MODELLI NON LINEARI PER I TASSI DI CAMBIO: UN CONFRONTO PREVISIVO

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "MODELLI NON LINEARI PER I TASSI DI CAMBIO: UN CONFRONTO PREVISIVO"

Transcript

1 Gianna Boero Universià di Cagliari, Universiy of Warwick e CRENoS Emanuela Marrocu Universià di Cagliari e CRENoS MODELLI NON LINEARI PER I TASSI DI CAMBIO: UN CONFRONTO PREVISIVO Absrac In recen years here has been a considerable developmen in ime series analysis, represened mainly by alernaive linear models able o describe more adequaely he shor and long erm dynamics and by he renewed ineres in modelling nonlineariies and asymmeries in economic and financial variables. Given he relevance of such variables in devising economic and moneary policy, i is of heoreical, as well as pracical, imporance o propose saisical mehods appropriae o represen heir dynamic behaviour. The aim of his work is o compare he forecasing performance of differen models for he reurns of some of he mos raded exchange raes, namely he French Franc (FF/$), he German Mark (DM/$) and he Japanese Yen (Y/$). We compare he relaive performance of some nonlinear models and conras hem wih heir simpler linear counerpars. Alhough we find evidence of noiceable forecasing gains from nonlinear models, he resuls are sensiive o he meric adoped o measure he forecasing accuracy. Key words: non-lineariy, asymmery, forecasing accuracy, exchange raes. Oobre 1999

2 1. Inroduzione L'economeria delle serie soriche ha avuo un fore sviluppo negli ulimi anni con l'elaborazione sia di modelli lineari più adeguai a rappresenare la dinamica di breve e lungo periodo delle serie soriche, che di modelli più complessi che engano cono di non linearià e asimmerie preseni in mole variabili economiche e finanziarie. Nella prima caegoria rienrano i modelli a correzione dell'errore e i VAR coinegrai; nella seconda i modelli (G)ARCH, i modelli auoregressivi a soglia (SETAR e STAR), i modelli bilineari, e le rei neurali (si veda Granger e Teräsvira, Modelling Nonlinear Economic Relaionships, Oxford Universiy Press, 1993, e Whie, Neural Neworks, Whie, Blackwell, 1992). Nonosane il recene sviluppo di ecniche nuove, poche applicazioni sono sae condoe sinora sulla performance previsiva comparaa dei diversi modelli, al di là degli usuali confroni direi col semplice processo random walk. Daa l'imporanza che le variabili economiche e finanziarie rivesono nell'indirizzare decisioni di poliica economica e monearia, l'individuazione di meodi saisici adeguai per spiegarne la loro evoluzione è d'imporanza non solo eorica ma anche praica. Queso lavoro si propone di confronare la performance previsiva di modelli alernaivi per i rendimeni dei assi di cambio di re imporani value: il franco francese (FF/$), il marco edesco (DM/$) e lo yen (Y/$). Le serie hanno frequenza mensile e coprono il periodo gennaio 1973-luglio Come dimosrao in numerosi lavori, la sruura nonlineare di una serie viene individuaa più facilmene con dai ad ala frequenza (giornalieri o seimanali) menre risula meno evidene con dai a più bassa frequenza (mensili). L'applicazione di diversi es per la linearià ha, uavia, evidenziao la presenza di componeni nonlineari rilevani nelle serie da noi considerae. Queso risulao ha moivao il presene sudio, il cui scopo principale è l'analisi comparaa della performance previsiva di modelli nonlineari alernaivi, e un loro confrono direo con le previsioni oenue da modelli lineari. 2

3 Il lavoro è aricolao secondo il seguene schema. Nella sezione 2 preseniamo una rassegna di lavori voli all'analisi e alla previsione dei assi di cambio. Nella sezione 3 inroduciamo la meodologia uilizzaa per modellare le variabili di ineresse e descriviamo i es per verificare la presenza di nonlinearià. Nella sezione 4 preseniamo i dai e le loro caraerisiche saisiche. Nella sezione 5 illusriamo i risulai dell'analisi empirica. Infine nella sezione 6 preseniamo una sinesi dei principali risulai e svolgiamo alcune considerazioni conclusive. 2. Rassegna della leeraura Esise una vasa leeraura empirica a sosegno dell ipoesi che, sebbene le variazioni dei assi di cambio siano solo debolmene auocorrelae, esse siano foremene dipendeni. Nella maggior pare dei lavori empirici, riferii al periodo di cambi flessibili pos Breon-Woods, si riiene che ale dipendenza possa essere cauraa adeguaamene dal modello a varianza condizionale eeroschedasica auoregressiva (ARCH), proposo da Engle (1982), o dalla sua esensione rappresenaa dai modelli GARCH, suggeria da Bollerslev (1986). Quesa classe di modelli è paricolarmene adeguaa per descrivere l andameno ipico delle serie finanziarie, ovvero che grandi (piccole) variazioni di prezzo sono seguie da grandi (piccole) variazioni, di segno uguale o opposo; uavia, queso ipo di dipendenza può essere sfruaa per migliorare gli inervalli di previsione ma non le previsioni punuali. Un migliorameno nelle previsioni punuali lo si può osservare nei GARCH in Media (GARCH-M) dove la sima della varianza condizionale è inclusa come regressore nell'equazione per la media della serie. Nonosane, più recenemene, moli auori abbiano messo in evidenza la rilevanza empirica anche della nonlinearià in media nelle variazioni dei assi di cambio, quesa, solo raramene, ha permesso di fornire previsioni più accurae rispeo a quelle oenue dai modelli lineari o dai semplici modelli random walk. Si ricordano, ra gli alri, i lavori di Meese e Roose (1991), Kräger e 3

4 Kugler (1993), Peel e Speigh (1994)e Chappell e al. (1996) e Brooks (1997). Kräger e Kugler (1993) simano modelli auoregressivi a soglia per le variazioni del asso di cambio rispeo al dollaro sauniense del franco francese, lira ialiana, yen giapponese, marco edesco e franco svizzero (osservazioni seimanali dal giugno 1980 al gennaio 1990). Gli auori idenificano re diversi regimi, sia il primo che il erzo regime presenano una deviazione sandard simaa superiore a quella del regime inermedio, ciò sarebbe dovuo agli inerveni della banca cenrale in risposa a fori apprezzameni (primo regime) o deprezzameni (erzo regime). L analisi di Kräger e Kugler rova, infai, fondameno eorico nel modello moneario di aspeaive razionali con regole di inerveni socasici da pare della banca cenrale proposo da Hsieh (1989); un modello auoregressivo a re regime approssimerebbe, perano, la soluzione di ale modello. Secondo gli auori il modello di Hsieh fornisce una rappresenazione più adeguaa del regime di fluuazione conrollaa dei cambi rispeo al modello di arge zone: l inerveno delle banche cenrali dipende nel primo modello da grandi variazioni del asso di cambio, menre nel secondo dall approssimarsi del livello del asso di cambio a deerminae soglie che definiscono le bande di oscillazione consenie. Al fine di valuare l imporanza relaiva delle nonlinearià in media e di quella in varianza, per le sesse value vengono, inolre, proposi dei modelli GARCH; le conclusioni a cui pervengono gli auori indicano che né i modelli auoregressivi a soglia né i modelli GARCH sono in grado di descrivere adeguaamene le nonlinearià preseni nelle serie dei assi di cambio. Peel e Speigh (1994) analizzano le variazioni del asso di cambio della serlina inglese rispeo al dollaro sauniense, al franco francese e al reichsmark nel periodo inercorrene ra le due guerre mondiali (osservazioni seimanali). Daa la robusa evidenza empirica fornia dai es a favore di una generica forma di nonlinearià presene nei dai, gli auori simano diversi ipi di modelli nonlineari: GARCH, modelli bilineari e modelli 4

5 auoregressivi a soglia 1. Per quano riguarda la performance previsiva, i modelli lineari-arch e quelli bilineari presenano un Mean Square Forecas Error (MSFE) inferiore rispeo a quello dei modelli lineari per le re serie; menre, nel caso del cambio serlina-dollaro le previsioni più accurae si oengono dai modelli a soglia. L analisi di Chappell e al. (1996), si differenzia da quella condoa da Kräger e Kugler (1993) e Peel e Speigh (1994), in quano viene valuaa la performance previsiva dei modelli per il livello, piuoso che per la variazione, di diversi assi di cambio (incrociai) dell area dell ERM. È opporuno soolineare che se l accuraezza delle previsioni 2 viene valuaa secondo crieri quali il MSFE, le rasformazioni apporae ai dai, come dimosrano Clemens e Hendry (1993, 1995), non sono neurali: la valuazione relaiva ai dai espressi in differenze è penalizzane rispeo a quella effeuaa sui livelli. Nauralmene valuare l accuraezza delle previsioni per le differenze o i livelli è un problema disino da quello relaivo alla sima di un modello nelle differenze o nei livelli. Secondo Chappell e al. (1996) il funzionameno sesso dell ERM, prevedendo delle bande di oscillazione per i assi di cambio, avrebbe reso rilevane l esisenza di soglie verso l alo e il basso. I assi di cambio seguirebbero, perano, un processo random walk all inerno della banda ma dei processi auoregressivi sazionari in prossimià dei limii della banda che lo riporerebbero verso la media. In queso caso il processo è globalmene, ma non localmene, sazionario 3. Brooks (1996, 1997), nell esaminare le variazioni del asso di cambio giornaliero serlina inglese/dollaro sauniense per il periodo gennaio 1974-luglio 1994, pone in evidenza come i modelli nonlineari del ipo GARCH, i modelli auoregressivi a 1I modelli auoregressivi a soglia simai da Peel e Spiegh (1991) presenano re regimi con soglie simmeriche per il asso di cambio con il dollaro e due regimi per il asso di cambio con il franco francese e il reichsmark. 2Olre un passo avani. 3Pippinger e Goering (1993) dimosrano che il es di Dickey-Fuller nel caso di serie soriche che seguono andameni simili a quello descrio presena un poere molo basso facendo sì che la serie venga consideraa nonsazionaria. 5

6 soglia e i modelli bilineari offrano previsioni di accuraezza solo marginalmene superiore a quella delle previsioni oenue da un modello random walk. In base al es di Pesaran-Timmerman (1992) nessuno dei modelli simai permee di prevedere l andameno del mercao dei cambi (no marke iming abiliy). In leeraura sono sae avanzae quaro ragioni fondamenali del perché i modelli non-lineari non forniscano previsioni più accurae rispeo ai semplici modelli lineari anche quando la linearià è significaivamene rifiuaa per il periodo di sima (Diebold e Nason, 1990): (i) le nonlinearià riguardano i momeni superiori alla media e, perano, non si rivelano uili per migliorare le previsioni punuali; (ii) le nonlinearià preseni durane il periodo di sima sono dovue a cambiameni sruurali o a ouliers che non possono essere sfruai per migliorare le previsioni ou-of-sample; (iii) le nonlinearià in media nonosane siano una caraerisica del processo generaore dei dai non sono abbasanza rilevani da offrire dei guadagni in ermini di maggior accuraezza delle previsioni; (iv) le nonlinearià preseni sono descrie dal ipo sbagliao di modello nonlineare. La performance previsiva dei modelli nonlineari viene, invece, spiegaa da Clemens e Smih (1998) e Dacco e Sachell (1999) ponendo l enfasi sull inadeguaezza del meodo di misurazione adoao; sulla base di uno sudio Mone Carlo, i primi sosengono che la valuazione della funzione di densià delle previsioni permee di cogliere maggiormene i guadagni che si possono oenere dai modelli nonlineari, guadagni che vengono sisemaicamene mascherai se il confrono con i modelli lineari viene condoo solano in ermini di MSFE. Dacco e Sachell (1999) soolineano il fao che la predominanza del modello random walk per la previsione dei assi di cambio è fondaa quasi esclusivamene sul MSFE, e suggeriscono, perano, di adoare meodi di valuazione appropriai per il problema oggeo di analisi; meodi basai sulla profiabilià dovrebbero rivelarsi più adeguai per i problemi di naura finanziaria. Tes basai sulla percenuale di segni correamene previsi, quali il es di Pesaran e Timmermann (1992), risulano 6

7 quindi più rilevani nelle decisioni riguardani l acquiso o la vendia di valua esera. 3. Meodologia In quesa sezione preseniamo i modelli impiegai per la sima e la previsione dei rendimeni dei assi di cambio e i es uilizzai per verificare la presenza di componeni nonlineari nelle serie. 3.1 I modelli Modelli auoregressivi a soglia I modelli auoregressivi a soglia (hreshold auoregressive models, TAR) furono proposi per la prima vola da Tong nel 1978 e sviluppai e divulgai in una serie di lavori successivi dello sesso Tong e di alri auori (Tong-Lim, 1980; Tong, 1983; Chan e Tong, 1986; Granger e Teräsvira, 1993). L idea fondamenale di quesa classe di modelli nonlineari è che l andameno di un processo possa essere rappresenao da un insieme finio di auoregressioni lineari. Il modello AR che genera il valore della serie in ogni periodo è deerminao dalla relazione che inercorre ra una variabile condizionane, dea variabile di soglia, e i valori della soglia sessa. Se la variabile condizionane è la variabile dipendene riardaa d periodi il modello viene denominao self-exciing hreshold auoregressive model (SETAR). Si noi che la variabile di soglia y -d è coninua in R, perano suddividendo l insieme dei numeri reali definisce il numero di regimi che descrivono il processo considerao: - <r 0 <r 1 <...<r n <r n+1 < I valori r j rappresenano le soglie. È imporane osservare che il modello SETAR è lineare nello spazio della variabile di soglia, ma non rispeo al empo. Se il processo si rova nel j esimo regime, l auoregressione di ordine p viene formalmene definia come segue: 7

8 y ( j) ( j) ( j ) = 0 + φ1 y φ p y p φ + ε ( j) ( j) 2 ε IID(0, σ ( j) ) per r j 1 y d < rj Poiché i diversi regimi possono avere differeni sruure auoregressive, p deve essere considerao come l ordine massimo dei riardi considerai e non come l ordine comune a ui i regimi. Si noi, inolre, che il modello SETAR è caraerizzao dal fao che, affinché y sia un processo sazionario, non è necessario che esso lo sia in ciascun regime, è l alernanza di regimi esplosivi e regimi non esplosivi che rende il processo globalmene sazionario. Quando un processo socasico può essere adeguaamene descrio da un modello SETAR significa che la ransizione da un regime all alro avviene isananeamene, quando, invece essa avviene gradualmene nel empo, il modello viene definio smooh ransiion auoregressive model (STAR) ed è generalmene formulao come segue (Granger e Teräsvira, 1993): y = π x ) F ( y ) + u (1) + x + ( 1 π θ + θ d dove il processo u è assuno n.i.d (0,σ 2 ), x =(y -1,.,y -p ), π 1 =(π 11,.π 1p ) e θ 1 =(θ 11,.θ 1p ). Una delle più frequeni specificazioni 4 adoae per la funzione di ransizione è la cumulaa della logisica: F( y d { 1+ exp[ γ ( y )]} 1 ) = r d Nel modello, definio logisic STAR model (LSTAR), i parameri variano monoonicamene al variare di y -d, definendo un coninuum di regimi; quando il paramero γ, che misura la velocià di ransizione, ende ad infinio la F(y -d ) divena una funzione 4Un alra specificazione comunemene adoaa è quella esponenziale, F(y -d )=1- exp[-γ(y -d -r) 2 ]. 8

9 Heaviside che assume valore zero se y -d r e valore uno nel caso opposo. In al modo si hanno solo due regimi esremi e il processo può essere approssimao da un modello SETAR; quando, invece, il paramero γ ende a zero si oiene il modello lineare AR(p). Sima dei modelli SETAR Quando i parameri sruurali r e d sono noi, un modello SETAR può essere simao effeuando r+1 auoregressioni rispeo all appropriao subse di osservazioni, deerminae dalla relazione ra la variabile di soglia e il valore della soglia (arranged auoregression). Alernaivamene, è possibile simare una sola regressione includendo le opporune indicaor funcions 5 ; in queso caso si ipoizza che la varianza degli errori simai sia cosane nei diversi regimi. Nel caso generale, in cui è il paramero di riardo (d) e la soglia (r) non sono noi, il modello SETAR viene simao, dopo aver selezionao il massimo ordine dei riardi, per diversi valori di d e r, il modello migliore è quello che minimizza un crierio di informazione prescelo. Per il caso del modello SETAR (p 1, p 2 ; d), Tong (1983) suggerisce di seguire una procedura di sima a re sadi. Nel primo, per dai valori di d e r, diversi modelli AR vengono simai sugli appropriai subse di dai e l ordine dei riardi è scelo in base al crierio di Akaike (AIC). Nel secondo sadio, il paramero d viene manenuo fisso, menre r può variare enro un inervallo di valori plausibili, la sima dei diversi modelli auoregressivi permee di deerminare il paramero r come quello relaivo al modello a cui è associao il valore minimo dell AIC. Nella erza fase infine, anche d può variare e, ancora una vola, il suo valore viene scelo in base al modello che fornisce il più basso AIC. 5 I 1 (y -d )=1 se y -d >r 1 e zero alrimeni. 9

10 3.1.2 Modelli GARCH Un processo ARCH può essere definio nei ermini della disribuzione degli errori di un modello in cui la variabile y è generaa da y = β + ε =1,...,T (2) x dove x è un veore kx1 di variabili esogene, che possono includere anche valori riardai di y, e β è il veore kx1 dei coefficieni di regressione. Il modello ARCH, proposo da Engle (1982), specifica la disribuzione di ε condizionaa al se informaivo Ψ -1 che include i valori realizzai delle variabili y -1, y -2,..., x -1, x -2,.. In paricolare, il modello assume: ε N(0,h ) Ψ 1 dove h = α ε (3) α1ε α q q e α 0 >0 e α i 0, i=1,..., q, per assicurare che la varianza condizionale sia posiiva. La varianza degli errori dunque varia nel empo e dipende dalla grandezza degli errori passai. Bollerslev (1986) ha proposo una generalizzazione del modello ARCH, che consise nella seguene specificazione per la varianza condizionale: h = α 0 + α1ε... β h (4) α qε q + β 1h p p Queso processo è noo come GARCH(p,q) (Generalised Auo- Regressive Condiional Heeroscedasic process). Per assicurare valori posiivi della varianza condizionale vengono impose le segueni resrizioni: α 0 >0, α i 0 per i=1,..., q, e β i 0 per i=1,..., p. In praica, il valore q nel GARCH è molo più piccolo del valore q nella rappresenazione ARCH. Di solio, il semplice GARCH(1,1) 10

11 offre una adeguaa descrizione di mole serie soriche economiche e finanziarie. GARCH in Media Engle, Lilien e Robins (ELR, 1987) hanno eseso il modello ARCH inroducendo la varianza condizionale come regressore nell equazione della media della variabile: y = x ' β + δh + ε =1,...,T (5) dove ε Ψ 1 N(0,h ) e h è un processo (G)ARCH. Nei modelli (G)ARCH-M la varianza condizionale viene inseria nell equazione della media in varie forme: log( h ), h e h. GARCH Asimmerici Una esensione imporane dei GARCH è rappresenaa dalla classe dei modelli asimmerici. Quesi modelli permeono di caurare evenuali asimmerie di impao sulla varianza condizionale, deerminae dai segni (olre che dalla grandezza) degli shocks subii dalla serie nei periodi precedeni. Il modello ARCH a soglia (Threshold heeroscedasic model, TARCH) - (Glosen, Jagannahan e Runkle, 1993, e Zakoian, 1994), nel caso di un semplice GARCH(1,1), è dao dall'espressione h 2 2 = + α ε + γε d + βh α (6) dove d è una variabile binaria uguale a 1 se ε <0, uguale a 0 alrimeni. Dunque, shocks negaivi e posiivi hanno un impao diverso su h: errori posiivi hanno un effeo uguale a α 1, menre errori negaivi hanno un effeo uguale a α 1 +γ. Se γ (coefficiene di asimmeria) è significaivamene posiivo, si conclude che esisono 11

12 effei asimmerici. Nel caso generale di un TARCH(p,q) il modello divena: h q p α iε + + i γε 1d 1 β j i= 1 j= 1 = α h (7) j Effei asimmerici sono descrii anche dai modelli GARCH Esponenziali (EGARCH) (Nelson, 1991): log ( h ) α + β log( h ) + α ( ε / h ) 2 / π γ ( ε h ) = / 1 (8) dove la rasformazione logarimica assicura che la varianza condizionale sia posiiva. L'effeo asimmerico rappresenao da è esponenziale e non quadraico come nel TARCH. La significaivià di effei asimmerici, con impao superiore in corrispondenza di errori negaivi, in queso modello può essere sooposa a es mediane l'ipoesi che γ sia significaivamene negaivo (segno di γ opposo a quello nel modello TARCH). 3.2 Tes di linearià La presenza di nonlinearià nelle serie relaive alle differenze logarimiche dei assi di cambio edesco, francese e giapponese viene analizzaa applicando quaro diversi es di linearià: il es RESET, il es di Tsay (1986), il es S 2, proposo da Luukkonen- Saikkonen e Teräsvira (1988) e il es di McLeod e Li (1983) Il es RESET Il primo es viene condoo sia nella forma radizionale sia nella versione modificaa suggeria da Thursby e Schmid (1977). Nel primo caso, come è noo, è necessario simare una regressione auoregressiva di ordine p ed una regressione ausiliaria nella quale vengono inclusi i regressori iniziali e i ermini che rappresenano i 12

13 valori predei (fied values) elevai a poenza, oenui dalla prima regressione. Il es RESET nella versione proposa da Thursby e Schmid (1977), richiede, invece, che nella regressione ausiliaria vengano inclusi i regressori iniziali sia linearmene che elevai sino a una daa poenza, h. Gli sessi auori suggeriscono di imporre h= Il es di Tsay La misspecificazione della forma funzionale di un modello lineare può essere individuaa ricorrendo al duale dell espansione di Volerra (Priesley, 1980) della funzione nonlineare. Dopo aver simao un modello lineare AR(p), la regressione ausiliaria, viene formulaa in ermini generali come segue: eˆ β ~ ~ ϕ w~ w~ w~ υ m m m m m ' = w + ϕ ijwiwj + i= 1 j= i i= j= 1 j = k ijk i j k dove w è cosiuio dai valori riardai di y, ê è la serie dei residui simai oenui dal modello lineare. Il es di Tsay (1986) appariene alla classe dei es basai sull espansione di Volerra. Il es, che rappresena una generalizzazione del es di Keenan (1985), include i prodoi incrociai dei riardi della serie y sooposa ad analisi di nonlinearià. Tsay dimosra che il es gode di un poere più elevao rispeo al es di Keenan. La procedura da adoare per condurre il es consa di quaro sadi e può essere delineaa come segue: (1) simare una regressione OLS di y sui primi p riardi e calcolare i residui simai, ê ; ' ' (2) cosruire il veore Z = vech( Y Y ) dove l operaore vech indica che vengono considerai una sola vola i prodoi di ue le possibili combinazioni dei ermini riardai sino all ordine massimo p. Il veore Z coniene, perano, 1/2p(p+1) ermini; 13

14 (3) regredire Z su una cosane e p riardi di y e calcolare i residui simai vˆ ; ques operazione può essere consideraa come la sima di un sisema formao da 1/2p(p+1) regressioni, perano, 1/2p(p+1) è anche la dimensione di vˆ ; (4) regredire ê su vˆ e calcolare i residui simai, εˆ Il es di Tsay ha la seguene espressione: F = ( ' ' vˆ ˆ e ) ( εˆ 2 ' vˆ vˆ ) 1 ( ' vˆ eˆ ) /(1/ 2 p( p + 1)) /( T p 1/ 2 p( p + 1) 1) soo l ipoesi nulla esso segue una disribuzione F con 1/2p(p+1) e (T-p-1/2p(p+1)-1) gradi di liberà Il es S 2 di Luukkonen, Saikkonen e Teräsvira Menre il es RESET e il es di Tsay vengono condoi soo l ipoesi di misspecificazione generica del modello, il es S2 proposo da Luukkonen, Saikkonen e Teräsvira è cosruio assumendo un ipoesi alernaiva specifica, ovvero che la nonlinearià sia dovua al fao che è sao simao un modello lineare piuoso che un modello STAR. Nonosane il es sia sao inizialmene adoao per la classe dei modelli STAR, gli sessi auori, hanno dimosrao che esso gode di buone proprieà, in ermini di poere, anche nel caso dei modelli SETAR. Il es S 2 viene oenuo sosiuendo la funzione F(y -d ) nella (1) con la linearizzazione daa dall espansione in serie di Taylor di erzo ordine 6 ; quesa, grazie anche all applicazione del principio del moliplicaore di Langrange permee di formulare la seguene 6Luukkonen, Saikkonen e Teräsvira (1988) hanno proposo anche alri due es: il es S 1, basao sulla espansione in serie di Taylor del prim ordine, e il es S 3 che si oiene includendo nella regressione ausiliaria del es S 1 i ermini y -i y 3 -j. 14

15 regressione ausiliaria, i cui coefficieni sono funzione dei parameri della (1): y p p p p p p ' β w + ξij y i y j + ψ ij y i y j + κ ij y i y j i= 1 j= 1 i= 1 j= 1 i= 1 j= 1 β = ε (9) il veore w è cosiuio dai valori riardai di y. L ipoesi nulla è: H 0 =ζ ij =ψ ij =κ ij =0, per i,j=1.p; il es è calcolao come S 2 =T(SSE 0 -SSE 1 )/SSE 0, dove SSE 0 è la somma dei residui al quadrao oenua dalla auoregressione lineare di ordine p per y, menre SSE 1 e la somma dei residui al quadrao relaiva alla (9). Il es S 2 si disribuisce come un χ 2 con 1/2p(p+1)2p 2 gradi di liberà. In generale, l ordine massimo dei riardi p non è noo e, perano, deve essere selezionao in base ai dai analizzai secondo un crierio di informazione (ad esempio, l AIC). Se il vero modello è nonlineare è possibile che sia necessario inserire più riardi nel modello lineare AR(p) nel enaivo di minimizzare la somma degli errori al quadrao: ciò compora una riduzione del poere del es rispeo al caso in cui si conosca il vero valore di p. Dall alra pare, se il valore di p è ano basso da far sì che i residui del modello lineare siano auocorrelai, il es è disoro nel senso che l ipoesi nulla viene rifiuaa roppo spesso. Queso avviene perché il es, come dimosra Teräsvira (1990) ha poere anche rispeo all ipoesi di errori auocorrelai. Se il paramero di riardo (d) è noo, y -d può essere sosiuio al poso di y -j nella (9) e, in al caso, il es ha una disribuzione χ 2 con 3p gradi di liberà. Si noi che, anche nel caso in cui d sia conosciuo, il es necessia di un numero elevao di gradi di liberà se il valore di p è alo. Seguendo il suggerimeno di Teräsvira (1990) e Granger-Teräsvira (1993), in queso lavoro si assume che il valore di d sia noo e che sia compreso nell inervallo [1,6]. Nel caso di rifiuo dell ipoesi nulla di linearià il paramero d viene scelo in base al es che mosra il più basso probabiliy value. 15

16 3.2.4 Il es di Mcleod e Li per la nonlinearià in varianza Per sooporre a es l ipoesi di nonlinearià in varianza è sao condoo il es di Mcleod e Li (1983). Il es è simile al es proposo da Ljung-Box (1978), enrambi, infai si basano sulla sima della funzione di auocorrelazione dei residui al quadrao oenui da un modello auoregressivo lineare. Granger e Anderson (1978) sosengono che i residui simai di modelli di serie soriche del ipo Box-Jenkins (1976) possono apparire non correlai anche se i quadrai degli sessi residui lo sono. Secondo Granger e Anderson (1978), perano, la funzione di auocorrelazione dei residui al quadrao deve essere consideraa un uile srumeno nel enaivo di idenificare correamene i modelli nonlineari. Il es di McLeod e Li viene calcolao come segue. Dal miglior modello AR(p) o ARMA(p,q) si oengono i residui simai u e si calcola la funzione di auocorrelazione secondo l espressione: rˆ ( p) 2 u T 2 ( uˆ = k + 1 = T = 1 σˆ ( uˆ 2 2 )( uˆ σˆ 2 k 2 ) σˆ 2 2 ) dove σˆ = T 2 1 u 2 McLeod e Li dimosrano che, fissao p, T rˆ = [ˆ r (1),..., rˆ ( m)] si u u u disribuisce asinoicamene come una normale per T. È possibile, quindi, cosruire la saisica pormaneau Q*(m), Q *( m) = T( T + 2) m rˆ ( i) 2 u ( T i= 1 che si disribuisce asinoicamene come un χ 2 con m gradi di liberà soo l ipoesi che i residui simai u siano indipendeni. Il es è perano poene nel discriminare le nonlinearià dovue alla presenza di effei ARCH, ma non rispeo a nonlinearià di diverso ipo. i) 16

17 4. Analisi preliminare nei dai Le serie mensili dei re assi di cambio e le loro variazioni (logarimiche) sono illusrae nella Figura 1. Le serie dei rendimeni sono ue sazionarie in media, menre per quano riguarda la varianza, sembra evidene, soprauo per lo yen, il fenomeno cosiddeo di volailiy clusering, con periodi di ala volailià seguii da periodi di maggior ranquillià. Quese proprieà, se rilevani, dovrebbero essere caurae in modo adeguao dai modelli del ipo GARCH. Nella abella 1 riporiamo misure descriive delle proprieà saisiche dei rendimeni dei assi di cambio. Tue le serie sono caraerizzae da eccesso di curosi, inolre per il franco francese e per lo yen è evidene anche un cero grado di asimmeria, posiiva per il franco, e negaiva per lo yen. Il es di Jarque-Bera rifiua decisamene l'ipoesi di normalià delle serie. La abella 2 ripora i risulai, in forma di valori di probabilià (pvalues), dei diversi es di nonlinearià condoi sulle differenze logarimiche dei assi di cambio delle re value esaminae in queso lavoro. Per ui i es il modello lineare soo l ipoesi nulla è sao simao ipoizzando re diverse sruure auoregressive, includendo 4, 5 e 6 riardi. Nonosane il crierio di informazione prescelo, AIC, porasse a preferire il modello AR(6), sono sai simai anche i modelli AR(4) e AR(5) per verificare che il risulao del es non fosse influenzao dall inclusione di roppi parameri. Come poso in evidenza da Teräsvira (1994), infai, se il vero modello è nonlineare la sima di un modello lineare compora, in generale, una più ricca sruura auoregressiva; da ciò consegue una perdia di poere per ui i es di nonlinearià. Il es RESET, sia nella sua versione classica che in quella modificaa, è sao condoo secondo re diverse specificazioni, nella prima regressione ausiliaria sono sai inclusi solo i ermini al quadrao, nella seconda anche quelli cubici e, nella erza anche i ermini elevai alla quara poenza. I risulai del es RESET e del es di Tsay, che ricordiamo dovrebbero discriminare rispeo ad 17

18 un ipoesi alernaiva di non linearià generica, non permeono di rifiuare l ipoesi di linearià nella maggior pare dei casi. Le uniche eccezioni sono rappresenae dal es RESET-3 e RESET-4, nel caso del Marco edesco con p=4; dal es Mod.RESET-4 nel caso del franco francese (p=4) e del marco edesco (p=6); il es di Tsay indica, ad un livello di significaivià del 10%, la presenza di nonlinearià per lo yen giapponese (p=6). Il es S 2, invece, ipoizzando un ipoesi alernaiva specifica, ovvero nonlinearià di ipo STAR, consene di rifiuare l ipoesi che le serie siano lineari; in queso caso il es è robuso rispeo alla sruura auoregressiva e nella maggior pare dei casi i p-value più bassi si oengono in corrispondenza di d=1. Il es di McLeod e Li (1983) è sao condoo per m=1, 2,.12; la abella 1 ripora, però, solo i risulai per m=12, in quano i risulai non apparivano significaivamene diversi per gli alri valori di m; il es evidenzia la presenza di nonlinearià in varianza solo per lo yen giapponese e per il marco edesco. 5. Risulai empirici 5.1 Sima dei modelli Modelli lineari Per il franco francese è sao idenificao un AR(4), per il marco edesco un AR(2), e per lo yen un AR(3). In ui i casi i modelli sono risrei, cioè i coefficieni dei ermini auoregressivi inermedi sono uguali a zero. Modelli SETAR Per il franco francese e il marco edesco abbiamo simao sia modelli a una soglia (2 regimi) che modelli con 2 soglie (3 regimi); per lo yen giapponese è sao possibile, invece, idenificare solano un modello con due regimi; la procedura di sima adoaa è saa 18

19 quella suggeria da Tong (1983) 7. Tui i modelli sono riporai nella abella 3. Per quano riguarda il franco francese i modelli simai sono caraerizzai in considerevole misura da nonlinearià; i regimi, infai, presenano delle sruure auoregressive e dei coefficieni simai molo diversi. Secondo il modello a due regimi, la serie seguirebbe un processo AR(2) nel primo regime, menre sarebbe cosane nel secondo. Nel caso del modello a re regimi, il asso di rendimeno del franco viene descrio da un processo AR(1) se vi sono fori apprezzameni, da una cosane per fori deprezzameni e da un processo AR(5) nel caso inermedio. Si noi, inolre che la varianza simaa è molo diversa da un regime all alro, essa è uguale a nel primo regime, a nel secondo e a nel erzo. Le variazioni del marco edesco seguono un processo AR(1) nel primo regime e AR(6) nel secondo, quando si ipoizza che esisa una sola soglia; menre, nel caso di due soglie, la serie segue un processo AR(3) nel primo regime, un AR(1) nel secondo e un AR(6) nel erzo. Anche per quesa valua è ineressane soolineare che la varianza simaa varia molo da un regime all alro; essa è molo bassa nel regime di fore deprezzameno. Il asso di rendimeno dello yen giapponese è rappresenao da un modello SETAR con una cosane solano in enrambi i regimi, inolre la varianza simaa non differisce sosanzialmene ra essi. È ragionevole ipoizzare per lo yen modelli nonlineari in media non siano adeguai a descriverne l andameno. Il fao che la nonlinearià in media sia, invece, rilevane nel caso delle due value europee può dipendere dall esisenza di un regime di cambi flessibili manovrao, che prevedeva l esisenza di bande di oscillazione e inerveni da pare delle banche cenrali all approssimarsi del asso di cambio agli esremi di quese. 7Tui i modelli sono sai simai uilizzando il programma STAR3 (Tong, 1990). 19

20 Modelli GARCH Componeni GARCH sono risulae significaive solo nella serie dei rendimeni dello yen. Per poer cogliere la presenza di quese componeni abbiamo idenificao alcuni modelli alernaivi, fra cui un semplice GARCH(1,1), un EGARCH(1,1) e un TARCH(1,1) per ener cono di possibili effei asimmerici sulla varianza condizionale, e un GARCH in media (GARCH-M(1,1)) 8. In ui i casi la media della serie è saa modellaa con un semplice processo AR(1). La scela finale del GARCH-M, i cui risulai previsivi sono riporai nelle abelle che seguono, è saa condoa sulla base dei crieri informaivi di Akaike (AIC) e di Schwarz (SIC). 5.1 Le previsioni Le previsioni sono sae calcolae per 1, 3, 6, 9, 12 e 24 passi avani ricorsivamene; ciascun modello è sao idenificao e specificao una sola vola, ovvero per il primo periodo di sima, ; ques ulimo viene di vola in vola aggiornao di un osservazione sino al , il modello è perano risimao (ma non rispecificao) e le previsioni per 1,, 24 passi avani calcolae. In oale per ciascun orizzone emporale considerao si oengono 50 previsioni punuali. I RMSE e le percenuali di segni correamene previsi sono riporai nella abella 4, menre i grafici nella figura 2 permeono un immediao e chiaro confrono della performance previsiva dei diversi modelli a seconda dell orizzone esaminao. La abella 5 presena, invece, i RMSE normalizzai rispeo al modello lineare, che rappresena il nosro benchmark; ciascuno di essi è oenuo dal rapporo RMSE NL /RMSE L ; perano, un valore inferiore all unià significa che il modello nonlineare fornisce previsioni più accurae del semplice modello nonlineare. La abella 4 ripora, inolre, il RMSE per il modello random walk nei livelli; è opporuno evidenziare che solo il valore relaivo a un passo avani può essere confronao con quelli oenui dagli alri 8 I modelli GARCH sono sai simai col programma EViews. 20

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice Eserciazione 7: Modelli di crescia: arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Popolazione sabile e sazionaria. Viviana Amai 03/06/200 Modelli di crescia Nella

Dettagli

A.A. 2013/14 Esercitazione - IRPEF TESTO E SOLUZIONI

A.A. 2013/14 Esercitazione - IRPEF TESTO E SOLUZIONI A.A. 2013/14 Eserciazione - IRPEF TESTO E SOLUZIONI Esercizio 1 - IRPEF Il signor X, che vive solo e non ha figli, ha percepio, nel corso dell anno correne, i segueni reddii: - Reddii da lavoro dipendene

Dettagli

La previsione della domanda nella supply chain

La previsione della domanda nella supply chain La previsione della domanda nella supply chain La previsione della domanda 1 Linea guida Il ruolo della prerevisione nella supply chain Le caraerisiche della previsione Le componeni della previsione ed

Dettagli

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo)

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo) V A = AMPIEZZA = lunghezza di V A ALTERNATA Proiezione di V X ISTANTE = velocià angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un inervallo di empo) DEVE ESSERE COSTANTE Angolo

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Universià di Napoli Parenope Facolà di Ingegneria Corso di Comunicazioni Elerice docene: Prof. Vio Pascazio a Lezione: 7/04/003 Sommario Caraerizzazione energeica di processi aleaori Processi aleaori nel

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA

UNIVERSITA DEGLI STUDI DI PADOVA UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE TESI DI LAUREA IN STATISTICA ECONOMIA E FINANZA STIMA DELLA VOLATILITA NEI MERCATI FINANZIARI CON DATI INFRA-GIORNALIERI: ALCUNI CONFRONTI

Dettagli

Struttura dei tassi per scadenza

Struttura dei tassi per scadenza Sruura dei assi per scadenza /45-Unià 7. Definizione del modello ramie gli -coupon bonds preseni sul mercao Ipoesi di parenza Sul mercao sono preseni all isane ZCB che scadono fra,2,,n periodi Periodo:

Dettagli

flusso in uscita (FU) Impresa flusso in entrata (FE)

flusso in uscita (FU) Impresa flusso in entrata (FE) Analisi degli invesimeni Il bilancio è una sinesi a poseriori della siuazione di un'azienda. La valuazione degli invesimeni è un enaivo di valuare a priori la validià delle scele dell'azienda. L'invesimeno

Dettagli

Argomenti trattati. Rischio e Valutazione degli investimenti. Teoria della Finanza Aziendale. Costo del capitale

Argomenti trattati. Rischio e Valutazione degli investimenti. Teoria della Finanza Aziendale. Costo del capitale Teoria della Finanza Aziendale Rischio e Valuazione degli invesimeni 9 1-2 Argomeni raai Coso del capiale aziendale e di progeo Misura del bea Coso del capiale e imprese diversificae Rischio e flusso di

Dettagli

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo Media Mobile di ampiezza k (k pari) Esempio: Vendie mensili di shampoo Mese y 1 266,0 2 145,9 3 183,1 4 119,3 5 180,3 6 168,5 7 231,8 8 224,5 9 192,8 10 122,9 11 336,5 12 185,9 1 194,3 2 149,5 3 210,1

Dettagli

Il modello di Black-Scholes. Il modello di Black-Scholes/2

Il modello di Black-Scholes. Il modello di Black-Scholes/2 Il modello di Black-Scholes Si raa sosanzialmene del modello in empo coninuo che si oiene facendo endere a 0 nel modello binomiale. Come vedremo, è un modello di fondamenale imporanza, e per esso a Myron

Dettagli

L'UTILIZZO DI TRADING RULES IN MODELLI A CAMBIAMENTO DI REGIME (SWITCHING REGIMES)

L'UTILIZZO DI TRADING RULES IN MODELLI A CAMBIAMENTO DI REGIME (SWITCHING REGIMES) L'UTILIZZO DI TRADING RULES IN MODELLI A CAMBIAMENTO DI REGIME (SWITCHING REGIMES) Monica Billio Universià Ca Foscari e GRETA, Venezia Michele Paron GRETA, Venezia Inroduzione. Moli meodi di analisi ecnica

Dettagli

Lezione n.7. Variabili di stato

Lezione n.7. Variabili di stato Lezione n.7 Variabili di sao 1. Variabili di sao 2. Funzione impulsiva di Dirac 3. Generaori impulsivi per variabili di sao disconinue 3.1 ondizioni iniziali e generaori impulsivi In quesa lezione inrodurremo

Dettagli

Lezione 11. Inflazione, produzione e crescita della moneta

Lezione 11. Inflazione, produzione e crescita della moneta Lezione 11 (BAG cap. 10) Inflazione, produzione e crescia della monea Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia Tre relazioni ra produzione, disoccupazione e inflazione Legge di Okun

Dettagli

RISPOSTA NEL DOMINIO DEL TEMPO

RISPOSTA NEL DOMINIO DEL TEMPO RISPOSTA NEL DOMINIO DEL TEMPO Nel dominio del empo le variabili sono esaminae secondo la loro evoluzione emporale. Normalmene si esamina la risposa del sisema a un segnale di prova canonico, cioè si sollecia

Dettagli

Metodi stocastici per l individuazione di casi di Manipolazione e di insider trading

Metodi stocastici per l individuazione di casi di Manipolazione e di insider trading Approfondimeni l Regulaion Meodi socasici per l individuazione di casi di Manipolazione e di insider rading Marcello Minenna presena un modello probabilisico per l individuazione di possibili fenomeni

Dettagli

4 La riserva matematica

4 La riserva matematica 4 La riserva maemaica 4.1 Inroduzione La polizza, come si è viso, viene cosruia in modo da essere in equilibrio auariale alla daa di sipula = 0 e rispeo alla base ecnica del I ordine: se X è il flusso

Dettagli

RELAZIONE FINALE: MODELLAZIONE DEI PREZZI DELL ENERGIA ELETTRICA: UN ESEMPIO

RELAZIONE FINALE: MODELLAZIONE DEI PREZZI DELL ENERGIA ELETTRICA: UN ESEMPIO RELAZIONE FINALE: MODELLAZIONE DEI PREZZI DELL ENERGIA ELETTRICA: UN ESEMPIO RELATORE: CH.MO PROF. LISI FRANCESCO LAUREANDO: CANELLA FRANCESCO MATRICOLA: 45835 ANNO ACCADEMICO: 003-004 4 Alla mia famiglia

Dettagli

V AK. Fig.1 Caratteristica del Diodo

V AK. Fig.1 Caratteristica del Diodo 1 Raddrizzaore - Generalià I circuii raddrizzaori uilizzano componeni come i Diodi che presenano la caraerisica di unidirezionalià, cioè permeono il passaggio della correne solo in un verso. In figura

Dettagli

La programmazione aggregata nella supply chain. La programmazione aggregata nella supply chain 1

La programmazione aggregata nella supply chain. La programmazione aggregata nella supply chain 1 La programmazione aggregaa nella supply chain La programmazione aggregaa nella supply chain 1 Linea guida Il ruolo della programmazione aggregaa nella supply chain Il problema della programmazione aggregaa

Dettagli

4 Il Canale Radiomobile

4 Il Canale Radiomobile Pare IV G. Reali: Il canale radiomobile 4 Il Canale Radiomobile 4.1 INTRODUZIONE L evoluzione fondamenale nella filisofia di progeo delle rei di comunicazione indoor è il passaggio dalla modalià di rasmissione

Dettagli

Introduzione all analisi delle serie storiche e dei metodi di previsione

Introduzione all analisi delle serie storiche e dei metodi di previsione Inroduzione all analisi delle serie soriche e dei meodi di previsione Indice. Capiolo inroduivo,. Inroduzione.2 Fasi di un analisi di previsione e sruura delle dispense 2. Meodi e srumeni di base, 5 2.

Dettagli

La parità tra i tassi di interesse: una verifica empirica

La parità tra i tassi di interesse: una verifica empirica UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE CORSO DI LAUREA IN STATISTICA ECONOMIA E FINANZA Tesi di laurea La parià ra i assi di ineresse: una verifica empirica Relaore: CH.MO PROF.

Dettagli

Lezione 10. (BAG cap. 9) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia

Lezione 10. (BAG cap. 9) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Lezione 10 (BAG cap. 9) Il asso naurale di disoccupazione e la curva di Phillips Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia In queso capiolo Inrodurremo uno degli oggei più conosciui

Dettagli

In questo caso entrambi i gruppi chiedono copertura completa: q = d = 100.

In questo caso entrambi i gruppi chiedono copertura completa: q = d = 100. Soluzione dell Esercizio 1: Assicurazioni a) In un mercao perfeamene concorrenziale, deve valere la condizione di profii aesi nulli: E(P)=0. E possibile mosrare che ale condizione implica che l impresa

Dettagli

SELEZIONE DI UN PORTAFOGLIO MEDIANTE LA FORZA RELATIVA

SELEZIONE DI UN PORTAFOGLIO MEDIANTE LA FORZA RELATIVA UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI SCIENZE STATISTICHE CORSO DI LAUREA IN STATISTICA, ECONOMIA E FINANZA SELEZIONE DI UN PORTAFOGLIO MEDIANTE LA FORZA RELATIVA RELATORE: Ch.mo Prof. Francesco

Dettagli

Apertura nei Mercati Finanziari

Apertura nei Mercati Finanziari Lezione 20 (BAG cap. 6.2, 6.4-6.5 e 18.5-18.6) La poliica economica in economia apera Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia Aperura nei Mercai Finanziari 1) Gli invesiori possono

Dettagli

Analisi e valutazione degli investimenti

Analisi e valutazione degli investimenti Analisi e valuazione degli invesimeni Indice del modulo L analisi degli invesimeni e conceo di invesimeno Il valore finanziario del empo e aualizzazione Capializzazione e aualizzazione Il coso opporunià

Dettagli

VALORE EFFICACE DEL VOLTAGGIO

VALORE EFFICACE DEL VOLTAGGIO Fisica generale, a.a. /4 TUTOATO 8: ALO EFFC &CCUT N A.C. ALOE EFFCE DEL OLTAGGO 8.. La leura con un mulimero digiale del volaggio ai morsei di un generaore fornisce + in coninua e 5.5 in alernaa. Tra

Dettagli

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio METODI DECISIONALI PER L'AZIENDA www.lvprojec.com Do. Loi Nevio Generalià sui sisemi dinamici. Variabili di sao, di ingresso, di uscia. Sisemi discrei. Sisemi lineari. Paper: Dynamic Modelling Do. Loi

Dettagli

1.7. Il modello completo e le sue proprietà

1.7. Il modello completo e le sue proprietà La Teoria Generale 1 1.7. Il modello compleo e le sue proprieà Il ragionameno svolo fino a queso puno è valido per un livello dao del salario nominale e dei prezzi. Le grandezze preseni nel modello, per

Dettagli

2. Politiche di gestione delle scorte

2. Politiche di gestione delle scorte deerminisica variabile nel empo Quando la domanda viaria nel empo, il problema della gesione dell invenario divena preamene dinamico. e viene deo di lo-sizing. Consideriamo il caso in cui la domanda pur

Dettagli

Anche sugli impianti in esercizio è possibile intervenire attuando una serie di soluzioni in grado di ridurre sensibilmente il consumo di energia.

Anche sugli impianti in esercizio è possibile intervenire attuando una serie di soluzioni in grado di ridurre sensibilmente il consumo di energia. Risparmio Energeico Risparmio Energeico per Scale e Tappei Mobili La riduzione dei consumi di energia proveniene dalle foni fossili non rinnovabili (perolio, carbone) è una delle priorià assolue, insieme

Dettagli

Un modello econometrico multifattoriale dell Indice Comit generale della Borsa di Milano

Un modello econometrico multifattoriale dell Indice Comit generale della Borsa di Milano WORKING PAPER n. 00.08 Novembre 2000 Un modello economerico mulifaoriale dell Indice Comi generale della Borsa di Milano Renaa Bonfiglio 1 Paolo Guderzo 2 1 Unicredio di Milano 2 Universià Cà Foscari di

Dettagli

Opportunità di arbitraggio nel mercato del BTP Futures: una verifica empirica.

Opportunità di arbitraggio nel mercato del BTP Futures: una verifica empirica. Opporunià di arbiraggio nel mercao del BTP Fuures: una verifica empirica. Andrea Giacomelli Grea, Venezia Domenico Sarore Universià Ca' Foscari e Grea, Venezia Michele Trova Inesa Asse Managemen Come è

Dettagli

6 IL TASSO DI CAMBIO

6 IL TASSO DI CAMBIO Il asso di cambio 111 6 IL TASSO DI CAMBIO Il sisema economico silizzao dal quale siamo parii nel capiolo 1 si basa sul barao. In esso quindi non roviamo monea né ano meno la necessià di converire grandezze

Dettagli

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI TEPUS PECUNIA EST COLLANA DI ATEATICA PER LE SCIENZE ECONOICHE FINANZIARIE E AZIENDALI 3 Direore Bearice VENTURI Universià degli Sudi di Cagliari Comiao scienifico Umbero NERI Universiy of aryland Russel

Dettagli

Un modello econometrico mensile per la previsione dell indice COMIT nel mercato azionario italiano

Un modello econometrico mensile per la previsione dell indice COMIT nel mercato azionario italiano WORKING PAPER n.0.07 Seembre 00 Un modello economerico mensile per la previsione dell indice COMIT nel mercao azionario ialiano R. Casarin a,b P. Guderzo c a. Universià Ca Foscari, Venezia. b. GRETA, Venezia.

Dettagli

UNIVERSITÀ DEGLI STUDI DI ROMA "TOR VERGATA"

UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA UNIVERSITÀ DEGLI STUDI DI ROMA "TOR VERGATA" FACOLTA' DI ECONOMIA DOTTORATO DI RICERCA IN BANCA E FINANZA CICLO DEL CORSO DI DOTTORATO XXII LA CRISI DEI MUTUI SUBPRIME: ANALISI DEGLI EFFETTI SUI RENDIMENTI

Dettagli

FORECASTING...61 RIASSUNTO E CONCLUSIONI...71 BIBLIOGRAFIA...73 APPENDICE TECNICA...75

FORECASTING...61 RIASSUNTO E CONCLUSIONI...71 BIBLIOGRAFIA...73 APPENDICE TECNICA...75 INDICE INDICE... 1 INTRODUZIONE... 3 STRUTTURA A TERMINE DEI TASSI D INTERESSE... 5 1.1 NOZIONI GENERALI... 5 LE FORME DELLA CURVA DEI RENDIMENTI... 7 CASISTICA E METODOLOGIA... 11 2.1 LETTERATURA... 11

Dettagli

La matrice di contabilità sociale (SAM): uno strumento per la valutazione IPI, 2009

La matrice di contabilità sociale (SAM): uno strumento per la valutazione IPI, 2009 La marice di conabilià sociale (SAM): uno srumeno per la valuazione IPI, 2009 Sono vieae le riproduzioni del eso, dei dai e dei conenui informaici dei CD allegai non auorizzai dall IPI con qualsiasi mezzo

Dettagli

COMPORTAMENTO SISMICO DELLE STRUTTURE

COMPORTAMENTO SISMICO DELLE STRUTTURE COMPORTAMENTO SISMICO DELLE STRUTTURE Durane un erreoo, le oscillazioni del erreno di fondazione provocano nelle sovrasani sruure delle oscillazioni forzae. Quando il erreoo si arresa, i ovieni della sruura

Dettagli

I RENDIMENTI LE SERIE STORICHE FINANZIARIE

I RENDIMENTI LE SERIE STORICHE FINANZIARIE I EDIMETI LE SEIE STOICHE FIAZIAIE Aivià finanziarie Azioni es. Capialia, Mediase,... Tioli di sao BOT, BT, Tassi di cambio Euro/Dollaro, Euro/Serlina, Indici di Borsa S&/MIB, CAC4, ETF Tassi di ineresse

Dettagli

INTERBANCA Codice ISIN IT0004041478

INTERBANCA Codice ISIN IT0004041478 REGOLAMENTO DEL PRESTITO OBBLIGAZNAR INTERBANCA 2006/2011 Discoun Dynamic Index 24 fino a EUR 250.000.000 Ar. 1 - TITOLI Il presio obbligazionario Inerbanca 2006/2011 Discoun Dynamic Index 24 fino a EUR

Dettagli

Gestione della produzione MRP e MRPII

Gestione della produzione MRP e MRPII Sommario Gesione della produzione e Inroduzione Classificazione Misure di presazione La Disina Base Logica Lo Sizing in II Inroduzione Inroduzione Def: Gesire la produzione significa generare e sfruare

Dettagli

INDICATORI PER IL MERCATO AZIONARIO (aggiornato il 2-2-2007)

INDICATORI PER IL MERCATO AZIONARIO (aggiornato il 2-2-2007) INDICATORI PER IL MERCATO AZIONARIO (aggiornao il 2-2-2007). Obievi della rilevazione Negli anni 60 Mediobanca avviò la rilevazione sisemaca dei corsi delle azioni quoae in Borsa, ideando un indice con

Dettagli

Ottobre 2009. ING ClearFuture

Ottobre 2009. ING ClearFuture Oobre 2009 ING ClearFuure Una crescia cosane. Con una solida proezione nel empo. ING ClearFuure è la soluzione assicuraiva Uni Linked di dirio lussemburghese, realizzaa apposiamene da ING Life Luxembourg

Dettagli

Asimmetria del rischio sistematico dei titoli americani: nuove evidenze econometriche

Asimmetria del rischio sistematico dei titoli americani: nuove evidenze econometriche Asimmeria del rischio sisemaico dei ioli americani: nuove evidenze economeriche Paola De Sanis Carlo Drago IPE Working Paper N. 3 Sepember 8, 2014 ISSN 2284-1229 Online a www.ipeisiuo.i Asimmeria del rischio

Dettagli

Cenni di Matematica Finanziaria

Cenni di Matematica Finanziaria Cenni di Maemaica Finanziaria M.Leizia Guerra Facolà di Economia Universià di Urbino Carlo Bo Leggi e regimi finanziari Operazioni finanziarie elemenari Un conrao finanziario ra due soggei Alfa e Bea prevede

Dettagli

Facoltà di Agraria - Università di Sassari Anno Accademico 2004-2005. Analisi Costi e Benefici

Facoltà di Agraria - Università di Sassari Anno Accademico 2004-2005. Analisi Costi e Benefici Facolà di Agraria - Universià di Sassari Anno Accademico 004-005 Dispense Corso di Pianificazione e Difesa del erriorio Docene: Luciano Guierrez Analisi Cosi e Benefici. Inroduzione. Decisioni individuali

Dettagli

Systematic Risk Asymmetry of the American Real Estate Securities: Some New Econometric Evidence

Systematic Risk Asymmetry of the American Real Estate Securities: Some New Econometric Evidence MPRA Munich Personal RePEc Archive Sysemaic Risk Asymmery of he American Real Esae Securiies: Some New Economeric Evidence Paola De Sanis and Carlo Drago ICCREA Banca S.p.A, Universià degli sudi Niccolò

Dettagli

TECNICA DELLE ASSICURAZIONI

TECNICA DELLE ASSICURAZIONI TECNICA DELLE ASSICURAZIONI E DELLE FORME PENSIONISTICHE Prof. Annamaria Olivieri a.a. 25/26 Esercizi: eso. Una socieà di calcio si impegna a risarcire con 5 euro il proprio allenaore, in caso di licenziameno

Dettagli

LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche

LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche LEZIONE 3 INDICATORI DELLE RINCIALI VARIABILI MACROECONOMICHE Argomeni raai: definizione e misurazione delle segueni variabili macroecomiche Livello generale dei prezzi, Tasso d inflazione, π IL nominale,

Dettagli

LA DINAMICA DEL DEBITO PUBBLICO. UN ANALISI DEL CASO ITALIANO, 1980-1996

LA DINAMICA DEL DEBITO PUBBLICO. UN ANALISI DEL CASO ITALIANO, 1980-1996 Liuc Papers n. 33, Serie Economia e Impresa 8, seembre 1996 LA DINAMICA DEL DEBITO PUBBLICO. UN ANALISI DEL CASO ITALIANO, 1980-1996 Angelo Marano Inroduzione Le dimensioni anomale che il debio pubblico

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTÀ DI ECONOMIA FEDERICO CAFFÈ

UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTÀ DI ECONOMIA FEDERICO CAFFÈ UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTÀ DI ECONOMIA FEDERICO CAFFÈ CORSO DI LAUREA IN ECONOMIA E COMMERCIO Tesi di laurea IL RUOLO DELL ESPANSIONE DELLA DOMANDA DI CONSUMI NELLA CRESCITA ECONOMICA: ALCUNE

Dettagli

I possibili schemi di Partenariato Pubblico Privato

I possibili schemi di Partenariato Pubblico Privato OSSERVATORIO collegameno ferroviario Torino-Lione Collegameno ferroviario Torino-Lione I possibili schemi di Parenariao Pubblico Privao Torino, 30 Oobre 2007 Unià Tecnica Finanza di Progeo 1 PPP: analisi

Dettagli

I mercati dei beni e i mercati finanziari in economia aperta

I mercati dei beni e i mercati finanziari in economia aperta I mercai dei beni e i mercai finanziari in economia apera Economia apera Mercai dei beni: l opporunià per i consumaori e le imprese di scegliere ra beni nazionali e beni eseri. Mercai delle aivià finanziarie:

Dettagli

APPUNTI DI ANALISI DEI SEGNALI DAVIDE BASSI

APPUNTI DI ANALISI DEI SEGNALI DAVIDE BASSI UNIVERIÀ DEGLI UDI DI RENO FACOLÀ DI CIENZE MAEMAICHE, FIICHE E NAURALI CORO DI LAUREA IN FIICA APPLICAA DAVIDE BAI APPUNI DI ANALII DEI EGNALI Indice Risposa impulsionale dei sisemi lineari -. isemi lineari

Dettagli

CONSOB QUADERNI DI FINANZA L INDIVIDUAZIONE DI FENOMENI DI ABUSO STUDI E RICERCHE NAZIONALE PER LE SOCIETÀ E LA BORSA COMMISSIONE

CONSOB QUADERNI DI FINANZA L INDIVIDUAZIONE DI FENOMENI DI ABUSO STUDI E RICERCHE NAZIONALE PER LE SOCIETÀ E LA BORSA COMMISSIONE CONSOB COMMISSIONE NAZIONALE PER LE SOCIETÀ E LA BORSA QUADERNI DI FINANZA STUDI E RICERCHE L INDIVIDUAZIONE DI FENOMENI DI ABUSO DI MERCATO NEI MERCATI FINANZIARI: UN APPROCCIO QUANTITATIVO M. MINENNA

Dettagli

Fabio Grasso LA PREVIDENZA COMPLEMENTARE: I PROFILI TECNICI

Fabio Grasso LA PREVIDENZA COMPLEMENTARE: I PROFILI TECNICI Fabio Grasso Direore Diparimeno di Scienze Saisiche Presidene Area Didaica delle Scienze Saisiche, Auariali e Finanziarie Universià degli Sudi di Roma La Sapienza LA PREVIDENZA COMPLEMENTARE: I PROFILI

Dettagli

Lezione 15. Lezione 15. ADC di tipo Flash. ADC di tipo Flash. ADC di tipo Flash. ADC di tipo Flash. Sommario. Materiale di riferimento

Lezione 15. Lezione 15. ADC di tipo Flash. ADC di tipo Flash. ADC di tipo Flash. ADC di tipo Flash. Sommario. Materiale di riferimento Sommario Lezione 15 Converiore di ipo Flash Converiore a gradinaa Converiore a rampa Converiore ad approssimazioni successive (SA) Converiore di ipo SigmaDela Esempi di converiori preseni a bordo di mc

Dettagli

Corso di. Economia Politica

Corso di. Economia Politica Prof.ssa Blanchard, Maria Laura Macroeconomia Parisi, PhD; Una parisi@eco.unibs.i; prospeiva europea, DEM Universià Il Mulino di 2011 Brescia Capiolo I. Un Viaggio inorno al mondo Corso di Economia Poliica

Dettagli

LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Però offre una diversa spiegazione delle fluttuazioni economiche:

LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Però offre una diversa spiegazione delle fluttuazioni economiche: LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Edward Presco, Finn Kydland, Rober King, ecc. Si inserisce nel filone della NMC: - Equilibrio generale walrasiano; - incerezza e dinamica:

Dettagli

LA GESTIONE COORDINATA DEGLI ATTIVI E DEI PASSIVI NEI FONDI PENSIONE

LA GESTIONE COORDINATA DEGLI ATTIVI E DEI PASSIVI NEI FONDI PENSIONE LA GESTIONE COORDINATA DEGLI ATTIVI E DEI PASSIVI NEI FONDI PENSIONE Prof. PAOLO DE ANGELIS Auario - Sudio ACRA Do. STEFANO VISINTIN Auario - Sudio Auariale Visinin & Associai Roma 19 giugno 2012 ASPETTI

Dettagli

Gli effetti dell offshoring di servizi sulla produttività: Un analisi empirica su dati italiani ed europei

Gli effetti dell offshoring di servizi sulla produttività: Un analisi empirica su dati italiani ed europei Gli effei dell offshoring di servizi sulla produivià: Un analisi empirica su dai ialiani ed europei Rosario Crinò Insiu d Anàlisi Econòmica, CSIC Absrac Queso lavoro sudia gli effei dell offshoring di

Dettagli

6 Le polizze rivalutabili

6 Le polizze rivalutabili 6 Le polizze rivaluabili 6.1 Inroduzione Le polizze via rivaluabili sono sae inrodoe nel mercao ialiano negli anni di ala inflazione e oggi ui i conrai dei rami via proposi dalla compagnie ialiane, con

Dettagli

Processi stocastici. Corso Segnale e Rumore Giorgio Brida Giugno/luglio 2007 Pagina 1 di 33

Processi stocastici. Corso Segnale e Rumore Giorgio Brida Giugno/luglio 2007 Pagina 1 di 33 Processi socasici Inroduzione isemi lineari e sazionari; luuazioni casuali, derive e disurbi; processi socasici sazionari in senso lao, unzione di auocorrelazione e spero di poenza; risposa di un sisema

Dettagli

La Riassicurazione. Prof. Cerchiara Rocco Roberto. email: rocco.cerchiara@unical.it. Materiale e Riferimenti

La Riassicurazione. Prof. Cerchiara Rocco Roberto. email: rocco.cerchiara@unical.it. Materiale e Riferimenti Prof. R.R. Cerciara La Riassicurazione Prof. Cerciara Rocco Robero email: rocco.cerciara@unical.i Maeriale e Riferimeni 1. Lucidi disribuii in aula. Daboni, pagg. 13-17 e 137-148 (Leggere Riassicurazione

Dettagli

Azionamenti Elettrici

Azionamenti Elettrici Azionameni Elerici 2.4. CONVERTITORI DC/DC... 33 2.4.1. Conrollo dei converiori DC/DC... 33 2.4.2. FullBridge converer (DC/DC)... 34 2.4.2.1. PWM con commuazione di ensione bipolare...35 2.4.2.2. PWM con

Dettagli

Il modello Neo-Keynesiano, politica monetaria e dinamica dell inflazione. Perché l inflazione è persistente?

Il modello Neo-Keynesiano, politica monetaria e dinamica dell inflazione. Perché l inflazione è persistente? SAGGIO AD INVITO Il modello Neo-Keynesiano, poliica monearia e dinamica dell inflazione. Perché l inflazione è persisene? Guido Ascari* Universià degli Sudi di Pavia Quesa rassegna, dopo aver brevemene

Dettagli

Questioni di Economia e Finanza

Questioni di Economia e Finanza Quesioni di Economia e Finanza (Occasional Papers) La grande disribuzione organizzaa e l indusria alimenare in Ialia di Eliana Viviano (coordinaore), Luciana Aimone Gigio, Emanuela Ciapanna, Daniele Coin,

Dettagli

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti)

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti) MATEMATICA FINANZIARIA A.A. 007 008 Prova dell 8 febbraio 008 Nome Cognome Maricola Esercizio (6 puni) La vendia raeale di un bene di valore 000 prevede il pagameno di rae mensili posicipae cosani calcolae

Dettagli

IL FENOMENO DELLA LONGEVITA ED IL RISCHIO DI MODELLO: ANALISI E MISURA

IL FENOMENO DELLA LONGEVITA ED IL RISCHIO DI MODELLO: ANALISI E MISURA IL FENOMENO DELLA LONGEVITA ED IL RISCHIO DI MODELLO: ANALISI E MISURA Valeria D Amao Doorao in Maemaica per l Analisi economica e la Finanza XX Ciclo Coordinaore: Prof. Emilia Di Lorenzo Tuor: Prof. Emilia

Dettagli

COME RISOLVERE GLI ESERCIZI DI ANALISI MATEMATICA 2

COME RISOLVERE GLI ESERCIZI DI ANALISI MATEMATICA 2 COME RISOLVERE GLI ESERCIZI DI ANALISI MATEMATICA Ecco una piccola e semplice guida che illusra come risolvere, a grandi linee gli esercii proposi agli esami di Analisi Maemaica (del DM 509/99, cioè successione

Dettagli

Introduzione all analisi quantitativa dei beni pubblici. Italo M. Scrocchia

Introduzione all analisi quantitativa dei beni pubblici. Italo M. Scrocchia Diparimeno di Scienze Economiche, Maemaiche e Saisiche Universià degli Sudi di Foggia Inroduzione all analisi quaniaiva dei beni pubblici Ialo M. Scrocchia Quaderno n. 27/2008 Esemplare fuori commercio

Dettagli

Corso di Comunicazioni Elettriche. 2 RICHIAMI DI TEORIA DEI SEGNALI Prof. Giovanni Schembra TEORIA DEI SEGNALI DETERMINATI

Corso di Comunicazioni Elettriche. 2 RICHIAMI DI TEORIA DEI SEGNALI Prof. Giovanni Schembra TEORIA DEI SEGNALI DETERMINATI Corso di Comunicazioni Eleriche RICHIAMI DI TEORIA DEI SEGNALI Pro. Giovanni Schembra Richiami di Teoria dei segnali TEORIA DEI SEGNALI DETERMINATI Richiami di Teoria dei segnali Valori caraerisici di

Dettagli

Direzione Sistemi informativi Servizio statistica e toponomastica. Bollettino mensile di Statistica

Direzione Sistemi informativi Servizio statistica e toponomastica. Bollettino mensile di Statistica Direzione Sisemi informaivi Servizio saisica e oponomasica Bolleino mensile di Saisica Seembre 2013 Sisema Saisico Nazionale Comune di Firenze Ufficio Comunale di Saisica Direzione Sisemi informaivi Servizio

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI

FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI CAPITOLO FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI Sono le funzioni aveni come dominio e codominio dei sooinsiemi dei numeri reali; esse sono alla base dei modelli maemaici preseni in ogni campo

Dettagli

ANALISI DEGLI INVESTIMENTI INDUSTRIALI

ANALISI DEGLI INVESTIMENTI INDUSTRIALI ANALISI DEGLI INVESTIMENTI INDUSTRIALI Universià degli Sudi di Parma Diparimeno di Economia Obieivi della lezione Capire i profili di analisi di un invesimeno in beni srumenali Saper scegliere correamene

Dettagli

Le polizze rivalutabili

Le polizze rivalutabili Capiolo 6 Le polizze rivaluabili 6.1 Inroduzione Le polizze via rivaluabili sono sae inrodoe nel mercao ialiano negli anni di ala inflazione e oggi, con l eccezione delle polizze TCM, hanno compleamene

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA

UNIVERSITA DEGLI STUDI DI PADOVA UNIVERSITA DEGLI STUDI DI PADOVA Facolà di Scienze Saisiche CORSO DI LAUREA IN STATISTICA, ECONOMIA E FINANZA RELAZIONE FINALE: INFLUENZA DI ALCUNI CARATTERI SOCIOECONOMICI NELLE SCELTE DI PORTAFOGLIO

Dettagli

UNIVERSITÀ DEGLI STUDI DI PADOVA

UNIVERSITÀ DEGLI STUDI DI PADOVA UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI SCIENZE STATISTICHE CORSO DI LAUREA IN SCIENZE STATISTICHE ED ECONOMICHE TESI DI LAUREA Valuazione di opzioni europee in presenza di eeroschedasicià condizionale

Dettagli

Il valore delle. Argomenti. Domande chiave. Teoria della Finanza Aziendale Prof. Arturo Capasso A.A. 2005-2006

Il valore delle. Argomenti. Domande chiave. Teoria della Finanza Aziendale Prof. Arturo Capasso A.A. 2005-2006 - 4 Teoria della Finanza Aziendale rof. Aruro Capasso A.A. 5-6 Il valore delle A. azioni ordinarie - Argomeni Rendimeni richiesi rezzi delle azioni e ES Cash Flows e valore economico d impresa - 3 Domande

Dettagli

Esposizioni e grado di leva degli hedge fund: un analisi temporale 1

Esposizioni e grado di leva degli hedge fund: un analisi temporale 1 Parick McGuire +41 61 28 8921 parick.mcguire@bis.org Eli Remolona +852 2878 715 eli.remolona@bis.org Kosas Tsasaronis +41 61 28 882 ksasaronis@bis.org Esposizioni e grado di leva degli hedge fund: un analisi

Dettagli

9. Conversione Analogico/Digitale

9. Conversione Analogico/Digitale 9.1. Generalià 9. Conversione Analogico/Digiale 9.1. Generalià In un converiore analogico/digiale, il problema di fondo consise nello sabilire la corrispondenza ra la grandezza analogica di ingresso (che

Dettagli

Appunti e Domande di Affidabilità e Controllo della Qualità

Appunti e Domande di Affidabilità e Controllo della Qualità Appuni e Domande di Affidabilià e Conrollo della Qualià Auori: eagleone - eagleone2 (a) in.i lubo23 lubo23 (a) infinio.i Ulima revisione: 14/11/24 by eagleone 1 Inroduzione...4 Disclaimer...4 Dirii e permessi

Dettagli

NOTA METODOLOGICA SUL MODELLO PREVISIVO EXCELSIOR PER GLI ANNI 2013-2017

NOTA METODOLOGICA SUL MODELLO PREVISIVO EXCELSIOR PER GLI ANNI 2013-2017 NOTA METODOLOGICA SUL MODELLO PREVISIVO EXCELSIOR PER GLI ANNI 2013-2017 1 SOMMARIO PREMESSA... 3 1. IL MODELLO ECONOMETRICO PER LA STIMA DEGLI STOCK SETTORIALI... 3 Foni... 3 Meodologia... 3 La formulazione

Dettagli

Buono Fruttifero Postale P70

Buono Fruttifero Postale P70 Foglio Informaivo delle principali caraerisiche dei Buoni Fruiferi Posali e Regolameno del presio Pare I - Informazioni sull'emiene e sul Collocaore Emiene: Cassa deposii e presii socieà per azioni (di

Dettagli

MODELLI PER LA STRUTTURA A TERMINE DEI TASSI

MODELLI PER LA STRUTTURA A TERMINE DEI TASSI Alma Maer Sudiorum Universià di Bologna FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Maemaica Maeria di Tesi: Maemaica per le applicazioni economiche e finanziarie MODELLI PER

Dettagli

Scuola dottorale di Economia e metodi quantitativi. Dottorato in Metodi statistici per l economia e l impresa TESI DI DOTTORATO DI RICERCA

Scuola dottorale di Economia e metodi quantitativi. Dottorato in Metodi statistici per l economia e l impresa TESI DI DOTTORATO DI RICERCA Scuola doorale di Economia e meodi quaniaivi Doorao in Meodi saisici per l economia e l impresa ESI DI DOORAO DI RICERCA Meodi numerici e calcolo socasico per la valuazione di conrai derivai: un modello

Dettagli

Luiss Libera Università Internazionale degli Studi Sociali Guido Carli

Luiss Libera Università Internazionale degli Studi Sociali Guido Carli Luiss Libera Universià Inernazionale degli Sudi Sociali Guido Carli CeMASM Cenro Mario Arcelli di Sudi Moneari Quaderno di Ricerca n. 1/2005 Iseresi, domanda aggregaa, rend socasici comuni in un modello

Dettagli

In questi ultimi tre anni le società di assicurazione europee hanno. Polizze vita l Approfondimenti

In questi ultimi tre anni le società di assicurazione europee hanno. Polizze vita l Approfondimenti Polizze via l Approfondimeni Incorporare le aese dell assicurao nell ALM In quesi ulimi anni le socieà di assicurazione europee hanno affinao l uilizzo dell ALM nel ramo via. I loro sforzi, uavia, si sono

Dettagli

La Finanza di Progetto per la realizzazione e gestione di un parco Eolico

La Finanza di Progetto per la realizzazione e gestione di un parco Eolico SUSTAINABLE ENERGY FORUM - Le nuove froniere della produzione di energia pulia La Finanza di Progeo per la realizzazione e gesione di un parco Eolico Roma, 6 Giugno 2007 Gabriele FERRANTE Unià ecnica Finanza

Dettagli

7 I convertitori Analogico/Digitali.

7 I convertitori Analogico/Digitali. 7 I converiori Analogico/Digiali. 7 1. Generalià Un volmero numerico, come si evince dal nome, è uno srumeno che effeua misure di ensione mediane una conversione analogicodigiale della grandezza in ingresso

Dettagli

Sofferenze bancarie di imprese e famiglie: evidenza sull Italia

Sofferenze bancarie di imprese e famiglie: evidenza sull Italia Corso di Laurea magisrale (ordinameno ex D.M. 270/2004) in Economia e Finanza Tesi di Laurea Sofferenze bancarie di imprese e famiglie: evidenza sull Ialia Relaore Ch. Prof. Domenico Sarore Laureanda Francesca

Dettagli

UNIVERSITÁ DEGLI STUDI DI PADOVA

UNIVERSITÁ DEGLI STUDI DI PADOVA UNIVERSITÁ DEGLI STUDI DI PADOVA FACOLTÁ DI SCIENZE STATISTICHE CORSO DI LAUREA IN STATISTICA E FINANZA TESI DI LAUREA LA PROBABILITÁ DI SOFFERENZA NEI FINANZIAMENTI ALLE FAMIGLIE: RELAZIONE DI UNO STAGE

Dettagli

Analisi Frequenziale di Segnali a Tempo Discreto

Analisi Frequenziale di Segnali a Tempo Discreto Capiolo 3 Analisi Frequenziale di Segnali a Tempo Discreo Nei capioli precedeni sono sae inrodoe le nozioni basilari di segnali analogici e a empo discreo, le operazioni fondamenali ra segnali, e, infine,

Dettagli

Appunti delle lezioni di istituzioni di matematica attuariale per le assicurazioni sulla vita

Appunti delle lezioni di istituzioni di matematica attuariale per le assicurazioni sulla vita Appuni delle lezioni di isiuzioni di maemaica auariale per le assicurazioni sulla via Claudio Pacai anno accademico 2005 06 Indice 1 Le operazioni di assicurazione e la eoria dell uilià 1 1.1 L operazione

Dettagli

La dinamica dei prezzi dei carburanti rispetto alle quotazioni del petrolio Una analisi a livello europeo. Sintesi

La dinamica dei prezzi dei carburanti rispetto alle quotazioni del petrolio Una analisi a livello europeo. Sintesi Giancarlo Fiorio La dinamica dei prezzi dei carburani rispeo alle quoazioni del perolio Una analisi a livello europeo Sinesi La relazione ra il prezzo dei carburani e quello del perolio è oggeo di accesi

Dettagli

Conversione Analogico-Digitale

Conversione Analogico-Digitale Capiolo 4 Conversione Analogico-Digiale I segnali del mondo reale sono analogici, menre un elaboraore digiale è in grado di memorizzare e raare esclusivamene sequenze finie di bi. Per raare con ecniche

Dettagli