B = C. Nel caso si abbia A = B = C = D allora le due coniche hanno una retta tangente in comune (γ 1 e γ sono chiamate coniche iperosculatrici), ed é la tangente nel punto A = B = C = D.

26 CAPITOLO 5. LE CONICHE. 3 Diciamo fascio di coniche la totalitá delle coniche che si ottengono da a 1 f 1 (x 1, x, x 3 ) + a f (x 1, x, x 3 ) = 0 al variare di a 1, a R. Tutte le coniche del fascio hanno in comune gli stessi 4 punti A, B, C, D, i quali sono chiamati punti base del fascio. Inoltre per individuare un fascio di coniche é sufficiente conoscere due qualsiasi coniche di esso (ad esempio anche due coniche riducibili che appartengono al fascio). Il caso generale é quello in cui A, B, C, D sono tutti tra loro distinti, si parla quindi di fascio generale. Nel caso in cui si abbia A = B e C, D distinti, allora le coniche del fascio hanno una tangente comune (si parla di fascio di coniche tangenti), ed é la retta tangente nel punto A = B. Nel caso si abbia A = B e C = D allora le coniche del fascio hanno due rette tangenti in comune (si parla di fascio di coniche bitangenti), e sono le tangenti nel punto A = B ed in C = D. Nel caso si abbia A = B = C allora le coniche del fascio hanno una retta tangente in comune (si parla di fascio di coniche osculatrici), ed é la tangente nel punto A = B = C. Nel caso si abbia A = B = C = D allora le coniche del fascio hanno una retta tangente in comune (si parla di fascio di coniche iperosculatrici), ed é la tangente nel punto A = B = C = D. Ogni fascio di coniche contiene 3 coniche riducibili (distinte o no a seconda del tipo di fascio). Nel seguente prospetto indichiamo con t A e t C rispettivamente le tangenti comuni a tutte le coniche di un fascio nei punti A e C: Tipo di fascio generale tangenti A = B bitangenti A = B, C = D osculatrici A = B = C iperosculatrici A = B = C = D Coniche riducibili AB CD AD BC AC BD t A CD AD AC contata due volte t A t C Ac AC contata due volte t A AD contata tre volte t A t A contata tre volte 5.5 Diametri e centro di una conica. Definiamo diametro di una conica γ non riducibile, la retta polare, rispetto alla conica, di un qualsiasi punto improprio (h, k, 0). Sia A la matrice associata alla conica, allora un

27 CAPITOLO 5. LE CONICHE. 4 diametro é dato da [ h k 0 ] a 11 a 1 a 13 a 1 a a 3 a 13 a 3 a 33 x 1 x x 3 = 0 o meglio (a 11 h + a 1 k)x 1 + (a 1 h + a k)x + (a 13 h + a 3 k)x 3 = 0 h(a 11 x 1 + a 1 x + a 13 x 3 ) + k(a 1 x 1 + a x + a 3 x 3 ) = 0. Al variare del punto (h, k, 0) si ottiene un diverso diametro, e quindi al variare dei parametri h, k si ottengono tutte le rette di un fascio. Il centro di tale fascio é detto centro della conica (il quale per la reciprocitá é il polo della retta improrpia). Le coordinate del centro sono allora la soluzione del sistema a11 x 1 + a 1 x + a 13 x 3 = 0 a 1 x 1 + a x + a 3 x 3 = 0 le cui soluzioni sono date dai complementi algebrici A 13, A 3, A 33 della matrice A associata alla conica. Il caso in cui A 33 = 0 é quallo della parabola, la quale é detta conica a centro improprio (o conica senza centro). Il fascio dei diametri é un fascio improprio, cioé tutti i diametri sono tra loro paralleli ed hanno la direzione data dal punto improprio della parabola. Iperbole ed ellisse sono dette coniche a centro (proprio). Tutti i diametri sono tra loro a due a due coniugati. In particolare i diametri tra loro coniugati ed ortogonali sono detti assi della conica ( assi per iperbole ed ellisse, 1 asse per la parabola). I diametri che siano autoconiugati (cioé tangenti alla conica) sono detti asintoti della conica ( reali per l iperbole, immaginari per l ellisse, 1 improprio per la parabola). Per determinare assi e asintoti é sufficiente operare come segue: si costruisce il generico diametro della conica [ 1 k 0 ] a 11 a 1 a 13 a 1 a a 3 a 13 a 3 a 33 x 1 x x 3 = 0 (a 11 + a 1 k)x 1 + (a 1 + a k)x + (a 13 + a 3 k)x 3 = 0 che é una retta di coefficiente angolare k = a 11+a 1 k a 1 +a, cioé avente punto improprio k (1, k, 0). Questa é la direzione coniugata a (1, k, 0). Per ottenere gli assi si deve imporre che le due direzioni siano ortogonali cioé k k = 1. Si ottiene quindi una equazione di secondo grado nell incognita k. Le due soluzioni k 1, k forniscono i due poli (1, k 1, 0) e (1, k, 0) dei due assi.

28 CAPITOLO 5. LE CONICHE. 5 Nel caso della parabola la ricerca dell asse é facilitata. Infatti il polo dell asse della parabola é dato dalla direzione ortogonale a quella individuata dal punto improprio della parabola. Infine per ottenere gli asintoti di una iperbole si deve imporre che le due direzioni siano identiche (autoconiugio) cioé k = k. Si ottiene ancora una equazione di secondo grado nell incognita k. Le due soluzioni k 1, k forniscono i due poli (1, k 1, 0) e (1, k, 0) dei due asintoti. Equivalentemente, le due direzioni (1, k 1, 0) e (1, k, 0) si possono ottenere ricordando che esse non sono altro che i punti impropri dell iperbole. 5.6 Classificazione delle coniche proiettive. Sia γ : X T A X = f(x 1, x, x 3 ) = 0 l equazione di un a conica, f(x 1, x, x 3 ) = a 11 x 1 + a 1 x 1 x + a x + a 13 x 1 x 3 + a 3 x x 3 + a 33 x 3 = 0. Poiché f é una forma quadratica in R 3, allora vale il seguente: Teorema Esiste un sistema di riferimento ortonormale in R 3 l equazione della conica γ é una delle seguenti: i) x 1 + x + x 3 = 0 (conica generale a punti non reali); ii) x 1 + x x 3 = 0 (conica generale a punti reali); iii) x 1 + x = 0 (conica semplicemente degenere a punti non reali); iv) x 1 x = 0 (conica semplicemente degenere a punti reali); v) x 1 = 0 (conica doppiamente degenere). rispetto al quale Per ottenere la forma ridotta congruente a quella di partenza, si applica esattamente il metodo di diagonalizzazione delle forme quadratiche. 5.7 Classificazione delle coniche euclidee. Consideriamo ora l equazione affine di una conica γ : f(x, y) = a 11 x + a 1 xy + a y + a 13 x + a 3 y + a 33 = 0 dove a ij R, per ogni i e j. Indichiamo q(x, y) = a 11 x + a 1 xy + a y la forma quadratica in R, con matrice associata A 33. Poiché q(x, y) é riferita ad un sistema otonormale in R, ogni cambiamento del sistema di riferimento é individuato da una matrice ortogonale C, per cui C T = C 1. In tale caso la diagonalizzazione della forma quadratica q(x, y) puó essere effettuata tramite la semplice diagonalizzazione della matrice simmetrica A 33 ad essa associata.

29 CAPITOLO 5. LE CONICHE. 6 Sia quindi q(x, y) = [ x y ] [ a11 a 1 a 1 a e siano λ 1 e λ gli autovalori di A 33. Indichiamo con w 1 = (b 11, b 1 ) l autovettore che genera l autospazio relativo a λ 1 e w = (b 1, [ b ) quello] che genera l autospazio relativo a b11 b λ. Allora la matrice che diagonalizza A 33 é 1 con b 1 b C T A 33 C = C 1 A 33 C = ] [ x y [ λ1 0 0 λ Il cambiamento di variabili che permette tale diagonalizazione é [ x y ] = [ b11 b 1 b 1 b ] [ x dopo il quale la conica si presenta nella seguente forma: f(x, y ) = λ 1 x + λ y + a 13x + a 3y + a 33 = 0. In pratica la f(x, y ) é la conica che otteniamo facendo ruotare i suoi assi fino a renderli paralleli agli assi coordinati. Supponiamo che la conica sia un iperbole o una ellisse. Determiniamo ora una traslazione che riporti il centro della conica nel centro degli assi coordinati: x = x c y = y d y ] ] ]. λ 1 (x c) + λ (y d) + a 13(x c) + a 3(y d) + a 33 = 0 λ 1 x +λ y +( λ 1 c+a 13)x +( λ d+a 3)y +(λ 1 c +λ d +a 13c+a 3d+a 33) = 0 Poiché dopo la rototraslazione scompaiono i termini in x e y, allora imponiamo che (B). λ 1 c + a 13 = 0 λ d + a 3 = 0. I valori di c e d che risolvono le precedenti equazioni sono i valori che determinano la traslazione. É sufficiente sostituirli nell equazione (B) per ottenere la conica in forma ridotta: λ 1 x + λ y + λ 3 = 0 con λ 3 = λ 1 c + λ d + a 13c + a 3d + a 33.

30 CAPITOLO 5. LE CONICHE. 7 Consideriamo ora il caso in cui la conica sia una parabola. Per prima cosa osserviamo che la prima rotazione viene effettuata utilizzando come riferimento quello formato dall asse della parabola e dalla retta tangente nel suo vertice. Inoltre uno dei due autovalori λ 1, λ di A 33 é nullo, per cui, dopo il primo cambiamento di riferimento (rotazione), l equazione della conica si presenta in una delle due seguenti forme: oppure λ 1 x + a 3y + a 33 = 0 λ y + a 13 x + a 33 = 0 (C) (D). Cominciamo con il caso (C). Determiniamo una traslazione che riporti il vertice della parabola nel centro degli assi coordinati: l equazione diventa x = x c y = y d λ 1 (x c) + a 3(y d) + a 33 = 0 (C ) Poiché dopo la rototraslazione scompaiono il termine noto ed il termine in x, dobbiamo imporre che λ 1 c = 0 λ 1 c a 3d + a 33 = 0. I valori di c e d che risolvono le precedenti equazioni sono i valori che determinano la traslazione. É sufficiente sostituirli nell equazione (C ) per ottenere la conica in forma ridotta: λ 1 x + a 3y = 0. Passiamo ora al caso (D). Dopo la traslazione, l equazione della parabola é λ (y c) + a 13(x d) + a 33 = 0 (D ) Poiché dopo la rototraslazione scompaiono il termine noto ed il termine in y, dobbiamo imporre che λ d = 0 λ d a 13c + a 33 = 0.

31 CAPITOLO 5. LE CONICHE. 8 I valori di c e d che risolvono le precedenti equazioni sono i valori che determinano la traslazione. É sufficiente sostituirli nell equazione (D ) per ottenere la conica in forma ridotta: λ y + a 13x = 0. Quanto detto fin ora si puó riassumere nel seguente: Teorema Ogni conica del piano euclideo reale é congruente ad una delle seguenti forme, dette forme canoniche: 1) x + y = 1, ellisse; a b ) x + y = 1, ellisse a punti non reali; a b 3) x + y = 0, ellisse degenere; a b 4) x y = 1, iperbole; a b 5) x + y = 0, iperbole degenere; a b 6) y ax = 0, parabola; 7) y a = 0, parabola degenere; 8) y + a = 0, parabola degenere a punti non reali; 9) y = 0, conica doppiamente degenere. Riassumendo, abbiamo visto che una rototraslazione degli assi di una conica (dell asse e della retta tangente al vertice, nel caso della parabola) ci permette di ottenere una ulteriore e piú semplice forma della conica stessa, riferita ad un sistema di riferimento opportuno. Tali forme sono dette ridotte o canoniche. Nel cambiamento del sistema di riferimento ortogonale, vi sono alcune quantitá (reali) che non mutano, cioé si mantengono invarianti nel passaggio da una forma della conica all altra. Tali quantitá vengono dette invarianti ortogonali: Teorema 5.7. Sia γ : X T A X = 0 una conica del piano euclideo e sia X T A X = 0 la sua equazione in forma ridotta, cioé dopo una cambiamento ortonormale del sistema di riferimento. Siano a ij gli elementi della matrice A e a ij quelli della matrice A. Allora valgono le seguenti: i) det(a) = det(a ). ii) A 33 = A 33. iii) a 11 + a = a 11 + a. Possiamo sfruttare il precedente teorema per ottenere la forma ridotta di una conica. Sia A la matrice associata alla conica, operiamo nel modo seguente: Coniche a centro. La forma canonica alla quale si vuole arrivare é la seguente a 11x 1 + a x + a 33x 3 = 0

32 CAPITOLO 5. LE CONICHE. 9 la cui matrice associata é a a a 33 Per ottenere i valori di a 11, a, a 33 é sufficiente applicare i tre punti del teorema e risolvere le equazioni: det(a) = a 11 a a 33 A 33 = a 11 a. a 11 + a = a 11 + a. Parabola. Una forma canonica alla quale si puó arrivare é la seguente la cui matrice associata é a 11x 1 + a 3x x 3 = 0 a a 3 0 a 3 0 Per ottenere i valori di a 11, a 3 é sufficiente applicare i tre punti del teorema e risolvere le equazioni: det(a) = a 11 a 3 L altra forma canonica puó essere la cui matrice associata é a 11 + a = a 11.. a x + a 13x 1 x 3 = a 13 0 a 0 a Per ottenere i valori di a, a 3 é sufficiente applicare i tre punti del teorema e risolvere le equazioni: det(a) = a a 13 a 11 + a = a. Esercizio Classificare la conica x +4xy y +x y+1 = 0, determinarne eventuali assi e asintoti, una sua forma canonica ed il polo della retta x y + 1 = 0 rispetto ad essa..

33 CAPITOLO 5. LE CONICHE. 30 Svolg. La matrice associata alla conica é A = con det(a) = 4, A 33 = 5, I = a 11 + a = 0, quindi é una iperbole equilatera. Determiniamo il generico diametro: Il generico diametro é [ 1 h 0 ] x 1 x x 3 = 0. (1 h)x 1 + ( h)x + ( 1 h )x 3 = 0 il cui coefficiente angolare é h = 1+h h. Per ottenere gli asintoti imponiamo h = h, da cui h + 5, 5} e quindi gli asintoti sono ( )x 5y + ( 5 1) = 0 e (10 4 5)x + 5y + ( 5 1) = 0. Per ottenere gli assi imponiamo hh = 1, da cui h 1+ 5 sono 4 5x + (10 5)y + (3 5) = 0 e 4 5x + (10 + 5)y + (3 + 5) = 0., 1 5 } e quindi gli assi Una forma canonica é data da a 11 x 1 + a x + a 33 x 3 = 0, con matrice associata A = I suoi invarianti ortogonali sono allora a a a 33. dai quali otteniamo 6 = det(a ) = a 11 a a 33, 5 = A 33 = a 11 a, 0 = I = a 11 + a a 11 = 5, a = 5, a 33 = 6 5

34 CAPITOLO 5. LE CONICHE. 31 oppure a 11 = 5, a = 5, a 33 = 6 5 e le due forme canoniche ottenute sono: 5x 5y = 0 e 5x + 5y = 0. Infine determiniamo il polo della retta x 1 x + x 3 = 0 rispetto alla conica. Esso avrá coordinate (a, b, c) tali che [ a b c ] Quindi dobbiamo risolvere il sistema x 1 x x 3 a + 4b + c = 4α 4a b c = α a b + c = α = α(x 1 x + x 3 ). le cui soluzioni sono (α 1 8, α5 8, α5 4 ) che é una yerna proporzionale a (1, 5, 10) = (a, b, c). Esercizio 5.7. Determinare l asse ed una forma canonica della parabola x + y 4xy + x 1 = 0. Svolg. La matrice associata alla conica é A = con det(a) =, A 33 = 0, I = a 11 + a = 4. Determiniamo il punto improprio della parabola: x 1 + x 4x 1 x = 0 x 3 = 0

35 CAPITOLO 5. LE CONICHE. 3 da cui x 1 = 1, x = 1, x 3 = 0 sono le coordinate di tale punto. La direzione ad esso ortogonale é Q = (1, 1, 0). Tale punto Q é il polo dell asse: [ ] x 1 x + x 3 = 0. x 1 x x 3 = 0 Una forma canonica é data da a 11 x 1 + a 3 x x 3 = 0, con matrice associata A = I suoi invarianti ortogonali sono allora a a 3 0 a 3 0. = det(a ) = a 11 a 3, 4 = I = a 11 + a dai quali otteniamo oppure a 11 = 4, a 3 = 1 a 11 = 4, a 3 = 1 e le due forme canoniche ottenute sono: 4x 1 + x x 3 = 0 e cioé 4x 1 x x 3 = 0 y = x e y = x. Esercizio Determinare una forma canonica dell ellisse x xy+y 5x+7y+1 = 0. Svolg. Utilizziamo[ il metodo ] degli autovalori. Quindi determiniamo gli autovalori della matrice A 33 = Essi sono h 1 1 = 1 e h = 3. L autospazio relativo all autovalore h 1 é generato dall autovettore v = (1, 1) che ha come versore ( 1 1, ).

36 CAPITOLO 5. LE CONICHE. 33 L autospazio relativo all autovalore h é generato dall autovettore v = ( 1, 1) che ha come versore ( 1 1, ). Allora il primo cambiamento di variabili, con il quale annulliamo il termine in xy é dato da [ ] [ x 1 1 ] [ ] = x 1 y 1 da cui x = 1 (x y ) y = 1 (x + y ) e l equazione della conica diventa cioé 1 (x y ) 1 (x y )(x + y ) + 1 (x + y ) 5 (x y ) + 7 (x + y ) + 1 = 0 1 x + 3 y + x + 1 y + 1 = 0. Per annullare i termini in x e y operiamo la seguente traslazione: y x = x a y = y b da cui 1 (x a) + 3 (y b) + (x a) + 1 (y b) + 1 = 0 1 (x + a ax ) + 3 (y + b by ) + x a + 1 y 1 b + 1 = 0. I coefficienti di x e y si annullano per a = e b = 4 e l equazione della conica diventa: cioé 1 (x ) + 3 (y 4 ) + (x ) + 1 (y 4 ) + 1 = 0 1 x + 3 y = 1 x 4 + y 8 = 1. Vogliamo ora ripetere l esercizio utilizzando il metodo di rototraslazione degli assi: gli assi dell ellisse sono a 1 : x y 4 = 0 che scegliamo come X

37 CAPITOLO 5. LE CONICHE. 34 I versori degli assi sono a : x + y + = 0 che scegliamo come Y. a 1 = ( 1, 1 ) a = ( 1, 1 ) ed il centro dell ellisse é C = (1, 3). Allora le formule del cambiamento del riferimento (rototraslazione) sono [ x y ] = [ ] [ x y ] + [ 1 3 ] da cui x = 1 (x y ) + 1 y = 1 (x + y ) 3 e l equazione della conica diventa ( 1 (x y ) + 1) ( 1 (x y ) + 1)( 1 (x + y ) 3) + ( 1 (x + y ) 3) 5( 1 (x y ) + 1) + 7( 1 (x + y ) 3) + 1 = 0 cioé 1 x + 3 y 1 = 0 x 4 + y 8 = 1. Esercizio Determinare una forma canonica della parabola x 4xy + 4y + x + y 5 = 0. Svolg. Utilizziamo[ il metodo ] degli autovalori. Quindi determiniamo gli autovalori della matrice A 33 =. Essi sono h = 0 e h = 5. L autospazio relativo all autovalore h 1 é generato dall autovettore v = (, 1) che ha come versore ( 1 5, 5 ). L autospazio relativo all autovalore h é generato dall autovettore v = (1, ) che ha come versore ( 1 5, 5 ). Allora il primo cambiamento di variabili, con il quale annulliamo i termini in xy e y é dato da [ ] [ x 5 1 ] [ ] = 5 x 1 y 5 5 y

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Definizione Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x,

Dettagli

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Definizione Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x,

Dettagli

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione CONICHE Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oy sia data la conica C di equazione 7 2 + 2 3y + 5y 2 + 32 3 = 0. Calcolare le equazioni di una rototraslazione che riduce

Dettagli

Formulario. Coordinate del punto medio M di un segmento di estremi A(x 1, y 1 ) e B(x 2, y 2 ): x1 + x y 2

Formulario. Coordinate del punto medio M di un segmento di estremi A(x 1, y 1 ) e B(x 2, y 2 ): x1 + x y 2 Formulario Componenti di un vettore di estremi A(x 1, y 1 e B(x 2, y 2 B A = AB = (x2 x 1 i + (y 2 y 1 j Distanza tra due punti A(x 1, y 1 e B(x 2, y 2 : AB = (x 2 x 1 2 + (y 2 y 1 2 Coordinate del punto

Dettagli

GEOMETRIA LINEARE E CONICHE - GIUGNO 2002. 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: x = z 2 y = z

GEOMETRIA LINEARE E CONICHE - GIUGNO 2002. 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: x = z 2 y = z GEOMETRIA LINEARE E CONICHE - GIUGNO 2002 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: r : x = z y = 0 x = z 2, s : y = z. Dopo aver provato che r ed s sono

Dettagli

1 Ampliamento del piano e coordinate omogenee

1 Ampliamento del piano e coordinate omogenee 1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di

Dettagli

Algebra lineare Geometria 1 15 luglio 2009

Algebra lineare Geometria 1 15 luglio 2009 Algebra lineare Geometria 1 15 luglio 2009 Esercizio 1. Nello spazio vettoriale reale R 3 [x] si considerino l insieme A k = {1 + x, k + (1 k)x 2, 1 + (k 1)x 2 + x 3 }, il vettore v k = k + kx x 3 e la

Dettagli

Un fascio di coniche è determinato da una qualsiasi coppia di sue coniche distinte.

Un fascio di coniche è determinato da una qualsiasi coppia di sue coniche distinte. Piano proiettivo Conica: curva algebrica reale del II ordine. a 11 x 2 1 + 2a 12 x 1 x 2 + a 22 x 2 2 + 2a 13 x 1 x 3 + 2a 23 x 2 x 3 + a 33 x 2 3 = 0 x T A x = 0 Classificazione proiettiva delle coniche:

Dettagli

Lezione 10 27/11/09. = 0 = x y + 2z = 0. Le componenti del vettore v devono essere quindi soluzione del sistema linere omogeneo. { x y +2z = 0 x z = 0

Lezione 10 27/11/09. = 0 = x y + 2z = 0. Le componenti del vettore v devono essere quindi soluzione del sistema linere omogeneo. { x y +2z = 0 x z = 0 Lezione 10 7/11/09 Esercizio 1 Nello spazio vettoriale euclideo V 3 sia W il sottospazio generato dai vettori v 1 = 1, 1, 1), v = 0,, 1) Determinare un vettore di W di modulo 3 ortogonale al vettore v

Dettagli

X = x + 1. X = x + 1

X = x + 1. X = x + 1 CONICHE. Esercizi Esercizio. Classificare, ridurre a forma canonica (completando i quadrati), e disegnare le seguenti coniche: γ : x y + x = 0; γ : x + 4x y + = 0; γ 3 : x + y + y + 0 = 0; γ 4 : x + y

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle da un altra angolazione.. Determinare

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle più volte.. Stabilire il tipo di

Dettagli

Studio generale di una conica

Studio generale di una conica Studio generale di una conica Manlio De Domenico 19 Giugno 2003 Definizione 1 Si definisce conica C un equazione algebrica F (x 1, x 2, x 3 ) = 0 del secondo ordine omogenea. Detta A la matrice simmetrica

Dettagli

1 Coniche. s (x, y, t ) (1) 1 (x, y, t )F r 2

1 Coniche. s (x, y, t ) (1) 1 (x, y, t )F r 2 1 Coniche Studieremo le curve nel piano euclideo, cioè nel piano con un sistema di riferimento cartesiano ortogonale fissato, oppure nel completamento proiettivo di questo piano, ottenuto con l introduzione

Dettagli

Coniche in forma generale

Coniche in forma generale LE CONICHE Fissiamo nel piano un sistema di riferimento cartesiano ortogonaleo, x, y, u. Coniche in forma generale Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro

Dettagli

Dipartimento di Matematica Corso di laurea in Fisica Compito di Geometria assegnato il 1 Febbraio 2002

Dipartimento di Matematica Corso di laurea in Fisica Compito di Geometria assegnato il 1 Febbraio 2002 Compito di Geometria assegnato il 1 Febbraio 2002 Trovare l equazione della conica irriducibile tangente all asse x nel punto A(2, 0), tangente all asse y e passante per i punti B(1, 1) e C(2, 2) Scrivere

Dettagli

H precedente. Procedendo come sopra, si costruisce la matrice del cambiamento di base

H precedente. Procedendo come sopra, si costruisce la matrice del cambiamento di base Geometria analitica e algebra lineare, anno accademico 9/1 Commenti ad alcuni esercizi 17 Diagonalizzazione di matrici simmetriche Coniche Commenti ad alcuni degli esercizi proposti 17 Diagonalizzazione

Dettagli

Soluzioni dello scritto di Geometria del 28 Maggio 2009

Soluzioni dello scritto di Geometria del 28 Maggio 2009 Soluzioni dello scritto di Geometria del 8 Maggio 9 1) Trovare le equazioni del sottospazio V(w, x, y, z) R 4 generato dalle quaterne c 1 = (,,, 1) e c = (, 1, 1, ). ) Trovare una base per OGNI autospazio

Dettagli

Geometria analitica: curve e superfici

Geometria analitica: curve e superfici Geometria analitica: curve e superfici geometriche algebriche e matrici e isometrie Riduzione Invarianti Studio di coniche Intersezione con rette e tangenti in forma parametrica 006 Politecnico di Torino

Dettagli

formano una base B di R 3. Scrivere la matrice di passaggio dalla base B alla base canonica e dire se tale matrice è ortogonale.

formano una base B di R 3. Scrivere la matrice di passaggio dalla base B alla base canonica e dire se tale matrice è ortogonale. ) Mostrare che i 3 vettori v=, u=, w= 3 formano una base B di R 3. Scrivere la matrice di passaggio dalla base B alla base canonica e dire se tale matrice è ortogonale. ) Sia f : R 4 R 4 la seguente applicazione

Dettagli

GEOMETRIA svolgimento di uno scritto del 11 Gennaio 2012

GEOMETRIA svolgimento di uno scritto del 11 Gennaio 2012 GEOMETRIA svolgimento di uno scritto del Gennaio ) Trovare una base per lo spazio delle soluzioni del seguente sistema omogeneo: x + y 5z = 3x y + z = x y + 8z =. Il sistema può essere scritto in forma

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile/Architettura

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile/Architettura Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile/Architettura Primo Appello del corso di Geometria 2 Docente F. Flamini, Roma, 22/02/2007 SVOLGIMENTO COMPITO I APPELLO

Dettagli

24.1 Coniche e loro riduzione a forma canonica

24.1 Coniche e loro riduzione a forma canonica Lezione 24 24. Coniche e loro riduzione a forma canonica Fissiamo nel piano un sistema di riferimento Oxy e consideriamo un polinomio di grado 2 in x, y amenodicostantimoltiplicativenonnulle,diciamo ax

Dettagli

Coniche R. Notari 15 Aprile

Coniche R. Notari 15 Aprile Coniche R. Notari 15 Aprile 2006 1 1. Notazioni. Proposizione 1 Ogni conica si rappresenta tramita un equazione algebrica di secondo grado della forma a 11 x 2 +2a 12 xy + a 22 y 2 + +2a 13 x + 2a 23 y

Dettagli

Cenni sulle coniche 1.

Cenni sulle coniche 1. 1 Premessa Cenni sulle coniche 1. Corso di laurea in Ingegneria Civile ed Edile Università degli Studi di Palermo A.A. 2013/2014 prof.ssa Paola Staglianò (pstagliano@unime.it) Scopo della geometria analitica

Dettagli

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Corsi dei Proff. M. BORDONI, A.

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Corsi dei Proff. M. BORDONI, A. CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A. - PROVA SCRITTA DI GEOMETRIA DEL -- Corsi dei Proff. M. BORDONI, A. FOSCHI Esercizio. E data l applicazione lineare L : R 4 R 3 definita dalla matrice A = 3

Dettagli

Geometria 2, a.a. 2006/2007 Ingegneria Edile-Edile Architettura

Geometria 2, a.a. 2006/2007 Ingegneria Edile-Edile Architettura Geometria 2, a.a. 2006/2007 Ingegneria Edile-Edile Architettura Tutore: Eleonora Palmieri 14 febbraio 2007 Esercizio 1: Si consideri in R 2 la conica Γ : 2x 2 1 + 4x 2 2 + x 1 + 2x 2 = 0. 1. Ridurre Γ

Dettagli

P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k

P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k Richiami di calcolo vettoriale Consideriamo il vettore libero v = OP. Siano P x, P y, P z le proiezioni ortogonali di P sui tre assi cartesiani. v è la diagonale del parallelepipedo costruito su OP x,

Dettagli

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) PRODOTTO VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI R 3. FASCI E STELLE. FORMULE

Dettagli

Esercizi complementari

Esercizi complementari Esercizi complementari (tratti dagli esercizi del prof. Alberto Del Fra) Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile per 17 x, y

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

1. conoscere le nozioni fondamentali della geometria analitica del piano e dello spazio

1. conoscere le nozioni fondamentali della geometria analitica del piano e dello spazio Terzo modulo: Geometria analitica Obiettivi 1 conoscere le nozioni fondamentali della geometria analitica del piano e dello spazio interpretare geometricamente equazioni e sistemi algebrici di primo e

Dettagli

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f LEZIONE 23 23.1. Riduzione delle coniche a forma canonica. Fissiamo nel piano un sistema di riferimento Oxy e consideriamo un polinomio di grado 2 in x, y a meno di costanti moltiplicative non nulle, diciamo

Dettagli

II Università degli Studi di Roma

II Università degli Studi di Roma Versione preliminare gennaio TOR VERGATA II Università degli Studi di Roma Dispense di Geometria. Capitolo 3. 7. Coniche in R. Nel Capitolo I abbiamo visto che gli insiemi di punti P lineare di primo grado

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 10 aprile 01 Esercizio 1 Sia E 3 lo spazio euclideo tridimensionale dotato di un riferimento cartesiano ortonormale di coordinate

Dettagli

PROVA SCRITTA DI GEOMETRIA 2 14 Febbraio 2017

PROVA SCRITTA DI GEOMETRIA 2 14 Febbraio 2017 PROVA SCRITTA DI GEOMETRIA 2 14 Febbraio 2017 La prova orale deve essere sostenuta entro il 28 Febbraio 2017 A Fissato un sistema di riferimento cartesiano nello spazio si consideri la quadriche Q di equazione

Dettagli

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB);

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB); VETTORI E GEOMETRIA ANALITICA 1 GEOMETRIA PIANA Segmenti e distanza tra punti. Rette in forma cartesiana e parametrica. Posizioni reciproche di due rette, parallelismo e perpendicolarità. Angoli e distanze.

Dettagli

CAPITOLO 14. Quadriche. Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente.

CAPITOLO 14. Quadriche. Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente. CAPITOLO 4 Quadriche Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente. Esercizio 4.. Stabilire il tipo di quadrica corrispondente alle seguenti equazioni. Se si

Dettagli

Soluzioni esercizi complementari

Soluzioni esercizi complementari Soluzioni esercizi complementari Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile per 17 x, y Z xry x y X, Y sottoinsiemi di un insieme

Dettagli

Algebra lineare Geometria 1 11 luglio 2008

Algebra lineare Geometria 1 11 luglio 2008 Algebra lineare Geometria 1 11 luglio 2008 Esercizio 1. Si considerino la funzione: { R f : 3 R 3 (α, β, γ) ( 2β α γ, (k 1)β + (1 k)γ α, 3β + (k 2)γ ) dove k è un parametro reale, e il sottospazio U =

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

Facsimile di prova d esame Esempio di svolgimento

Facsimile di prova d esame Esempio di svolgimento Geometria analitica 18 marzo 009 Facsimile di prova d esame Esempio di svolgimento 1 Nello spazio, riferito a coordinate cartesiane ortogonali e monometriche x,y,z, è assegnata la retta r di equazioni

Dettagli

Appunti ed esercizi sulle coniche

Appunti ed esercizi sulle coniche 1 LA CIRCONFERENZA 1 Appunti ed esercizi sulle coniche Versione del 1 Marzo 011 1 La circonferenza Nel piano R, fissati un punto O = (a, b) e un numero r > 0, la circonferenza (o cerchio) C di centro O

Dettagli

1 Cambiamenti di coordinate nel piano.

1 Cambiamenti di coordinate nel piano. Cambiamenti di coordinate nel piano.. Coordinate cartesiane Coordinate cartesiane su una retta. Sia r una retta: dare un sistema di coordinate su r significa fissare un punto O di r e un vettore u = U

Dettagli

Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento)

Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile per 17

Dettagli

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni Corso di Geometria 0- Meccanica Elettrotecnica Esercizi : soluzioni Esercizio Scrivere la matrice canonica di ciascuna delle seguenti trasformazioni lineari del piano: a) Rotazione di angolo π b) Rotazione

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani parametriche Allineamento nel piano nello spazio Angoli tra rette e distanza 2 2006 Politecnico di Torino 1 Esempio 2 Sia A = (1, 2). Per l interpretazione geometrica

Dettagli

Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI

Universita degli Studi di Roma - Tor Vergata - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI R. Docente: Prof. F. Flamini Esercizi Riepilogativi Svolti Esercizio

Dettagli

Corso di Matematica II

Corso di Matematica II Corso di Matematica II Università degli Studi della Basilicata Dipartimento di Scienze Corso di laurea in Chimica e in Scienze Geologiche A.A. 2014/15 dott.ssa Vita Leonessa Elementi di geometria analitica

Dettagli

[ ], classe. ( ) = 0 di grado n. [ ] di terne non nulle di. [ ] = x 1 x LE CONICHE DEL PIANO REALE

[ ], classe. ( ) = 0 di grado n. [ ] di terne non nulle di. [ ] = x 1 x LE CONICHE DEL PIANO REALE LE CONICHE DEL PIANO REALE 1. - IL PIANO PROIETTIVO REALE A) Coordinate omogenee Ad ogni punto P= x,y del piano R associamo una terna ordinata ( x 0, x 1, x ) non nulla in modo che: x = x 1 x 0 y = x x

Dettagli

CLASSE Ingegneria Informatica (G-La)

CLASSE Ingegneria Informatica (G-La) CLASSE ngegneria nformatica (G-La) Prova scritta di Algebra assegnata il 9 Novembre 2002 Durata della prova: due ore. Sia f : R 4 R 4 l endomorfismo definito dalle relazioni f (e 1 ) = v 1, f (e 2 ) =

Dettagli

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di Geometria 2

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di Geometria 2 Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di Geometria A.A. 9-1 - Docente: Prof. A. Verra Tutori: Dott.ssa Paola Stolfi e Annamaria Iezzi Soluzioni Tutorato numero 6 (1 Dicembre

Dettagli

Quadriche. R. Notari

Quadriche. R. Notari Quadriche R. Notari 1 1. Notazioni. Proposizione 1 Ogni quadrica si rappresenta tramite un equazione algebrica di secondo grado della forma a 11 x 2 + 2a 12 xy + a 22 y 2 + 2a 13 xz+ +2a 23 yz + a 33 z

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Edile ed Edile/Architettura. Geometria Proiettiva Docente F.

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Edile ed Edile/Architettura. Geometria Proiettiva Docente F. Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Edile ed Edile/Architettura Geometria Proiettiva Docente F. Flamini CONICHE PROIETTIVE: Classificazione e forme canoniche proiettive Si

Dettagli

Parte 12b. Riduzione a forma canonica

Parte 12b. Riduzione a forma canonica Parte 2b. Riduzione a forma canonica A. Savo Appunti del Corso di Geometria 202-3 Indice delle sezioni. Coniche, 2. Esempio di riduzione, 4 3. Teoremi fondamentali, 6 4. Come determinare l equazione canonica,

Dettagli

PROBLEMI DI GEOMETRIA

PROBLEMI DI GEOMETRIA PROBLEMI DI GEOMETRIA Lucio Guerra 1994 v. 1 2001 v. 2.7 Dipartimento di Matematica e Informatica - Università di Perugia Indice 1. EQUAZIONI LINEARI 1 2. SPAZI VETTORIALI 2 3. APPLICAZIONI LINEARI 4 4.

Dettagli

a 2 b 2 x 2 y 2 =1 (23.1.1)

a 2 b 2 x 2 y 2 =1 (23.1.1) Lezione 23 23.1 Ellisse, iperbole, parabola La parte finale del corso riguarda l applicazione della teoria delle forme quadratiche edellariduzioneortogonaleallostudiodialcunioggettigeometricidetti coniche

Dettagli

PROVA SCRITTA DI GEOMETRIA 2 MATEMATICA, 20/09/2011

PROVA SCRITTA DI GEOMETRIA 2 MATEMATICA, 20/09/2011 PROVA SCRITTA DI GEOMETRIA 2 MATEMATICA, 20/09/2011 In questo elenco, la presenza di esercizi relativi ai singoli argomenti non è correlata alla loro rilevanza, né alla ricorrenza nella prova scritta.

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 8 aprile 014 Esercizio 1 Si consideri E dotato di un riferimento cartesiano ortonormale di coordinate (x, y) e origine O. Si

Dettagli

LEZIONE 10. S(C,ρ) Figura 10.1

LEZIONE 10. S(C,ρ) Figura 10.1 LEZIONE 10 10.1. Sfere nello spazio. In questa lezione studieremo alcuni oggetti geometrici non lineari, circonferenze e sfere nello spazio A 3. Poiché le proprietà delle circonferenze nel piano sono del

Dettagli

LEZIONE 27. C = { P = (x, y) x 2 /a 2 y 2 /b 2 = 1 }. C si dice iperbole di semiassi a e b (in forma canonica). L equazione

LEZIONE 27. C = { P = (x, y) x 2 /a 2 y 2 /b 2 = 1 }. C si dice iperbole di semiassi a e b (in forma canonica). L equazione LEZIONE 27 27.1. Ellisse, iperbole, parabola. Nelle prossime lezioni illustreremo come la teoria delle forme quadratiche e della riduzione ortogonale si applichi allo studio di alcuni oggetti geometrici

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

L algebra lineare nello studio delle coniche

L algebra lineare nello studio delle coniche L algebra lineare nello studio delle coniche È possibile utilizzare le tecniche dell algebra lineare per studiare e classificare le coniche. Data l equazione generale di una conica, si considera la sua

Dettagli

Circonferenze del piano

Circonferenze del piano Circonferenze del piano 1 novembre 1 Circonferenze del piano 1.1 Definizione Una circonferenza è il luogo dei punti equidistanti da un punto fisso, detto centro. La distanza di un qualunque punto della

Dettagli

A.A. 2010/2011. Esercizi di Geometria II

A.A. 2010/2011. Esercizi di Geometria II A.A. 2010/2011 Esercizi di Geometria II Spazi affini, euclidei e proiettivi Preparazione all esame scritto Esercizio 1. Sia A 3 (R) il 3 spazio affine reale numerico dotato del riferimento affine standard

Dettagli

1 Esonero di GEOMETRIA 2 - C. L. Matematica Aprile 2009

1 Esonero di GEOMETRIA 2 - C. L. Matematica Aprile 2009 1. Si consideri la matrice 1 Esonero di GEOMETRIA 2 - C. L. Matematica Aprile 2009 A = ( 1 1 1 3 Sia g : R 2 R 2 R la forma bilineare e simmetrica avente A come matrice associata rispetto alla base canonica

Dettagli

Prova scritta di Geometria - 16 Gennaio 2019

Prova scritta di Geometria - 16 Gennaio 2019 Prova scritta di Geometria - 16 Gennaio 2019 COGNOME e NOME(stampatello): 1. Supponiamo di sapere che l invariante cubico di una conica è A 24, quello quadratico è α 00 3, e quello lineare è I 4. (a) Classificare

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - CCS Edile ed Edile/Architettura

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - CCS Edile ed Edile/Architettura Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - CCS Edile ed Edile/Architettura Recupero II Esonero/II Appello del corso di Geometria Docente F. Flamini, Roma, 7/0/008 NORME SVOLGIMENTO

Dettagli

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003 Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria assegnati da dicembre 2000 a dicembre 2003 11/12/2000 n R 4 sono assegnati i punti A(3, 0, 1, 0), B(0, 0, 1, 0), C(2, 1, 0,

Dettagli

2x 2 + 4x 2y + 1 = 2(x 2 + 2x + 1 1) 2y + 1 = 2(x + 1) 2 2(y ) = 0.

2x 2 + 4x 2y + 1 = 2(x 2 + 2x + 1 1) 2y + 1 = 2(x + 1) 2 2(y ) = 0. CONICHE E QUADRICHE. Esercizi Esercizio. Classificare, ridurre a forma canonica (completando i quadrati), e disegnare le seguenti coniche: γ : x y + x = 0; γ : x + 4x y + = 0; γ : x + y + y + 0 = 0; γ

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

Capitolo 2. Cenni di geometria analitica nel piano

Capitolo 2. Cenni di geometria analitica nel piano Capitolo Cenni di geometria analitica nel piano 1 Il piano cartesiano Il piano cartesiano è una rappresentazione grafica del prodotto cartesiano R = R R La rappresentazione grafica è possibile se si crea

Dettagli

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L ELLISSE

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L ELLISSE Geometria Anali-ca DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L ELLISSE INTRODUZIONE L ellisse fa parte di un insieme di curve (circonferenza, parabola, iperbole) chiamate coniche, perché si possono

Dettagli

Esericizi Quadriche e Coniche nello spazio

Esericizi Quadriche e Coniche nello spazio Esericizi Quadriche e Coniche nello spazio 1. In R 3 sia A = (1, 1, 0) e sia r la retta passante per A, parallela al piano x + y + z = 0 e complanare alla retta s di equazione cartesiana x + y z = 0 =

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Coordinate cartesiane e coordinate omogenee

Coordinate cartesiane e coordinate omogenee Coordinate cartesiane e coordinate omogenee Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Ad ogni punto P del piano possiamo associare le coordinate cartesiane (x, y),

Dettagli

Soluzioni della prova scritta di Geometria 1 del 27 giugno 2019 (versione I)

Soluzioni della prova scritta di Geometria 1 del 27 giugno 2019 (versione I) Soluzioni della prova scritta di Geometria 1 del 7 giugno 019 (versione I) Esercizio 1. Sia R 4 lo spazio quadridimensionale standard munito del prodotto scalare standard con coordinate canoniche (x 1,

Dettagli

Classificazione delle coniche.

Classificazione delle coniche. Classificazione delle coniche Ora si vogliono studiare i luoghi geometrici rappresentati da equazioni di secondo grado In generale, non è facile riconoscere a prima vista di che cosa si tratta, soprattutto

Dettagli

Fasci di Coniche. Salvino Giuffrida. 2. Determinare e studiare il fascio Φ delle coniche che passano per A (1, 0) con tangente

Fasci di Coniche. Salvino Giuffrida. 2. Determinare e studiare il fascio Φ delle coniche che passano per A (1, 0) con tangente 1 Fasci di Coniche Salvino Giuffrida 1. Determinare e studiare il fascio Φ delle coniche che passano per O = (0, 0), con tangente l asse y, e per i punti (1, 0), (1, ). Determinare vertice e asse della

Dettagli

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L IPERBOLE

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L IPERBOLE Geometria Anali-ca DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L IPERBOLE INTRODUZIONE L iperbole fa parte di un insieme di curve (circonferenza, parabola, ellisse) chiamate coniche, perché si possono

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento)

Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile

Dettagli

Corso di Laurea in Matematica GEOMETRIA A. Seconda prova intermedia aa. 2018/ k 1 (k + 1) 1 k 1 2 A :=

Corso di Laurea in Matematica GEOMETRIA A. Seconda prova intermedia aa. 2018/ k 1 (k + 1) 1 k 1 2 A := Corso di Laurea in Matematica GEOMETRIA A Seconda prova intermedia aa. 018/019 Esercizio 1. Si consideri il piano euclideo V = E munito del prodotto scalare standard e della base ortonormale e 1, e } e

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA II PROVA DI ACCERTAMENTO, FILA B GEOMETRIA 19/06/008 Esercizio 0.1. Si consideri il seguente endomorfismo di R 4 T (x, y, z, w) = (x + y z + w, y z, x +

Dettagli

CdL in Ingegneria Informatica (A-Faz), (Orp-Z) CdL in Ingegneria del Recupero Edilizio ed Ambientale

CdL in Ingegneria Informatica (A-Faz), (Orp-Z) CdL in Ingegneria del Recupero Edilizio ed Ambientale Prova scritta di Geometria assegnata il 13 Dicembre 2003 Sia Si consideri l equazione AX = A t. 0 1 1 A = 1 1 5 R 3,3. 1 2 1 h 1) Determinare i valori di h per cui tale equazione ammette soluzioni. 2)

Dettagli

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE210

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE210 Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE A.A. - - Docente: Prof. A. Verra Tutori: Simona Dimase e Annamaria Iezzi Soluzioni tutorato numero 6 (6 Novembre ) Coniche.

Dettagli

Università degli Studi di Catania CdL in Ingegneria Civile e Ambientale

Università degli Studi di Catania CdL in Ingegneria Civile e Ambientale CdL in ngegneria Civile e Ambientale Prova scritta di Algebra Lineare e Geometria del 26 gennaio 2018 Usare solo carta fornita dal Dipartimento di Matematica e nformatica, riconsegnandola tutta. 1) Siano

Dettagli

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica LA PARABOLA

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica LA PARABOLA Geometria Anali-ca DOCENTE: Vincenzo Pappalardo MATERIA: Matematica LA PARABOLA INTRODUZIONE La parabola fa parte di un insieme di curve (circonferenza, ellisse, iperbole) chiamate coniche, perché si possono

Dettagli

Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u.

Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u. Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u. Definizione Una quadriche è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee

Dettagli

Note di geometria analitica nel piano

Note di geometria analitica nel piano Note di geometria analitica nel piano e-mail: maurosaita@tiscalinet.it Versione provvisoria. Novembre 2015. 1 Indice 1 Punti e vettori spiccati dall origine 3 1.1 Coordinate......................................

Dettagli

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 15 Febbraio 2017

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 15 Febbraio 2017 Prova scritta di Geometria Docente: Giovanni Cerulli Irelli 5 Febbraio 7 Esercizio. Si considerino i due sottospazi π e π di R dati dalle seguenti equazioni: π : x y + z = ; π : x + y z =.. Trovare una

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA II PROVA DI ACCERTAMENTO, FILA A GEOMETRIA 19/06/008 Esercizio 0.1. Si consideri il seguente endomorfismo di R 4 T (x, y, z, w) = ( x + y + z + w, y + z,

Dettagli

Geometria Geometria settembre 2005

Geometria Geometria settembre 2005 Geometria Geometria 7 settembre ) Nel piano affine euclideo reale, in cui è fissato un sistema di coordinate cartesiane ortogonali, si consideri il fascio di conice ( ) Φ : i) Si riconoscano le conice

Dettagli

25.1 Quadriche e loro riduzione a forma canonica

25.1 Quadriche e loro riduzione a forma canonica Lezione 25 25.1 Quadriche e loro riduzione a forma canonica Fissiamo nello spazio un sistema di riferimento Oxyz e consideriamo un polinomio q(x, y, z) di grado 2 nelle tre variabili x, y, z amenodicostantimoltiplicativenon

Dettagli

Esercizi Riepilogativi Svolti

Esercizi Riepilogativi Svolti Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) QUADRICHE DI R 3. Docente: Prof. F. Flamini Esercizi Riepilogativi Svolti Esercizio

Dettagli

Autovalori ed autovettori di un endomorfismo

Autovalori ed autovettori di un endomorfismo Autovalori ed autovettori di un endomorfismo Endomorfismo = applicazione (funzione) lineare da un spazio vettoriale V in sé stesso 1. Data una funzione lineare, scriverne la matrice associata dei coefficienti:

Dettagli

Geometria BAER Canale I Esercizi 12

Geometria BAER Canale I Esercizi 12 Geometria BAER Canale I Esercizi Esercizio. x = 0 x = Date le rette r : y = t e s : y = t, si verifichi che sono sghembe e si scrivano le equazioni z = t z = t parametriche di una retta r ortogonale ed

Dettagli