Esame di Matematica 2 Mod.A (laurea in Matematica) prova di accertamento del 4 novembre 2005

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esame di Matematica 2 Mod.A (laurea in Matematica) prova di accertamento del 4 novembre 2005"

Transcript

1 Esame di Matematica 2 ModA (laurea i Matematica prova di accertameto del 4 ovembre 25 ESERCIZIO Si poga a e b ( (a Si determii d MCD(a, b e gli iteri m, Z tali che d ma + b co m < b ed < a (b Si determiio le soluzioi delle cogrueze mx d mod ed X d mod { m 7X 5 mod s (c Posto s a/d ed r b/d, si determiio le soluzioi del sistema di cogrueze 3X 4 mod r Svolgimeto (a Sia M 5423 il umero di matricola Allora, a e b , e d (b Osserviamo che MCD(m,, perché m(a/d + (b/d, e quidi le due cogrueze ammettoo etrambe soluzioe Dalla combiazioe d ma + b, si ricava che tutte le soluzioi della prima cogrueza formao la classe a + Z Z Aalogamete le soluzioi della secoda cogrueza soo gli elemeti della classe b + m Z + 46Z (c Siao s a/d 467 ed r b/d 34; si ha MCD(7, s MCD(3, r e quidi le due cogrueze hao soluzioe Si ha da cui si deduce che 7 ( 2 mod 467 e quidi tutte le soluzioi della cogrueza 7X 5 mod 467 soo gli iteri X ( Z Z Sia duque X Y e sostituiamolo ella secoda cogrueza; si ottiee così che 37Y 65 mod 34 Essedo , si deduce che mod 34 e quidi tutte le soluzioi di quest ultima cogrueza soo gli iteri Y Z Z Duque le soluzioi del sistema soo gli iteri X ( k k, al variare di k Z ESERCIZIO 2 Sia x u umero reale diverso da (a Posto σ x + x x +, si verifichi per iduzioe che σ x x+, per ogi x (b Posto S x + 2x x, si verifichi che S + xs + σ, per ogi (c Da quato visto el puto precedete e dall osservazioe che S + S + ( + x +, si deduca ua formula chiusa per S e la si verifichi per iduzioe (d Si osservi che 9 + 2, , , Si usi la formula chiusa di S, per u opportuo valore di x, per geeralizzare queste idetità per ogi itero positivo Come si può modificare l espressioe otteuta per otteere u aalogo risultato per ua base b diversa da? Svolgimeto (a Per si ha σ x + x 2 x x2 Suppoiamo quidi vera l uguagliaza per u x umero aturale e verifichiamola per + Si ha (b Co u calcolo diretto, si ha σ + x + x x +2 x x+ x + x +2 x x+2 x xs + σ x(x + 2x x + (x + x x + x + 2x x + ( + x +, che è quato volevamo ( NB le cifre vao giustapposte e o moltiplicate tra loro Ad esempio, se il umero di matricola è 5342, allora a e b

2 2 FABRIZIO ANDREATTA e MAURIZIO CANDILERA (c Dalla relazioe S + ( + x + S + xs + σ si deduce (x S ( + x + x x+ x, ovvero S x+2 ( + x + + x (x 2 Verifichiamo la formula per iduzioe Per si ha S x x3 2x 2 + x (x 2 Suppoiamo quidi vera l uguagliaza per u umero aturale e verifichiamola per + Si ha che è quato volevamo S + x + 2x x + ( + x + x+2 ( + x + + x (x 2 + ( + x + ( + x+3 ( + 2x +2 + x (x 2, (d I membri di siistra dell uguagliaza soo i termii iiziali della sequeza T 9 j j + ( + j Per quato visto al puto precedete, possiamo scrivere, T 9 (/+2 ( + (/ + + / (/ 2 + ( che geeralizza le uguagliaze date per u umero aturale qualsiasi È ora chiaro che, per otteere delle aaloghe idetità per ua qualsiasi base, b, basta scrivere b al posto di e b al posto di 9, ovvero (b b j jb j + ( + b+ b Le idetità possoo essere facilmete verificate per iduzioe su ESERCIZIO 3 Siao k, m, {, 2, 3} tali che k 4 mod 3, m 5 mod 3, 6 mod 3, e si cosideri la fuzioe di variabile complessa f(z miz k z i (a Si determiio domiio ed immagie di f e l evetuale fuzioe iversa (b Si determii il sottoisieme U { z C f(z < k } e lo si disegi el piao di Gauss (c Posto a m + i e b 2k, si cosideri il sottoisieme R { z C az + ā z + b } Si determiio e si disegio el piao di Gauss i sottoisiemi R ed R g (U, ove g è l iversa di f (d Si dica se g (R è u cerchio oppure ua retta Svolgimeto (a La fuzioe f è defiita quado z + i e la sua iversa è la fuzioe g(w ( + iw k, come si verifica co u calcolo diretto La fuzioe g è defiita per w mi, e quidi, w mi il domiio e l immagie di f soo rispettivamete D C { + i} e C C {mi} (b Posto z x + iy, co (x, y R 2, si ha che, per ogi z D, miz k z i < k (m2 k 2 (x 2 + y 2 + 2k 2 x + 2k(m + ky k 2 2 <

3 Matematica 2 ModA Compitio del 4 ovembre 25 3 Duque, se m ±k, ovvero se 4 o è cogruo ad 5 modulo 3, l isieme U è formato dai puti del piao di Gauss delimitati dalla circofereza di cetro c k2 + k m 2 ik(m k2 m 2 k 2 e raggio r k (m + k2 + m 2 m 2 k 2 Precisamete, si tratta dei puti iteri alla circofereza se m > k e dei puti esteri se m < k Nel caso i cui m k, si trova che U è l isieme dei puti al di sopra della retta di equazioe 2x + 2( + y 2 (c Nelle otazioi del puto precedete, si ricava che R è uguale all isieme dei puti (x, y del piao di Gauss tali che y m x + k e si tratta quidi della retta passate per i puti corrispodeti ai umeri complessi ki e k m Osserviamo che, essedo f e g l ua l iversa dell altra, si ha g (U { z C g(z U } { z C f(g(z < k } { z C z < k } e quidi R g U è l itersezioe della retta R co i puti iteri al cerchio di raggio k, cetrato ell origie, ovvero le soluzioi del sistema { x 2 + y 2 k 2 y m x + k ovvero i puti iteri al segmeto di estremi z ik e z 2 2mk 2 +m + ik 2 m m 2 (d Ricordiamo che l immagie diretta di ua retta, r, tramite g è u cerchio, a meo che la retta o passi per il puto ove si aulla il deomiatore di g, el qual caso, l immagie diretta è ua retta Nel ostro caso la retta R cotiee il puto mi se, e solo se, m k

4 4

5 Esame di Matematica 2 ModA (laurea i Matematica prova di accertameto del 7 dicembre 25 ESERCIZIO Sia {, 2, 3, 4} tale che 5 mod 4 Si cosiderio i R 4 i vettori u e + e 3, u e 2, w e 2 + (2 + e 3, w 2 2e + 2e 3 + e 4; ove E {e,, e 4 } è, come di cosueto, la base caoica (a Posto U u, u 2 e W w, w 2, si verifichi che R 4 U W e si determiio delle equazioi cartesiae per U e W Detta π : R 4 R 4 la proiezioe su U, parallelamete a W, si scriva la matrice α E,E (π ( 2 3 (b Sia φ : W U l applicazioe lieare di matrice A rispetto alle basi W {w 2, w 2 } e U {u, u 2 } Si cosideri il sottospazio W φ { w + φ(w w W } e si determiio dim W φ ed ua sua base Detta π φ : R 4 R 4 la proiezioe su U parallela a W φ, si calcolio π φ (w e π φ (w 2 (c Sia W e 2e 3, e 2 + e 4 Si verifichi che R 4 U W Si dica se esiste ua applicazioe lieare ψ : W U tale che W { w + ψ(w w W } e, i caso affermativo, si scriva la matrice α W,U (ψ Svolgimeto (a Co u calcolo diretto, si verifica che u, u 2, w, w 2 soo liearmete idipedeti e soo quidi ua base di R 4 Duque R 4 U W Delle equazioi cartesiae per i due sottospazi possoo essere Dato u geerico vettore, x { x x 3 U : x 4 ( x x 2 x 3 x 4 W : { x 2 2 x 4 (2 + x 2 + x 3 2x 4, la sua proiezioe su U è ua combiazioe lieare α u + α 2 u 2, tale che x α u + α 2 u 2 W Sostituedo le coordiate di questo vettore elle equazioi del sottospazio W, si ricava da cui si deduce che la matrice cercata è α x 2x 4, α 2 (2 + x 2 + x 3 x, A α E,E (π 2 2 ( (b Si ha W φ w + φ(w, w 2 + φ(w 2 ed i due vettori soo ua base del sottospazio Ifatti, se fosse β (w + φ(w + β 2 (w 2 + φ(w 2 si avrebbe β w + β 2 w 2 β φ(w β 2 φ(w 2 U W Da cui si coclude che β β 2, per l idipedeza di w, w 2 Duque dim W φ 2 ed R 4 U W φ Da quato visto el puto precedete, dato u vettore x R 4, esistoo (e soo uici due vettori u U e w W tali che x u + w Si ha quidi x (u φ(w + (w + φ(w, co u φ(w U, w + φ(w W φ ; da cui si deduce che π φ (x u φ(w π(x φ(x π(x Duque π φ (w φ(w 2u + u 2, π φ (w 2 φ(w 2 3u 2u 2 (c I vettori u, u 2, e 2e 3, e 2 + e 4 soo liearmete idipedeti, come si verifica co u calcolo diretto, quidi soo ua base di R 4 U W U applicazioe lieare ψ : W U, soddisfacete alle codizioi date, esiste se, e solo se, esiste la matrice α W,U (ψ, ovvero se esistoo delle costati a,, a 22 tali che w a u a 2 u 2 W w 2 a 2 u a 22 u 2 W 5

6 6 FABRIZIO ANDREATTA e MAURIZIO CANDILERA { 2x Osservado che delle equazioi cartesiae per W + x 3 soo, si ottiee il sistema lieare x 2 x 4 (2 + a a + a2 2+ a e quidi (2 + a a 2 2 a a L esisteza dell applicazioe ψ, poteva essere dedotta ache el modo seguete Detta π : R 4 W, la proiezioe su W, parallelamete ad U, dalla codizioe U W, si deduce che π W : W W è u isomorfismo tra W e W L omomorfismo ψ : W U altri o è che π π W ESERCIZIO 2 Sia {, 2, 3} tale che 6 mod 3 Sia V R[X] 3 lo spazio vettoriale dei poliomi a coefficieti reali, di grado miore o uguale a 3 e siao π : R[X] V la proiezioe su V ella direzioe del sottospazio X 4 ; ψ : R[X] R[X] l applicazioe P (X (X 3 P (X 3(X 2 P (X, ove P (X è la derivata di P (X; φ : V V la composizioe V j ψ π R[X] R[X] V, ove j è l iclusioe V R[X] (a Verificare che φ è u applicazioe lieare e scrivere la sua matrice rispetto alla base B {, X, X 2, X 3} (b Determiare ua base per kerφ, imφ, kerφ imφ e kerφ + imφ (c Si cosideri φ 2 φ φ È vero che V kerφ 2 imφ 2 e che φ(kerφ 2 kerφ 2 ed φ(imφ 2 imφ 2? È vero che kerφ kerφ 2 per ogi 2? (d Dire se il sottoisieme A { β Ed R V φ β } è u sottospazio di Ed R V I caso affermativo, si cosideri l isomorfismo α B,B : Ed R V M 4 (R e si determiio la dimesioe ed ua base del sottospazio α B,B (A Svolgimeto (a La derivazioe, così come la moltiplicazioe per u fissato poliomio soo applicazioi lieari La composizioe e la somma di applicazioi lieari soo applicazioi lieari, per cui φ è u applicazioe lieare La sua matrice è A α B,B (φ (b Il ucleo è il sottospazio kerφ (X 3, di dimesioe L immagie ha dimesioe 3 ed è il sottospazio 2 3 X 3 2 X 2, 2X 3 3X 2 + 3, 6 2 X X 2 Ioltre, φ(x 2(X 3 geera kerφ, e quidi kerφ imφ, da cui si coclude che kerφ imφ kerφ e kerφ + imφ imφ (c Si ha kerφ 2 X, (X 3 imφ 2 4x 3 6X X 3, 2X 3 5X X 3 e kerφ 2 imφ 2 ; quidi R 4 kerφ 2 imφ 2 È ovvio che, se P kerφ2, allora φ(p kerφ kerφ 2 Se, ivece, P imφ 2, allora P φ 2 (Q per u poliomio Q V e φ(p φ 3 (Q φ 2 (φ(q imφ 2 Ifie, che kerφ kerφ 2, è certamete vero per 2; suppoiamolo vero per u espoete e dimostriamolo per l espoete successivo Se kerφ + coteesse propriamete kerφ 2 kerφ, esisterebbe u poliomio P, co P imφ kerφ; ma imφ imφ 2, kerφ kerφ 2 e imφ kerφ imφ 2 kerφ 2 e quidi u tale P o può esistere (d Il sottoisieme A cotiee l omomorfismo ullo ed ioltre, poiché la composizioe di applicazioi lieari distribuisce rispetto alla somma, si coclude che A è u sottospazio U omomorfismo β appartiee ad A se, e solo se, imβ kerφ e quidi ua matrice sta i α B,B (A se le coloe soo multipli delle coordiate di (X 3 e quidi ua base di α B,B (A soo le matrici ( 3 3 2, 3 ( 3 3 2, 3 ( 3 3 2, 3 (

7 Matematica 2 ModA Compitio del 7 dicembre 25 7 che ha perció dimesioe 4 ESERCIZIO 3 Sia {, 2, 3, 4} tale che 4 mod 4 Si cosideri il seguete sistema a coefficieti reali: ( 2 tx + x 2 + ( tx 3 + 2x 4 + x 5 (t + 2 x + (t x 2 + (t x 3 + (t 3x 4 ( + x 5 2 tx 2 + (t x 3 + (t x 4 x 5 2 ( 2 tx + (t + x 2 + ( tx 3 + 2x 4 + x 5 (a Per quali valori di t il sistema o ammette soluzioi? Per quali valori di t ammette u uica soluzioe? Per quali valori di t il sistema ammette ifiite soluzioi? I ogi caso, determiare la dimesioe dello spazio delle soluzioi del sistema omogeeo associato (b Si determiio le soluzioi del sistema, al variare di t i R (c Dire se esiste l iversa della matrice B e, i caso affermativo, scriverla come prodotto di matrici elemetari Nel caso i cui B o sia ivertibile determiare due matrici ivertibili P, Q GL(4, R tali che P BQ, ove r rkb ( r Svolgimeto (a Attraverso la riduzioe di Gauss (I, I+II, III-I-II e IV-2I-II si arriva al sistema ( 2 tx + x 2 + ( tx 3 + 2x 4 + x 5 tx 2 + (t x 4 x 5 2 (t x 3 ( tx 4 + x 5 2 Il sistema ammette soluzioi per ogi valore di t e, i particolare, è ua soluzioe, qualuque sia il valore di t Il sistema ammette ifiite soluzioi per ogi valore del parametro t e, precisamete, le soluzioi del sistema omogeeo associato formao u sottospazio di dimesioe per t / { 2,, } Per gli altri valori di t il sistema omogeeo associato ammette u sottospazio di dimesioe 2 di soluzioi (b Abbiamo già visto el puto precedete che il sistema ha la soluzioe, idipedetemete dal valore del parametro t Per t / { 2,, } la matrice icompleta ha rago 4 e le soluzioi del sistema omogeeo associato soo tutti i vettori del sottospazio Per t, la matrice icompleta ha rago 3 e le soluzioi del sistema soo tutti i vettori del tipo +, Per t, la matrice icompleta ha rago 3 e le soluzioi del sistema soo tutti i vettori del tipo +, t 2

8 8 FABRIZIO ANDREATTA e MAURIZIO CANDILERA Per t 2, la matrice icompleta ha rago 3 e le soluzioi del sistema soo tutti i vettori del tipo +, 2 (c Per, la matrice B ha rago 4 e quidi, co operazioi elemetari sulle righe, si può trasformare ella matrice idetica Ad esempio, I, I II, I III, IV I, seguita da I, II, III, IV + II e da I II + IV, II, III + IV, IV Il prodotto delle matrici elemetari corrispodeti è l iversa cercata, ovvero B ( ( ( ( ( ( ( ( ( 2 Per la matrice B ha rago 3 e pesiamola come la matrice α E,E (φ di u edomorfismo di R 4 ella base caoica Le matrici P e Q sarao quidi le matrici di cambiameto di base che portao φ i forma caoica Prediamo la base V {v,, v 4 }, ove v e, v 2 e 2, v 3 e 3, v 4 e + e 3 + e 4, e l ultimo vettore è ua base di kerφ Prediamo poi la base W {w,, w 4 }, ove w φ(e e + e 2 + e 3 + e 4, w 2 φ(e 2 e + e 3 + e 4, w 3 φ(e 3 e 3, w 4 e 4 È chiaro che α V,W(φ cercate soo Q α V,E ( ( e P α E,W ( α W,E ( ( ( ; quidi le matrici

9 Esame di Matematica 2 ModA (laurea i Matematica prova scritta del 5 dicembre 25 ESERCIZIO Sia u umero itero positivo (a Si calcoli ( k (b Si calcoli (c Si calcoli k ( ( k k k [/2] k ( 2k ( + ( ( + ( + + ove [/2] idica il più grade itero, miore o uguale ad /2 ( ( ( + + ( ( ( [/2] Svolgimeto (a Per la formula del biomio ( k k è uguale a ( + 2 (b Per la formula del biomio k ( k( k è uguale a ( + (c Da quato visto ei puti precedeti si deduce [/2] k ( 2k 2 k ( ( + ( k 2 k k Fie della discussioe ESERCIZIO 2 Sia {, 2, 3, 4} tale che 6 mod 4 Si cosideri la fuzioe di variabile complessa f(z ( + z + i( z + i (a Si determiio il domiio e l immagie di f e si determii la sua fuzioe iversa (b Si disegio i sottoisiemi H e D f (H, ove H { z C i(z z < } (c Si cosiderio le trasformazioi g(z az + b, co a, b, c, d R ed ad bc, e si mostri che per ogi cz + d tale g si ha g (H H g (H Data g(z z +, sia h la trasformazioe composta h f g f Si determii h (D Svolgimeto (a f è defiita per z i ed ha come immagie C { + } Su quest ultimo isieme è defiita la fuzioe iversa f (z i z + + z (b Osserviamo che i(z z 2Im(z e quidi H è il semipiao formato dai umeri complessi co parte immagiaria positiva Si ha { } D f (H f (H z C i(f (z f (z < { z C z z z z + 2 < } Quidi D è il disco aperto (seza il bordo di cetro e raggio e si ha f (D f (D H (c Cosideriamo la trasformazioe g(z az + b cz + d e la sua iversa g (z dz b Si ha a cz g (H { z C i(g(z g(z < } { z C i(ad bc(z z < } H 9

10 FABRIZIO ANDREATTA e MAURIZIO CANDILERA e, aalogamete, g (H g (H H Da quato visto si coclude che h (D f (g (f (D f (g (H f (H D, qualuque sia g tra le trasformazioi del tipo descritto e quidi ciò vale i particolare per g(z z + ESERCIZIO 3 Sia {, 2, 3, 4} tale che 5 mod 4 Si cosiderio i sottospazi di C 4, D e ie 3 + (i e 4, ie ( ie 2 + e 3 ed E e, e 2, ove E {e,, e 4 } è la base caoica (a Per oguo dei sottospazi, D ed E, si determiio delle equazioi cartesiae e si verifichi se C 4 D E Si dica se la proiezioe su E, parallela a D, iduce u isomorfismo C 4 /D E (b Si idichi co D l isieme dei vettori di C 4 che si ottegoo dai vettori di D applicado il coiugio a tutte le coordiate Si verifichi se C 4 D D Si cosiderio la base {e, e 2 } su E e la base di D formata dai coiugati dei vettori di base di D e si scriva la matrice dell applicazioe composta j D C 4 π E, ove j è l iclusioe e π la proiezioe parallela a D (c Sia L e, e 2, e 3, e 4 R lo spazio vettoriale reale geerato dalla base caoica e si verifichi che la restrizioe ad L della proiezioe π : C 4 E iduce u isomorfismo, φ : L E, di spazi vettoriali reali Si scriva la matrice ella base data dell edomorfismo, ψ : L L, defiito da ψ(x φ (iφ(x, per ogi x L Svolgimeto (a Due sistemi di equazioi cartesiae soo { ix + x 3 D : x + ix 2 + x 3 + x 4 ed E : { x3 x 4 ( i i Le coordiate dei geeratori di E e D soo le coloe della matrice, che ha chiaramete rago i i 4; duque C 4 D E La proiezioe su E, parallela a D, è u edomorfismo di C 4 che ha D come ucleo ed E come immagie, quidi, per il Primo Teorema di Isomorfismo, E C 4 /D (b D è il sottospazio di C 4 geerato dai coiugati dei due vettori di base di D, ovvero D e + ie 3 (i + e 4, ie ( + ie 2 + e 3 e si può verificare, i modo aalogo ( a quato fatto el puto precedete, che C 4 D D Detti d e d 2 i a b due vettori di base di D, la matrice di π j è determiata dalle codizioi c d e d ae ce 2 D d 2 be de 2 D come si ricava dalle equazioi cartesiae di D ovvero ovvero { a 2 c 2i { b 2i d 2i (c I sottospazi L ed E hao etrambi dimesioe 4 su R e quidi la proiezioe π iduce u isomorfismo se, e solo se, la sua restrizioe ad L è iiettiva Ora kerπ L L kerπ L D, perché, se x, x 2, x 3, x 4 R, si ha { ix + x 3 x e + x 2 e 2 + x 3 e 3 + x 4 e 4 D x + ix 2 + x 3 + x 4 x x 2 x 3 x 4 I particolare, si ha π(e e, π(e 2 e 2, π(e 3 ie + ( ie 2, π(e 4 ie 2 ;

11 MATEMATICA 2 ModA prova scritta del 5 dicembre 25 quidi, idicata co L {e,, e 4 } la base caoica di L e co E {e, e 2, ie, ie 2 } la base aturale di E come spazio vettoriale reale, si ha P α L,E (φ La moltiplicazioe per i, m i : E E, ella base data di E, ha matrice Quidi la matrice di ψ è uguale a P AP, ovvero A α E,E (m i α L,L (ψ / / / / Fie della discussioe ESERCIZIO 4 Si cosiderio le matrici A t t 2t 2 t t t t + 2t 2 2t + 2 t t + t t 2 al variare di t i R (a Si determii il rago di A t al variare di t R (b Si determii l isieme, R t, delle matrici B t, tali che A t B t 4, al variare di t R (c Per ogi umero primo p, si determii il ucleo di A p, cosiderado le etrate della matrice come elemeti di F p Svolgimeto (a e (b Rispodere alla secoda domada sigifica risolvere quattro sistemi lieari che hao le coloe di B t come icogite e le coloe della matrice idetica, 4, come termii oti Operiamo quidi col metodo di riduzioe di Gauss sulla matrice completa di questo sistema, ovvero che è riga-equivalete a t 2t 2 t t t t + 2t 2 2t + 2 t t + t t 2 t 2t 2 t t III I t 2 2t IV I + II t + e quidi possiamo già affermare che, per t / {,, }, la matrice A t ha rago 4 e quidi l isieme R t o è vuoto

12 2 FABRIZIO ANDREATTA e MAURIZIO CANDILERA Proseguedo co la tecica di elimiazioe si ottiee I + 2t t+ IV t 2 2t t+ t (II t+ IV t(t+ t (III + 2 t+3 t+iv 2 t+ IV t+ t(t+ 2t 2t t+ t+ t+ t(t+ 2 2 t(t+ t t(t+ t+ t+ ed ifie t (I III 2t2 +3 t(t 2 II + III 2 t+2 t(t+ 2 t+3 t(t+ t+ 2t 2 2 t(t 2 2t 2 2 t(t t(t 2 t+2 t(t+ t t(t+ 2 2 t(t+ t t(t+ t+ t+ Abbiamo quidi trovato ua soluzioe particolare al problema, a cui dobbiamo sommare tutte le soluzioi del sistema omogeeo associato, ovvero le matrici che hao come coloe vettori el ucleo di A t Quidi, per t / {,, }, gli elemeti di R t soo le matrici 2t2 +3 t(t 2 2t 2 2 t(t 2 t(t 2t 2 2 t(t 2 2a t+2 t(t+ 2b + t+2 t(t+ 2c + t 2d t(t+ 2a t+3 t(t+ 2b + 2 t(t+ 2c + t 2d 2 t(t+ t+ t+ t+ a b c d al variare di a, b, c, d R Per t ± il rago di A t è uguale a 3, metre per t il rago è 2 I tutti e tre i casi R t perché essu prodotto A t X può avere rago maggiore di rka t (c Osserviamo ifie che, su F p, la matrice A p diveta Duque ha rago 2 ed il suo ucleo è il sottospazio K, i F 2, 2, che matiee seso ache

13 Esame di Matematica 2 ModA (laurea i Matematica prova scritta del 9 geaio 26 ESERCIZIO Siao e k due umeri iteri e si idichi co Pk omogeei di grado i k idetermiate a coefficieti reali (a Si mostri che dim Pk ( +k (b Si mostri che, per ogi e k, si ha ( + k ( j + k j j lo spazio vettoriale dei poliomi (c È vero che si ha ( + k + k per ogi e k? k ( + i ( j + k + j i Svolgimeto (a La dimesioe dello spazio vettoriale Pk coicide co il umero di moomi di grado, i k idetermiate, X,, X k Se k, per ogi itero c è u uico moomio di grado, X, e quidi dim P (, che dimostra la formula i questo caso particolare Se k >, osserviamo che, se, l uico moomio di grado è la cortate e quidi dim Pk ( k Possiamo quidi fare iduzioe suppoedo che la formula sia vera per tutte le coppie di iteri i cui almeo uo dei due è miore di o di k e distiguiamo i moomi della base di Pk mettedo da ua parte quelli i cui compare X e dall altra quelli i cui questo fattore o compare I primi si otterrao moltiplicado per X i moomi di grado, metre i secodi soo i moomi di grado i k idetermiate, applicado l ipotesi iduttiva, si ottiee dim P k dim P k + dim P k ( + k 2 + j ( ( + k 2 + k che è quato dovevamo verificare (b Sia fissato k e dimostriamo la formula per iduzioe su Se, si ha ( ( k k Per >, applicado l ipotesi iduttiva, si ha + ( j + k j j che dimostra la formula ( + k + + ( j + k j j ( + k + + (c Per quato visto al puto precedete, si tratta di verificare se è vero che k ( ( ( + i + k + + k k i ( ( + k + k + + ( + k k Possiamo quidi fissare e fare iduzioe su k Ifatti, per k, si ha ( ( + Per k >, applicado l ipotesi iduttiva, si ottiee k+ ( ( + i + k + i k ( ( + i + k k i + ( + k k ( + k + k Duque la formula è vera per ogi k 3

14 4 FABRIZIO ANDREATTA e MAURIZIO CANDILERA ESERCIZIO 2 Sia { ( a b SL(2, R M c d 2 (R ad bc } (a Si verifichi che, ( qualuque siao A e B i SL(2, R, si ha AB SL(2, R ed A SL(2, R a b (b Data A SL(2, R, si cosideri la fuzioe di variabile complessa f c d A (z az + b cz + d Si determiio il domiio ed immagie di f A Sia H { z C i(z z < } e si mostri che f A (H H fa (H per ogi A SL(2, R (c Siao A, B SL(2, R Si mostri che f AB f A f B Svolgimeto (a Siao Si ha quidi ( ( a b α β A, B c d γ δ ( aα + bγ aβ + bδ e quidi AB cα + dγ cβ + dδ (aα + bγ(cβ + dδ (aβ + bδ(cα + dγ (ad bc(αδ βγ Operado sulle righe della matrice e ricordado che ad bc, si ha ( a b c d ( a b c a ( d b e quidi A SL(2, R c a ( a + bc ab c a ( d b ; c a (b La fuzioe f A (z è defiita per z d/c ed ha come immagie il sottoisieme C {a/c} Ioltre, co u calcolo diretto, si verifica che f dz b A (z a cz f A (z e quidi, essedo f A (H f A (H f A (H, è sufficiete verificare che fa (H H per ogi A SL(2, R Ifatti, ( az + b z fa(h i cz + d a z + b < c z + d i ( (az + b(c z + d (a z + b(cz + d < i(z z(ad bc <, che permette di cocludere, essedo ad bc (c Siao A e B come sopra, z d/c, e cosideriamo il vettore ( z C 2 Si ha A ( z ( a b c d ( z ( az + b (cz + d cz + d ( fa (z ed f A (z è determiato dalla codizioe ( ( fa (z z A Osserviamo che si ha ( z AB A(γz + δ ( fa (f e quidi B (z AB ( fb (z (γz + δa ( fb (z (γz + δ(cf B (z + d ( fa (f B (z ( z, da cui si coclude che f AB (z f A (f B (z

15 MATEMATICA 2 ModA prova scritta del 9 geaio 26 5 ESERCIZIO 3 Sia {, 2, 3, 4} tale che 5 mod 4 Si cosideri la matrice, B 2 3 (a Si scrivao le matrici S (B t B, R t B(B t B, P t B(B t B B (b Si determiio ua base di ucleo ed immagie di P e si dicao che relazioi vi soo tra questi sottospazi e ucleo( ed immagie di B e t B È vero che P è la matrice di ua proiezioe? (c Sia v e si cosideri il sistema lieare Bx v Si mostri che tutte le soluzioi del sistema soo del tipo Rv + ( P y, al variare di y i R 4 È così per ogi vettore v R 3? Svolgimeto (a Si ha S /7 /7 /49 /49 /( 2 +, R t /( BS 2 +, /7 2/7 /49 5/49 /( 2 + P RB 2 /( 2 + /( 2 + /( 2 + /( 2 + (b Le prime 3 coloe della matrice P soo liearmete idipedeti, metre la quarta è uguale alla secoda divisa per e quidi rkp 3, imp (, (, ( e kerp ( Si tratta di sottospazi di R 4 e quidi o vi soo relazioi co imb e ker t B che soo sottospazi di R 3 D altro cato, si hao le iclusioi aturali imp im t B e kerb kerp che soo etrambo uguagliaze per motivi di dimesioe, essedo rkb rk t B 3 rkp Si ha P 2 t B(B t B (B t B(B t B B P e quidi P è la matrice della proiezioe di R 4 su im t B parallelamete a kerb (c Si ha BRv (B t B(B t B v v e quidi Rv è ua soluzioe particolare del sistema Ioltre, P è la matrice della proiezioe su kerp kerb (parallelamete ad imp e quidi i vettori del tipo ( P y, al variare di y R 4, geerao kerb, ovvero il sottospazio delle soluzioi del sistema omogeeo associato Si coclude che { x R 4 Bx v } { Rv + ( P y y R 4 } e che ciò vale qualsiasi sia il vettore v i R 3 ESERCIZIO 4 Sia {, 2, 3, 4} tale che 6 mod 4 Si cosiderio i sistemi lieari (t 2x tx 2 3x 3 tx 4 t tx Σ t 2 +2x 3 2 t (t 2x +(t + x (t 2x ( + t + x 3 +tx 4 2 t al variare di t i R (a Si determii, al variare di t R, quado il sistema ha soluzioe e la dimesioe dello spazio delle soluzioi del sistema omogeeo associato (b Si scrivao le soluzioi del sistema al variare di t R

16 6 FABRIZIO ANDREATTA e MAURIZIO CANDILERA (c Per ogi umero primo p, si determiio le soluzioi del sistema Σ p, cosiderado i coefficieti del sistema come elemeti di F p Svolgimeto (a e (b Operiamo sulle righe della matrice completa del sistema per arrivare ad ua forma a scalii t 2 t 3 t t t 2 2 t t 2 t t 2 t t 2 t III t 2 t II t 2 2 t III I t t t t IV III 2t 2 t t 2 t 2 t t 2 2 t III II t + t 2t + IV + 2III 2II 3t 3t Si coclude quidi che, per t / {,, 2} la matrice icompleta ha rago 4, così come la matrice completa e quidi il sistema Σ t ammette u uica soluzioe, uguale a v t Per t le ultime due righe della matrice completa divetao proporzioali e quidi la matrice completa e quella icompleta hao etrambo rago 3 ed il sistema omogeeo associato hau sottospazio di ( +2 dimesioe di soluzioi Le soluzioi del sistema formao quidi la classe laterale t t Per t l ultima riga della matrice completa diveta ideticamete ulla, metre la secoda e la terza riga divetao proporzioali e quidi la matrice completa e quella icompleta hao etrambo rago 2 ed il sistema omogeeo associato ha u sottospazio di dimesioe 2 di soluzioi Le soluzioi del sistema formao quidi la classe laterale ( (, ( Per t 2 la matrice icompleta ha rago 3 metre quella completa ha rago 4 e quidi il sistema o ha soluzioe Il sistema omogeeo associato ha comuque u sottospazio di dimesioe di soluzioi (c La matrice completa del sistema Σ p è I III I IV I 2 2 Quidi, se p 2, la matrice icompleta e la matrice completa hao etrambo rago 2 ed il sistema ha le soluzioi ( 3/2 + (, ( le soluzioi formao il sottospazio Se p 2 ed è pari, il sistema è omogeeo ed ha rago, quidi (, (, ( Se ivece è dispari la matrice icompleta ha acora rago, metre la matrice completa ha rago 2 e quidi o vi soo soluzioi

17 Esame di Matematica 2 ModA (laurea i Matematica prova scritta del 4 aprile 26 ESERCIZIO Sia z C (a Si disegi il sottoisieme, D, del piao di Gauss defiito dalle codizioi { z + z D : z z (b Si cosideri la fuzioe f(z z+ Si determiio i domii, D f, di f e D g, della sua iversa, g, e si scriva esplicitamete la fuzioe g(z Si determii l isieme D f D g D (c Si determii e si disegi el piao di Gauss il sottoisieme f (D ( x Svolgimeto (a Come di cosueto scriviamo z x + iy, ove y R 2 Allora D { ( x y R } 2 2 x 2, x2 + y 2 Si tratta cioè dei umeri posti all estero della circofereza uitaria ed all itero della striscia verticale, come el disego sottostate (b Il domiio di f è il piao complesso privato del puto z L iversa di f è la fuzioe g(z z+ z che è quidi defiita su tutto il piao complesso, co l eccezioe dell origie z Etrambi i puti soo esteri a D e quidi D f D g D D (c Osserviamo che { g(z + g(z f (D g (D : g(zg(z D e quidi (x y 2 9 f (D : (x y 2 2x ( x y ( f (D per cui f (D è l isieme evideziato i grigio, delimitato dalle tre circofereze el disego qui a fiaco, compreso il bordo, co l esclusioe dell origie, z, che o appartiee all immagie di f Fie della discussioe 7

18 8 FABRIZIO ANDREATTA e MAURIZIO CANDILERA ESERCIZIO 2 Si cosiderio i vettori u, u 2, u 3 e w, w 2, w 3 ed i sottospazi U u, u 2, u 3 e W w, w 2, w 3 (a Dai geeratori dati si estraggao delle basi di U e W e si determiio delle equazioi cartesiae per i due sottospazi È vero che R 5 U W? (b Sia π : R 5 R 5 la proiezioe su U, parallelamete a W Si scriva la matrice A α E,E (π Qual è il rago di A? (c Si dica se esiste u applicazioe lieare, φ : W U, tale che 2 2 φ(w + w 2 2u 2u 3, φ(w 2 + w 3 u 3 u, φ(w + w 3 3u 2u 2 u 3 e si scriva la matrice di φ rispetto alle basi determiate al puto (a È vero che l isieme W φ { w φ(w w W } è u sottospazio complemetare ad U? Svolgimeto (a I tre vettori u, u 2, u 3, soo liearmete idipedeti, metre si ha w + 3w 2 + 2w 3 Duque ua base di U è U {u, u 2, u 3 }, ed ua base di W è W {w 2, w 3 } I due sottospazi soo determiati dai segueti sistemi di equazioi cartesiae { x x 5 U : x 2 x 4 x + x 5 W : x 2 + x 4 x 3 Le cique equazioi formao u sistema di rago massimo e quidi si ha U W ; e duque R 5 U W (b Dato x ( x x 5 x π(x W ; e quidi π(x 2 (c Si ha R 5, la proiezioe π(x α u + α 2 u 2 + α 3 u 3, è determiata dalla codizioe x +x 5 x 2+x 4 2x 3 x 2+x 4 x +x 5 Si coclude che A α E,E (π 2 2 φ(w 3u u 2 2u 3, φ(w 2 u 2 u, φ(w 3 u 3 u 2 e quidi φ(w + 3φ(w 2 + 2φ(w 3, da cui si coclude che l applicazioe φ esiste ed ha matrice B α W,U (φ Qualuque sia l applicazioe lieare ψ : W U, il sottospazio W ψ { w + ψ(w w W } è u complemetare di U, duque ciò vale ache per φ

19 Esame di Matematica 2 ModA (laurea i Matematica prova scritta del 8 luglio 26 ESERCIZIO Sia z C (a Si disegi il sottoisieme, D, del piao di Gauss defiito dalle codizioi z z D : z z + z + z z z z z (b Si cosideri la fuzioe f(z z+ z Si determiio i domii, D f, di f e D g, della sua iversa, g, e si scriva esplicitamete la fuzioe g(z Si determii l isieme D D f D g D (c Si determii e si disegi el piao di Gauss il sottoisieme f (D (d Esistoo puti x D tali che f(x x? Svolgimeto (a Si tratta dei umeri complessi posti all itero della circofereza uitaria cetrata ell origie ed all estero delle due circofereze uitarie cetrate i e, compreso il bordo (cf il disego qui sotto (b Il domiio di f è il piao complesso privato dell origie L iversa di f è la fuzioe g(z +z che è quidi defiita su tutto il piao complesso, co l eccezioe del puto z Si ha D D f D g D D {} (c Osserviamo che ovvero g(zg(z f (D g (D : g(zg(z + g(z + g(z g(zg(z g(z g(z (z + ( z + f (D : z + z z + z 3 per cui f (D è l isieme evideziato i grigio, delimitato dalla circofereza e dalle due rette el disego qui a fiaco, compreso il bordo f (D D (d I puti uiti soo le soluzioi dell equazioe z 2 +z+, ovvero i puti dell isieme D f (D {ζ, ζ}, ove ζ 2 + i 3 2 9

20 2 FABRIZIO ANDREATTA e MAURIZIO CANDILERA ESERCIZIO 2 Siao V e W due spazi vettoriali reali e siao V {v,, v 4 } e W {w,, w 3 } due rispettive basi (a Si determiio, se esistoo, tutte le applicazioi lieari φ : V W tali che φ(v + v 2 2w 3, φ(v + v 3 2w 2, φ(v 2 + v 3 2w, φ(v + v 2 + v 3 w + w 2 + w 3 Si dica se tali applicazioi formao u sottospazio vettoriale di Hom R (V, W e se e determii l evetuale dimesioe (b Si dica se tra le applicazioi del puto precedete esiste ua φ che soddisfi all ulteriore codizioe φ (v + v 2 + v 3 + v 4 w I caso affermativo se e scriva la matrice elle basi date e si determiio ucleo ed immagie (c Si determiio tutte le applicazioi lieari ψ : W V tali che φ ψ W e si scrivao le loro matrici elle basi date (d Siao V e W due spazi vettoriali sul corpo F 2 e siao V {v,, v 4 } e W {w,, w 3 } due rispettive basi Si determiio, se esistoo, tutte le applicazioi lieari φ : V W tali che φ(v + v 2 2w 3, φ(v + v 3 2w 2, φ(v 2 + v 3 2w, φ(v + v 2 + v 3 w + w 2 + w 3 Si determiio, se esistoo, tutte le applicazioi lieari φ : V W tali che φ(v + v 2 2w 3, φ(v + v 3 2w 2, φ(v 2 + v 3 2w, φ(v + v 2 + v 3 + v 4 w Svolgimeto (a I vettori v + v 2, v + v 3, v 2 + v 3, formao ua base del sottospazio v, v 2, v 3 di V, e quidi esiste u uica applicazioe lieare v, v 2, v 3 W che soddisfi alle prime tre codizioi Il vettore v + v 2 + v 3 appartiee al sottospazio v, v 2, v 3 e la codizioe data si ottiee sommado le tre codizioi precedeti Quidi esistoo ifiite applicazioi φ : V W soddisfaceti alle codizioi date e dipedoo dalla scelta dell immagie del vettore v 4 No formao quidi u sottospazio (o c è l applicazioe ulla, ma ua sottovarietà lieare di dimesioe 3( dim W i Hom R (V, W (b Tutte le applicazioi del puto (a soo determiate dalle codizioi φ(v w + w 2 + w 3, φ(v 2 w w 2 + w 3, φ(v 3 w + w 2 w 3, φ(v 4 aw + bw 2 + cw 3 Duque si ha φ (v 4 2w w 2 w 3 e la matrice è 2 A α V,W (φ La matrice ha rago 3 ed il ucleo è il sottospazio ( (c L applicazioe φ è suriettiva, quidi esistoo ifiite applicazioi ψ : W V tali che φ ψ W e la differeza tra due tali applicazioi è u elemeto di Hom (W, kerφ Co la tecica di elimiazioe, si vede che soo riga-equivaleti le matrici e quidi si ha 2 /2 /2 3/2 /2 /2 3/2 /2 /2 /2 /2 2a 2b 2c /2 /2 3a 3b 3c α W,V (ψ +, /2 /2 3a 3b 3c 2a 2b 2c al variare di (a, b, c R 3 (d I F 2, 2, e quidi o possoo esistere applicazioi lieari soddisfaceti alla prima serie di codizioi L uica applicazioe che soddisfi alla secoda serie di codizioi è quidi defiita da φ(v, φ(v 2, φ(v 3, φ(v 4 w

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli

Capitolo 8 Le funzioni e le successioni

Capitolo 8 Le funzioni e le successioni Capitolo 8 Le fuzioi e le successioi Prof. A. Fasao Fuzioe, domiio e codomiio Defiizioe Si chiama fuzioe o applicazioe dall isieme A all isieme B ua relazioe che fa corrispodere ad ogi elemeto di A u solo

Dettagli

Soluzione La media aritmetica dei due numeri positivi a e b è data da M

Soluzione La media aritmetica dei due numeri positivi a e b è data da M Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è

Dettagli

Capitolo Decimo SERIE DI FUNZIONI

Capitolo Decimo SERIE DI FUNZIONI Capitolo Decimo SERIE DI FUNZIONI SUCCESSIONI DI FUNZIONI I cocetti di successioe e di serie possoo essere estesi i modo molto aturale al caso delle fuzioi DEFINIZIONE Sia E u sottoisieme di  e, per ogi

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

EQUAZIONI ALLE RICORRENZE

EQUAZIONI ALLE RICORRENZE Esercizi di Fodameti di Iformatica 1 EQUAZIONI ALLE RICORRENZE 1.1. Metodo di ufoldig 1.1.1. Richiami di teoria Il metodo detto di ufoldig utilizza lo sviluppo dell equazioe alle ricorreze fio ad u certo

Dettagli

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa I umeri complessi Pagie tratte da Elemeti della teoria delle fuzioi olomorfe di ua variabile complessa di G. Vergara Caffarelli, P. Loreti, L. Giacomelli Dipartimeto di Metodi e Modelli Matematici per

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

8. Quale pesa di più?

8. Quale pesa di più? 8. Quale pesa di più? Negli ultimi ai hao suscitato particolare iteresse alcui problemi sulla pesatura di moete o di pallie. Il primo problema di questo tipo sembra proposto da Tartaglia el 1556. Da allora

Dettagli

SERIE NUMERICHE. (Cosimo De Mitri) 1. Definizione, esempi e primi risultati... pag. 1. 2. Criteri per serie a termini positivi... pag.

SERIE NUMERICHE. (Cosimo De Mitri) 1. Definizione, esempi e primi risultati... pag. 1. 2. Criteri per serie a termini positivi... pag. SERIE NUMERICHE (Cosimo De Mitri. Defiizioe, esempi e primi risultati... pag.. Criteri per serie a termii positivi... pag. 4 3. Covergeza assoluta e criteri per serie a termii di sego qualsiasi... pag.

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

3.4 Tecniche per valutare uno stimatore

3.4 Tecniche per valutare uno stimatore 3.4 Teciche per valutare uo stimatore 3.4. Il liguaggio delle decisioi statistiche, stimatori corretti e stimatori cosisteti La teoria delle decisioi forisce u liguaggio appropriato per discutere sulla

Dettagli

( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0

( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0 CAPITOLO VII DERIVATE. GENERALITÀ Defiizioe.) La derivata è u operatore che ad ua fuzioe f associa u altra fuzioe e che obbedisce alle segueti regole: () D a a a 0 0 0 derivata di u moomio D 6 D 0 D ()

Dettagli

Sistemi LTI descrivibile mediante SDE (Equazioni alle Differenze Standard)

Sistemi LTI descrivibile mediante SDE (Equazioni alle Differenze Standard) Sistemi LTI descrivibile mediate SDE (Equazioi alle Differeze Stadard) Nella classe dei sistemi LTI ua sottoclasse è quella dei sistemi defiiti da Equazioi Stadard alle Differeze Fiite (SDE), dette così

Dettagli

1 Metodo della massima verosimiglianza

1 Metodo della massima verosimiglianza Metodo della massima verosimigliaza Estraedo u campioe costituito da variabili casuali X i i.i.d. da ua popolazioe X co fuzioe di probabilità/desità f(x, θ), si costruisce la fuzioe di verosimigliaza che

Dettagli

1. MODELLO DINAMICO AD UN GRADO DI LIBERTÀ. 1 Alcune definizioni preliminari

1. MODELLO DINAMICO AD UN GRADO DI LIBERTÀ. 1 Alcune definizioni preliminari . MODELLO DINAMICO AD UN GRADO DI LIBERTÀ Alcue defiizioi prelimiari I sistemi vibrati possoo essere lieari o o lieari: el primo caso vale il pricipio di sovrapposizioe degli effetti el secodo o. I geerale

Dettagli

8) Sia Dato un mazzo di 40 carte. Supponiamo che esso sia mescolato in modo

8) Sia Dato un mazzo di 40 carte. Supponiamo che esso sia mescolato in modo ESERCIZI DI CALCOLO DELLE PROBABILITÁ ) Qual e la probabilita che laciado dadi a facce o esca essu? Studiare il comportameto asitotico di tale probabilita per grade. ) I u sacchetto vi soo 0 pallie biache;

Dettagli

Il confronto tra DUE campioni indipendenti

Il confronto tra DUE campioni indipendenti Il cofroto tra DUE camioi idiedeti Il cofroto tra DUE camioi idiedeti Cofroto tra due medie I questi casi siamo iteressati a cofrotare il valore medio di due camioi i cui i le osservazioi i u camioe soo

Dettagli

Supponiamo, ad esempio, di voler risolvere il seguente problema: in quanti modi quattro persone possono sedersi l una accanto all altra?

Supponiamo, ad esempio, di voler risolvere il seguente problema: in quanti modi quattro persone possono sedersi l una accanto all altra? CALCOLO COMBINATORIO 1.1 Necessità del calcolo combiatorio Accade spesso di dover risolvere problemi dall'appareza molto semplice, ma che richiedoo calcoli lughi e oiosi per riuscire a trovare delle coclusioi

Dettagli

Sommario lezioni di Probabilità versione abbreviata

Sommario lezioni di Probabilità versione abbreviata Sommario lezioi di Probabilità versioe abbreviata C. Frachetti April 28, 2006 1 Lo spazio di probabilità. 1.1 Prime defiizioi I possibili risultati di u esperimeto costituiscoo lo spazio dei campioi o

Dettagli

Metodi statistici per l'analisi dei dati

Metodi statistici per l'analisi dei dati Metodi statistici per l aalisi dei dati due Motivazioi Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ) per cui soo stati codotti gli esperimeti. Metodi tatistici per l Aalisi dei Dati due Esempio

Dettagli

Test non parametrici. sono uguali a quelle teoriche. (probabilità attesa), si calcola la. , cioè che le frequenze empiriche

Test non parametrici. sono uguali a quelle teoriche. (probabilità attesa), si calcola la. , cioè che le frequenze empiriche est o parametrici Il test di Studet per uo o per due campioi, il test F di Fisher per l'aalisi della variaza, la correlazioe, la regressioe, isieme ad altri test di statistica multivariata soo parte dei

Dettagli

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

Appunti di Statistica Matematica Inferenza Statistica Multivariata Anno Accademico 2014/15

Appunti di Statistica Matematica Inferenza Statistica Multivariata Anno Accademico 2014/15 Apputi di Statistica Matematica Ifereza Statistica Multivariata Ao Accademico 014/15 November 19, 014 1 Campioi e modelli statistici Siao Ω, A, P uo spazio di probabilità e X = X 1,..., X u vettore aleatorio

Dettagli

ESERCITAZIONE L adsorbimento su carbone attivo

ESERCITAZIONE L adsorbimento su carbone attivo ESERCITAZIONE adsorbimeto su carboe attivo ezioi di riferimeto: Processi basati sul trasferimeto di materia Adsorbimeto su carboi attivi Testi di riferimeto: Water treatmet priciples ad desi, WH Pricipi

Dettagli

Motori maxon DC e maxon EC Le cose più importanti

Motori maxon DC e maxon EC Le cose più importanti Motori maxo DC e maxo EC Il motore come trasformatore di eergia Il motore elettrico trasforma la poteza elettrica P el (tesioe U e correte I) i poteza meccaica P mech (velocità e coppia M). Le perdite

Dettagli

4. Metodo semiprobabilistico agli stati limite

4. Metodo semiprobabilistico agli stati limite 4. Metodo seiprobabilistico agli stati liite Tale etodo cosiste el verificare che le gradezze che ifluiscoo i seso positivo sulla, valutate i odo da avere ua piccolissia probabilità di o essere superate,

Dettagli

LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE

LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI Dipartimeto di Sieze Eoomihe Uiversità di Veroa VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE Lezioi di Matematia per

Dettagli

L OFFERTA DI LAVORO 1

L OFFERTA DI LAVORO 1 L OFFERTA DI LAVORO 1 La famiglia come foritrice di risorse OFFERTA DI LAVORO Notazioe utile: T : dotazioe di tempo (ore totali) : ore dedicate al tempo libero l=t- : ore dedicate al lavoro : cosumo di

Dettagli

ESERCIZI DI ANALISI I. Prof. Nicola Fusco 1. Determinare l insieme in cui sono definite le seguenti funzioni:

ESERCIZI DI ANALISI I. Prof. Nicola Fusco 1. Determinare l insieme in cui sono definite le seguenti funzioni: N. Fusco ESERCIZI DI ANALISI I Prof. Nicola Fusco Determiare l isieme i cui soo defiite le segueti fuzioi: ) log/ arctg π ) 4 ) log π 6 arcse ) ) tg log π + ) 4) 4 se se se tg 5) se cos tg 6) [ 6 + 8 π

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA Capializzazioe semplice e composa MATEMATICA FINANZIARIA Immagiiamo di impiegare 4500 per ai i ua operazioe fiaziaria che frua u asso del, % auo. Quao avremo realizzao alla fie dell operazioe? I u coeso

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Indagini sui coregoni del Lago Maggiore: Analisi sui pesci catturati nel 2010

Indagini sui coregoni del Lago Maggiore: Analisi sui pesci catturati nel 2010 Idagii sui coregoi del Lago Maggiore: Aalisi sui pesci catturati el 1 Rapporto commissioato dal Dipartimeto del territorio, Ufficio della caccia e della pesca, Via Stefao Frascii 17 51 Bellizoa Aprile

Dettagli

Metodi d integrazione di Montecarlo

Metodi d integrazione di Montecarlo Metodi d itegrzioe di Motecrlo Simulzioe l termie simulzioe ell su ccezioe scietific h u sigificto diverso dll ccezioe correte. Nell uso ordirio è sioimo si fizioe; ell uso scietifico è sioimo di imitzioe,

Dettagli

La sicurezza sul lavoro: obblighi e responsabilità

La sicurezza sul lavoro: obblighi e responsabilità La sicurezza sul lavoro: obblighi e resposabilità Il Testo uico sulla sicurezza, Dlgs 81/08 è il pilastro della ormativa sulla sicurezza sul lavoro. I sostaza il Dlgs disciplia tutte le attività di tutti

Dettagli

INTRODUZIONE ALLE SUCCESSIONI E SERIE: ALCUNI ESEMPI NOTEVOLI

INTRODUZIONE ALLE SUCCESSIONI E SERIE: ALCUNI ESEMPI NOTEVOLI INTRODUZIONE ALLE SUCCESSIONI E SERIE: ALCUNI ESEMPI NOTEVOLI Mirta Debbia LS A. F. Formiggii di Sassuolo (MO) - debbia.m@libero.it Maria Cecilia Zoboli - LS A. F. Formiggii di Sassuolo (MO) - cherubii8@libero.it

Dettagli

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2))

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2)) Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Applicazioni Lineari 1. Sia f : R 3 R 3 l applicazione lineare definita da f(x, y, z) = (x + ky + z, x y + 2z, x + y z) per ogni (x,

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

Anello commutativo. Un anello è commutativo se il prodotto è commutativo.

Anello commutativo. Un anello è commutativo se il prodotto è commutativo. Anello. Un anello (A, +, ) è un insieme A con due operazioni + e, dette somma e prodotto, tali che (A, +) è un gruppo abeliano, (A, ) è un monoide, e valgono le proprietà di distributività (a destra e

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

unoperatore@nellospaziodihilberth e sia z un numero complesso tale che z1-a,da==)rr_néh - 0 impli-chi l:= -1 (21-A) : R- n ==) Dn L- \

unoperatore@nellospaziodihilberth e sia z un numero complesso tale che z1-a,da==)rr_néh - 0 impli-chi l:= -1 (21-A) : R- n ==) Dn L- \ 3,6 56 3,6 TEOR I A SPETTRALE La teoria spettrale degli operatori lieari- eo spazio di Hilbert é f odata, coe per gi spazi f i-ito-dimes ioal j-, sula defiizioe di- risolvete di u operatole' Sia (A,DA)

Dettagli

PENSIONI INPDAP COME SI CALCOLANO

PENSIONI INPDAP COME SI CALCOLANO Mii biblioteca de Il Giorale Ipdap per rederci coto e sapere di piu Mii biblioteca de Il Giorale Ipdap per rederci coto e sapere di piu PENSIONI INPDAP COME SI CALCOLANO I tre sistemi I cique pilastri

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

l = 0, 1, 2, 3,,, n-1n m = 0, ±1,

l = 0, 1, 2, 3,,, n-1n m = 0, ±1, NUMERI QUANTICI Le autofuzioi soo caratterizzate da tre parametri chiamati NUMERI QUANTICI e soo completamete defiite dai loro valori: : umero quatico pricipale l : umero quatico secodario m : umero quatico

Dettagli

Esercizi Le leggi dei gas. Lo stato gassoso

Esercizi Le leggi dei gas. Lo stato gassoso Esercizi Le lei dei as Lo stato assoso Ua certa quatità di as cloro, alla pressioe di,5 atm, occupa il volume di 0,58 litri. Calcola il volume occupato dal as se la pressioe viee portata a,0 atm e se la

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

LEZIONE 17. B : kn k m.

LEZIONE 17. B : kn k m. LEZIONE 17 17.1. Isomorfismi tra spazi vettoriali finitamente generati. Applichiamo quanto visto nella lezione precedente ad isomorfismi fra spazi vettoriali di dimensione finita. Proposizione 17.1.1.

Dettagli

Le operazioni fondamentali in N Basic Arithmetic Operations in N

Le operazioni fondamentali in N Basic Arithmetic Operations in N Operzioi fodetli i - 1 Le operzioi fodetli i Bsic Arithetic Opertios i I geerle u operzioe è u procedieto che due o più ueri, dti i u certo ordie e detti terii dell'operzioe, e ssoci u ltro, detto risultto

Dettagli

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine

Dettagli

Esistenza di funzioni continue non differenziabili in alcun punto

Esistenza di funzioni continue non differenziabili in alcun punto UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA Esistenza di funzioni continue non differenziabili in alcun punto Relatore Prof. Andrea

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli I numeri complessi Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli 1 Introduzione Studiare i numeri complessi può sembrare inutile ed avulso dalla realtà;

Dettagli

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it) I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA

Dettagli

FOGLIO 4 - Applicazioni lineari. { kx + y z = 2 x + y kw = k. 2 k 1

FOGLIO 4 - Applicazioni lineari. { kx + y z = 2 x + y kw = k. 2 k 1 FOGLIO 4 - Applicazioni lineari Esercizio 1. Si risolvano i seguenti sistemi lineari al variare di k R. { x y + z + 2w = k x z + w = k 2 { kx + y z = 2 x + y kw = k Esercizio 2. Al variare di k R trovare

Dettagli

Verifica d Ipotesi. Se invece che chiederci quale è il valore di una media in una popolazione (stima. o falsa? o falsa?

Verifica d Ipotesi. Se invece che chiederci quale è il valore di una media in una popolazione (stima. o falsa? o falsa? Verifica d Iotesi Se ivece che chiederci quale è il valore ua mea i ua oolazioe (stima utuale Se ivece e itervallo che chiederci cofideza) quale è il avessimo valore u idea ua mea su quello i ua che oolazioe

Dettagli

Numeri complessi e polinomi

Numeri complessi e polinomi Numeri complessi e polinomi 1 Numeri complessi L insieme dei numeri reali si identifica con la retta della geometria: in altri termini la retta si può dotare delle operazioni + e e divenire un insieme

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

USUFRUTTO. 5) Quali sono le spese a carico dell usufruttuario

USUFRUTTO. 5) Quali sono le spese a carico dell usufruttuario USUFRUTTO 1) Che cos è l sfrtto e come si pò costitire? L sfrtto è il diritto di godimeto ( ovvero di possesso) di bee altri a titolo gratito ; viee chiamato sfrttario chi esercita tale diritto, metre

Dettagli

Teoremi di struttura dei moduli finitamente generati su un dominio euclideo

Teoremi di struttura dei moduli finitamente generati su un dominio euclideo Teoremi di struttura dei moduli finitamente generati su un dominio euclideo Appunti al corso di Algebra Anno accademico 23-24 1 Prodotti diretti. Siano M e N due moduli sullo stesso anello A, non necessariamente

Dettagli

Rette e piani con le matrici e i determinanti

Rette e piani con le matrici e i determinanti CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.

Dettagli

NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i

NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i NUMERI COMPLESSI Esercizi svolti 1. Calcolare le seguenti potenze di i: a) i, b) i, c) i 4, d) 1 i, e) i 4, f) i 7. Semplificare le seguenti espressioni: a) ( i) i(1 ( 1 i), b) ( + i)( i) 5 + 1 ) 10 i,

Dettagli

Dall atomo di Bohr alla costante di struttura fine

Dall atomo di Bohr alla costante di struttura fine Dall atomo di Bohr alla ostate di struttura fie. INFORMAZIONI SPETTROSCOPICHE SUGLI ATOMI E be oto he ogi sostaza opportuamete eitata emette radiazioi elettromagetihe. Co uo spettrosopio, o strumeti aaloghi,

Dettagli

DOMINI DI CURVATURA DI SEZIONI IN C.A. IN PRESSOFLESSIONE DEVIATA. PARTE II: VALUTAZIONE SEMPLIFICATA

DOMINI DI CURVATURA DI SEZIONI IN C.A. IN PRESSOFLESSIONE DEVIATA. PARTE II: VALUTAZIONE SEMPLIFICATA Valutazioe e riduzioe della vulerailità sismia di ediii esisteti i.a. Roma, 9-0 maggio 00 DOMINI DI CURVATURA DI SEZIONI IN C.A. IN PRESSOFLESSIONE DEVIATA. PARTE II: VALUTAZIONE SEMPLIFICATA Di Ludovio

Dettagli

Equazioni alle differenze finite (cenni).

Equazioni alle differenze finite (cenni). AL 011. Equazioni alle differenze finite (cenni). Sia a n } n IN una successione di numeri reali. (Qui usiamo la convenzione IN = 0, 1,,...}). Diremo che è una successione ricorsiva o definita per ricorrenza

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

Comportamento delle strutture in C.A. in Zona Sismica

Comportamento delle strutture in C.A. in Zona Sismica Comportameto delle strutture i c.a. i zoa sismica Pagia i/161 Comportameto delle strutture i C.A. i Zoa Sismica Prof. Paolo Riva Dipartimeto di Progettazioe e ecologie Facoltà di Igegeria Uiversità di

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

Interpolazione. Davide Manca Calcoli di Processo dell Ingegneria Chimica Politecnico di Milano

Interpolazione. Davide Manca Calcoli di Processo dell Ingegneria Chimica Politecnico di Milano L4 Iterpolazioe L4 Prologo Co iterpolazioe si itede il processo di idividuare ua fuzioe, spesso u poliomio, che passi per u isieme dato di puti: (x,y). y x L4 2 Fii dell iterpolazioe 1. Sostituire u isieme

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

3. SPAZI VETTORIALI CON PRODOTTO SCALARE

3. SPAZI VETTORIALI CON PRODOTTO SCALARE 3 SPAZI VETTORIALI CON PRODOTTO SCALARE 31 Prodotti scalari Definizione 311 Sia V SV(R) Un prodotto scalare su V è un applicazione, : V V R (v 1,v 2 ) v 1,v 2 tale che: i) v,v = v,v per ogni v,v V ; ii)

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

Analisi dei segnali nel dominio del tempo

Analisi dei segnali nel dominio del tempo Appui di Teoria dei Segali a.a. / Aalisi dei segali el domiio del empo L.Verdoliva I quesa prima pare del corso sudieremo come rappreseare i segali empo coiuo e discreo el domiio del empo e defiiremo le

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

APPROFONDIMENTI SUI NUMERI

APPROFONDIMENTI SUI NUMERI APPROFONDIMENTI SUI NUMERI. Il sistem di umerzioe deimle Be presto, ll operzioe turle del otre, si è ggiut l esigez di «rppresetre» i umeri. I sistemi di umerzioe possiili soo molti; per or i limitimo

Dettagli

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f).

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f). Due Matrici A,B. Ker f = ker g. 1- Ridurre a scala A e B e faccio il sistema. 2 Se Vengono gli stessi valori allora, i ker sono uguali. Cauchy 1 autovalore, 1- Metto a matrice x1(0),x2(0),x3(0) e la chiamo

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

1 n. Intero frazionato. Frazione

1 n. Intero frazionato. Frazione Consideriamo un intero, prendiamo un rettangolo e dividiamolo in sei parti uguali, ciascuna di queste parti rappresenta un sesto del rettangolo, cioè una sola delle sei parti uguali in cui è stato diviso.

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

Valutazione delle prestazioni termiche di sistemi con solai termoattivi in regime non stazionario

Valutazione delle prestazioni termiche di sistemi con solai termoattivi in regime non stazionario Valutazioe delle prestazioi termiche di sistemi co solai termoattivi i regime o stazioario MICHELE DE CARLI, Ph.D., Ricercatore, Dipartimeto di Fisica Tecica, Uiversità degli Studi di Padova, Padova, Italia.

Dettagli

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0)

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0) Numeri Complessi Un numero complesso z può essere definito come una coppia ordinata (x,y) di numeri reali x e y. L insieme dei numeri complessi è denotato con C e può essere identificato con il piano cartesiano

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE 2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 INTRODUZIONE Il problema agli autovalori di un operatore La trattazione del problema agli autovalori di un operatore fatta negli spazi finitodimensionali

Dettagli

Teoria dei Fibrati. Filippo Bracci

Teoria dei Fibrati. Filippo Bracci Teoria dei Fibrati Filippo Bracci DIPARTIMENTO DI MATEMATICA UNIVERSITÀ DI ROMA TOR VERGATA VIA DELLA RICERCA SCIENTIFICA 1, 00133 ROMA, ITALY. E-mail address: fbracci@mat.uniroma2.it Indice Capitolo

Dettagli

Introduzione (1) Introduzione (2) Prodotti e servizi sono realizzati per mezzo di processi produttivi.

Introduzione (1) Introduzione (2) Prodotti e servizi sono realizzati per mezzo di processi produttivi. Iroduzioe () Ua defiizioe (geerale) del ermie qualià: qualià è l isieme delle caraerisiche di u eià (bee o servizio) che e deermiao la capacià di soddisfare le esigeze espresse ed implicie di chi la uilizza.

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

CARATTERISTICHE GENERALI / GENERAL FEATURES

CARATTERISTICHE GENERALI / GENERAL FEATURES OPZIONI» otori i versioe flagia;» Coessioi laterali o posteriori;» Albero: cilidrico o scaalato;» Coessioi metriche o BSPP;» Altre caratteristiche speciali OPTIONS» Flage mout;» Side ad rear ports;» Shafts-

Dettagli

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO.

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO. elazoe d laboratoro d Fsca corso M-Z Laboratoro d Fsca del Dpartmeto d Fsca e Astrooma dell Uverstà degl Stud d Cataa. Scala Stefaa. AGOMENTO: MSUA DELLA ESSTENZA ELETTCA CON L METODO OLT-AMPEOMETCO. NTODUZONE:

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli