Disequazioni in una incognita. La rappresentazione delle soluzioni

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Disequazioni in una incognita. La rappresentazione delle soluzioni"

Transcript

1 Disequazioni in una incognita Una disequazione in una incognita è una disuguaglianza tra due espressioni contenenti una variabile (detta incognita) verificata solo per particolari valori attribuirti alla variabile stessa. Ad esempio sono disequazioni: 5x < 6a > 7 3(x +1) 4x. Risolvere una disequazione significa trovare l insieme dei valori che sostituiti all incognita verificano la disuguaglianza. Tali valori si dicono soluzioni della disequazione. La rappresentazione delle soluzioni A differenza delle equazioni in cui le soluzioni sono un numero limitato di valori, le disequazioni sono quasi sempre verificate da infinti valori. In generale le soluzioni delle disequazioni sono sottoinsiemi di R costituiti da tutti i valori che precedono un certo numero, o da quelli che lo seguono, o dai valori compresi fra due numeri. Insiemi di questo tipo vengono detti intervalli. Quando si risolve una disequazione ci sono diversi modi per esprimere la soluzione. Algebrica descrivendo matematicamente gli intervalli utilizzando i simboli = (uguale) (diverso) > (maggiore) < (minore) (maggiore o uguale) (minore o uguale). Grafica utilizzando la retta orientata, i cui punti corrispondono ai numeri reali. Una delle convenzioni è la seguente: una linea continua rappresenta l insieme dei valori considerati; un cerchietto pieno su un punto indica che il valore corrispondente è compreso; un cerchietto vuoto su un punto indica che il valore corrispondente è escluso. L intervallo può essere indicato dalla coppia degli estremi, ordinati dal più piccolo al più grande, separati da un punto e virgola e racchiusi fra parentesi. Il tipo di parentesi indica se gli estremi sono inclusi o esclusi. Una convenzione utilizza le parentesi quadre e tonde: [a;b] indica che gli estremi sono entrambi inclusi; (a;b) indica che gli estremi sono entrambi esclusi; [a;b) indica che l estremo di sinistra è incluso, mentre è escluso quello di destra; (a;b] indica che l estremo di sinistra è escluso, mentre è incluso quello di destra. Un altra convenzione utilizza solo parentesi quadre in questo modo: [a;b] estremi entrambi inclusi; ]a;b[ estremi entrambi esclusi; [a;b[ estremo di sinistra incluso, estremo di destra escluso; ]a;b] estremo di sinistra escluso, estremo di destra incluso. I due simboli - (meno infinito) e + (più infinito) stanno ad indicare che l intervallo non è limitato. Essi non rappresentano alcun numero reale

2 Esempi: < x ( ; 6) < 6 x [ ; 6] 6 < x ( ; 6] 6 x [ ; 6) < 6 6 x > 5 ( 5 ; + ) 5 x [ 5 ; + ) 5 x ( ; 5) < 5 x ( ; 5] x 4 ( ; 4) U ( 4 ; + ) oppure R { 4} ( < x 4) ( x > 6) ( ; 4] U ( 6 ; + ) ( x < 4) ( 4 < x < 6) oppure x < 6 x 4 ( ) ( ) [ ; 4) U ( 4 ; 6) - -

3 Disequazioni equivalenti Due disequazioni si dicono equivalenti quando hanno lo stesso insieme di soluzioni. Per le disequazioni valgono due principi di equivalenza: 1. Principio di addizione: se si addiziona o si sottrae ai due membri di una disequazione uno stesso numero o una stessa espressione, si ottiene una disequazione equivalente. Esempio x 1 < aggiungendo 1 ad entrambi i membri si ottiene x < + 1 cioè x < 3. Principio di moltiplicazione: se si moltiplicano o si dividono i due membri di una disequazione per uno stesso numero: se il numero è positivo, si ottiene una disequazione equivalente; se il numero è negativo, per ottenere una disequazione equivalente occorre invertire il verso della disequazione. Esempio x < 4 dividendo entrambi i membri per si ottiene x 4 < Esempio cioè x < x < 4 dividendo entrambi i membri per si ottiene x 4 > cioè x > Regole pratiche Da un punto di vista operativo: si possono spostare i termini da un membro all altro, purché si cambi loro di segno; si possono eliminare termini uguali presenti in entrambi i membri; si possono moltiplicare o dividere entrambi i membri per uno stesso valore numerico, purché positivo; si può cambiare il segno a tutti i termini della disequazione, purché si cambi anche il verso della disuguaglianza, ad esempio + 5 > x 1 5 < x +1. Risolvere una disequazione non presenta nuove difficoltà, i procedimenti da seguire sono molto simili a quelli usati nel risolvere le equazioni. Occorre porre solamente una attenzione particolare quando il fattore per il quale si moltiplica o si divide è negativo

4 Disequazioni razionali intere Una disequazione razionale intera può essere ricondotta, utilizzando i principi di equivalenza, ad una disequazione in cui il primo membro sia un polinomio e il secondo sia lo zero P(x) > 0 (il segno di disuguaglianza può essere qualsiasi), che si dice forma normale della disequazione. Il grado del polinomio rispetto alla lettera incognita x si dice grado della disequazione. Le disequazioni di primo grado sono dette anche lineari. Esempi 3 x + > 0 è una disequazione di 1 grado x 4 0 è una disequazione di grado Disequazioni di 1 grado intere La forma normale di una disequazione di 1 grado intera è del tipo: ax + b < 0 dove il segno di disuguaglianza può essere qualsiasi. Procedimento di risoluzione algebrica: Liberare la disequazione dagli eventuali denominatori numerici, utilizzando il m.c.d.. Eliminare le eventuali parentesi, effettuando i calcoli. Spostare i termini in modo da avere al primo membro solo i termini in x. Ridurre i termini simili. Se il coefficiente dell incognita x è diverso da zero: Rendere positivo il coefficiente di x cambiando di segno, se necessario, a tutta la disequazione e cambiandone perciò anche il verso. Eliminare il coefficiente della x dividendo tutta la disequazione per il coefficiente della x. Se il coefficiente dell incognita x è zero, cioè la disequazione si è ridotta ad una disuguaglianza: se la disuguaglianza è vera, la disequazione ha come soluzione tutto l insieme dei numeri reali; se la disuguaglianza è falsa, la disequazione è impossibile, cioè non ha soluzioni. Esempi svolti: x 6 > 0 porto il 6 al secondo membro cambiandolo di segno x > 6 divido tutto per (coefficiente di x) x 6 > semplifico x > 3 3 S = ( 3; + ) - 4 -

5 3( x 4) 5( x + 4) svolgo i calcoli per eliminare le parentesi 1 5x riduco i termini simili x 1 > 0 porto -1 al secondo membro cambiandolo di segno x 1 cambio segno a tutta la disequazione girando il verso della disuguaglianza x 1 divido tutto per e semplifico x 6 S = ( ; 6] 6 x + 1 < 7x + 1 separo i termini con l incognita dai termini noti x + 7x < 1+ 1 riduco i termini simili 5 x < 0 divido tutto per 5 e semplifico x < 0 S = ( ; 0) 0 6x 0 cambio segno a tutta la disequazione girando il verso della disuguaglianza 6x 0 divido tutto per 6 e semplifico x 0 S = ( ; 0] x < 0 moltiplico tutto per per eliminare la frazione 6 ( x + 4) < 0 svolgo i calcoli per eliminare la parentesi 6 x 4 < 0 sommo i termini simili x + < 0 sposto il al secondo membro cambiandolo di segno x < cambio segno a tutta la disequazione girando il verso della disuguaglianza x > S = ( ; + ) - 5 -

6 ( x + 1) > x( x + 5) + 4 svolgo i calcoli per eliminare le parentesi x + x + 1 > x + 5x + 4 elimino il termine comune x da entrambi i membri x + 1 > 5x + 4 separo i termini con l incognita dai termini noti x 5x > 1+ 4 sommo i termini simili 3 x > 3 cambio segno a tutta la disequazione girando il verso della disuguaglianza < 3 divido tutto per 3 e semplifico x < 1 S = ( ; 1) 1 x x faccio il minimo comune denominatore, mcm(3 ; ) = ( x + ) 3 ( 1 4x) moltiplico entrambi i membri per 6 per eliminare i 6 6 denominatori x x svolgo i calcoli ( ) ( ) x x separo i termini con l incognita dai termini noti x 8x sommo i termini simili 6x 3 cambio segno a tutta la disequazione girando il verso della disuguaglianza 6x 3 divido tutto per 6 e semplifico 1 x S = 1 1 ; + Casi particolari: x 3( x 1) x svolgo i calcoli x 3 x separo i termini x + x 3 sommo i termini simili 0 3 Quando sparisce l incognita x (cioè ha coefficiente 0) significa che la disuguaglianza non dipende dal valore dell incognita. In questo caso è risultata una disuguaglianza vera, quindi le soluzioni della disequazione è l insieme di tutti i valori reali. ( ; + ) S = oppure S = R - 6 -

7 x 1 > 4( x + 1) x 3 svolgo i calcoli 3 x 1 > 4x + 4 x separo i termini 3 x 4x + x > 1+ 4 sommo i termini simili 0 > 5 E sparita l incognita x quindi la disuguaglianza non dipende dal valore dell incognita. In questo caso è risultata una disuguaglianza falsa, nessun valore soddisfa la disequazione che quindi non ha soluzioni. S = Φ - 7 -

8 Sistemi di disequazioni Un sistema di disequazioni è l'insieme di due o più disequazioni nella stessa incognita che devono essere verificate simultaneamente. La soluzione di un sistema di disequazioni è quindi l insieme delle soluzioni comuni a tutte le disequazioni. Un sistema di disequazioni si risolve risolvendo separatamente ogni singola disequazione e determinando poi l'intersezione delle soluzioni trovate. Esempi x > 4 1 x x + 3 Le disequazioni si possono risolvere singolarmente: Disquazione x Disequazione 1 x > 4 1 x > 8 x > 7 x < 7 Disequazione 3 1 x x + 3 x x x 1 Per poter fare agevolmente l'intersezione tra gli intervalli delle soluzioni conviene utilizzare la rappresentazione grafica. Nello stesso grafico allineare le soluzioni e controllare, per ogni intervallo, dove sono verificate tutte le disequazioni (dove sono presenti tutti i tratti). x x < 7 x 1 no 1 no si 7 no Soluzione: x < 7 S = [ ; 7) La soluzione del sistema è l intervallo dei valori comuni a tutte le singole soluzioni. Anche per quanto riguarda gli estremi degli intervalli, si prendono solo quelli presenti in tutte le soluzioni

9 + 0 x + 5 > 0 x + 3 > 0 Risolvo le singole disequazioni: Disequazione x 3 Grafico delle soluzioni: Disequazione x + 5 > 0 x > 5 Disequazione 3 x + 3 > 0 x > 3 3 x > x 3 x > 5 3 x > no 5 no 3 si no 3 Soluzione: 3 < x 3 3 S = ; 3 0 x 1 0 Disquazione 1 0 x 0 Soluzione: x 0 x ± 1 Disquazione x 1 0 x 1 x ±1 no 1 no 0 si 1 si Soluzione: ( 0 x < 1) ( x > 1) oppure ( x 0) ( x 1) S = ( 0 ;1) U ( 1; + ) - 9 -

10 x 8 < > 1+ 4x 0 Risolvo le singole disequazioni: Disequazione 1 Disequazione Disequazione 3 x 8 < 0 x < 8 x < 4 3 x + 6 > 1+ 0 > 5 sempre vera 4x 0 x 0 Grafico delle soluzioni: x < 4 R x 0 si 0 no 4 no Soluzione: S = x 0 ( ; 0] 6x + 3 > 0 x > x + 3 x x x + < 0 Risolvo le singole disequazioni: Disequazione 1 6 x + 3 > 0 6x > 3 1 x > Disequazione x > x > 5 sempre falsa Poiché una delle disequazioni è sempre falsa, cioè non ha soluzioni, anche il sistema non ha soluzioni. In questo caso è inutile risolvere le altre disequazioni del sistema

Le disequazioni di primo grado

Le disequazioni di primo grado Le disequazioni di primo grado Cos è una disequazione? Una disequazione è una disuguaglianza tra due espressioni algebriche (una delle quali deve contenere un incognita) che può essere vera o falsa a seconda

Dettagli

Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler

Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler Equazioni e disequazioni M.Simonetta Bernabei, Horst Thaler A(x)=0 x si chiama incognita dell equazione. Se oltre all incognita non compaiono altre lettere l equazione si dice numerica, altrimenti letterale.

Dettagli

Prontuario degli argomenti di Algebra

Prontuario degli argomenti di Algebra Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.

Dettagli

DISEQUAZIONI ALGEBRICHE

DISEQUAZIONI ALGEBRICHE UNITÀ. DISEQUAZIONI ALGEBRICHE. Generalità e definizioni sulle diquazioni algebriche.. Diquazioni di primo grado.. Diquazioni di condo grado.. Diquazioni di grado superiore al condo.. Diquazioni fratte.

Dettagli

Equazioni di Primo grado

Equazioni di Primo grado Equazioni di Primo grado Definizioni Si dice equazione di primo grado un uguaglianza tra due espressioni algebriche verificata solo per un determinato valore della variabile x, detta incognita. Si chiama

Dettagli

EQUAZIONI DI PRIMO GRADO

EQUAZIONI DI PRIMO GRADO Cognome... Nome... Equazioni di primo grado EQUAZIONI DI PRIMO GRADO Un'equazione di primo grado e un'uguaglianza tra due espressioni algebriche di primo grado, vera solo per alcuni valori che si attribuiscono

Dettagli

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari Secondo modulo: Algebra Obiettivi 1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari 2. risolvere equazioni intere e frazionarie di primo grado, secondo grado, grado superiore

Dettagli

MODULO 3 TITOLO EQUAZIONI E DISEQUAZIONI ALGEBRICHE DI PRIMO GRADO FINALITA OBIETTIVI

MODULO 3 TITOLO EQUAZIONI E DISEQUAZIONI ALGEBRICHE DI PRIMO GRADO FINALITA OBIETTIVI MODULO TITOLO FINALITA EQUAZIONI E DISEQUAZIONI ALGEBRICHE DI PRIMO GRADO Risoluzione delle equazioni e delle disequazioni algebriche di primo grado con una o più incognite e loro applicazioni PREREQUISITI

Dettagli

DISEQUAZIONI ALGEBRICHE

DISEQUAZIONI ALGEBRICHE DISEQUAZIONI ALGEBICHE Classe II a.s. 00/0 prof.ssa ita Schettino INTEVALLI DI Impariamo cosa sono gli intervalli di numeri reali Sono sottoinsiemi continui di numeri reali e possono essere limitati o

Dettagli

NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO)

NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO) NUMERI RELATIVI NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO) L INSIEME DEI NUMERI RELATIVI Z COMPRENDE I NUMERI INTERI POSITIVI E NEGATIVI RAPPRESENTAZIONE SULLA RETTA DEI

Dettagli

Le equazioni di I grado

Le equazioni di I grado Le equazioni di I grado ITIS Feltrinelli anno scolastico 007-008 R. Folgieri 007-008 1 Le equazioni abbiamo una uguaglianza tra due quantità (espressioni algebriche, perché nei due termini ci possono essere

Dettagli

Le eguaglianze algebriche: Identità ed Equazioni

Le eguaglianze algebriche: Identità ed Equazioni Le eguaglianze algebriche: Identità ed Equazioni Le eguaglianze algebriche possono essere di due tipi 1 - Identità - Equazioni L eguaglianza è verificata da qualsiasi valore attribuito alle lettere L eguaglianza

Dettagli

LE DISEQUAZIONI LINEARI

LE DISEQUAZIONI LINEARI LE DISEQUAZIONI LINEARI Per ricordare H Una disequazione si rappresenta come una disuguaglianza fra due espressioni algebriche A e B ; essa assume dunque la forma A Per risolvere una disequazione

Dettagli

Matematica per le scienze sociali Equazioni e disequazioni. Francesco Lagona

Matematica per le scienze sociali Equazioni e disequazioni. Francesco Lagona Matematica per le scienze sociali Equazioni e disequazioni Francesco Lagona University of Roma Tre F. Lagona (francesco.lagona@uniroma3.it) 1 / 19 Outline 1 Equazioni algebriche 2 Equazioni di primo grado

Dettagli

1 Disquazioni di primo grado

1 Disquazioni di primo grado 1 Disquazioni di primo grado 1 1 Disquazioni di primo grado Si assumono assodate le regole per la risoluzione delle equazioni lineari Ricordando che una disuguaglianza è una scrittura tra due espressioni

Dettagli

Appunti di matematica per le Scienze Sociali Parte 1

Appunti di matematica per le Scienze Sociali Parte 1 Appunti di matematica per le Scienze Sociali Parte 1 1 Equazioni 1.1 Definizioni preliminari 1.1.1 Monomi Si definisce monomio ogni prodotto indicato di fattori qualsiasi, cioè uguali o diseguali, numerici

Dettagli

Disequazioni - ulteriori esercizi proposti 1

Disequazioni - ulteriori esercizi proposti 1 Disequazioni - ulteriori esercizi proposti Trovare le soluzioni delle seguenti disequazioni o sistemi di disequazioni:. 5 4 >. 4. < 4. 4 9 5. 9 > 6. > 7. < 8. 5 4 9. > > 4. < 4. < > 9 4 Non esitate a comunicarmi

Dettagli

Lezione 2. Percentuali. Equazioni lineari

Lezione 2. Percentuali. Equazioni lineari Lezione 2 Percentuali Equazioni lineari Percentuali Si usa la notazione a % per indicare a/100 Esempio: 25%= 25/100=0.25 30% = 30/100=0.30 Inoltre: Applicare la percentuale a % a un numero b è come moltiplicare

Dettagli

Le equazioni. 2x 3 = x + 1. Definizione e caratteristiche

Le equazioni. 2x 3 = x + 1. Definizione e caratteristiche 1 Definizione e caratteristiche Chiamiamo equazione l uguaglianza tra due espressioni algebriche, che è verificata solo per particolari valori che vengono attribuiti alle variabili. L espressione che si

Dettagli

1 Fattorizzazione di polinomi

1 Fattorizzazione di polinomi 1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente

Dettagli

Equazioni di primo grado

Equazioni di primo grado Equazioni di primo grado 15 15.1 Identità ed equazioni Analizziamo le seguenti proposizioni: a ) cinque è uguale alla differenza tra sette e due ; b ) la somma di quattro e due è uguale a otto ; c ) il

Dettagli

Diseguaglianze e disequazioni. definizioni proprietà tecniche risolutive

Diseguaglianze e disequazioni. definizioni proprietà tecniche risolutive Diseguaglianze e disequazioni definizioni proprietà tecniche risolutive Che cosa è una diseguaglianza? Una diseguaglianza è una relazione di ordine che intercorre fra numeri. Le possibili relazioni sono:

Dettagli

Premessa. retta orientata diseguaglianze diverso intervallo di estremi a e b 1) a < x < b aperto N.B.: 2) a x b chiuso N.B.: 3) a x < b semichiuso

Premessa. retta orientata diseguaglianze diverso intervallo di estremi a e b 1) a < x < b aperto N.B.: 2) a x b chiuso N.B.: 3) a x < b semichiuso Premessa. Ci sono problemi, alcuni appartenenti anche alla vita quotidiana, che possono essere risolti attraverso una disequazione, ossia un espressione algebrica formata da due membri, contenenti un incognita,

Dettagli

LE EQUAZIONI (in rosso i risultati)

LE EQUAZIONI (in rosso i risultati) LE EQUAZIONI (in rosso i risultati) 1. Completa. a. L identità è una...uguaglianza... fra due...espressioni letterali... che è sempre...vera..., qualunque sia... il valore delle lettere che vi figurano

Dettagli

Le equazioni e i sistemi di primo grado

Le equazioni e i sistemi di primo grado Le equazioni e i sistemi di primo grado prof. Roberto Boggiani Isiss Marco Minghetti 1 settembre 009 Sommario In questo documento verrà trattato in modo semplice e facilmente comprensibile la teoria delle

Dettagli

CONTENUTI della I parte

CONTENUTI della I parte CONTENUTI della I parte In questa prima parte ci proponiamo un ripasso di argomenti sicuramente svolti nelle scuole superiori e quindi noti a tutti DISEQUAZIONI I grado II grado intere fratte intere fratte

Dettagli

Richiami di aritmetica

Richiami di aritmetica Richiami di aritmetica I numeri naturali L insieme dei numeri naturali, che si indica con N, comprende tutti i numeri interi maggiori di zero. Operazioni fondamentali OPERAZIONE SIMBOLO RISULTATO TERMINI

Dettagli

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA LOGARITMI L uguaglianza: a x = b nella quale a e b rappresentano due numeri reali noti ed x un incognita, è un equazione

Dettagli

Sistemi di 1 grado in due incognite

Sistemi di 1 grado in due incognite Sistemi di 1 grado in due incognite Problema In un cortile ci sono polli e conigli: in totale le teste sono 7 e zampe 18. Quanti polli e quanti conigli ci sono nel cortile? Soluzione Indichiamo con e con

Dettagli

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di mar. 15 Settembre 2015 (1 e 3 ora) Disciplina: MATEMATICA

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di mar. 15 Settembre 2015 (1 e 3 ora) Disciplina: MATEMATICA IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario Lezione di mar. 15 Settembre 2015 (1 e 3 ora) Disciplina: MATEMATICA Esercizi di ripasso 1. 4 5>0 4>5 > : > 2. 4 5>0 +3 0 > 3 > : 3 Soluzione

Dettagli

LE EQUAZIONI Conoscenze

LE EQUAZIONI Conoscenze LE EQUAZIONI Conoscenze 1. Completa. a. L identità è una... fra due... che è sempre..., qualunque sia... b. L equazione è una... fra due... che è... solo per... c. Due equazioni si dicono equivalenti se...

Dettagli

Equazioni lineari con due o più incognite

Equazioni lineari con due o più incognite Equazioni lineari con due o più incognite Siano date le uguaglianze: k 0; x + y = 6; 3a + b c = 8. La prima ha un termine incognito rappresentato dal simbolo letterale k; la seconda ha due termini incogniti

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA EQUAZIONI E DISEQUAZIONI DI SECONDO GRADO Dr. Erasmo Modica erasmo@galois.it EQUAZIONI DI SECONDO GRADO Definizione: Dicesi

Dettagli

I RADICALI QUADRATICI

I RADICALI QUADRATICI I RADICALI QUADRATICI 1. Radici quadrate Definizione di radice quadrata: Si dice radice quadrata di un numero reale positivo o nullo a, e si indica con a, il numero reale positivo o nullo (se esiste) che,

Dettagli

Equazioni di primo grado

Equazioni di primo grado Riepilogo Multimediale secondo le tecniche della Didattica Breve Equazioni di primo grado realizzato con materiale reperibile on line www.domenicoperrone.net Distillazione su: LE EQUAZIONI OBIETTIVI COMPRENDERE

Dettagli

Equazioni di primo grado

Equazioni di primo grado Equazioni di primo grado Si dicono equazioni le uguaglianze tra due espressioni algebriche che sono verificate solo per particolari valori di alcune lettere, dette incognite. In altre parole, un'uguaglianza

Dettagli

L insieme dei numeri razionali Q Prof. Walter Pugliese

L insieme dei numeri razionali Q Prof. Walter Pugliese L insieme dei numeri razionali Q Prof. Walter Pugliese Concetto di frazione Abbiamo visto che la divisione non è un operazione interna né in N né in Z. L esigenza di renderla sempre possibile ci porterà

Dettagli

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di DEFINIZIONE Espressione algebrica costituita dal prodotto tra una parte numerica (coefficiente) e una o più variabili e/o costanti (parte letterale). Variabili e costanti possono comparire elevate a potenza

Dettagli

Equazioni di secondo grado

Equazioni di secondo grado Equazioni di secondo grado Un equazione di secondo grado può sempre essere ridotta nella forma: a + bx + c 0 forma normale con a 0. Le lettere a, b, c sono rappresentano i coefficienti. Solo b e c possono

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequazioni di secondo grado. Disequazioni Definizione: una disequazione è una relazione di disuguaglianza tra due espressioni. Detti p() e g() due polinomi definiti in un insieme A, una disequazione

Dettagli

Calcolo letterale. è impossibile (*) x y. per x = -25; impossibile per y= Impossibile. 15 y

Calcolo letterale. è impossibile (*) x y. per x = -25; impossibile per y= Impossibile. 15 y Calcolo letterale Calcolo letterale e operazioni - L uso delle lettere al posto dei numeri si utilizza per scrivere proprietà e regole dandone una valenza più generale rispetto ad un restrittivo esempio

Dettagli

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler Calcolo algebrico Maria Simonetta Bernabei & Horst Thaler CALCOLO LETTERALE Perché? E opportuno rappresentare i numeri con lettere dell alfabeto per fare affermazioni che valgono indipendentemente dal

Dettagli

Equazioni di primo grado ad un incognita

Equazioni di primo grado ad un incognita Equazioni di primo grado ad un incognita Identità Si dice IDENTITÀ un uguaglianza fra due espressioni letterali che è verificata per ogni valore attribuito alle lettere. 2 = 2 è un identità =3 2 3=2 3

Dettagli

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Risoluzione grafica di un equazione

Dettagli

Matematica per esami d idoneità o integrativi della classe 1 ITI

Matematica per esami d idoneità o integrativi della classe 1 ITI UNI EN ISO 9001:2008 I.I.S. PRIMO LEVI Torino ISTITUTO TECNICO - LICEO SCIENTIFICO - LICEO SCIENTIFICO Scienze Applicate LICEO SCIENTIFICO SPORTIVO Contenuti di Matematica per esami d idoneità o integrativi

Dettagli

Prof. I. Savoia. SISTEMI LINEARI E RETTA (VERSIONE PROVVISORIA NON ULTIMATA)

Prof. I. Savoia. SISTEMI LINEARI E RETTA (VERSIONE PROVVISORIA NON ULTIMATA) SISTEMI LINEARI E RETTA 1 Proprietà e rappresentazione grafica dei sistemi lineari. I sistemi lineari in due incognite sono insiemi di due equazioni di primo grado, nei qualiciascuna di esse rappresenta

Dettagli

B6. Sistemi di primo grado

B6. Sistemi di primo grado B6. Sistemi di primo grado Nelle equazioni l obiettivo è determinare il valore dell incognita che verifica l equazione. Tale valore, se c è, è detto soluzione. In un sistema di equazioni l obiettivo è

Dettagli

A1. Calcolo in Q. A1.1 Tabelline e potenze. A1.2 Scomposizione in fattori di numeri interi MCD e mcm

A1. Calcolo in Q. A1.1 Tabelline e potenze. A1.2 Scomposizione in fattori di numeri interi MCD e mcm A. Calcolo in Q Questo capitolo tratta argomenti che solitamente sono già stati svolti alle scuole medie ed elementari. Tali argomenti sono necessari per affrontare il programma delle scuole superiori.

Dettagli

I sistemi di equazioni di primo grado

I sistemi di equazioni di primo grado I sistemi di equazioni di primo grado RIPASSIAMO INSIEME SISTEMI DI EQUAZIONI DI PRIMO GRADO Un sistema di equazioni di primo grado in due (o più) incognite è l insieme di due (o più) equazioni di primo

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

B5. Equazioni di primo grado

B5. Equazioni di primo grado B5. Equazioni di primo grado Risolvere una equazione significa trovare il valore da mettere al posto dell incognita (di solito si utilizza la lettera x) in modo che l uguaglianza risulti verificata. Ciò

Dettagli

3 Equazioni e disequazioni.

3 Equazioni e disequazioni. 3 Equazioni e disequazioni. 3. Equazioni. Una equazione algebrica è un uguaglianza tra espressioni letterali soddisfatta per alcuni valori attribuiti alle lettere che vi compaiono. Tali valori sono detti

Dettagli

IDENTITÀ ED EQUAZIONI

IDENTITÀ ED EQUAZIONI IDENTITÀ ED EQUAZIONI Una identità è una eguaglianza tra due espressioni letterali che è verificata per qualsiasi valore attribuito alle lettere contenute nell espressione. Ad esempio le seguenti eguaglianze

Dettagli

Geometria analitica di base (seconda parte)

Geometria analitica di base (seconda parte) SAPERE Al termine di questo capitolo, avrai appreso: il concetto di luogo geometrico la definizione di funzione quadratica l interpretazione geometrica di un particolare sistema di equazioni di secondo

Dettagli

I numeri relativi. Definizioni Rappresentazione Operazioni Espressioni Esercizi. Materia: Matematica Autore: Mario De Leo

I numeri relativi. Definizioni Rappresentazione Operazioni Espressioni Esercizi. Materia: Matematica Autore: Mario De Leo I numeri relativi Definizioni Rappresentazione Operazioni Espressioni Esercizi Materia Matematica Autore Mario De Leo Definizioni I numeri relativi sono i numeri preceduti dal simbolo (positivi) o dal

Dettagli

Disequazioni goniometriche

Disequazioni goniometriche Disequazioni goniometriche Si definiscono disequazioni goniometriche le disequazioni nelle quali l angolo incognito è espresso mediante funzioni goniometriche (seno, coseno, tangente etc.). Per le disequazioni

Dettagli

Equazioni di primo grado. Equazione. Es. 2x = 3x - x + 3 metto x = = se risolvo ottengo 5 = 5

Equazioni di primo grado. Equazione. Es. 2x = 3x - x + 3 metto x = = se risolvo ottengo 5 = 5 01 Equazione Equazione: prese due quantità che contengono una lettera x (non conosciuta), queste quantità vengono scritte una a destra ed una a sinistra mettendo un segno = (uguale) tra loro. x + 1 = 3x

Dettagli

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n Si tratta del quadrato di un binomio. Si ha pertanto (x m y n ) 2 = x 2m 2x m y n + y 2n 4. La divisione (x 3 3x 2 + 5x 2) : (x 2) ha Q(x) = x 2 x + 3 e R = 4 Dalla divisione tra i polinomi risulta (x

Dettagli

Elementi sulle diseguaglianze tra numeri relativi

Elementi sulle diseguaglianze tra numeri relativi Elementi sulle diseguaglianze tra numeri relativi Dati due numeri disuguali a e b risulta a>b oppure ao oppure a-b

Dettagli

Esercizi sulle Disequazioni

Esercizi sulle Disequazioni Esercizi sulle Disequazioni Esercizio Trovare le soluzioni delle seguenti disequazioni:.).).).) ).) ) ).).7) 8.8).) Esercizio Trovare le soluzioni delle seguenti disequazioni tratte dal secondo parziale

Dettagli

Sistemi di equazioni di secondo grado

Sistemi di equazioni di secondo grado 1 Sistemi di equazioni di secondo grado Risoluzione algebrica Riprendiamo alcune nozioni che abbiamo già trattato in seconda, parlando dei sistemi di equazioni di primo grado: Una soluzione di un'equazione

Dettagli

Esercizi sulle equazioni logaritmiche

Esercizi sulle equazioni logaritmiche Esercizi sulle equazioni logaritmiche Per definizione il logaritmo in base a di un numero positivo x, con a > 0 e a 1, è l esponente che occorre dare alla base a per ottenere il numero x. In simboli log

Dettagli

DEFINIZIONE. L unità frazionaria 1n (con n 0) rappresenta una sola delle n parti uguali in cui è stato diviso l intero.

DEFINIZIONE. L unità frazionaria 1n (con n 0) rappresenta una sola delle n parti uguali in cui è stato diviso l intero. L unità frazionaria DEFINIZIONE. L unità frazionaria n con n 0 rappresenta una sola delle n parti uguali in cui è stato diviso l intero. Sono unità frazionarie: ognuna di esse indica che l intero è stato

Dettagli

LE EQUAZIONI DI SECONDO GRADO

LE EQUAZIONI DI SECONDO GRADO LE EQUAZIONI DI SECONDO GRADO Definizione: un equazione è di secondo grado se, dopo aver applicato i principi di equivalenza, si può scrivere nella forma, detta normale: ax + bx + c 0!!!!!con!a 0 Le lettere

Dettagli

CONTENUTI. Ci proponiamo un ripasso di argomenti sicuramente svolti nelle scuole superiori e quindi noti a tutti. I grado II grado

CONTENUTI. Ci proponiamo un ripasso di argomenti sicuramente svolti nelle scuole superiori e quindi noti a tutti. I grado II grado CONTENUTI Ci proponiamo un ripasso di argomenti sicuramente svolti nelle scuole superiori e quindi noti a tutti EQUAZIONI I grado II grado intere fratte intere fratte EQUAZIONI ALGEBRICHE generalità Dicesi

Dettagli

Richiami di aritmetica(2)

Richiami di aritmetica(2) Richiami di aritmetica() Frazioni definizioni, operazioni, espressioni Numeri decimali Rapporti e proporzioni Percentuali Materia Matematica Autore Mario De Leo Le frazioni La frazione è un operatore che

Dettagli

Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi.

Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi. Frazioni algebriche 14 14.1 Definizione di frazione algebrica Diamo la seguente definizione: Definizione 14.1. Si definisce frazione algebrica un espressione del tipo A B polinomi. dove A e B sono Osserviamo

Dettagli

ESERCIZI DI PREPARAZIONE E CONSOLIDAMENTO PER I FUTURI STUDENTI DEL PRIMO LEVI

ESERCIZI DI PREPARAZIONE E CONSOLIDAMENTO PER I FUTURI STUDENTI DEL PRIMO LEVI ESERCIZI DI PREPARAZIONE E CONSOLIDAMENTO PER I FUTURI STUDENTI DEL PRIMO LEVI si campa anche senza sapere che cos è un equazione, senza sapere suonare uno strumento musicale, senza conoscere il nome del

Dettagli

L INSIEME DEI NUMERI RELATIVI

L INSIEME DEI NUMERI RELATIVI L INSIEME DEI NUMERI RELATIVI Scegli il completamento corretto.. L insieme dei numeri reali R si indica con: a. R = Q I b. R = Q I c. R = Q Z I. L insieme Z: a. è costituito dallo zero e da tutti i numeri

Dettagli

Equazioni di I e II grado

Equazioni di I e II grado Corso di Laurea: Biologia Tutor: Marta Floris, Max Artizzu PRECORSI DI MATEMATICA Equazioni di I e II grado 1 Introduzione ai polinomi Un incognita è un simbolo letterale che sta a simboleggiare un valore

Dettagli

espressione letterale valore numerico Monomio: forma normale coefficiente parte letterale Monomi simili: Monomi opposti: Grado di un monomio:

espressione letterale valore numerico Monomio: forma normale coefficiente parte letterale Monomi simili: Monomi opposti: Grado di un monomio: Calcolo letterale Espressione letterale Un espressione letterale è un insieme di numeri e lettere legati dai simboli delle operazioni. Il valore numerico di un espressione letterale è il risultato numerico

Dettagli

Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA

Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione = f(), l'insieme di tutti i valori reali che assegnati

Dettagli

Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio Soluzioni degli esercizi. 2(x 2) 2(x 1) + 2 = 3x

Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio Soluzioni degli esercizi. 2(x 2) 2(x 1) + 2 = 3x Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio 2015 - Soluzioni degli esercizi Risolvere le seguenti equazioni. Dove è necessario, scrivere le condizioni di accettabilità e usarle

Dettagli

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi.

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi. NUMERI RAZIONALI Q Nell insieme dei numeri naturali e nell insieme dei numeri interi relativi non è sempre possibile effettuare l operazione di divisione. Infatti, eseguendo la divisione 7 2 si ottiene

Dettagli

Le disequazioni. BM4 pag Esercizi pag es ) Situazioni al massimo

Le disequazioni. BM4 pag Esercizi pag es ) Situazioni al massimo Le disequazioni. BM4 pag. 28-35 Esercizi pag. 97 98 es. 68 73. 1) Situazioni. a) Con la mia compagnia telefonica C1 pago 20 cts al minuto. Acquistando una tessera del valore di 60 CHF, determina: i) Quanti

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 03 - I Numeri Reali Anno Accademico 2015/2016 M. Tumminello,

Dettagli

ESERCIZIARIO DI MATEMATICA

ESERCIZIARIO DI MATEMATICA Dipartimento di rete matematica ESERCIZIARIO DI MATEMATICA PER PREPARARSI ALLA SCUOLA SUPERIORE progetto Continuità SCUOLA SECONDARIA DI I GRADO Istituti comprensivi: Riva Riva Arco Dro Valle dei Laghi

Dettagli

MATEMATICA PROPEDEUTICA PER LO STUDIO DELLE FUNZIONI GSCATULLO

MATEMATICA PROPEDEUTICA PER LO STUDIO DELLE FUNZIONI GSCATULLO MATEMATICA PROPEDEUTICA PER LO STUDIO DELLE FUNZIONI GSCATULLO 1 Propedeutica alle Funzioni Premessa Questo documento vuole essere una preparazione per lo studio delle funzioni, comprendendo tutte quelle

Dettagli

3. (Da Medicina 2003) Moltiplicando i due membri di un'equazione per il numero -1, le soluzioni dell'equazione che si ottiene:

3. (Da Medicina 2003) Moltiplicando i due membri di un'equazione per il numero -1, le soluzioni dell'equazione che si ottiene: 1 EQUAZIONI 1. (Da Veterinaria 2006) L equazione di secondo grado che ammette per soluzioni x1 = 3 e x2 = -1/ 2 è: a) 2x 2 + (2 3-2)x - 6 = 0 b) 2x 2 - (2 3-2)x - 6 = 0 c) 2x 2 - (2 3-2)x + 6 = 0 d) 2x

Dettagli

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Le equazioni Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Definizione e caratteristiche Chiamiamo equazione l uguaglianza tra due espressioni algebriche,

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Maria Margherita Obertino mariamargherita.obertino@unito.it Davide Ricauda davide.ricauda@unito.ii Obiettivi del precorso: rapido ripasso degli argomenti di base, già trattati nelle

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI

CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE I.T.C.G. L. EINAUDI LICEO SCIENTIFICO G. BRUNO CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI ANNO SCOLASTICO 2016/2017 RICHIAMI DI ARITMETICA

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 5.5 esercizi 9 Per trovare la seconda equazione ragioniamo così: la parte espropriata del primo terreno è x/00, la parte espropriata del secondo è y/00 e in totale sono stati espropriati 000 m, quindi

Dettagli

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0;

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0; La parabola è una particolare conica definita come è una curva aperta, nel senso che non può essere contenuta in alcuna superficie finita del piano; è simmetrica rispetto ad una retta, detta ASSE della

Dettagli

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico Classe 1 A AFM anno scolastico 2014-2015 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le potenze, le espressioni

Dettagli

Università degli Studi di Palermo Facoltà di Medicina e Chirurgia Anno Accademico 2011/12. Corso di Fisica(0) per il recupero dell OFA

Università degli Studi di Palermo Facoltà di Medicina e Chirurgia Anno Accademico 2011/12. Corso di Fisica(0) per il recupero dell OFA Università degli Studi di Palermo Facoltà di Medicina e Chirurgia Anno Accademico 2011/12 Corso di Fisica(0) per il recupero dell OFA Tutor: Dott. Stefano Panepinto Simbologia matematica Simbologia matematica

Dettagli

1. Funzioni reali di una variabile reale

1. Funzioni reali di una variabile reale Di cosa parleremo In questo capitolo introduttivo ci occuperemo di funzioni reali di una variabile reale; precisamente, daremo dei criteri per la determinazione del campo di esistenza delle varie tipologie

Dettagli

Studio del segno di un prodotto

Studio del segno di un prodotto Studio del segno di un prodotto Consideriamo una disequazione costituita dal prodotto di più binomi, ad esempio: ( x 1 )( 4 x)( x + 3) > 0 Per risolverla possiamo studiare il segno del prodotto al variare

Dettagli

Unità Didattica N 2 Le funzioni

Unità Didattica N 2 Le funzioni Unità Didattica N Le funzioni 1 Unità Didattica N Le funzioni 05) Definizione di applicazione o funzione o mappa. 06) Classificazione delle funzioni numeriche 07) Estremi di una funzione, funzioni limitate.

Dettagli

LE EQUAZIONI DI PRIMO GRADO. Lezione 3. Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica

LE EQUAZIONI DI PRIMO GRADO. Lezione 3. Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica a.a. 2007/2008 Docente Ing. Andrea Ghedi Lezione 3 LE EQUAZIONI DI PRIMO GRADO L uguaglianza In matematica

Dettagli

Istituto d Istruzione Superiore Francesco Algarotti

Istituto d Istruzione Superiore Francesco Algarotti Classe: 1 M Docente: Antonio M. Povelato CAPITOLO 1 - Insiemi e numeri naturali Concetti primitivi di insieme e di elemento. Relazioni di appartenenza, inclusione e eguaglianza tra insiemi. Rappresentazione

Dettagli

LA FRAZIONE. Una frazione può essere: propria: se il numeratore è minore del denominatore; Es: 3 5

LA FRAZIONE. Una frazione può essere: propria: se il numeratore è minore del denominatore; Es: 3 5 LA FRAZIONE Una frazione è un modo per esprimere una quantità basandosi sulla divisione di un oggetto in un certo numero di parti della stessa dimensione. ES: Il denominatore: indica il numero totale di

Dettagli

EQUAZIONI E PROBLEMI: GUIDA D'USO

EQUAZIONI E PROBLEMI: GUIDA D'USO P.1\5- EQUAZIONI E PROBLEMI: GUIDA D'USO - Prof. I.Savoia, Maggio 2011 EQUAZIONI E PROBLEMI: GUIDA D'USO EQUAZIONI LINEARI INTERE: PROCEDURA RISOLUTIVA Per risolvere le equazioni numeriche intere, si può

Dettagli

PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA

PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA PROGRAMMAZIONE DISCIPLINARE PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA CLASSE PRIMA IPC LEGENDA COMPETENZE 1) Utilizzare le tecniche e le procedure del calcolo aritmetico

Dettagli

Definizione 1.6 (di grado di una equazione) Si dice grado di una equazione intera ridotta in forma normale il massimo esponente dell incognita.

Definizione 1.6 (di grado di una equazione) Si dice grado di una equazione intera ridotta in forma normale il massimo esponente dell incognita. 1 Le equazioni Consideriamo espressioni algebriche contenenti una sola incognita, che indicheremo con x, le quali verranno indicate con i simboli f(x), g(x), h(x),.... Il valore assunto dall espressione

Dettagli

Programma svolto a.s. 2015/1016 Classe 1G Materia: Matematica Docente: De Rossi Francesco

Programma svolto a.s. 2015/1016 Classe 1G Materia: Matematica Docente: De Rossi Francesco Classe 1G Materia: Matematica Docente: De Rossi Francesco - Matematica multimediale. Bianco Vol 1 Autori: M. Bergamini, G. Barozzi Casa Editrice: Zanichelli codice ISBN 978-88-08-53467-5 Capitolo 1 Insiemi

Dettagli

Richiami di aritmetica (1)

Richiami di aritmetica (1) Richiami di aritmetica (1) Operazioni fondamentali e loro proprietà Elevamento a potenza e proprietà potenze Espressioni aritmetiche Scomposizione: M.C.D. e m.c.m Materia: Matematica Autore: Mario De Leo

Dettagli

Le operazioni fondamentali con i numeri relativi

Le operazioni fondamentali con i numeri relativi SINTESI Unità Le operazioni fondamentali con i numeri relativi Addizione La somma di due numeri relativi concordi è il numero relativo che ha lo stesso segno degli addendi e come valore assoluto la somma

Dettagli

FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA

FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione f(x), l'insieme di tutti i valori reali che assegnati alla variabile indipendente x permettono

Dettagli