Relazione di Matematica Finanziaria - SNS 2005

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Relazione di Matematica Finanziaria - SNS 2005"

Transcript

1 Relazione di Matematica Finanziaria - SNS 5 Valerio Bigiani, Simone Giacomelli, Marco Golla, Paolo Piserchia Sommario Indice Introduzione Le reti neurali: una breve presentazione 3 Interpolazione ed estrapolazione di funzioni 3 4 Previsione del cambio Euro-Dollaro 5 4. STRATEGIA BEST STRATEGIA WORST STRATEGIA EURO STRATEGIA NAIVE STRATEGIA MACD RETE NEURALE DATI FORMULE Bilancio finale 5

2 Introduzione In questa tesina ci proponiamo di dimostrare l efficacia dell approccio delle reti neurali a problemi di previsione delle quote di mercato. In particolare, cercheremo di prevedere l andamento del cambio euro dollaro in un sistema caratterizzato da elevato rumore di fondo, dovuto alle fluttuazioni dell indice di mercato, e stimeremo l efficienza della rete attraverso il confronto con altri algoritmi di mercato nella previsione della valuta nelle successive giornate. Nella nostra analisi, ci baseremo sui risultati di un precedente articolo di C. Dunis e M. Williams 3, che ci è servito da guida nella scelta degli indici da considerare e nella strutturazione dell esperimento. Al fine di capire i paramentri di apprendimento della rete, ne abbiamo testato la capacitá di interpolare il grafico di una funzione sporcata con un certo errore. In seguito abbiamo valutato l influenza dei parametri di input sull estrapolazione del grafico di una funzione anch essa affetta da errore. Abbiamo allenato, infine, la rete nel cambio Euro-Dollaro e confrontato il guadagno ottenuto con quello di strategie piú ingenue. Le reti neurali: una breve presentazione Le reti neurali sono uno degli ultimi ritrovati nel campo dell intelligenza artificiale e sono paradossalmente un ritorno alle origini che si é rivelato sorprendentemente efficace. Come dice il nome stesso, la struttura è quella di una rete che dovrebbe imitare il funzionamento di una rete neurale biologica, ovvero simulare la trasmissione di impulsi da neurone a neurone: anche la terminologia è mutuata dalla biologia, ed infatti ritroveremo anche molte analogie linguistiche. Si tratta quindi di creare un sistema informatico per apprendere ed interpretare dati, per interpolare ed estrapolare informazioni. La differenza rispetto agli altri sistemi consiste nel metodo di apprendimento: mentre normalmente si dovrebbe insegnare ad un computer come svolgere una data operazione, la rete neurale impara autonomamente, cosí come in natura il cervello apprende da sé le nozioni che riguardano il mondo che lo circonda. Ovviamente, non si cercherà di implementare un programma che simuli il comportamento di una rete con milioni di neuroni, come puó essere un cervello umano, ma si puó molto piú modestamente cominciare a risolvere problemi di bassa difficoltá, e cominciare ad implementare piccole reti con un numero di neuroni dell ordine della decina, che si rivelano comunque molto efficaci. Ora, la domanda sorge spontanea: come si simula una rete neurale biologica? La risposta, motivata da mezzi tecnici (potenza dei computer) e teorici (teoremi di convergenza) sta in un modello molto semplice: si simula un neurone come un unitá, un mini-processore, in grado di assegnare un importanza ai dati in ingresso, e di valutare (con una somma) una risposta ad un problema. I neuroni, poi, comunicano i valori emettendo un singolo output, cioé la somma che hanno calcolato, a tutti i neuroni a cui sono connessi: bisogna quindi fissare a priori una rete di connessioni interneurali, ciascuna dotata di uno o due versi di comunicazione, dei neuroni di input, dei neuroni di output, e assegnare dei valori di importanza alle varie connessioni. Riguardo ai vari tipi di rete, il campionario è vario: esistono reti sostanzialmente casuali, reti piene, reti a senso unico, reti ordinate, ma con feedback, reti che imparano da sole, reti che vengono guidate nell apprendimento... Nei modelli auto-apprendenti, le reti analizzano e gestiscono da sé i dati, senza alcun sostanziale apporto dall esterno, aumentando l imprevedibilitá delle previsioni e l incertezza del risultato. Per il nostro esperimento, ci siamo serviti di cosiddetti Multi Layer Perceptrons (MLP), ovvero percettroni a piú strati, in cui i neuroni sono disposti in strati, tali che nessun neurone comunichi con neuroni del proprio strato, ma trasmetta il proprio output a quelli dello strato successivo. Quello che si ottiene è quindi una rete in cui il flusso di dati procede ordinatamente dall input all output, senza alcun feedback. Le nostre reti, poi, sono guidate nell analisi e nell apprendimento dei dati. Esistono peró anche reti di tipo MLP in cui il flusso non procede solo feedforward, ma anche feedback, ovvero le informazioni giá rielaborate da uno strato possono essere riportate indietro e rielaborate nuovamente dagli strati precedenti. In questo modo, chiaramente, si possono creare dei loop, e la computazione dovrebbe risultare piú lenta. Ci sono poi reti in cui i neuroni sono disposti senza alcun ordine, e ciascun neurone trasmette a ciascuno degli altri, o a sottogruppi pressoché casuali, le proprie informazioni, ma non ci siamo occupati di questo. Ciascun neurone deve quindi pesare le informazioni che riceve dai neuroni precedenti, con pesi da determinarsi. Risultati teorici dicono che le funzioni dette sigmoidi ( +e ) sono adatte a questo scopo. Quindi a x ciascuna connessione è assegnato un valore, detto peso che ne valuta l importanza all interno della rete. Modelling and trading the EUR/USD Exchange Rate: do Neural Networks models perfom better?, Professore di Banking and Finance alla Liverpool Business School 3 Ricercatore Associato al CIBEF, Center for International Banking, Economics and Finance

3 Dobbiamo ora insegnare alla rete neurale come apprendere: innanzitutto si sceglie un campione di dati, tra quelli a disposizione, in base ai quali la rete calibri i valori dei pesi, ed un altro campione su cui la rete dovrá effettuare i confronti, senza modificare l insieme dei pesi; in questo modo si dovrebbe evitare che la rete impari troppo bene i dati giá visti, e riesca a lavorare correttamente anche su nuovi dati. Dopodiché viene la fase dell apprendimento vero e proprio: nel nostro esperimento, ci siamo serviti di funzioni giá implementate nel programma Root. Il meccanismo di funzionamento di questi programmi, la cui scelta è ancora una volta dettata da ragioni teoriche, si basa su un meccanismo di riconoscimento della pendenza : ció che la rete fa è analizzare l andamento dell errore in un intorno dello spazio dei pesi che sta utilizzando in quel momento, spostandosi nella direzione che minimizza l errore. A questo punto, il rischio è quello di arenarsi in minimi locali: per evitare queste situazioni, la rete aumenta lo spostamento in base alla pendenza, spostando maggiormente il set di pesi, nel caso ci si trovi in un intorno relativamente piatto dell errore. 3 Interpolazione ed estrapolazione di funzioni La prima parte dell esperienza è stata quindi dedicata a valutare il funzionamento della rete neurale in funzione dei parametri d ingresso, dell errore associato ai dati e dell intervallo utilizzato per l apprendimento in relazione a quello di test. Abbiamo provato a darle in pasto dati riguardanti funzioni molto semplici, e ne abbiamo osservato il comportamento rispetto ad interpolazione ed estrapolazione. Le funzioni di test erano generalmente variazioni sul tema trigonometrico-esponenziale, sporcate con variabili gaussiane a media, e varianza tra, 3 e. Abbiamo osservato il comportamento della rete rispetto alla ricorsione, e notato, come ci si sarebbe aspettato, che bisogna dare un numero adeguato di informazioni alla rete, affinché lei riesca ad interpretare correttamente i dati: RETE La prima rete ha lo scopo di valutare la capacità di interpolazione dei dati in funzione di un solo dato di ingresso: la rete si allena sui dati (x, sin x), simulando come input la sola x, e calibrando il set dei pesi. Alla fine, ricevendo come unico input x, la rete calcola, per interpolazione, sin x La funzione generatrice dei dati è 4 f(x) = sin x + Gauss(,.8) differences (impact of variables on ANN) x x sinx Histogram.5.5 Entries Mean x 3.4 Mean y RMS x.87 RMS y.985 NN output Figura : RETE Nel riquadro in basso a destra dove sono rappresentati i grafici della funzione generatrice ripulita dall errore, in rosso, e quello della previsione generata dalla rete, in nero. Possiamo osservare come l interpolazione, a dispetto del notevole errore, sia ottima e quasi perfetta: la rete riconosce l andamento generale dei dati. 4 Gauss (a,b) è una funzione che genera numeri casuali che si distribuiscono su una gaussiana di media a e varianza b 3

4 RETE Il secondo grafico mette il luce, invece, l incapacita della seconda rete nell estrapolare dati se la sua struttura e dipendente da un solo dato di input. Abbiamo infatti utilizzato la stessa base di dati della rete per l apprendimento. Alla rete, pero e stato chiesto di generare la funzione su un intervallo doppio rispetto a quello di training. La funzione generatrice dei dati e f (x) = sin x + Gauss(,.8) differences (impact of variables on ANN) x x sinx Histogram NN output Entries Mean x 3.4 Mean y RMS x.87 RMS y Figura : RETE Si evince dai grafici che la rete approssima bene la funzione nell intervallo in cui ha eseguito il training ([ : 6]) mentre si discosta notevolemte da essa nell intervallo ([6 : ]): la traccia nera si distacca nettamente da quella rossa fuori dall intervallo di allenamento. Questa prova e stata decisiva per comprendere che la capacita di previsione della rete e in stretta relazione con il numero di parametri di input. RETE 3 Nella terza rete i dati sono il valore di x e f (x.)... f (x.5). La funzione usata e x f (x) = e 5 sin 5x + Gauss(,.) differences (impact of variables on ANN) x sinxp sinxpp sinxppp sinxpppp sinxppppp sinxppppp sinxpppp sinxppp sinx sinxpp sinxp x Entries Mean x 3 Mean y.3 RMS x.73 RMS y.4767 Histogram.5 NN output Figura 3: RETE3 Come risulta dal grafico la rete riesce a prevedere anche nell intervallo di dati nel quale non ha eseguito ne il training ne il test [6; ]. Abbiamo anche testato l efficienza delle previsioni in funzione del numero di parametri iniziali, e abbiamo osservato che 5 e il minimo numero di valori necessari per una previsione soddisfacente. 4

5 4 Previsione del cambio Euro-Dollaro Il cuore dell esperienza è stata peró la previsione dell andamento del cambio Euro/Dollaro. La rete accetta come input una serie di dati relativi ad alcuni cambi internazionali, che si suppone influenzino in maniera significativa l andamento del dato che ci interessa: il cambio Dollaro/Yen, il cambio Dollaro/Sterlina, ed il cambio Euro/Dollaro, ciascuno nei quattro giorni precedenti la previsione. In realtá, come suggerito nel giá citato articolo 5, non abbiamo inserito il dato relativo al cambio, ma il rapporto tra la differenza dei cambi nei due giorni precedenti e il cambio nel giorno precedente: se il cambio nel giorno i è r i, ció che la rete prende come input è ri ri r i ; sembra infatti che in questo modo la rete riesca ad interpretare meglio i dati. L operazione si è svolta nel seguente modo: per poter apprezzare la variazione dell efficienza della rete in base al numero di neuroni ed al numero di train, abbiamo effettuato un centinaio di prove, utilizzando via via un numero maggiore di strati e di neuroni per ciascuno strato. Ció che volevamo che la rete restituisse, era un singolo output, oppure : se la rete prevedeva che sarebbe stato vantaggioso comprare euro (che poi, nel nostro esperimento, cambiamo ogni sera), se la rete prevedeva che sarebbe stato piú vantaggioso tenere i dollari. Inizialmente abbiamo fatto allenare la rete neurale sui dati di input per un periodo di anni, reiterando il processo di apprendimento sugli stessi dati tra le 5 e le volte, su un campione di circa anni, e testandoli su un periodo di circa anni. Abbiamo poi lasciato che la rete calcolasse il cambio Euro-Dollaro per i successivi due anni, mantenendo il set di pesi stabilito nel periodo di training precedente. Infine, abbiamo calcolato il guadagno che si sarebbe ottenuto comprando e vendendo secondo le previsioni effettuate dalla rete. Infine abbiamo confrontato i risultati ottenuti con quelli di altre strategie piú ingenue: CASUALE Consiste nell acquisto casuale di Euro o Dollari, indipendentemente dal reale andamento del mercato NAIVE Consiste nel se ha guadagnato oggi, guadagnerá anche domani : se l Euro sale al tempo, allora conviene comprare Euro, altrimenti si tengono i Dollari 6 Y t+ = Y MACD (Moving Average Convergence Divergence) Viene confrontato l andamento nel giorno con la media degli andamenti in un certo numero di giorni precedenti Y t+ = Y t + Y t + + Y t n+ n Poiché la previsione, con questa strategia, è molto veloce, abbiamo effettuato prove con il confronto con le medie dei primi n giorni precedente, al variare di n tra e (ed in tal caso la strategia coincide con la strategia Naive), osservando tra l altro che, al crescere di n, la strategia tende ad uniformarsi a quella che tiene i Dollari, e non cambia mai. Abbiamo poi confrontato tutte queste strategie con la strategia piú conservativa (ed Euro-fiduciosa), ovvero quella che cambia continuamente i Dollari in Euro, e con le strategie migliore e peggiore, ovvero quelle ottenute calcolando a posteriori il massimo guadagno e la massima perdita che si sarebbero potute ottenere. Ovviamente, il bilancio finale è la quantitá di denaro che la rete ha permesso di ottenere, partendo da un investimento base di Dollari, seguendo le indicazioni della rete. L annualized return è invece il guadagno medio annuale. Piuttosto curioso, nonché vagamente preoccupante, il dato del guadagno della banca, che prende lo,3% su ogni transazione effettuata, arrivando a guadagnare mediamente una cinquantina di dollari. 5 Modelling and trading the EUR/USD Exchange Rate: do Neural Networks models perfom better?, 6 Y t è il guadagno previsto per il giorno successivo a oggi (t), mentre Y t è il guadagno attuale al periodo t 5

6 4. STRATEGIA BEST La strategia Best non costituisce una strategia di previsione del mercato, ma semplicemente analizza i dati e sapendo il valore del cambio al tempo t+ decide al tempo t di comprare solo se all indomani ne trarrá profitto. Come risulta dal grafico la funzione è monotona crescente questo ad indicare che l algoritmo compie ogni giorno la scelta ottimale di mercato. Questa strategia ha il compito di simulare un ipotetico compratore che riesce a prevedere in maniera ottimale l andamento dell indice Euro-Dollaro, inoltre serve a fornire un idea quantitativa del massimo guadagno raggiungibile. BEST 8 Entries 48 Mean x 499 Mean y 54. RMS x 39. RMS y Figura 4: STRATEGIA BEST 4. STRATEGIA WORST La strategia Worst, come la Best, analizza i dati al tempo t + al fine di comprare o vendere massimizzando la perdita. Il grafico è ovviamenente decrescente e mette in luce quali sono le possibilità massime di perdita compiendo scelte sbagliate nella compravendita Euro/Dollaro. Worst 8 Entries 48 Mean x 499 Mean y 67.6 RMS x 39. RMS y Figura 5: STRATEGIA WORST 6

7 4.3 STRATEGIA EURO La strategia euro simula un ipotetico investitore che decide di credere nella crescita dell Euro e valuta il suo patrimonio in Dollari. Il grafico rappresenta l andamento del valore (in Dollari) dell investimento. Euro 8 6 Entries 48 Mean x 499 Mean y RMS x 39. RMS y Figura 6: STRATEGIA EURO 4.4 STRATEGIA NAIVE La strategia Naive è la strategia ingenua dell (incauto) investitore che ritiene che guadagnare oggi implichi guadagnare domani. Come mostra il grafico questa strategia è molto efficace nei periodi di mercato stazionario o di guadagno continuato di una delle due monete sull altra. In fasi di mercato con molte fluttuazioni, invece, fallisce nelle sue previsioni e come nel periodo da noi preso in esame, porta l investitore ad una perdita rispetto al capitale iniziale. Naive 4 Entries 48 Mean x 499 Mean y 97.3 RMS x 39. RMS y Figura 7: STRATEGIA NAIVE 7

8 4.5 STRATEGIA MACD L applicazione della strategia a media mobile ha prodotto risultati molto diversi tra loro, al variare nel numero di giorni su cui le facevamo calcolare la media. La strategia è peró generalmente caratterizzata da un basso numero di scambi, che risponde al problema delle perdite dovute al costo delle transizioni. Nella tabella finale abbiamo riportato tre delle simulazioni che ci sono sembrate più significative (ovvero quella risultata essere la peggiore, una delle strategie intermedie, quella risultata come la migliore). Il numero che le caratterizza indica il numero di giorni su cui la strategia effettua la media. MACD 4 MACD 4 Entries 48 Mean x 499 Mean y 9.83 RMS x 39. RMS y Figura 8: PEGGIOR STRATEGIA MACD MACD 9 MACD 4 Entries 48 Mean x 499 Mean y RMS x 39. RMS y Figura 9: STRATEGIA MACD MEDIA 8

9 MACD 57 MACD 8 6 Entries 48 Mean x 499 Mean y.9 RMS x 39. RMS y Figura : MIGLIOR STRATEGIA MACD 4.6 RETE NEURALE Come giá detto, anche per la rete neurale sono state tentate diverse configurazioni. Tutte le configurazioni accettano come input il tasso di cambiamento del cambio Euro/Dollaro, Euro/Yen ed Euro/Sterlina nei quattro giorni precedenti e tentano di prevedere il segno del tasso di cambio Euro/Dollaro. Abbiamo poi scritto un programma che, a seconda dei vari output della rete, acquista automaticamente Euro, oppure tiene Dollari, e calcola di conseguenza l andamento del patrimonio nel tempo. Ciascuna delle reti provate ha uno, due o tre strati intermedi di neuroni, oltre agli strati di input e di output, ciascuno dei quali ha tra i quattro e gli otto neuroni. L ultimo parametro variato è il numero di training, ovvero il numero di volte che la rete esamina i dati di allenamento nella calibrazione dei pesi. Fra le diverse reti realizzate, sono state scelte la piú performante, la meno efficace e quella che piú si avvicinava al risultato medio di tutte le reti provate. Per ciascuna di esse, sono state allegati lo schema della rete e l andamento del patrimonio nel tempo. Lo schema della rete è un grafo piano orientato nel quale sono evidenziati i vari strati presenti: da sinistra a destra, lo strato di input ( neuroni per ciascuna rete, relativi al tasso di cambio definito in precedenza, nei 4 giorni prima della previsione da effettuarsi), gli strati intermedi, e lo strato di output, costituito dal solo neurone che deve restituire oppure. Ciascuno dei neuroni di ciascuno strato è collegato a ciascuno dei neuroni degli strati adiacenti al proprio, e lo spessore dell arco del grafo è funzione del peso ad esso assegnato: piú la connessione è grossa, maggiore è il peso ad essa assegnata. Ciascuna connessione, poi, è orientata, come conseguenza della scelta effettuata, di utilizzare solamente reti feedforward: le informazioni (ovvero i risultati delle computazioni dei singoli neuroni, o i dati di input), viaggiano solamente da sinistra verso destra. Il grafico dell andamento nel tempo, riporta invece il valore (in Dollari) del patrimonio investito, giorno per giorno. 9

10 La rete meno performante è quella con 5 neuroni nel primo strato intermedio e 8 nel secondo, allenata volte. Dobbiamo comunque osservare che la perdita di oltre Dollari non compromette il valore dell esperimento, visto che abbiamo ampiamente dimostrato che, in media, le reti neurali guadagnano. jpy4.q jpy3.q jpy.q jpy.q gbp4.q gbp3.q gbp.q gbp.q usd4.q usd3.q usd.q usd.q usd.q Figura : FORMA PEGGIOR RETE NEURALE Rete Neurale 5 Entries 48 Mean x 4983 Mean y RMS x 34.8 RMS y Figura : ANDAMENTO STRATEGIA PEGGIORE RETE NEURALE

11 La rete intermedia è quella con 7 neuroni nel primo strato intermedio e 6 nel secondo, allenata 5 volte. Bisogna comunque osservare che la rete media guadagna, nel periodo preso in esame, il,3%, contrariamente alla media di tutte le altre strategie, come si evince dalla tabella a pagina 3. Inoltre, anche confrontata con la migliore delle altre strategie, il guadagno non è da sottovalutare: la migliore strategia MACD guadagna infatti il 3,3%, e la strategia Euro ne guadagna il,9%. jpy4.q jpy3.q jpy.q jpy.q gbp4.q gbp3.q gbp.q gbp.q usd4.q usd3.q usd.q usd.q usd.q Figura 3: FORMA RETE NEURALE MEDIA Rete Neurale 5 Entries 48 Mean x 499 Mean y RMS x 39. RMS y Figura 4: ANDAMENTO STRATEGIA RETE NEURALE MEDIA

12 La rete piú performante è quella con 6 neuroni nel primo strato intermedio e 7 nel secondo, allenata 5 volte. É significativo il fatto che, nell arco di circa anni la rete arrivi a toccare guadagni oltre il %, e registri un guadagno finale oltre il 7%! E tutto ció nell ambito di una ricerca piú ampia, che supera l eccezionalitá di questo risultato, evidenziando comunque un guadagno medio di un nuovo tipo di strategia auto-gestita. jpy4.q jpy3.q jpy.q jpy.q gbp4.q gbp3.q gbp.q gbp.q usd4.q usd3.q usd.q usd.q usd.q Figura 5: FORMA MIGLIOR RETE NEURALE Rete Neurale 5 Entries 48 Mean x 4986 Mean y.4 RMS x 37.7 RMS y Figura 6: ANDAMENTO MIGLIOR STRATEGIA RETE NEURALE

13 4.7 DATI Nella tabella seguente sono riportate alcune statistiche significative riguardo ad alcune delle strategie 7 : CAS- NAIVE MACD4 MACD9 MACD57 EUR WORST BEST RETE45 RETE68 RETE56 UALE (PEGG.) (MEDIO) (MIGL.) (PEGG.) (MEDIA) (MIGL.) Bilancio Finale Annualized Return Volatilita Sharpe Rialzi Previsti Ribassi Previsti Rialzi Non Prev Ribassi Non Prev Giorni di Vacanza Vincita Migliore Perdita Peggiore Vincita Media n/a Perdita Media n/a Rapporto Guad/Perd n/a n/a Guadagno Banca Miglior Bilancio Peggior Bilancio Numero di Scambi In grassetto sono evidenziati i dati piú performanti; non sono stati considerati i dati relativi a best e worst perché non costituiscono strategie di previsione. Per quanto riguarda eur, alcuni valori sono ottimali indipendentemente dalla correttezza della previsione, esempio numero di ribassi previsti. 3

14 4.8 FORMULE Queste sono le formule (e parti di formule) per gli indici considerati nella tabella precedente Nome Statistica R t Descrizione è il valore del cambio al giorno t Y t Ỹ t R t R t R t è la previsione del valore di Y t ; è importante solo il segno. C t Y t se T t > altrimenti B t t s= (C s + ) Ch t se Ỹt Y t < altrimenti Bilancio Finale B T Annualized Return R A = 5 T T t= C t Volatilita σ A = 5 T t= N (C t C) Sharpe R A σ A Rialzi Previsti RiaP = conteggio di Y t > e Ỹt > Ribassi Previsti conteggio di Y t < e Ỹt < Rialzi Non Previsti conteggio di Y t > e Ỹt < Ribassi Non Previsti RibNP = conteggio di Y t < e Ỹt > Giorni di Vacanza conteggio di Y t = Vincita Migliore Perdita Peggiore Max T t=c t Min T t= C t Vincita Media V M = T t= P t RiaP dove P t = Y t se Y t > e Ỹt > altrimenti Perdita Media P M = Rapporto Guadagno Perdita T t= N t RibNP dove N t = Y t se Y t < e Ỹt > altrimenti V M P M Guadagno Banca.3 t= T (B tch t ) Miglior Bilancio Peggior Bilancio Numero di Scambi Max T t=b t Min T t= B t T t= Ch t 4

15 5 Bilancio finale Dunque, è giunto il momento delle conclusioni. L ambiente che abbiamo preso in analisi è vastissimo e complicato (altrimenti perché ci sarebbe cosí tanta gente che va in rovina??), e caratterizzato da un rumore di fondo generalmente molto piú forte dell andamento pulito dei dati che ci interessano, quindi a priori un soggetto molto difficile da studiare e da conoscere. Non potendo (per motivi di potenza di calcolo e di tempo) prendere in analisi molti dei fattori che influenzano i cambi monetari internazionali, ci siamo dovuti limitare a soli tre indici, che sono decisamente un campo troppo ristretto per un lavoro serio. Tuttavia, abbiamo potuto osservare che il comportamento medio delle varie reti che abbiamo provato è stato un seppur esiguo guadagno. E tale guadagno è comunque superiore alle piú rosee aspettative con strategie di tipo razionale o casuale. Inoltre alcune reti hanno avuto un guadagno pari all 8% annuo (!!), mentre le perdite sono state generalmente contenute (meno del 3% annuo). Rivediamo peró il meccanismo di funzionamento delle reti neurali: ció che la rete restituisce all utente è un interpretazione numerica di alcuni dati di ingresso, senza che la rete sappia di che si trattino, sostanzialmente restando nel buio dell ignoranza, e chiudendosi nella mera computazione, senza badare all eleganza della natura e delle sue leggi. Facciamo un esempio: se noi cercassimo di estrapolare la legge di caduta dei gravi da un numero sufficientemente alto di dati, sarebbe ragionevole aspettarsi (ed è quello che accade) che la rete interpreti in modo corretto l andamento della funzione, ovvero che sia crescente nel tempo, e che l accelerazione (almeno nell intervallo in cui variano i dati) sia pressoché costante; potrebbe peró capitare (ed malauguratamente è molto probabile che accada) che la rete interpreti la funzione h(t) dell altezza in dipendenza tempo come un polinomio di grado elevatissimo che interpola molto bene la reale funzione h(t) = gt nell intervallo dei dati presentati. Tutto ció, oltre ad andare a scapito dell efficienza e dell affidabilitá, riduce notevolmente la valenza scientifica di risultati ottenuti con le reti neurali, visto che non viene presentato alcun risultato esatto, alcuna formula, alcuna relazione precisa, ma solamente un insieme di pesi. Questo non toglie che le reti neurali rappresentino il futuro di una scienza approssimativa, di una scienza che non ha bisogno di eccessive regole, di una scienza che ha bisogno di interpretare grandi moli di dati in tempo breve (la rete, dopo l allenamento, che si svolge una tantum, esegue solo operazioni molto semplici, e anche con l attuale potenza di calcolo intepretare qualche migliaio di dati impiega qualche secondo), potendosi permettere qualche piccolo errore, senza la possibilitá reale di svolgere i calcoli in modo esatto: abbiamo dimostrato, nel nostro piccolo, come piccole, semplici reti si rivelino vantaggiose. Quello che possiamo dedurre, in ultima analisi, è il fatto che effettivamente una rete neurale possa essere in grado di prevedere con buona approssimazione dati in ambienti molto rumorosi, dove non è umanamente possibile ricavare delle interpretazioni ed approssimazioni al tempo stesso eleganti, semplici e funzionanti. Ci aspettiamo quindi che in un futuro non troppo remoto le reti, anche grazie all aumento della potenza di calcolo ed al progresso della ricerca informatica, possano diventare strumento molto utile se non indispensabile per un indagine seppur inesatta di ambienti caratterizzati da un grande disturbo sui dati: metereologia, economia, biologia, fluidodinamica, astronomia.. 5

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Modelli Binomiali per la valutazione di opzioni

Modelli Binomiali per la valutazione di opzioni Modelli Binomiali per la valutazione di opzioni Rosa Maria Mininni a.a. 2014-2015 1 Introduzione ai modelli binomiali La valutazione degli strumenti finanziari derivati e, in particolare, la valutazione

Dettagli

LE PROSPETTIVE PER L ECONOMIA ITALIANA NEL 2015-2017

LE PROSPETTIVE PER L ECONOMIA ITALIANA NEL 2015-2017 7 maggio 2015 LE PROSPETTIVE PER L ECONOMIA ITALIANA NEL 2015-2017 Nel 2015 si prevede un aumento del prodotto interno lordo (Pil) italiano pari allo 0,7% in termini reali, cui seguirà una crescita dell

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Equazioni non lineari

Equazioni non lineari Dipartimento di Matematica tel. 011 0907503 stefano.berrone@polito.it http://calvino.polito.it/~sberrone Laboratorio di modellazione e progettazione materiali Trovare il valore x R tale che f (x) = 0,

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli

VC-dimension: Esempio

VC-dimension: Esempio VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

Se si insiste non si vince

Se si insiste non si vince Se si insiste non si vince Livello scolare: 2 biennio Abilità interessate Valutare la probabilità in diversi contesti problematici. Distinguere tra eventi indipendenti e non. Valutare criticamente le informazioni

Dettagli

Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2)

Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Definiamo innanzitutto una relazione d ordine tra le funzioni. Siano φ e ψ funzioni

Dettagli

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE TELECOMUNICAZIONI (TLC) Tele (lontano) Comunicare (inviare informazioni) Comunicare a distanza Generico sistema di telecomunicazione (TLC) Segnale non elettrico Segnale elettrico TRASMESSO s x (t) Sorgente

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Approssimazione polinomiale di funzioni e dati

Approssimazione polinomiale di funzioni e dati Approssimazione polinomiale di funzioni e dati Approssimare una funzione f significa trovare una funzione f di forma più semplice che possa essere usata al posto di f. Questa strategia è utilizzata nell

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

VARIABILI ALEATORIE CONTINUE

VARIABILI ALEATORIE CONTINUE VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità

Dettagli

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys.

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys. METODO DEI MINIMI QUADRATI GIUSEPPE GIUDICE Sommario Il metodo dei minimi quadrati è trattato in tutti i testi di statistica e di elaborazione dei dati sperimentali, ma non sempre col rigore necessario

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

La valutazione degli effetti dei Programmi: il progetto PQM e altre indagini sui dati acquisiti

La valutazione degli effetti dei Programmi: il progetto PQM e altre indagini sui dati acquisiti Seminario Valutazione PON Roma, 29 marzo 2012 La valutazione degli effetti dei Programmi: il progetto PQM e altre indagini sui dati acquisiti Elena Meroni - Università di Padova e INVALSI Daniele Vidoni

Dettagli

Analisi termografica su celle litio-ione sottoposte ad esperienze di "second life" Francesco D'Annibale, Francesco Vellucci. Report RdS/PAR2013/191

Analisi termografica su celle litio-ione sottoposte ad esperienze di second life Francesco D'Annibale, Francesco Vellucci. Report RdS/PAR2013/191 Agenzia nazionale per le nuove tecnologie, l energia e lo sviluppo economico sostenibile MINISTERO DELLO SVILUPPO ECONOMICO Analisi termografica su celle litio-ione sottoposte ad esperienze di "second

Dettagli

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f.

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f. FUNZIONI CONTINUE - ALCUNI ESERCIZI SVOLTI SIMONE ALGHISI 1. Continuità di una funzione Dati un insieme D R, una funzione f : D R e x 0 R, si è detto che f è continua in x 0 se sono soddisfatte le seguenti

Dettagli

Capitolo 10 Costi. Robert H. Frank Microeconomia - 5 a Edizione Copyright 2010 - The McGraw-Hill Companies, srl

Capitolo 10 Costi. Robert H. Frank Microeconomia - 5 a Edizione Copyright 2010 - The McGraw-Hill Companies, srl Capitolo 10 Costi COSTI Per poter realizzare la produzione l impresa sostiene dei costi Si tratta di scegliere la combinazione ottimale dei fattori produttivi per l impresa È bene ricordare che la categoria

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

FORWARD RATE AGREEMENT

FORWARD RATE AGREEMENT FORWARD RATE AGREEMENT FLAVIO ANGELINI. Definizioni In generale, un contratto a termine o forward permette una compravendita di una certa quantità di un bene differita a una data futura a un prezzo fissato

Dettagli

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento:

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento: Capitolo 3 Serie 3. Definizione Sia { } una successione di numeri reali. Ci proponiamo di dare significato, quando possibile, alla somma a + a 2 +... + +... di tutti i termini della successione. Questa

Dettagli

Forma d onda rettangolare non alternativa.

Forma d onda rettangolare non alternativa. Forma d onda rettangolare non alternativa. Lo studio della forma d onda rettangolare è utile, perché consente di conoscere il contenuto armonico di un segnale digitale. FIGURA 33 Forma d onda rettangolare.

Dettagli

Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia?

Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia? Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia? Danilo Pelusi 1 Gianpiero Centorame 2 Sunto: Il seguente articolo illustra le possibili analogie e differenze tra il calcolo delle

Dettagli

Gli uni e gli altri. Strategie in contesti di massa

Gli uni e gli altri. Strategie in contesti di massa Gli uni e gli altri. Strategie in contesti di massa Alessio Porretta Universita di Roma Tor Vergata Gli elementi tipici di un gioco: -un numero di agenti (o giocatori): 1,..., N -Un insieme di strategie

Dettagli

risparmio, dove lo metto ora? le risposte alle domande che i risparmiatori si pongono sul mondo dei fondi

risparmio, dove lo metto ora? le risposte alle domande che i risparmiatori si pongono sul mondo dei fondi il risparmio, dove lo ora? metto le risposte alle domande che i risparmiatori si pongono sul mondo dei fondi Vademecum del risparmiatore le principali domande emerse da una recente ricerca di mercato 1

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011

VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011 VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011 1 RAPPRESENTARE I DATI: TABELLE E GRAFICI Un insieme di misure è detto serie statistica o serie dei dati 1) Una sua prima elementare elaborazione può

Dettagli

GUIDA ALLE OPZIONI BINARIE

GUIDA ALLE OPZIONI BINARIE Titolo GUIDA ALLE OPZIONI BINARIE Comprende strategie operative Autore Dove Investire Sito internet http://www.doveinvestire.com Broker consigliato http://www.anyoption.it ATTENZIONE: tutti i diritti sono

Dettagli

Analisi Costi e Benefici Laura Vici laura.vici@unibo.it LEZIONE 5

Analisi Costi e Benefici Laura Vici laura.vici@unibo.it LEZIONE 5 Analisi Costi e Benefici Laura Vici laura.vici@unibo.it LEZIONE 5 Rimini, 26 aprile 2006 1 The Inter temporal Effects of International Trade Valore in $ del consumo di beni oggi G D F H 1/(1+r) G Valore

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Dipendenza dai dati iniziali

Dipendenza dai dati iniziali Dipendenza dai dati iniziali Dopo aver studiato il problema dell esistenza e unicità delle soluzioni dei problemi di Cauchy, il passo successivo è vedere come le traiettorie di queste ultime dipendono

Dettagli

Quando troncare uno sviluppo in serie di Taylor

Quando troncare uno sviluppo in serie di Taylor Quando troncare uno sviluppo in serie di Taylor Marco Robutti October 13, 2014 Lo sviluppo in serie di Taylor di una funzione è uno strumento matematico davvero molto utile, e viene spesso utilizzato in

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

su web che riportano documentazione e software dedicati agli argomenti trattati nel libro, riportandone, alla fine dei rispettivi capitoli, gli

su web che riportano documentazione e software dedicati agli argomenti trattati nel libro, riportandone, alla fine dei rispettivi capitoli, gli Prefazione Non è facile definire che cosa è un problema inverso anche se, ogni giorno, facciamo delle operazioni mentali che sono dei metodi inversi: riconoscere i luoghi che attraversiamo quando andiamo

Dettagli

Manuale del Trader. Benvenuti nel fantastico mondo del trading binario!

Manuale del Trader. Benvenuti nel fantastico mondo del trading binario! Manuale del Trader Benvenuti nel fantastico mondo del trading binario! Questo manuale spiega esattamente cosa sono le opzioni binarie, come investire e familiarizzare con il nostro sito web. Se avete delle

Dettagli

LA CORRELAZIONE LINEARE

LA CORRELAZIONE LINEARE LA CORRELAZIONE LINEARE La correlazione indica la tendenza che hanno due variabili (X e Y) a variare insieme, ovvero, a covariare. Ad esempio, si può supporre che vi sia una relazione tra l insoddisfazione

Dettagli

Integrazione numerica

Integrazione numerica Integrazione numerica Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 6-20-26 ottobre 2009 Indice 1 Formule di quadratura semplici e composite Formule di quadratura

Dettagli

Nota su Crescita e Convergenza

Nota su Crescita e Convergenza Nota su Crescita e Convergenza S. Modica 28 Ottobre 2007 Nella prima sezione si considerano crescita lineare ed esponenziale e le loro proprietà elementari. Nella seconda sezione si spiega la misura di

Dettagli

AA 2006-07 LA RICORSIONE

AA 2006-07 LA RICORSIONE PROGRAMMAZIONE AA 2006-07 LA RICORSIONE AA 2006-07 Prof.ssa A. Lanza - DIB 1/18 LA RICORSIONE Il concetto di ricorsione nasce dalla matematica Una funzione matematica è definita ricorsivamente quando nella

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

i tassi di interesse per i prestiti sono gli stessi che per i depositi;

i tassi di interesse per i prestiti sono gli stessi che per i depositi; Capitolo 3 Prodotti derivati: forward, futures ed opzioni Per poter affrontare lo studio dei prodotti derivati occorre fare delle ipotesi sul mercato finanziario che permettono di semplificare dal punto

Dettagli

La MKT (Mean Kinetic Temperature) come criterio di accettabilità sui controlli della temperatura

La MKT (Mean Kinetic Temperature) come criterio di accettabilità sui controlli della temperatura La (Mean Kinetic Temperature) come criterio di accettabilità sui controlli della temperatura Come funzionano i criteri di valutazione sulla temperatura Vi sono 5 parametri usati per la valutazione del

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

Tassi a pronti ed a termine (bozza)

Tassi a pronti ed a termine (bozza) Tassi a pronti ed a termine (bozza) Mario A. Maggi a.a. 2006/2007 Indice 1 Introduzione 1 2 Valutazione dei titoli a reddito fisso 2 2.1 Titoli di puro sconto (zero coupon)................ 3 2.2 Obbligazioni

Dettagli

Appendice III. Criteri per l utilizzo dei metodi di valutazione diversi dalle misurazioni in siti fissi

Appendice III. Criteri per l utilizzo dei metodi di valutazione diversi dalle misurazioni in siti fissi Appendice III (articolo 5, comma 1 e art. 22 commi 5 e 7) Criteri per l utilizzo dei metodi di valutazione diversi dalle misurazioni in siti fissi 1. Tecniche di modellizzazione 1.1 Introduzione. In generale,

Dettagli

R I S K M A N A G E M E N T & F I N A N C E

R I S K M A N A G E M E N T & F I N A N C E R I S K M A N A G E M E N T & F I N A N C E 2010 Redexe S.u.r.l., Tutti i diritti sono riservati REDEXE S.r.l., Società a Socio Unico Sede Legale: 36100 Vicenza, Viale Riviera Berica 31 ISCRITTA ALLA CCIAA

Dettagli

Radioastronomia. Come costruirsi un radiotelescopio

Radioastronomia. Come costruirsi un radiotelescopio Radioastronomia Come costruirsi un radiotelescopio Come posso costruire un radiotelescopio? Non esiste un unica risposta a tale domanda, molti sono i progetti che si possono fare in base al tipo di ricerca

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 40: Filtro di Kalman - introduzione. Struttura ricorsiva della soluzione.

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 40: Filtro di Kalman - introduzione. Struttura ricorsiva della soluzione. IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI Lezione 40: Filtro di Kalman - introduzione Cenni storici Filtro di Kalman e filtro di Wiener Formulazione del problema Struttura ricorsiva della soluzione

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Metodi e Strumenti per la Caratterizzazione e la Diagnostica di Trasmettitori Digitali RF ing. Gianfranco Miele g.miele@unicas.it

Metodi e Strumenti per la Caratterizzazione e la Diagnostica di Trasmettitori Digitali RF ing. Gianfranco Miele g.miele@unicas.it Corso di laurea magistrale in Ingegneria delle Telecomunicazioni Metodi e Strumenti per la Caratterizzazione e la Diagnostica di Trasmettitori Digitali RF ing. Gianfranco Miele g.miele@unicas.it Trasmettitore

Dettagli

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno La Vista CAS L ambiente di lavoro Le celle Assegnazione di una variabile o di una funzione / visualizzazione

Dettagli

Test d ingresso per i curricula in lingua inglese Coloro che intendono iscriversi ai curricula in lingua inglese Economics of Financial and Insurance

Test d ingresso per i curricula in lingua inglese Coloro che intendono iscriversi ai curricula in lingua inglese Economics of Financial and Insurance Note e istruzioni per i test di ingresso ai Corsi di Studio del Dipartimento di Scienze Economiche, Aziendali, Matematiche e Statistiche (DEAMS) a.a. 2013/2014 Gli insegnamenti relativi ai Corsi di Laurea

Dettagli

IL SAMPLE AND HOLD UNIVERSITÀ DEGLI STUDI DI MILANO. Progetto di Fondamenti di Automatica. PROF.: M. Lazzaroni

IL SAMPLE AND HOLD UNIVERSITÀ DEGLI STUDI DI MILANO. Progetto di Fondamenti di Automatica. PROF.: M. Lazzaroni UNIVERSITÀ DEGLI STUDI DI MILANO FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Informatica IL SAMPLE AND HOLD Progetto di Fondamenti di Automatica PROF.: M. Lazzaroni Anno Accademico

Dettagli

1 IL RISCHIO: INTRODUZIONE.2 2 LA VOLATILITA.4

1 IL RISCHIO: INTRODUZIONE.2 2 LA VOLATILITA.4 IL RISCHIO 1 IL RISCHIO: INTRODUZIONE.2 2 LA VOLATILITA.4 2.1 La volatilità storica... 4 2.2 Altri metodi di calcolo... 5 3 LA CORRELAZIONE..6 4 IL VALUE AT RISK....8 4.1 I metodi analitici... 9 4.2 La

Dettagli

Sistemi di supporto alle decisioni Ing. Valerio Lacagnina

Sistemi di supporto alle decisioni Ing. Valerio Lacagnina Cosa è il DSS L elevato sviluppo dei personal computer, delle reti di calcolatori, dei sistemi database di grandi dimensioni, e la forte espansione di modelli basati sui calcolatori rappresentano gli sviluppi

Dettagli

Ricerca non informata in uno spazio di stati

Ricerca non informata in uno spazio di stati Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A5_2 V2.4 Ricerca non informata in uno spazio di stati Il contenuto del documento è liberamente utilizzabile dagli

Dettagli

REGOLE DI ESECUZIONE DELLE ISTRUZIONI

REGOLE DI ESECUZIONE DELLE ISTRUZIONI REGOLE DI ESECUZIONE DELLE ISTRUZIONI I. Disposizioni generali 1. Le presenti Regole di esecuzione delle istruzioni dei clienti riguardanti i contratti di compensazione delle differenze (CFD) e gli strumenti

Dettagli

FORMAZIONE PERMANENTE SUI TRADING SYSTEMS: DIVENTARE QUANT TRADER CHIAVI IN MANO

FORMAZIONE PERMANENTE SUI TRADING SYSTEMS: DIVENTARE QUANT TRADER CHIAVI IN MANO 13 Edizione del corso FORMAZIONE PERMANENTE SUI TRADING SYSTEMS: DIVENTARE QUANT TRADER CHIAVI IN MANO L unico corso che ti accompagna passo dopo passo fino a selezionare, affittare, gestire un trading

Dettagli

INCERTEZZA DI MISURA

INCERTEZZA DI MISURA L ERRORE DI MISURA Errore di misura = risultato valore vero Definizione inesatta o incompleta Errori casuali Errori sistematici L ERRORE DI MISURA Errori casuali on ne si conosce l origine poiche, appunto,

Dettagli

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t),

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t), SINTESI. Una classe importante di problemi probabilistici e statistici é quella della stima di caratteristiche relative ad un certo processo aleatorio. Esistono svariate tecniche di stima dei parametri

Dettagli

La speculazione La speculazione può avvenire in due modi: al rialzo o al ribasso. La speculazione al rialzo è attuata da quegli operatori che,

La speculazione La speculazione può avvenire in due modi: al rialzo o al ribasso. La speculazione al rialzo è attuata da quegli operatori che, La speculazione La speculazione può avvenire in due modi: al rialzo o al ribasso. La speculazione al rialzo è attuata da quegli operatori che, prevedendo un aumento delle quotazioni dei titoli, li acquistano,

Dettagli

Introduzione Metodo POT

Introduzione Metodo POT Introduzione Metodo POT 1 Un recente metodo di analisi dei valori estremi è un metodo detto POT ( Peak over thresholds ), inizialmente sviluppato per l analisi dei dati idrogeologici a partire dalla seconda

Dettagli

Effetto reddito ed effetto sostituzione.

Effetto reddito ed effetto sostituzione. . Indice.. 1 1. Effetto sostituzione di Slutsky. 3 2. Effetto reddito. 6 3. Effetto complessivo. 7 II . Si consideri un consumatore che può scegliere panieri (x 1 ; ) composti da due soli beni (il bene

Dettagli

Esempi di algoritmi. Lezione III

Esempi di algoritmi. Lezione III Esempi di algoritmi Lezione III Scopo della lezione Implementare da zero algoritmi di media complessità. Verificare la correttezza di un algoritmo eseguendolo a mano. Imparare a valutare le prestazioni

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

Capitale raccomandato

Capitale raccomandato Aggiornato in data 1/9/212 Advanced 1-212 Capitale raccomandato da 43.8 a 6.298 Descrizioni e specifiche: 1. E' una combinazione composta da 3 Trading System automatici 2. Viene consigliata per diversificare

Dettagli

La scelta razionale del consumatore (Frank - Capitolo 3)

La scelta razionale del consumatore (Frank - Capitolo 3) La scelta razionale del consumatore (Frank - Capitolo 3) L'INSIEME OPPORTUNITÁ E IL VINCOLO DI BILANCIO Un paniere di beni rappresenta una combinazione di beni o servizi Il vincolo di bilancio o retta

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

IL PROBLEMA DELLO SHORTEST SPANNING TREE

IL PROBLEMA DELLO SHORTEST SPANNING TREE IL PROBLEMA DELLO SHORTEST SPANNING TREE n. 1 - Formulazione del problema Consideriamo il seguente problema: Abbiamo un certo numero di città a cui deve essere fornito un servizio, quale può essere l energia

Dettagli

IMPARA IL MERCATO IN 10 MINUTI

IMPARA IL MERCATO IN 10 MINUTI IMPARA IL MERCATO IN 10 MINUTI AVVERTENZA SUGLI INVESTIMENTI AD ALTO RISCHIO: Il Trading sulle valute estere (Forex) ed i Contratti per Differenza (CFD) sono altamente speculativi, comportano un alto livello

Dettagli

L analisi economico finanziaria dei progetti

L analisi economico finanziaria dei progetti PROVINCIA di FROSINONE CIOCIARIA SVILUPPO S.c.p.a. LABORATORI PER LO SVILUPPO LOCALE L analisi economico finanziaria dei progetti Azione n. 2 Progetti per lo sviluppo locale LA FINANZA DI PROGETTO Frosinone,

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

Le imprese nell economia. esportazioni, multinazionali. Capitolo 8. adattamento italiano di Novella Bottini (ulteriore adattamento di Giovanni Anania)

Le imprese nell economia. esportazioni, multinazionali. Capitolo 8. adattamento italiano di Novella Bottini (ulteriore adattamento di Giovanni Anania) Capitolo 8 Le imprese nell economia globale: esportazioni, outsourcing e multinazionali [a.a. 2012/13] adattamento italiano di Novella Bottini (ulteriore adattamento di Giovanni Anania) 8-1 Struttura della

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

LA CORRETTA SCELTA DI UN IMPIANTO PER LA TEMPRA AD INDUZIONE Come calcolare la potenza necessaria

LA CORRETTA SCELTA DI UN IMPIANTO PER LA TEMPRA AD INDUZIONE Come calcolare la potenza necessaria LA CORRETTA SCELTA DI UN IMPIANTO PER LA TEMPRA AD INDUZIONE Come calcolare la potenza necessaria Quale frequenza di lavoro scegliere Geometria del pezzo da trattare e sue caratteristiche elettromagnetiche

Dettagli

Sviluppi di Taylor Esercizi risolti

Sviluppi di Taylor Esercizi risolti Esercizio 1 Sviluppi di Taylor Esercizi risolti Utilizzando gli sviluppi fondamentali, calcolare gli sviluppi di McLaurin con resto di Peano delle funzioni seguenti fino all ordine n indicato: 1. fx ln1

Dettagli

ELEMENTI DI STATISTICA

ELEMENTI DI STATISTICA Pag 1 di 92 Francesco Sardo ELEMENTI DI STATISTICA PER VALUTATORI DI SISTEMI QUALITA AMBIENTE - SICUREZZA REV. 11 16/08/2009 Pag 2 di 92 Pag 3 di 92 0 Introduzione PARTE I 1 Statistica descrittiva 1.1

Dettagli

1 LA CORRENTE ELETTRICA CONTINUA

1 LA CORRENTE ELETTRICA CONTINUA 1 LA CORRENTE ELETTRICA CONTINUA Un conduttore ideale all equilibrio elettrostatico ha un campo elettrico nullo al suo interno. Cosa succede se viene generato un campo elettrico diverso da zero al suo

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli