Considerazioni sulle specifiche.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Considerazioni sulle specifiche."

Transcript

1 # SINTESI PER TENTATIVI IN ω PER GLI ASSERVIMENTI # Considerazioni sulle specifiche. Come accennato in precedenza, prima di avviare la prima fase della sintesi di un sistema di asservimento, e cioe la scelta della struttura e dei valori dei parametri della F. di T. del controllore C, e necessario avere a disposizione un set di specifiche adatte all analisi che si conduce in questa fase. Ricordiamo che le specifiche devono rigurdare: a) il comportamento in regime permanente; b) la stabilita ; c) il transitorio. a) Per quanto riguarda le specifiche sul regime permanente non ci sono problemi, dato che fissare il tipo e l entita dell errore massimo ammissibile porta direttamente alla scelta del numero di poli nell origine e del guadagno della risposta armonica della catena diretta G(jω) e quindi di C(jω), nota la P(jω). Conviene tener presente a questo proposito che in genere gli asservimenti che si desidera realizzare piu frequentemente sono di tipo 0 o di tipo 1 (raramente di tipo 2). L eventuale necessaria introduzione di poli nell origine tramite il controllore, nel caso in cui il processo ne sia sprovvisto, non comporta alcuna modifica alle fasi della procedura di sintesi che stiamo descrivendo rispetto al caso in cui tali poli siano posseduti dal processo. In tale procedura si supporra sempre che il processo abbia i poli nell origine desiderati e si procedera alla sintesi del controllore senza tali poli, salvo poi a considerare la necessita di introdurli tramite il controllore in sede della sua implementazione finale. Per quanto appena detto le specifiche sul regime permanente si traducono quindi in una condizione per il solo guadagno di G(jω). b) Per quanto riguarda la stabilità, il criterio di Nyquist fornisce direttamente le condizioni cui deve soddisfare la G(jω). Spesso viene escluso, in sede di assegnazione delle specifiche, che la stabilità sia condizionata. Inoltre la stragrande maggioranza dei processi dei sistemi di asservimento classici è caratterizzata da non avere poli a p.r.p., per cui il ricorso al criterio ridotto di Nyquist porta direttamente a valutare la stabilità in termini di margini di fase e di guadagno, direttamente deducibili dai diagrammi di Bode a ciclo aperto. 1

2 c) Invece le proprieta transitorie desiderate sono espresse solitamente nel dominio del tempo con riferimento ai parametri della risposta indiciale del sistema a ciclo chiuso. Tali specifiche non sono utilizzabili nella prima fase della procedura di sintesi che si conduce, come detto, nel dominio della frequenza e con riferimento alla G(jω). Si tratta quindi di trasformare opportunamente le specifiche di cui sopra. Una prima trasformazione puo essere fatta con riferimento ai legami globali, che abbiamo visto essere validi per la classe, non generale ma abbastanza ampia, dei sistemi normali cioe sistemi a riposta armonica normale e non troppo complessi (con struttura poli-zeri non molto ampia). Tali sistemi sono spesso caratterizzabili colla presenza di un modo dominante a ciclo chiuso. Grazie ai legami globali e possibile tradurre efficacemente per la sintesi le specifiche sulla risposta indiciale in specifiche sulla risposta armonica a ciclo chiuso, quali il modulo di risonanza M r e la corrispondente pulsazione ω r, la banda passante B 3 etc. Tali specifiche, riferentisi alla risposta armonica a ciclo chiuso, non sono pero ancora direttamente utilizzabili nella prima fase della procedura che, come detto, si conduce sul ciclo aperto e con riferimento ai diagrammi di Bode. In tale contesto i parametri del sistema a ciclo aperto a disposizione del progettista sono i margini di stabilita m ϕ e m g e la pulsazione di attraversamento ω t. Con riferimento ai sistemi normali di cui sopra esiste una relazione, largamente approssimata ma di grande utilita nello sviluppo della sintesi per tentativi in ω, tra banda passante a ciclo chiuso e pulsazione di attraversamento a ciclo aperto: ω t = (3 5)B 3 (1) Nei sistemi normali cioe B 3 e direttamente proporzionale a ω t. La (1) dice che dalla conoscenza della banda passante desiderata (specifica a ciclo chiuso) si puo passare alla pulsazione di attraversamento desiderata (specifica a ciclo aperto) moltiplicando la banda in Hz per una costante compresa tra 3 e 5. Sempre per la categoria dei sistemi normali si utilizza una relazione approssimata tra modulo alla risonanza M r e margine di fase m ϕ riassunta dal diagramma riportato nella pagina seguente. 2

3 3

4 Dal diagramma si legge per esempio che, dato che per un accettabile comportamento transitorio in un sistema di asservimento dovrebbe essere s * % 25, cui corrisponde per il legame globale: (s * ) 0.85M r M r db 3.3, il valore del margine di fase dovrebbe essere m ϕ 35. Con riferimento ai margini di stabilita in genere si puo affermare che per un comportamento transitorio soddisfacente il margine di fase dovrebbe essere compreso nell intervallo (35 60 ) e il margine di guadagno dovrebbe essere non inferiore a 6dB. I margini di stabilità vengono dunque considerati non solo come margini di sicurezza per la stabilità rispetto a possibili variazioni parametriche (stabilità robusta), ma anche come un modo di caratterizzare, sia pure in maniera grossolana, il comportamento transitorio. E chiaro che il legame tra specifiche di partenza e vincoli sul ciclo aperto cosi individuati e piuttosto approssimato e cio rende necessaria, come segnalato nella presentazione del metodo di sintesi, la fase di verifica del soddisfacimento delle specifiche a ciclo chiuso. Da quanto visto sopra possiamo anticipare una considerazione generale sulla soluzione dei problemi di sintesi che si ottiene tramite la procedura allo studio: tale soluzione, essendo dipendente dal soddisfacimento di specifiche non molto rigide e vincolanti, potra essere ottenuta con una molteplicita di scelte progettuali diverse. Si trattera caso per caso di analizzare le diverse alternative che possono apparire equivalenti rispetto alle specifiche adottate, introducendo ulteriori criteri di scelta che indirizzino a preferire una soluzione rispetto alle altre. Qui entra in gioco chiaramente l esperienza e l intuito ingegneristico che porta ad esercitare tale opzione. In mancanza di altri criteri, la scelta finale si potrebbe basare sulle seguenti considerazioni: Il costo della realizzazione di un sistema di controllo si puo assumere proporzionale al prodotto del guadagno a ciclo aperto per la banda passante a ciclo chiuso. Si puo ritenere infatti che il costo dei componenti da introdurre per realizzare il sistema di controllo (amplificatori, trasduttori, attuatori) sia proporzionale a tali parametri. Fra le varie soluzioni possibili si andra dunque a scegliere quella che, assicurando le prestazioni desiderate, porti al valore minimo di tale prodotto (criterio di realizzazione soddisfacente col minimo costo) 4

5 Scelta della struttura. Facciamo riferimento allo schema standard a retroazione unitaria con blocco controllante C e processo P in cascata nella catena diretta. Supponiamo di voler realizzare un sistema di asservimento di tipo 1, con opportune specifiche sull errore a regime, sulla stabilita e sul transitorio. Tali specifiche siano le seguenti: a) K v K v *; b) m ϕ m ϕ *; c) B 3 B 3 *. Con riferimento alla specifica a), tenendo conto di quanto detto sopra a proposito del polo nell origine necessario nella catena diretta, si ricava immediatamente un vincolo inferiore sul valore del guadagno del controllore C: K C K K * v (2) P Scelto cosi il valore di K C le specifiche sul regime permanente saranno soddisfatte, e si puo passare alle altre specifiche, tramite le quali determineremo la struttura poli-zeri della F. di T. del controllore. La specifica b) sulla stabilita gioca a questo punto un ruolo prioritario. La specifica c) in questo caso riassume molto sinteticamente le esigenze di un soddisfacente comportamento dinamico a ciclo chiuso e potra essere soddisfatta da una appropriata scelta delle azioni stabilizzanti, come vedremo nel seguito. In ogni caso sara l ultima specifica ad essere verificata nella fase conclusiva della procedura di sintesi. Esaminiamo dunque ora le possibili azioni stabilizzanti. Esistono due tipiche azioni elementari stabilizzanti: l azione anticipatrice (lead-lag); l azione attenuatrice (lag-lead). Per illustrare le caratteristiche di queste due azioni riferiamoci ad un sistema a stabilita regolare e al dominio della frequenza. Azione anticipatrice. L azione o correzione anticipatrice consiste nell introdurre, tramite il controllore C, un anticipo di fase a ciclo aperto in un certo campo di frequenze. Tale azione diventa stabilizzante se viene esercitata nella banda di frequenze che interessa il circondamento del punto critico del diagramma di Nyquist e quindi corrispondentemente l attraversamento dell asse delle ascisse del diagramma dei moduli di Bode. Poiche agli anticipi di fase si accompagnano, nelle F. di T. a fase minima, aumenti di modulo che hanno effetto dannoso ai fini della stabilita, si tratta di fare si che tale effetto sia meno rilevante di quello positivo dell anticipo di fase. 5

6 L azione anticipatrice viene esplicata da un controllore, la cui F. di T. in forma standard e la seguente: τ s a Cant ( s) = KC τ ; con m a >1. (3) a s m Come si nota, oltre al guadagno K C, l azione anticipatrice dipende dai due parametri τ a e m a entrambi a disposizione del progettista (carte progettuali). Vedremo nel seguito di individuare i criteri piu appropriati di scelta dei valori di tali parametri in base alle specifiche di progetto. L effetto di anticipo dell azione in oggetto e immediatamente evidente se ci riferiamo ai relativi diagrammi di Bode: grafici. L entita dell anticipo di fase e legata al valore di m a. Per m a l anticipo di fase tende a 90. In pratica l azione anticipatrice dovra essere posizionata nel punto giusto, cioe intorno a ω t come gia anticipato. Azione attenuatrice. L azione o correzione attenuatrice consiste nell attenuare il modulo a ciclo aperto in una certa banda di frequenze. Essa ha un effetto stabilizzante se viene sviluppata piu precisamente nella zona delle basse frequenze, rispetto alla pulsazione di attraversamento. Abbiamo visto che nei sistemi a stabilita regolare si puo sempre conseguire la stabilita od aumentarne i margini con una riduzione del guadagno a ciclo aperto. Ma al guadagno a ciclo aperto e legato il comportamento a regime (oltre che al numero di poli nell origine) quindi, se tale guadagno e gia stato fissato secondo le specifiche sull errore a regime, non e concesso agire sulla stabilita variando tale parametro. Ma l effetto stabilizzante si puo anche ottenere riducendo il modulo a ciclo aperto invece che a tutte le frequenze, come si farebbe diminuendo il guadagno, solo da una certa frequenza in poi, lasciando inalterato il diagramma dei moduli alle frequenze molto basse, e quindi le caratteristiche relative al regime permanente. Naturalmente agendo in tale modo si modificano anche le proprieta transitorie e di questo bisognera tener conto opportunamente. L azione attenuatrice viene esplicata da un controllore, la cui F. di T. in forma standard e la seguente: τ i s mi Catt ( s) = KC ; con m i >1. grafici. (4) τ s i Come si nota, oltre al guadagno K C, anche l azione attenuatrice dipende dai due parametri τ i e m i entrambi a disposizione del progettista (carte progettuali). a 6

Esercizi proposti di Fondamenti di Automatica - Parte 4

Esercizi proposti di Fondamenti di Automatica - Parte 4 Esercizi proposti di Fondamenti di Automatica - Parte 4 2 Aprile 26 Sia dato il sistema di controllo a controreazione di Fig. 1, in cui il processo ha funzione di trasferimento P (s) = 1 (1 +.1s)(1 +.1s).

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Progetto di controllo e reti correttrici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

SINTESI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO

SINTESI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO SINTESI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO Requisiti e specifiche Approcci alla sintesi Esempi di progetto Principali reti stabilizzatrici Illustrazioni dal Testo di Riferimento per gentile concessione

Dettagli

CONTROLLO NEL DOMINIO DELLA FREQUENZA

CONTROLLO NEL DOMINIO DELLA FREQUENZA SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html CONTROLLO NEL DOMINIO DELLA FREQUENZA Ing. Luigi Biagiotti e-mail: luigi.biagiotti@unimore.it

Dettagli

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI FREQUENZIALE E PROGETTO

Dettagli

UNIT 8 Soluzione del problema di controllo con Modelli Poveri 3 - Sintesi per tentativi degli asservimenti nel dominio della variabile complessa

UNIT 8 Soluzione del problema di controllo con Modelli Poveri 3 - Sintesi per tentativi degli asservimenti nel dominio della variabile complessa UNIT 8 Soluzione del problema di controllo con Modelli Poveri 3 - Sintesi per tentativi degli asservimenti nel dominio della variabile complessa Corso di Controlli Automatici Prof. Tommaso Leo Indice UNIT

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: robustezza e prestazioni Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it

Dettagli

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6 ppunti di Controlli utomatici Capitolo 7 parte II Margini di stabilità Introduzione... Margine di ampiezza... Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di ode... 6 Introduzione

Dettagli

Prestazioni dei sistemi in retroazione

Prestazioni dei sistemi in retroazione Prestazioni dei sistemi in retroazione (ver..2). Sensitività e sensitività complementare Sia dato il sistema in retroazione riportato in Fig... Vogliamo determinare quanto è sensibile il sistema in anello

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi armonica e metodi grafici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. Analisi

Dettagli

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione 0.0. 3.2 Diagrammi di Bode Possibili rappresentazioni grafiche della funzione di risposta armonica F (ω) = G(jω) sono: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I Diagrammi

Dettagli

LA FUNZIONE DI TRASFERIMENTO

LA FUNZIONE DI TRASFERIMENTO LA FUNZIONE DI TRASFERIMENTO Può essere espressa sia nel dominio della s che nel dominio della j Definizione nel dominio della s. è riferita ai soli sistemi con un ingresso ed un uscita 2. ha per oggetto

Dettagli

Fondamenti di Automatica - I Parte Il progetto del controllore

Fondamenti di Automatica - I Parte Il progetto del controllore Fondamenti di Automatica - I Parte Il progetto del controllore Antonio Bicchi, Giordano Greco Università di Pisa 1 INDICE 2 Indice 1 Introduzione 3 2 Approssimazioni della f.d.t. in anello chiuso 5 3 Metodi

Dettagli

Capitolo 20: Scelta Intertemporale

Capitolo 20: Scelta Intertemporale Capitolo 20: Scelta Intertemporale 20.1: Introduzione Gli elementi di teoria economica trattati finora possono essere applicati a vari contesti. Tra questi, due rivestono particolare importanza: la scelta

Dettagli

SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO

SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO Ing. Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Controlli Automatici - A.A. 1/11 Ingegneria Gestionale 13 Settembre 11 - Esercizi Nome: Nr. Mat. Firma: Rispondere alle seguenti domande. a) Calcolare la trasformata di Laplace X(s) dei seguenti segnali

Dettagli

Controllo di velocità angolare di un motore in CC

Controllo di velocità angolare di un motore in CC Controllo di velocità angolare di un motore in CC Descrizione generale Il processo è composto da un motore in corrente continua, un sistema di riduzione, una dinamo tachimetrica ed un sistema di visualizzazione.

Dettagli

Un sistema di controllo può essere progettato fissando le specifiche:

Un sistema di controllo può essere progettato fissando le specifiche: 3. Specifiche dei Sistemi Un sistema di controllo può essere progettato fissando le specifiche: nel dominio del tempo (tempo di salita, tempo di assestamento, sovraelongazione, ecc.); nel dominio della

Dettagli

Prova scritta di Controlli Automatici - Compito A

Prova scritta di Controlli Automatici - Compito A Prova scritta di Controlli Automatici - Compito A 21 Marzo 27 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare quali sono le affermazioni vere. 1. Si consideri

Dettagli

RISONANZA. Introduzione. Risonanza Serie.

RISONANZA. Introduzione. Risonanza Serie. RISONANZA Introduzione. Sia data una rete elettrica passiva, con elementi resistivi e reattivi, alimentata con un generatore di tensione sinusoidale a frequenza variabile. La tensione di alimentazione

Dettagli

Controlli Automatici prof. M. Indri Sistemi di controllo digitali

Controlli Automatici prof. M. Indri Sistemi di controllo digitali Controlli Automatici prof. M. Indri Sistemi di controllo digitali Schema di controllo base r(t) + e(t) {e k } {u k } u(t) Campionatore (A/D) Controllore digitale Ricostruttore (D/A) Sistema (tempo cont.)

Dettagli

Fr = 1 / [ ( 2 * π ) * ( L * C ) ]

Fr = 1 / [ ( 2 * π ) * ( L * C ) ] 1.6 I circuiti risonanti I circuiti risonanti, detti anche circuiti accordati o selettivi, sono strutture fondamentali per la progettazione dell elettronica analogica; con essi si realizzano oscillatori,

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stabilità dei sistemi di controllo in retroazione Margini di stabilità Indicatori di robustezza della stabilità Margine di guadagno Margine di fase Stabilità regolare e marginale ed estensioni delle definizioni

Dettagli

REGOLATORI STANDARD PID

REGOLATORI STANDARD PID SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html Regolatore Proporzionale, Integrale, Derivativo - PID Tre azioni di combinate

Dettagli

Diagrammi di Bode. delle

Diagrammi di Bode. delle .. 3.2 delle Diagrammi di Bode La funzione di risposta armonica F(ω) = G(jω) può essere rappresentata graficamente in tre modi diversi: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols.

Dettagli

Progetto di un sistema di controllo nel dominio della frequenza

Progetto di un sistema di controllo nel dominio della frequenza Contents Progetto di un sistema di controllo nel dominio della frequenza 3. Le specifiche del progetto nel dominio della frequenza......... 3.2 Sintesi del controllore........................... 6.3 Determinazione

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Risposte canoniche e sistemi elementari Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

Diagrammi polari, di Nyquist e di Nichols

Diagrammi polari, di Nyquist e di Nichols Diagrammi polari, di Nyquist e di Nichols Definizione (1/2) Il diagramma di Nichols (DdNic) di una fdt consiste nella rappresentazione grafica di G(s) s= jω = G(jω) = M( ω)e jϕ( ω), per ω (, ) sul piano

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

Differenziazione sistemi dinamici

Differenziazione sistemi dinamici Il controllo di sistemi ad avanzamento temporale si basa sulle tecniche di controllo in retroazione, ovvero, elabora le informazione sullo stato del processo (provenienti dai sensori) in modo sa inviare

Dettagli

Modellistica e controllo dei motori in corrente continua

Modellistica e controllo dei motori in corrente continua Modellistica e controllo dei motori in corrente continua Note per le lezioni del corso di Controlli Automatici A.A. 2008/09 Prof.ssa Maria Elena Valcher 1 Modellistica Un motore in corrente continua si

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: stabilità, errore a regime e luogo delle radici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail:

Dettagli

CONTROLLORI STANDARD PID. Guido Vagliasindi Controlli Automatici A.A. 06/07 Controllori Standard PID

CONTROLLORI STANDARD PID. Guido Vagliasindi Controlli Automatici A.A. 06/07 Controllori Standard PID ONTROLLORI STANDARD PID Guido Vagliasindi ontrolli Automatici A.A. 6/7 ontrollori Standard PID MODELLO DEI REGOLATORI PID Tra le ragioni del vastissimo utilizzo dei regolatori PID nella pratica dell automazione

Dettagli

Margine di fase e margine di guadagno

Margine di fase e margine di guadagno Margine di fase e margine di guadagno Prendiamo in considerazione sistemi per i uali la funzione ad anello aperto, L(s), sia stabile e non presenti dunue, poli a parte reale positiva. In tal caso il criterio

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

Capitolo 23: Scelta in condizioni di incertezza

Capitolo 23: Scelta in condizioni di incertezza Capitolo 23: Scelta in condizioni di incertezza 23.1: Introduzione In questo capitolo studiamo la scelta ottima del consumatore in condizioni di incertezza, vale a dire in situazioni tali che il consumatore

Dettagli

OUT. Domande per Terza prova di Sistemi. Disegnare la struttura generale di un sistema di controllo. retroazionato. (schema a blocchi)

OUT. Domande per Terza prova di Sistemi. Disegnare la struttura generale di un sistema di controllo. retroazionato. (schema a blocchi) Domande per Terza prova di Sistemi Disegnare la struttura generale di un sistema di controllo retroazionato. (schema a blocchi) IN Amp. di Potenza Organo di Regolazione OUT ( ) Regolatore Attuatore Sistema

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 9- p. /3 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma.it Lucidi tratti dal libro C. Bonivento, C. Melchiorri,

Dettagli

CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA

CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA SOMMARIO: 2.1 La domanda. - 2.2 Costi, economie di scala ed economie di varietà. - 2.2.1 I costi. - 2.2.2 Le economie di scala. - 2.2.3 Le economie di varietà.

Dettagli

Stabilità dei sistemi

Stabilità dei sistemi Stabilità dei sistemi + G(s) G(s) - H(s) Retroazionati Sistemi - Stabilità - Rielaborazione di Piero Scotto 1 Sommario In questa lezione si tratteranno: La funzione di trasferimento dei sistemi retroazionati

Dettagli

6 Cenni sulla dinamica dei motori in corrente continua

6 Cenni sulla dinamica dei motori in corrente continua 6 Cenni sulla dinamica dei motori in corrente continua L insieme di equazioni riportato di seguito, costituisce un modello matematico per il motore in corrente continua (CC) che può essere rappresentato

Dettagli

Orlando Allocca Regolatori standard

Orlando Allocca Regolatori standard A09 159 Orlando Allocca Regolatori standard Copyright MMXII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B 00173 Roma (06) 93781065 ISBN 978-88-548-4882-7

Dettagli

Lez. 17/12/13 Funzione di trasferimento in azione e reazione, pulsazione complessa, introduzione alla regolazione

Lez. 17/12/13 Funzione di trasferimento in azione e reazione, pulsazione complessa, introduzione alla regolazione Lez. 7/2/3 unzione di trasferimento in azione e reazione, pulsazione complessa, introduzione alla regolazione consideriamo il risultato del filtro passa alto che si può rappresentare schematicamente nel

Dettagli

Paperone e Rockerduck: a cosa serve l antitrust?

Paperone e Rockerduck: a cosa serve l antitrust? Paperone e Rockerduck: a cosa serve l antitrust? Paperone Anna Torre, Rockerduck Ludovico Pernazza 1-14 giugno 01 Università di Pavia, Dipartimento di Matematica Concorrenza Due imprese Pap e Rock operano

Dettagli

INTRODUZIONE ALLO STUDIO DEI SISTEMI DI CONTROLLLO AUTOMATICO: APPROCCIO CLASSICO APPROCCIO MODERNO

INTRODUZIONE ALLO STUDIO DEI SISTEMI DI CONTROLLLO AUTOMATICO: APPROCCIO CLASSICO APPROCCIO MODERNO INTRODUZIONE ALLO STUDIO DEI SISTEMI DI CONTROLLLO AUTOMATICO: APPROCCIO CLASSICO APPROCCIO MODERNO CARATTERISTICHE DELLE METODOLOGIE E DELL APPROCCIO CLASSICO : a) Fa riferimento essenzialmente al dominio

Dettagli

1. Limite finito di una funzione in un punto

1. Limite finito di una funzione in un punto . Limite finito di una funzione in un punto Consideriamo la funzione: f ( ) = il cui dominio risulta essere R {}, e quindi il valore di f ( ) non è calcolabile in =. Quest affermazione tuttavia non esaurisce

Dettagli

Definizione delle specifiche per un sistema di controllo a retroazione unitaria

Definizione delle specifiche per un sistema di controllo a retroazione unitaria Definizione delle pecifiche per un itema di controllo a retroazione unitaria Obiettivi del controllo Il itema di controllo deve eere progettato in modo da garantire un buon ineguimento dei egnali di riferimento

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Rappresentazione grafica di un sistema retroazionato

Rappresentazione grafica di un sistema retroazionato appresentazione grafica di un sistema retroazionato La f.d.t. di un.o. ha generalmente alcune decine di poli Il costruttore compensa il dispositivo in maniera da dotarlo di un singolo polo (polo dominante).

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 7/8 4 Dicembre 7 - Esercizi Compito A Nr. Nome: Nr. Mat. Firma: a) Determinare la trasformata di Laplace X i (s) dei seguenti segnali temporali x i (t): x (t)

Dettagli

Capitolo 22: Lo scambio nel mercato dei capitali

Capitolo 22: Lo scambio nel mercato dei capitali Capitolo 22: Lo scambio nel mercato dei capitali 22.1: Introduzione In questo capitolo analizziamo lo scambio nel mercato dei capitali, dove si incontrano la domanda di prestito e l offerta di credito.

Dettagli

Retroazione In lavorazione

Retroazione In lavorazione Retroazione 1 In lavorazione. Retroazione - introduzione La reazione negativa (o retroazione), consiste sostanzialmente nel confrontare il segnale di uscita e quello di ingresso di un dispositivo / circuito,

Dettagli

Circuiti amplificatori

Circuiti amplificatori Circuiti amplificatori G. Traversi Strumentazione e Misure Elettroniche Corso Integrato di Elettrotecnica e Strumentazione e Misure Elettroniche 1 Amplificatori 2 Amplificatori Se A V è negativo, l amplificatore

Dettagli

Funzioni di trasferimento. Lezione 14 2

Funzioni di trasferimento. Lezione 14 2 Lezione 14 1 Funzioni di trasferimento Lezione 14 2 Introduzione Lezione 14 3 Cosa c è nell Unità 4 In questa sezione si affronteranno: Introduzione Uso dei decibel e delle scale logaritmiche Diagrammi

Dettagli

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L. Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli

Serie numeriche. 1 Definizioni e proprietà elementari

Serie numeriche. 1 Definizioni e proprietà elementari Serie numeriche Definizioni e proprietà elementari Sia { } una successione, definita per ogni numero naturale n n. Per ogni n n, consideriamo la somma s n degli elementi della successione di posto d s

Dettagli

Introduzione all analisi dei segnali digitali.

Introduzione all analisi dei segnali digitali. Introduzione all analisi dei segnali digitali. Lezioni per il corso di Laboratorio di Fisica IV Isidoro Ferrante A.A. 2001/2002 1 Segnali analogici Si dice segnale la variazione di una qualsiasi grandezza

Dettagli

Filtri attivi del primo ordine

Filtri attivi del primo ordine Filtri attivi del primo ordine Una sintesi non esaustiva degli aspetti essenziali (*) per gli allievi della 4 A A T.I.E. 08-09 (pillole per il ripasso dell argomento, da assumere in forti dosi) (*) La

Dettagli

Applicazioni del calcolo differenziale allo studio delle funzioni

Applicazioni del calcolo differenziale allo studio delle funzioni Capitolo 9 9.1 Crescenza e decrescenza in piccolo; massimi e minimi relativi Sia y = f(x) una funzione definita nell intervallo A; su di essa non facciamo, per ora, alcuna particolare ipotesi (né di continuità,

Dettagli

Assicurazione e contratto assicurativo

Assicurazione e contratto assicurativo Teoria dei giochi, A.A. 2002/03 c Fioravante Patrone 1 Assicurazione e contratto assicurativo Consideriamo il problema di assicurarsi contro un sinistro. Vediamo le ragioni per cui può verificarsi il fatto

Dettagli

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione 1 PROBLEMI DI SCELTA Problemi di Scelta Campo di Scelta Funzione Obiettivo Modello Matematico Scelte in condizioni di Certezza Scelte in condizioni di Incertezza Effetti Immediati Effetti Differiti Effetti

Dettagli

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa Master della filiera cereagricola Giovanni Di Bartolomeo Stefano Papa Facoltà di Agraria Università di Teramo Impresa e mercati Parte prima L impresa L impresa e il suo problema economico L economia studia

Dettagli

Guida al livellamento delle risorse con logica Critical Chain (1^ parte)

Guida al livellamento delle risorse con logica Critical Chain (1^ parte) Paolo Mazzoni 2011. E' ammessa la riproduzione per scopi di ricerca e didattici se viene citata la fonte completa nella seguente formula: "di Paolo Mazzoni, www.paolomazzoni.it, (c) 2011". Non sono ammesse

Dettagli

La prove dinamiche sugli edifici II parte strumentazione e analisi dei segnali

La prove dinamiche sugli edifici II parte strumentazione e analisi dei segnali La prove dinamiche sugli edifici II parte strumentazione e analisi dei segnali Luca Facchini e-mail: luca.facchini@unifi.it Introduzione Quali strumenti vengono utilizzati? Le grandezze di interesse nelle

Dettagli

Sistemi di controllo industriali

Sistemi di controllo industriali Sistemi di controllo industriali Regolatori PID: funzionamento e taratura Modello, funzionamento e realizzazione pratica Metodi di taratura in anello chiuso Metodi di taratura in anello aperto Un esempio

Dettagli

REGOLAZIONE (E TASSAZIONE OTTIMALE) DI UN MONOPOLIO CON PIÙ LINEE DI PRODUZIONE

REGOLAZIONE (E TASSAZIONE OTTIMALE) DI UN MONOPOLIO CON PIÙ LINEE DI PRODUZIONE REGOLAZIONE (E TASSAZIONE OTTIMALE) DI UN MONOPOLIO CON PIÙ LINEE DI PRODUZIONE Nella Sezione 16.5 abbiamo visto come un regolatore che voglia fissare il prezzo del monopolista in modo da minimizzare la

Dettagli

FONDAMENTI DI AUTOMATICA. Michele Basso, Luigi Chisci e Paola Falugi

FONDAMENTI DI AUTOMATICA. Michele Basso, Luigi Chisci e Paola Falugi FONDAMENTI DI AUTOMATICA Michele Basso, Luigi Chisci e Paola Falugi 22 novembre 26 2 Indice 1 Analisi in frequenza di sistemi LTI 5 1.1 Introduzione............................. 5 1.2 Analisi armonica..........................

Dettagli

La Minimizzazione dei costi

La Minimizzazione dei costi La Minimizzazione dei costi Il nostro obiettivo è lo studio del comportamento di un impresa che massimizza il profitto sia in mercati concorrenziali che non concorrenziali. Ora vedremo la fase della minimizzazione

Dettagli

INTRODUZIONE AL CONTROLLO OTTIMO

INTRODUZIONE AL CONTROLLO OTTIMO INTRODUZIONE AL CONTROLLO OTTIMO Teoria dei Sistemi Ingegneria Elettronica, Informatica e TLC Prof. Roberto Zanasi, Dott. Giovanni Azzone DII - Università di Modena e Reggio Emilia AUTOLAB: Laboratorio

Dettagli

Dalle misure eseguite con un segnale sinusoidale su di un impianto si è verificato che esso:

Dalle misure eseguite con un segnale sinusoidale su di un impianto si è verificato che esso: Tema di: SISTEMI ELETTRONICI AUTOMATICI Testo valevole per i corsi di ordinamento e per i corsi di progetto "SIRIO" - Indirizzo Elettronica e Telecomunicazioni Il candidato scelga e sviluppi una tra le

Dettagli

ESERCITAZIONI per il corso di ECONOMIA DELL ARTE E DELLA CULTURA 1 1 MODULO (prof. Bianchi) a.a. 2007-2008

ESERCITAZIONI per il corso di ECONOMIA DELL ARTE E DELLA CULTURA 1 1 MODULO (prof. Bianchi) a.a. 2007-2008 ESERCITAZIONI per il corso di ECONOMIA DELL ARTE E DELLA CULTURA 1 1 MODULO (prof. Bianchi) a.a. 2007-2008 A. Il modello macroeconomico in economia chiusa e senza settore pubblico. A.1. Un sistema economico

Dettagli

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale CONTROLLO IN RETROAZIONE

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale CONTROLLO IN RETROAZIONE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale CONTROLLO IN RETROAZIONE Ing. Luigi Biagiotti Tel. 5 29334 / 5 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

Elettronica Analogica con Applicazioni

Elettronica Analogica con Applicazioni Elettronica Analogica con Applicazioni Docente: Alessandro Trifiletti CFU: 6 E mail: alessandro.trifiletti@diet.uniroma1.it 1) Presentazione del corso, cenni sulle problematiche di progetto a RF, problematiche

Dettagli

Appendice Circuiti con amplificatori operazionali

Appendice Circuiti con amplificatori operazionali Appendice Circuiti con amplificatori operazionali - Appendice Circuiti con amplificatori operazionali - L amplificatore operazionale Il componente ideale L amplificatore operazionale è un dispositivo che

Dettagli

P5 CONVERSIONE DI FREQUENZA. RICEVITORI SUPERETERODINA. PLL.

P5 CONVERSIONE DI FREQUENZA. RICEVITORI SUPERETERODINA. PLL. P5 CONVERSIONE DI REQUENZA. RICEVITORI SUPERETERODINA. P. P5. Un segnale modulato in ampiezza con portante e banda di modulazione B=9 khz centrata su, deve essere convertito in frequenza su una portante

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

Fondamenti e didattica di Matematica Finanziaria

Fondamenti e didattica di Matematica Finanziaria Fondamenti e didattica di Matematica Finanziaria Silvana Stefani Piazza dell Ateneo Nuovo 1-20126 MILANO U6-368 silvana.stefani@unimib.it 1 Unità 9 Contenuti della lezione Operazioni finanziarie, criterio

Dettagli

Il sapere tende oggi a caratterizzarsi non più come un insieme di contenuti ma come un insieme di metodi e di strategie per risolvere problemi.

Il sapere tende oggi a caratterizzarsi non più come un insieme di contenuti ma come un insieme di metodi e di strategie per risolvere problemi. E. Calabrese: Fondamenti di Informatica Problemi-1 Il sapere tende oggi a caratterizzarsi non più come un insieme di contenuti ma come un insieme di metodi e di strategie per risolvere problemi. L'informatica

Dettagli

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/ Catene di Misura Corso di Misure Elettriche http://sms.unipv.it/misure/ Piero Malcovati Dipartimento di Ingegneria Industriale e dell Informazione Università di Pavia piero.malcovati@unipv.it Piero Malcovati

Dettagli

Come elaborare degli indicatori elementari per ottenere un unico indicatore complessivo

Come elaborare degli indicatori elementari per ottenere un unico indicatore complessivo Come elaborare degli indicatori elementari per ottenere un unico indicatore complessivo Il sistema SCIARE: Sistema per la Composizione di Indicatori di Attività REgionale Razionale: per poter sintetizzare

Dettagli

Soluzione dell esercizio del 12 Febbraio 2004

Soluzione dell esercizio del 12 Febbraio 2004 Soluzione dell esercizio del 12/2/2004 1 Soluzione dell esercizio del 12 Febbraio 2004 1. Casi d uso I casi d uso sono riportati in Figura 1. Figura 1: Diagramma dei casi d uso. 2. Modello concettuale

Dettagli

TEMPO X PRODURRE ARTICOLO QUANTITÀ LAVORAZIONE MACCHINA 1 PEZZO Taglio Seghetto 30 minuti. Tornitura Tornio 20 minuti

TEMPO X PRODURRE ARTICOLO QUANTITÀ LAVORAZIONE MACCHINA 1 PEZZO Taglio Seghetto 30 minuti. Tornitura Tornio 20 minuti PIANIFICAZIONE DELLA PRODUZIONE CON ACCESS E PROJECT 2007 In questo articolo esamineremo come una applicazione Access ed una applicazione Project 2007 possono interagire per creare un piano di produzione

Dettagli

L ERRORE A REGIME NELLE CATENE DI REGOLAZIONE E CONTROLLO

L ERRORE A REGIME NELLE CATENE DI REGOLAZIONE E CONTROLLO L ERRORE A REGIME NELLE CATENE DI REGOLAZIONE E CONTROLLO Per errore a regime si intende quello rilevato dopo un intervallo sufficientemente lungo dal verificarsi di variazioni del riferimento o da eventuali

Dettagli

I SISTEMI QUALITÀ NEI RAGGRUPPAMENTI DI IMPRESE E NEI CONSORZI

I SISTEMI QUALITÀ NEI RAGGRUPPAMENTI DI IMPRESE E NEI CONSORZI I SISTEMI QUALITÀ NEI RAGGRUPPAMENTI DI IMPRESE E NEI CONSORZI DINO BOGAZZI Direttore Qualità e Organizzazione Consorzio Cooperative Costruzioni e Vicepresidente Settore Costruzioni AICQ 1. Premessa Il

Dettagli

Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3. Danilo Caporale [caporale@elet.polimi.it]

Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3. Danilo Caporale [caporale@elet.polimi.it] Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3 Danilo Caporale [caporale@elet.polimi.it] Outline 2 Funzione di trasferimento e risposta in frequenza Diagrammi di Bode e teorema

Dettagli

REGOLATORI STANDARD PID

REGOLATORI STANDARD PID CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm REGOLATORI STANDARD PID Ing. Federica Grossi Tel. 059 2056333 e-mail: federica.grossi@unimore.it

Dettagli

Quando troncare uno sviluppo in serie di Taylor

Quando troncare uno sviluppo in serie di Taylor Quando troncare uno sviluppo in serie di Taylor Marco Robutti October 13, 2014 Lo sviluppo in serie di Taylor di una funzione è uno strumento matematico davvero molto utile, e viene spesso utilizzato in

Dettagli

ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA

ISTITUTO D ISTRUZIONE SUPERIORE L. EINAUDI ALBA ISTITUTO D ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA CLASSE 5H Docenti: Raviola Giovanni Moreni Riccardo Disciplina: Sistemi elettronici automatici PROGETTAZIONE DIDATTICA ANNUALE COMPETENZE FINALI Al termine

Dettagli

2. Limite infinito di una funzione in un punto

2. Limite infinito di una funzione in un punto . Limite infinito di una funzione in un punto Consideriamo la funzione: fx ( ) = ( x ) definita in R {}, e quindi il valore di non è calcolabile in x=, che è comunque un punto di accumulazione per il dominio

Dettagli

SCHEMA TIPICO DEL CONTROLLO DI TEMPERATURA TIPO ON/OFF.

SCHEMA TIPICO DEL CONTROLLO DI TEMPERATURA TIPO ON/OFF. file:controllo ON-OFF.doc Appunti Sistemi Elettrici Automatici Pagina 1 di 6 SCHEMA TIPICO DEL CONTROLLO DI TEMPERATURA TIPO ON/OFF. (fig 1) Ta Vr Ve Vc RESISTENZA ELETTRICA P T Tint RT V Condizionatore

Dettagli

L effetto prodotto da un carico attivo verrà, pertanto, analizzato solo nel caso di convertitore monofase.

L effetto prodotto da un carico attivo verrà, pertanto, analizzato solo nel caso di convertitore monofase. Come nel caso dei convertitori c.c.-c.c., la presenza di un carico attivo non modifica il comportamento del convertitore se questo continua a funzionare con conduzione continua. Nei convertitori trifase

Dettagli

Procedimenti per l adozione di atti di regolazione

Procedimenti per l adozione di atti di regolazione Procedimenti per l adozione di atti di regolazione Risposta alla consultazione Consob sul progetto di regolamento di attuazione dell articolo 23 della legge n. 262/2005 1. Introduzione La Consob ha sottoposto

Dettagli

L ANALISI PER INDICI

L ANALISI PER INDICI L ANALISI PER INDICI 1. Gli indici di bilancio Dopo aver riclassificato il bilancio d esercizio è possibile calcolare partendo dai dati dello Stato Patrimoniale e del Conto economico alcuni indicatori,

Dettagli

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro.

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. PREMESSA: Anche intuitivamente dovrebbe a questo punto essere ormai chiaro

Dettagli

Electrical motor Test-bed

Electrical motor Test-bed EM_Test_bed Page 1 of 10 Electrical motor Test-bed 1. INTERFACCIA SIMULINK... 2 1.1. GUI CRUSCOTTO BANCO MOTORE... 2 1.2. GUIDE... 3 1.3. GUI PARAMETRI MOTORE... 3 1.4. GUI VISUALIZZAZIONE MODELLO 3D MOTORE...

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 14 marzo 2013 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2013.html IL PARI O DISPARI I II S T S (-1, 1) (1, -1)

Dettagli

Università degli studi di Salerno. Project Work svolto da Federico Fabbricatore matr. 0612200629. Traccia

Università degli studi di Salerno. Project Work svolto da Federico Fabbricatore matr. 0612200629. Traccia Università degli studi di Salerno Project Work svolto da Federico Fabbricatore matr. 0612200629 Traccia SINGLE LOOP CUSTOM PROCESS con Process Model = Disturbance Model 1. adotta un controllore PID ideale

Dettagli

CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI

CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI 31 CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI INTRODUZIONE L'obbiettivo di questo capitolo è quello di presentare in modo sintetico ma completo, la teoria della stabilità

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 29-Analisi della potenza statistica vers. 1.0 (12 dicembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli