SCHEDA DIDATTICA N 5
|
|
- Alberta Mazza
- 2 anni fa
- Visualizzazioni
Transcript
1 FACOLTA DI INGEGNEIA COSO DI LAUEA IN INGEGNEIA CIVILE COSO DI IDOLOGIA POF. PASQUALE VESACE SCHEDA DIDATTICA N 5 MOMENTI DELLE VAIABILI CASUALI E STIMA DEI PAAMETI A.A. 0-3
2 Momet delle varabl casual La dstrbuzoe d robabltà d ua varable casuale, dscreta (o cotua), è descrtta modo comleto dalla fuzoe d rartzoe assocata, o dalla corrsodete fuzoe (d destà) d robabltà. Noostate cò, sesso s è teressat a cooscere soltato alcu asett arzal della dstrbuzoe d robabltà d, sece quado s voglao cofrotare dverse dstrbuzo. Soo utl questo caso valor d stes che descrvoo asett secfc della dstrbuzoe d robabltà rferta a, ad esemo la oszoe o la dsersoe sulla retta reale. Valore atteso o valore medo S chama valore atteso (valor medo o meda) d ua varable casuale dscreta (o cotua), la meda de suo ossbl valor, esat co le relatve robabltà (o fuzoe d destà d robabltà), ovvero: E [ ] = xp( = x ) er v.c. dscrete E[ ] = xf ( x) dx er v.c. cotue Usualmete s dca E[] =. Esemo Tzo e Cao gocao al seguete goco. S laca ua moeta, se esce testa Tzo aga a Cao euro, se esce croce è Cao a dover dare a Tzo la stessa somma. Se è la varable casuale che descrve l guadago d Tzo, s vede subto che è ua varable dscreta che assume solo due valor: =- el caso esca testa (ha erso euro) e = el caso esca croce. Idcata co la robabltà che esca testa, s vuole determare l guadago atteso d Tzo. Tale quattà vale: E[] = (-) + ()( - ) = - Qud, E[] rsulta ostvo, ullo o egatvo se, rsettvamete, < /, = / o > /. Pertato, el caso cu la moeta sa regolare (=/) l guadago atteso d Tzo è ullo. Esemo S cosder la varable casuale esoezale. Pochè altrove, co λ > 0 ua costate reale, s ottee che: E[ ] = xf ( x) dx = λx λx λx xλe dx = x e dx = [ xe ] avedo alcato l tegrazoe er art. d dx f x ( x) = λe λ, er x 0, e ulla 0 e λx dx = 0 λ λx [ e ] 0 = λ
3 Varaza Molto sesso accade che dstrbuzo d robabltà avet lo stesso valore atteso, dfferscao sesblmete tra loro. Può essere utle allora trodurre dc grado d esrmere, forma stetca, ulteror caratterstche della dstrbuzoe d robabltà d, quale la dsersoe de ossbl valor d toro al valor medo. Esemo 3a Cosderamo acora l caso, gà defto ell esemo, del laco d ua moeta. Questa volta erò la osta goco è costtuta da 000 euro. Ache questo caso, defta Z la v.c. che descrve l guadago, questa uò assumere due valor, -000 e 000, cascuo co robabltà ar a ½ se la moeta è be tarata. I queste codzo E[Z], vale 0. Questo secodo goco erò è molto ù rschoso: fatt, el rmo caso s oteva al massmo erdere euro alla volta, ora è ossble erdere 000 euro! Eure er ua moeta regolare E[Z]=E[] = 0. La dffereza fodametale tra due esem cosderat è che metre assume valor vc alla rora meda, Z assume valor lota da E[Z] Pertato E[] rareseta meglo d quato o facca E[Z] er Z. L'dce ù comuemete utlzzato er raresetare la dsersoe d ua v.c. rsetto alla sua meda è la varaza. Data ua varable casuale dscreta o cotua co valore atteso E[], s chama varaza d, e la s dca co σ, o ache co Var[], la quattà Var[]=E[( - E[]) ] Esemo 3b Sa l guadago che s ha gocado a testa e croce utado euro e Z quello che s ha utado 000 euro. Per ua moeta be tarata s ha P[ = -] = P[ = ] = P[Z = -000] =P[Z = 000] = / e E[] = E[Z] = 0. Per quato rguarda la varaza d s ottee: Var[] =E[( - E[]) ] = E[ ] = metre er quella d Z s ha Var[Z] =E[(Z - E[Z]) ] = E[Z ] = {,} x x P( = x) = ( ) + = 3 3 x = x) = ( 0 ) + ( 0 ) P( { 0 3, 0 3 } z = 0 6 Come gà atcato Var[Z] è (molto) ù grade d Var[] ad dcare che Z s dscosta da E[Z] molto ù d quato o facca da E[]. Il valore atteso e la varaza d ua varable casuale costtuscoo cas artcolar de momet d ua v.c, che sarao d seguto brevemete rchamat.
4 Momet della v.c. Sa ua varable casuale e sa N +. S chama mometo d orde d la quattà = E [ ], ossa l valore atteso della varable casuale trasformata g() =. er v.c. dscrete ( = P = x )) = E [ ] = x E[ ] = x f ( x) = dx er v.c. cotue La meda corrsode, qud, al mometo rmo d = Momet della v.c. Scarto Tramte l mometo rmo è ossble defre Y, v.c. scarto rsetto alla meda: Y=( -). Il mometo d orde d Y, varable casuale trasformata scarto, rsulta. ( ( x ) ' = E[ Y ] = E[( ) ] = er v.c. dscrete ' E[ Y ] = E[( ) ] = ( x ) f ( x) = dx er v.c. cotue Le quattà defte soo ache dcate come momet cetral d orde d rsetto a. Tal momet raresetao ua msura della varabltà della dstrbuzoe rsetto alla meda. Il ù mortate, come vsto, è l mometo che s ottee er =, coè la varaza: ' = σ = E [( ) ] = Var[ ] Osservazo - Il mometo del rmo orde della varable casuale scarto vale semre 0. Ifatt, E [( )] = E[ ] E[ ] = = 0 - Se è ua varable casuale degeere, ovvero se assume u uco valore co robabltà, la varaza è ulla, metre è tato ù elevata quato maggore è la dsersoe de valor d attoro a. - E mmedato verfcare che Var[] 0. - S dmostra che è ossble esrmere la varaza rsetto a momet d : Var [ ] = E[( ) ] = E[ + ] = E[ ] E[ ] + = E [ ] + = E[ ] ovvero la varaza è uguale al mometo secodo (E[ ]= ) meo l mometo rmo al quadrato ( = ) della varable. =
5 Esemo 4 S cosder la varable casuale dscreta che rorta l umero degl est testa tre lac d ua moeta regolare. I valor che uò assumere soo {0,,, 3} e s ha: P( = 0) = P( = 3) = /8, P( = ) = P( = ) = 3/8. E facle verfcare che: 3 3 = E[ ] = = = E[ 3 3 ] = = 3 3 Qud, utlzzado la regola er l calcolo della varaza da momet d sora rortata, s ottee che Var [ ] = = 3/4. Al medesmo rsultato s guge alcado drettamete la defzoe d varaza come mometo del secodo orde della varable scarto Var [ ] = = 3/ La radce quadrata o egatva della varaza, dcata co σ, è detta devazoe stadard o scarto quadratco medo. Ach'essa costtusce ua msura della dsersoe d attoro a, sesso referta alla varaza quato è esressa ella stessa utà d msura della varable casuale. S uò, oltre, defre la quattà σ/, chamata coeffcete d varazoe. Pochè l coeffcete d varazoe o dede dall utà d msura co cu vee studato l feomeo, uò rsultare utle er cofrotare la dsersoe d due o ù varabl casual. Momet della v.c. Stadardzzata Data ua varable casuale, co = E[] e σ =Var[] è ossble defre la varable casuale trasformata Z tale che: Z =. σ Z è detta varable casuale stadardzzata, ed è caratterzzata dall essere svcolata dal valor medo e dedete dalla varabltà msurata dalla varaza. S uò effett dmostrare che E[Z] = 0 e Var[Z]=. D seguto soo rortate l esresso de momet d orde della v.c. stadardzzata Z: x = E[ Z ] = E = er v.c. dscrete σ σ
6 x = E[ Z ] = E = f ( x) dx er v.c. cotue σ σ Tra momet della v.c. stadardzzata alcu assumoo artcolare teresse el forre dcazo sulla forma della dstrbuzoe. I artcolare, l coeffcete d asmmetra 3, sesso dcato co l smbolo γ, ed l coeffcete d curtos 4 3, sesso dcato co l smbolo γ. Osservazo - Il coeffcete d asmmetra forsce dcazo rsetto alla smmetra della dstrbuzoe rsetto alla meda. 3 γ = 3 = E σ L dce è dedete dall utà d msura della v.c. e uò assumere valor egatv, ull o ostv. E ullo se la dstrbuzoe è smmetrca rsetto a, è egatvo se la dstrbuzoe è asmmetrca egatva (coda a sstra), è ostvo se la dstrbuzoe è asmmetrca ostva (coda a destra). - Il coeffcete d curtos msura l grado d aattmeto della dstrbuzoe rsetto alla dstrbuzoe ormale. 4 γ = 4 3 = E 3 σ Ache questo dce è dedete dall utà d msura e uò essere egatvo, ullo o ostvo. Se γ è ullo, s dce che s dstrbusce modo abbastaza smle ad ua ormale co stessa meda e varaza d ; se è maggore d zero, s dce che la dstrbuzoe è letocurtca, coè ù autta della dstrbuzoe ormale; se è more d zero, s dce che la dstrbuzoe è latcurtca, coè ù atta della corrsodete dstrbuzoe ormale.
7 Momet v.c. orgara v.c. scarto Y=- v.c. stadardzzata Z = σ Defzoe Geerale = E[ ] Valore medo: = = E[ ] ' r r = E[( ) Varaza: = σ = E[( ' = E σ Asmmetra: 3 = γ Curtos: 4 3 = γ ] ) ] Formule er v.c. dscrete Formule er v.c. cotue = x x f ( x) ( x ) ' = = x σ = dx ' ( x ) f ( x) = dx x = f ( x) dx σ Altr dc stetc d oszoe Moda Data ua varable casuale, s chama moda della dstrbuzoe d robabltà d, o ù semlcemete moda d, l valore reale er cu è massma la fuzoe (d destà) d robabltà, coè tale che: f (x mo ) f (x), er og x. E oortuo osservare che la moda o è ecessaramete uca e uò ache o esstere. Se esste dvdua valor ù robabl, se è dscreta, o valor el cu toro rcadoo gl evet ù robabl, se è cotua. Nel caso cu s ha u uco massmo, la dstrbuzoe (d destà) d robabltà d è detta umodale; se c soo due o ù ut d massmo, s arla d dstrbuzo bmodal o multmodal. a Data ua varable casuale cotua, s chama medaa della dstrbuzoe d robabltà d, o ù semlcemete medaa d, e s dca co x 0.5, l valore er l quale la fuzoe d rartzoe vale 0.5. La defzoe d medaa uò essere terretata come u caso artcolare della defzoe ù geerale d quatle.
8 Quatl Sa α (0;) e ua varable casuale cotua. S chama quatle (o frattle) α-esmo della dstrbuzoe d robabltà d, o ù semlcemete quatle α-esmo d, e s dca co x α, l valore x α tale che la fuzoe d rartzoe rsulta F (x α )=α. I questo cotesto, x α è terretable come quel valore reale che rartsce la massa utara d robabltà rferta alla varable casuale, lascado ua orzoe ar ad α alla rora sstra e ar a -α alla rora destra. Soltamete α è esresso term decmal o ercetual e s arla allora d decl o d ercetl. La medaa, qud, costtusce l 50-esmo ercetle o, aalogamete, l'α-esmo quatle, co α =0.5. I quatl x α, co α = /4; /; 3/4, soo ache chamat quartl. La dstaza tra l rmo ed l terzo quartle, msurata co la dffereza x 3/4 - x /4, sesso è utlzzata come msura stetca della dsersoe.
9 MOMENTI DELLE PINCIPALI DISTIBUZIONI DI POBABILITÀ Dstrbuzo dscrete La dstrbuzoe d Beroull Parametr: 0 Momet Varaza Coeffcete d varazoe Coeffcete d asmmetra Kurtos (-) ( ) 6 3 La dstrbuzoe Bomale Parametr:, 0 ; 0 Momet Varaza Coeffcete d varazoe Coeffcete d asmmetra Kurtos 6 6 3
10 La dstrbuzoe Geometrca Parametr: 0 Momet ( ) Varaza Coeffcete d varazoe La dstrbuzoe Bomale Negatva Parametr:, k 0 ; k Momet k( ) Varaza Coeffcete d varazoe k k La dstrbuzoe d Posso Parametr: Momet Varaza Coeffcete d varazoe Coeffcete d asmmetra Kurtos 3
11 La dstrbuzoe Uforme dscreta Parametr: Momet N N N Varaza Dstrbuzo cotue La dstrbuzoe Uforme Cotua o ettagolare Parametr: Momet a, b a b Varaza b a La dstrbuzoe Normale Parametr:, Momet Varaza Coeffcete d varazoe Coeffcete d asmmetra 0 Kurtos 3
12 La dstrbuzoe LogNormale Parametr: y, y Momet Varaza e e y y y y y y e La dstrbuzoe Esoezale Parametr: >0 Momet Varaza Coeffcete d asmmetra Kurtos 9 La dstrbuzoe Gamma Parametr:, >0; >0 Momet Varaza Coeffcete d asmmetra Kurtos 3+6/
13 La dstrbuzoe d Gumbel Parametr:, >0; >0 Momet Varaza 6 Coeffcete d varazoe Coeffcete d asmmetra.4
14 Stma de arametr Metodo de momet Da u uto d vsta cocettuale l metodo de momet è la tecca ù semlce d stma de arametr d ua dstrbuzoe. No rchede la coosceza della dstrbuzoe della oolazoe d cu s vogloo stmare arametr, ma solo delle relazo tra quest ed momet della oolazoe. La logca del metodo cosste ell otzzare che momet della oolazoe cocdao co corrsodet momet camoar, otteut dalle osservazo x, x,, x. Suoamo che ua v.c. abba ua certa fuzoe (d destà) d robabltà f (x;θ, θ,, θ ) cu θ, θ,, θ soo arametr cogt da stmare. Se s cosderao rm momet della oolazoe, coè: x f ( x; θ, θ,..., θ ) = dx el caso d v.c. cotua o, el caso d v.c. dscreta, = x co =,,,, quest soo geerale fuzoe de arametr cogt: = θ, θ,..., θ ). ( x Idcado momet stmat dal camoe come M = co =,,,, è ossble = utlzzare l seguete sstema d equazo cogte er stmare arametr θ, θ,, θ : M... M = ( θ, θ,..., θ ) = ( θ, θ,..., θ ) Esemo 5 Sa x, x,, x u camoe casuale estratto da u oolazoe ormale co meda e varaza σ ; quest ultm cocdoo co arametr θ e θ da stmare co l metodo de momet. cordado che σ = e =. Le equazo del metodo de momet dvetao: M M da cu: = = = = σ +
15 x = M = = σ = M M = x = = x La meda e la varaza della oolazoe rsultao qud cocdet co la meda e la varaza camoara. Metodo della Massma verosmglaza Sa x, x,, x l camoe d ua v.c. che assumamo rovere da ua dstrbuzoe co fuzoe d destà f (x; θ) el caso d v.c. cotua (er brevtà s è dcato co θ l vettore de arametr θ, θ,, θ che la caratterzzao), o dstrbuzoe d robabltà (x; θ) el caso d v.c. dscreta. Nell otes che le osservazo sao dedet, ua msura della robabltà d avere otteuto roro quel camoe da ua oolazoe co la dstrbuzoe cosderata, è forta dalla seguete fuzoe: L(θ; x,x,, x ) = f ( x ; θ) f ( x ; θ) f (x ; θ) = ( ) L(θ; x,x,, x ) = ( x ; θ) ( x ; θ) (x ; θ)= ( ) = = x f x ;θ se è cotua ;θ se è dscreta che è detta fuzoe d verosmglaza Il metodo della massma verosmglaza cosste ello sceglere come valor θˆ de arametr quell che massmzzao L(θ; x,x,, x ). L(θˆ ; x,x,, x ) L(θ; x,x,, x ) S osserv che, el caso d dstrbuzo dscrete, L(θ; x,x,, x ) è roro la robabltà d avere otteuto l camoe x,x,, x. Nel caso d dstrbuzo cotue, er le qual la robabltà d u artcolare seme fto d valor è comuque ulla, L è arossmatvamete roorzoale alla robabltà dell estrazoe d u camoe d elemet, y,y,, y, co y [x - ε, x + ε], =,,..., e co ε oortuamete ccolo. Se s ha u solo arametro, θ = θ, lo stmatore d massma verosmglaza è soluzoe dell equazoe: dl( θ ) dθ = 0. Se la fuzoe ha arametr, θ =θ, θ,, θ, allora l uto che rede massma la fuzoe d verosmglaza è ua soluzoe delle equazo:
16 L( θ,..., θ ) = 0 θ L( θ,..., θ ) = 0 θ L( θ,..., θ ) = 0 θ Osservazo A dffereza del metodo de momet, quello della massma verosmglaza mlca la coosceza della dstrbuzoe della v.c. d cu s vogloo stmare arametr. L(θ) e log L(θ) hao loro massm er lo stesso set d arametr θ, ed a volte è ù facle trovare l massmo del logartmo della fuzoe d verosmglaza. Esemo 6 Suoamo d voler stmare co l metodo della massma verosmglaza l valore del arametro λ d ua dstrbuzoe esoezale. La fuzoe d verosmglaza rsulta: L λx λx λx ( λ; x, x,..., x ) ( λe )( λe )...( λe ) = La dervata d L ( ; x, x, ) dl( λ) λ x = λ e λ xe dλ uguaglado a zero s ottee: λ =. x λ x = λ e = λ x = λ e λ..., x rsetto a λ è: λ x
17 STIMA DEI PAAMETI DELLE PINCIPALI DISTIBUZIONI La dstrbuzoe Normale Le stme de arametr e della dstrbuzoe ormale, sa oerado co l metodo de momet sa oerado co l metodo della massma verosmglaza, s ottegoo medate le relazo: ˆ x ˆ s dove x e s soo rsettvamete la meda camoara e lo scarto quadratco medo camoaro. La dstrbuzoe LogNormale Le stme de arametr y e y della dstrbuzoe logormale, sa oerado co l metodo de momet sa oerado co l metodo della massma verosmglaza, s ottegoo medate le relazo: ˆ y x y ˆ y s y dove x y e s y soo rsettvamete la meda camoara e lo scarto quadratco medo camoaro della varable Y=log. La dstrbuzoe Esoezale La stma del arametro della dstrbuzoe esoezale, sa oerado co l metodo de momet sa oerado co l metodo della massma verosmglaza, s ottee medate la relazoe: ˆ x La dstrbuzoe Gamma ) Metodo de Momet s ˆ x ; ˆ x s ) Metodo della Massma Verosmglaza Il sstema d equazo che ermette d determare arametr della dstrbuzoe Gamma è: ˆ x / ˆ log( x) j log( x j ) log d dove ˆ = fuzoe dgamma, log e è la umerostà del camoe. d ˆ ˆ
18 La dstrbuzoe d Gumbel ) Metodo de Momet 6s ˆ ; ˆ ˆ x ) Metodo della Massma Verosmglaza Il sstema d equazo che ermette d determare arametr della dstrbuzoe d Gumbel è: x x x e e e x e x ˆ ˆ ˆ ˆ ˆ ˆ
Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici
Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,
La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100)
ESERCIZIO Il Moblty Maager d u azeda ha rlevato l umero d chlometr percors settmaalmete da 60 mpegat. I dat soo rportat ello schema successvo. 67 4 93 58 66 87 5 53 86 8 7 47 56 70 54 86 48 43 60 58 5
frazione 1 n dell ammontare complessivo del carattere A x
La Cocetrazoe Il cocetto d cocetrazoe rguarda l modo cu l ammotare totale d u carattere quattatvo trasferble s rpartsce tra utà statstche. Tato pù tale ammotare è addesato u sottoseme d utà, tato pù s
Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti
Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da
Lezione 4. La Variabilità. Lezione 4 1
Lezoe 4 La Varabltà Lezoe 4 1 Defzoe U valore medo, comuque calcolato, o è suffcete a rappresetare l seme delle osservazo effettuate (o l seme de valor assut dalla varable statstca); è ecessaro qud affacare
b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso
ESERCIZIO Co rfermeto a dvers modell d auto del medesmo segmeto d mercato e cldrata s soo rlevat dat sul prezzo d lsto mglaa d euro (X), la veloctà massma dcharata km/h (Y) ed l peso kg (Z). I dat soo
Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno
Idc d Poszoe Gl dc s poszoe soo msure stetche ( valor caratterstc ) che descrvoo la tedeza cetrale d u feomeo La tedeza cetrale è, prma approssmazoe, la modaltà della varable verso la quale cas tedoo a
Elementi di Statistica descrittiva Parte III
Elemet d Statstca descrttva Parte III Paaa Idce d asmmetra (/) Idce d forma che esprme l grado d asmmetra (skewess) d ua dstrbuzoe. Sao u, u,,u osservazo umerche. Chamamo dce d asmmetra l espressoe: c
Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione?
Prma dstrb. Secoda dstrb. Totale Meda 0 5 8 35 85 63 63/5 =3,6 5 5 38 40 45 63 63/5 =3,6 Due dstrbuzo, stessa meda ma quale delle due la meda rappreseta, stetzza meglo la stuazoe? Le mede stetzzao la dstrbuzoe,
DI IDROLOGIA TECNICA PARTE II
FACOLTA DI INGEGNERIA Laurea Specalstca Igegera Cvle NO Guseppe T Aroca CORSO DI IDROLOGIA TECNICA PARTE II Aals e prevsoe statstca delle varabl drologche Lezoe X: Scelta d u modello probablstco Aals e
ESERCIZI SU DISTRIBUZIONI CAMPIONARIE
Corso d Ifereza Statstca Eserctazo A.A. 009/0 ESERCIZI SU DISTRIBUZIONI CAMPIONARIE Eserczo I cosumator d marmellata ua data popolazoe soo l 40%. Determare la probabltà che, per u campoe beroullao d =
I percentili e i quartili
I percetl e quartl I percetl soo quelle modaltà che dvdoo la dstrbuzoe ceto part d uguale umerostà. I quartl soo quelle modaltà che dvdoo la dstrbuzoe quattro part d uguale umerostà. Il prmo quartle Q
Statistica descrittiva per l Estimo
Statstca descrttva per l Estmo Paolo Rosato Dpartmeto d Igegera Cvle e Archtettura Pazzale Europa 1-34127 Treste. Itala Tel: +39-040-5583569. Fax: +39-040-55835 80 E-mal: paolo.rosato@da.uts.t 1 A cosa
Università di Cassino Esercitazioni di Statistica 1 del 5 Febbraio Dott. Mirko Bevilacqua
Uverstà d Casso Eserctazo d Statstca del 5 Febbrao 00. Dott. Mrko Bevlacqua ESERCIZIO N A partre dalla dstrbuzoe semplce del carattere peso rlevata su 0 studet del corso d Mcroecooma peso: { 4, 59, 65,
Il modello di regressione lineare semplice (1) Studio della dipendenza riepilogo
Studo della dpedeza replogo Abbamo vsto due msure d assocazoe tra caratter: ) msure d assocazoe basate sull dpedeza dstrbuzoe ( χ, V d Cramer) possoo essere applcate a coppe d caratter qualuque (ache etrambe
Attualizzazione. Attualizzazione
Attualzzazoe Il problema erso alla captalzzazoe prede l ome d attualzzazoe Abbamo ua operazoe fazara elemetare e dato l motate M dobbamo determare l corrspodete captale zale C L'attualzzazoe è la operazoe
COMPLEMENTI DI STATISTICA. L. Greco, S. Naddeo
COMPLEMENTI DI STATISTICA L. Greco, S. Naddeo INDICE. GENERALITA SULLA VERIFICA DI IPOTESI. Itroduzoe 4. I test d sgfcatvtà 5.3 Gl tervall d cofdeza 7.4 Le potes alteratve.5 La poteza del test 5.6 Il test
LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in due gruppi
Le mede Italo Nofro LE MEDIE Statstca medca Le mede (o valor med) soo dc d tedeza cetrale e costtuscoo u modo semplce ed mmedato per stetzzare u solo valore dat eterogee raccolt el collettvo oggetto d
MISURE DI TENDENZA CENTRALE. Psicometria 1 - Lezione 2 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek
MISURE DI TENDENZA CENTRALE Pscometra 1 - Lezoe Lucd presetat a lezoe AA 000/001 dott. Corrado Caudek 1 Suppoamo d dsporre d u seme d msure e d cercare u solo valore che, meglo d cascu altro, sa grado
Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua
Uverstà d Casso Eserctazo d Statstca del 26 Febbrao 200 Dott. Mrko Bevlacqua ESERCIZIO Cosderado le class d altezza 60 6; 6 70; 70 78; 78 86 per u collettvo d 20 persoe, s può affermare che l ALTEZZA dpede
In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi.
7. Redte I questo captolo edremo solamete u caso d redta, che useremo po per geeralzzare le redte e dedurre tutt gl altr cas. S defsce redta ua successoe d captal (rate) tutte da pagare, o tutte da rscuotere,
STATISTICA DESCRITTIVA
COSIDERAZIOI PRELIMIARI SULLA STATISTICA La Statstca trae suo rsultat dall osservazoe de feome che c crcodao. Gl stess feome per essere oggetto d statstca devoo essere adeguatamete umeros modo tale che
LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in
Le mede Italo Nofro LE MEDIE Le mede (o valor med) soo dc d tedeza cetrale e costtuscoo u modo semplce ed mmedato per stetzzare u solo valore dat eterogee raccolt u collettvo Statstca medca Le mede Le
Incertezza di misura
Icertezza d msura Itroduzoe e rcham Come gà detto rsultat umerc ottebl dalle msurazo soo trsecamete caratterzzat da aleatoretà è duque sempre ecessaro stmare ua fasca d valor attrbubl come msura al msurado;
Lezione 24. Campi finiti.
Lezoe 4 Prerequst: Lezo 0,,, 3 Rfermet a test: [FdG] Sezoe 86; [H] Sezoe 79; [PC] Sezoe 63; Cam ft Nelle lezo recedet abbamo vsto dvers esem d cam ft: ess erao tutt del to oure [ x ]/( f ( x )), dove f
valido se i dati E dato da max(x i )-min(x i )
Idc d Dspersoe o d Varabltà: Rage e DIQ No basta la coosceza d quale è la poszoe meda de dat statstc, serve ache cooscere quale è la varabltà de dat raccolt attoro al valore medo. Allo scopo d troducoo
Gli indici sintetici Forma. Gli indici sintetici. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma
Uverstà d Macerata Facoltà d Sceze Poltche - Ao accademco 01-013013 Gl dc d varabltà Crsta Davo Gl dc stetc Qualche cosderazoe Tedeza cetrale Varabltà La scelta dell dce d tedeza cetrale/poszoe dpede dal
Capitolo 6 Gli indici di variabilità
Captolo 6 Gl dc d varabltà ommaro. Itroduzoe. -. Il campo d varazoe. - 3. La dffereza terquartle. - 4. Gl scostamet med. -. La varaza, lo scarto quadratco medo e la devaza. - 6. Le dffereze mede. - 7.
Programmazione Non Lineare: Algoritmi Evolutivi Ing. Valerio Lacagnina. METODI di PNL
Programmazoe No Leare: Algortm Evolutv Ig. Valero Lacaga Programmazoe o leare: metodche rsolutve METODI d PNL INDIRETTI DIRETTI Codzo ecessare Sstema d vcol Algortm I metod drett forscoo soltato codzo
Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura
Damca Modello damco ello spazo de gut: relazoe tra le coppe d attuazoe a gut ed l moto della struttura smulazoe del moto aals e progettazoe delle traettore progettazoe del sstema d cotrollo progetto de
Variabilità = Informazione
Varabltà e formazoe Lo studo d u feomeo ha seso solo se esso s preseta co modaltà/testà varabl da u soggetto all altro. Ad esempo, se dobbamo studare l reddto ua certa regoe è ecessaro osservare utà statstche
Design of experiments (DOE) e Analisi statistica
Desg of epermets (DOE) e Aals statstca L utlzzo fodametale della metodologa Desg of Epermets è approfodre la coosceza del sstema esame Determare le varabl pù sgfcatve; Determare l campo d varazoe delle
ALCUNI ELEMENTI DI STATISTICA DESCRITTIVA
ALCUNI ELEMENTI DI STATISTICA DESCRITTIVA The last step of reaso s to ackowledge that there s a fty of thgs that go beyod t. B. Pascal La Statstca ha come scopo la coosceza quattatva de feome collettv.
ELABORAZIONE DEI DATI
ELABORAZIONE DEI DATI QUESTA FASE SERVE AD ESPRIMERE IN MODO SINTETICO I RISULTATI DELL INDAGINE SVOLTA CALCOLANDO DEGLI INDICI: VALORI MEDI INDICI DI VARIABILITA I valor med Il valore medo è u valore
Lezione 1. I numeri complessi
Lezoe Prerequst: Numer real: assom ed operazo. Pao cartesao. Fuzo trgoometrche. I umer compless Nell'attuale teora de umer compless cofluscoo due fodametal dee, ua artmetca, l'altra geometrca. La prma,
INDICI DI VARIABILITA
INDICI DI VARIABILITA Defzoe d VARIABILITA': la varabltà s può defre come l'atttude d u carattere ad assumere dverse modaltà quattatve. La varabltà è la quattà d dspersoe presete e dat. Idc d varabltà
Algoritmi e Strutture Dati. Alberi Binari di Ricerca
Algortm e Strutture Dat Alber Bar d Rcerca Alber bar d rcerca Motvazo gestoe e rcerche grosse quattà d dat lste, array e alber o soo adeguat perché effcet tempo O) o spazo Esemp: Matemeto d archv DataBase)
Istogrammi e confronto con la distribuzione normale
Istogramm e cofroto co la dstrbuzoe ormale Suppoamo d effettuare per volte la msurazoe della stessa gradezza elle stesse codzo (es. la massa d u oggetto, la tesoe d ua pla, la lughezza d u oggetto, ecc.):
Gli indici sintetici Forma. Un caso studio. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma
Uverstà d Macerata Dpartmeto d Sceze Poltche, della Comucazoe e delle Relaz. Iterazoal Gl dc d varabltà Crsta Davo Gl dc stetc Qualche cosderazoe Tedeza cetrale Varabltà La scelta dell dce d tedeza cetrale/poszoe
PARTE TERZA: L EQUILIBRIO PARAMETRICO
Aldo Motesao PRINCIPI DI ANALISI ECONOMICA PARTE TERZA: L EUILIBRIO PARAMETRICO Ca. 10 L ANALISI DELL EUILIBRIO PARZIALE Doo aver aalzzato le due otes fodametal della teora ecoomca, secodo cu le azo degl
Teoria dei Fenomeni Aleatori AA 2012/13
La Legge de Grad Numer Cosderata ua sere d prove rpetute co p par alla probabltà d successo ua sgola prova, l rapporto tra l umero d success K ed l umero d prove tede a p quado tede ad fto: K P p ε per
CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto
CORSO DI LAUREA I ECOOMIA AZIEDALE Metod Statstc per le decso d mpresa (ote ddattche) Bruo Chadotto 4 STATISTICA DESCRITTIVA I questo captolo s rtrovao espost, ua prospettva emprca, molt de cocett trodott
Variabili casuali ( ) 1 2 n
Varabl casual &. Valore edo. Data ua varable casuale = ( x,x 2, K,x ) (.) cu valor assuoo le rspettve probabltà P = p,p, K,p (.2) s defsce valore edo la quattà ( ) 2 = [ ] T M = M = P = xp (.3) Sgfcato:
Statistica degli estremi
Statstca degl estrem Rcham d probabltà e statstca Il calcolo della probabltà d u eveto è drettamete coesso co: - la COOSCEZA ICOMPLETA dell eveto stesso; - l assuzoe d u RISCHIO, calcolato come la probabltà
corrispondenza della generica i-esima modalità. Indicando con #(.) la cardinalità di un insieme, per esse si ha, rispettivamente:
Corso d Statstca docete: Domeco Vstocco Le requeze cumulate S cosder ua varable qualtatva ordale X Per essa, oltre alle requeze assolute, relatve e ercetual, è ossble calcolare ache le requeze cumulate
LE MEDIE. Le Medie. Medie razionali. Medie di posizione
LE MEDIE RAZIONALI LE MEDIE Msure stetche trodotte per valutare aspett compless e global d ua dstrbuzoe d u feomeo X medate u solo umero reale costruto modo da dsperdere al mmo le formazo su dat orgar.
Esercitazione 5 del corso di Statistica (parte 1)
Eserctazoe 5 del corso d Statstca (parte 1) Dott.ssa Paola Costat 8 Novembre 011 I alcue crcostaze s poe u maggor teresse sullo studo della varabltà tra le sgole utà statstche, puttosto che lo studo della
Caso studio 10. Dipendenza in media. Esempio
09/03/06 Caso studo 0 S cosder la seguete dstrbuzoe degl occupat Itala secodo l umero d ore settmaal effettvamete lavorate e l settore d attvtà (cfr. Itala cfre, Ao 008, pag. 7 ): Ore lavorate Settore
dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che:
Eserctazoe VI: Il teorema d Chebyshev Eserczo La statura meda d u gruppo d dvdu è par a 73,78cm e la devazoe stadard a 3,6. Qual è la frequeza relatva delle persoe che hao ua statura superore o ferore
L assorbimento e lo strippaggio
assorbmeto e lo strppaggo Coloa a stad d ulbro (coloa a patt Il calcolo d ua coloa d assorbmeto/strppaggo d questo tpo parte dal blaco d matera. Chamado e le portate d lqudo A e d gas C relatve a due compoet
Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0)
Massm e Mm Fuzo d pù varabl Massm e Mm Dezoe: Sa z = (, ) ua uzoe deta u seme E U puto (, E s dce puto d massmo (rsp mmo) relatvo per (, ) se esste δ > tale che ((, ) B((, ), δ ) E (, ) (, ) (rsp (, )
Modelli di Flusso e Applicazioni: Andrea Scozzari. a.a. 2013-2014
Modell d Flusso e Applcazo: Adrea Scozzar a.a. 203-204 2 Il modello d Flusso d Costo Mmo: Problem d Flusso A u l V b c P S A ), ( m ) ( ) ( ), ( Problem rcoducbl a problem d Flusso Il problema del trasporto
MEDIA DI Y (ALTEZZA):
Uverstà d Casso Eserctazo d Statstca del 4 Marzo 0 Dott. Mrko Bevlacqua ESERCIZIO Su u collettvo d dvdu soo stat rlevat caratter X Peso( kg) e Altezza ( cm) otteamo la seguete dstrbuzoe d frequeza coguta:
«MANLIO ROSSI-DORIA»
«MANLIO ROSSI-DORIA» Collaa a cura del Cetro per la Formazoe Ecooma e Poltca dello Svluppo Rurale e del Dpartmeto d Ecooma e Poltca Agrara dell Uverstà d Napol Federco II 6 Nella stessa collaa:. Qualtà
CORSO DI STATISTICA I (Prof.ssa S. Terzi) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI. Esercitazione n 3
ORSO I STTISTI I (Prof.ssa S. Terz) STUIO ELLE ISTRIUZIONI SEMPLII Eserctazoe 3 3. ata la seguete dstrbuzoe de reddt: lass d reddto Reddter Reddto medo 6.500-7.500 4 6.750 7.500-8.500 7.980 8.500-9.500
Analisi di dati vettoriali. Direzioni e orientazioni
Aals d dat vettoral Drezo e oretazo I tal caso, dat soo msurat term d agol e spesso soo rfert al ord geografco (statstca crcolare) Soo rappresetat su ua crcofereza Dat d drezoe: flusso ua specfca drezoe,
LEZIONI DI STATISTICA MEDICA
LEZIONI DI STATISTICA MEDICA A.A. 00/0 - Idc d dspersoe Sezoe d Epdemologa & Statstca Medca Uverstà degl Stud d Veroa La dspersoe o varabltà è la secoda mportate caratterstca d ua dstrbuzoe d dat. Essa
La volatilità storica, le misure di rischio asimmetrico e la tracking error volatility
Ecooma degl termedar fazar Lors Nadott, Claudo Porzo, Daele Prevat Copyrght 00 The McGraw-Hll Compaes srl Approfodmeto 4.3w La msurazoe del rscho (a cura d Atoo Meles Uverstà Partheope) La volatltà storca,
SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1
SIMULAZIONE DI ESAME ESERCIZI Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero ESERCIZIO. Alcu autor hao studato se la depressoe possa essere assocata a dc serologc d process autommutar
CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto
CORO DI LAUREA IN ECONOMIA AZIENDALE Metod tatstc per le decso d mpresa (Note ddattche) Bruo Chadotto 7. Teora del test delle potes I questo captolo s affrota l problema della verfca d potes statstche
Calcolo delle Probabilità: esercitazione 4
Argometo: Probabltà classca Lbro d testo pag. 1-7 e 7-77 e varable casuale uforme dscreta NB: asscurars d cooscere le defzo, le propretà rchamate e le relatve dmostrazo quado ecessaro Eserczo 1 S cosder
17. FATICA AD AMPIEZZA VARIABILE
7. FIC D MPIEZZ VRIBILE G. Petrucc Lezo d Costruzoe d Macche Spesso compoet struttural soo soggett a store d carco elle qual ccl d fatca hao ampezza varable (fg.), ad esempo ccl co tesoe alterata a (o
Facoltà di Farmacia Corso di Matematica con elementi di Statistica Docente: Riccardo Rosso
Facoltà d Farmaca Corso d Matematca co elemet d Statstca Docete: Rccardo Rosso Statstca descrttva: l coeffcete d cocetrazoe d G Quado s vuole rpartre ua certa somma d dearo, v soo due suddvso che soo,
Esercizi su Rappresentazioni di Dati e Statistica
Esercz su Rappresetazo d Dat e Statstca Eserczo Esprmete forma percetuale e traducete u aerogramma dat della seguete tabella: Nord Cetro Sud Isole Totale 5 58 866 0 95 36 4 35 30 6 79 56 57 399 08 Soluzoe
Vantaggi della stratificazione
Lez. 4 0/03/05 etd Statstc per l aret - F. Bartlucc Uverstà d Urb Vata della stratfcaze I prcpal vata del campamet stratfcat s: mlramet ell effceza del stmatre del ttale e della meda; pssbltà d stmare
ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO.
elazoe d laboratoro d Fsca corso M-Z Laboratoro d Fsca del Dpartmeto d Fsca e Astrooma dell Uverstà degl Stud d Cataa. Scala Stefaa. AGOMENTO: MSUA DELLA ESSTENZA ELETTCA CON L METODO OLT-AMPEOMETCO. NTODUZONE:
STATISTICA Lezioni ed esercizi
Uverstà d Toro QUADERNI DIDATTICI del Dpartmeto d Matematca MARIA GARETTO STATISTICA Lezo ed esercz Corso d Laurea Botecologe A.A. / Quadero # Novembre M. Garetto - Statstca Prefazoe I questo quadero
Obiettivi. Statistica. Variabili casuali. Spazio di probabilità. Introduzione
Obettv Statstca Itroduzoe Scopo d quest lucd è d forre cocett base d statstca utl azeda per: la raccolta de dat, la progettazoe degl espermet, l terpretazoe de rsultat. Spazo d probabltà Spazo d probabltà:
2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza
Uverstà degl Stud d Ferrara 2014-2015 Corso TFA - A048 Matematca applcata Ddattca della matematca applcata all ecooma e alla faza 11 marzo 2015 Apput d ddattca della Matematca fazara Redte, ammortamet
Il campionamento e l inferenza
e l fereza Popolazoe Campoe Da dat osservat medate scelta campoara s guge ad affermazo che rguardao la popolazoe da cu ess soo stat prescelt Uverstà d Macerata Facoltà d Sceze Poltche - Ao accademco Ao
Le misure di variabilità
arlea Pllat - Semar d Statstca (SVIC) "Le msure d varabltà e cocetrazoe" La varabltà L atttude d u carattere quattatvo X ad assumere valor dfferet tra le utà compoet u seme statstco è chamata varabltà
ammontare del carattere posseduto dalle i unità più povere.
Eserctazoe VII: La cocetrazoe Eserczo Determare l rapporto d cocetrazoe d G del fatturato medo (espresso. d euro) d 8 mprese e rappresetare la curva d Lorez: 97 35 39 52 24 72 66 87 Eserczo apporto d cocetrazoe
STATISTICA DESCRITTIVA
STATISTICA DESCRITTIVA Le msure d tedeza cetrale OBIETTIVO Idvduare u dce che rappreset sgfcatvamete u seme d dat statstc. Esempo Nella tabella seguete soo rportat valor del tasso glcemco rlevat su 0 pazet:
Organizzazione del corso. Elementi di Informatica. Orario lezioni ed esami. Crediti. Dispense e lucidi. Ricevimento studenti
Orgazzazoe del corso Elemet d Iformatca Prof. Alberto Brogg Dp. d Igegera dell Iformazoe Uverstà d Parma Teora: archtettura del calcolatore, elemet d formatca, algortm, lguagg, sstem operatv Laboratoro:
STATISTICA DESCRITTIVA - SCHEDA N. 3 VARIABILI QUANTITATIVE Indici di centralità, dispersione e forma
Matematca e statstca: da dat a modell alle scelte www.dma.uge/pls_statstca Resposabl scetfc M.P. Rogat e E. Sasso (Dpartmeto d Matematca Uverstà d Geova) STATISTICA DESCRITTIVA - SCHEDA N. 3 VARIABILI
Matematica elementare art.1 di Raimondo Valeri
Matematca elemetare art. d Ramodo Valer I questo artcolo voglamo provare che esste ua formula per calcolare l umero de dvsor d u dato umero aturale seza cooscere la scomposzoe fattor prm del umero stesso.
UNI CEI ENV 13005 (GUIDA ALL ESPRESSIONE DELL INCERTEZZA DI MISURA)
UI CEI EV 3005 (GUIDA ALL ESPRESSIOE DELL ICERTEZZA DI MISURA Uverstà degl Stud d Bresca Corso d Fodamet della Msurazoe A.A. 00-03 Apput a cura d Gorgo Cor 3835 UI CEI EV 3005 0. ITRODUZIOE 0. COCETTO
Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI
Uverstà degl Stud d Mlao Bcocca CdS ECOAMM Corso d Metod Statstc per l Ammstrazoe delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI 1. Carta d cotrollo per frazoe d o coform (carta U resposable d produzoe,
Indipendenza in distribuzione
Marlea Pllat - Semar d Statstca (SVIC) "Lo studo delle relazo tra due caratter" Aals delle relazo tra due caratter Dpedeza dstrbuzoe s basa sul cofroto delle dstrbuzo codzoate Dpedeza meda s basa sul cofroto
Leasing: aspetti finanziari e valutazione dei costi
Leasg: aspett fazar e valutazoe de cost Descrzoe Il leasg è u cotratto medate l quale ua parte (locatore), cede ad u altro soggetto (locataro), per u perodo d tempo prefssato, uo o pù be, sao ess mobl
Manuale di Estimo Vittorio Gallerani, Giacomo Zanni, Davide Viaggi Copyright 2004 The McGraw-Hill Companies srl
Mauale d Estmo ttoro Gallera, Gacomo Za, Davde agg Copyrght 24 The McGraw-Hll Compaes srl Caso 5 Stma d u agrumeto d 3 ha ubcato ella paa d Cataa. 1. Cofermeto dell carco e uesto d stma... 2 2. Descrzoe
STIME E LORO AFFIDABILITA
TIME E LORO AFFIDABILITA L idea chiave su cui si basa l aalisi statistica è che si ossoo eseguire osservaioi su u camioe di soggetti e che da questo si ossoo comiere iferee sulla oolaioe raresetata da
Analisi dei Dati. La statistica è facile!!! Correlazione
Aals de Dat La statstca è facle!!! Correlazoe A che serve la correlazoe? Mettere evdeza la relazoe esstete tra due varabl stablre l tpo d relazoe stablre l grado d tale relazoe stablre la drezoe d tale
METODOLOGIA SPERIMENTALE IN AGRICOLTURA
METODOLOGIA SPERIMENTALE IN AGRICOLTURA LABORATORIO DI BIOMETRIA CON R (http://www.r-project.org/) APPUNTI DALLE LEZIONI (bozze Settembre 005) DOCENTE Adrea Oofr Dpartmeto d Sceze Agroambetal e della Produzoe
6. LA CONCENTRAZIONE
UNIVERSITA DEGLI STUDI DI PERUGIA DIPARTIMENTO DI FILOSOFIA SCIENZE SOCIALI UMANE E DELLA FORMAZIONE Corso d Laurea Sceze per l'ivestgazoe e la Scurezza 6. LA CONCENTRAZIONE Prof. Maurzo Pertchett Statstca
Regressione e Correlazione
Regressoe e Correlazoe Probabltà e Statstca - Aals della Regressoe - a.a. 4/5 L aals della regressoe è ua tecca statstca per modellare e vestgare le relazo tra due (o pù) varabl. Nella tavola è rportata
Approssimazioni di curve
Approssmazo d curve e superfc Approssmazo d curve Il terme Computer Grafca comprede ua larga varetà d applcazo che rguardao umerevol aspett della ostra vta. U eleco esemplfcatvo d alcu de camp cu essa
Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100
ESERCIZIO Data la seguete dstrbuzoe percetuale delle famgle talae per class d reddto, espresso mlo d lre, (ao 995, fote Istat): Class d reddto % famgle Fo a 5 5.3 5-5 6. 5-35. 35-45 8.6 45-55 3.6 Oltre
per il controllo qualità in campo tessile ing. Piero Di Girolamo
edtg project M.R. Oofro ELEMENTI DI STATISTICA per l cotrollo qualtà campo tessle g. Pero D Grolamo prefazoe PREFAZIONE I l cotrollo d qualtà el tessle-abbglameto, u sstema ecoomco globalzzato, che da
13 Valutazione dei modelli di simulazione
3 Valutazoe de modell d smulazoe I modell d smulazoe o sosttuscoo la coosceza, ma soo puttosto u mezzo per orgazzarla. Quado l modello è utlzzato per aalzzare u sstema attuado smulazo, è mportate capre
CORSO STATISTICA MATEMATICA LUCIO BERTOLI BARSOTTI
CORSO DI STATISTICA MATEMATICA LUCIO BERTOLI BARSOTTI Idce I PARTE Sezoe I... Probabltà classca. Il problema d Galleo della somma del puteggo d tre dad... 3. Aagramm d parole co lettere rpetute o meo.
RAPPRESENTAZIONE ANALITICA DELLE DISTRIBUZIONI STATISTICHE CON R
Rappresetazoe aaltca delle dstrbuzo statstche co R RAPPRESENTAZIONE ANALITICA DELLE DISTRIBUZIONI STATISTICHE CON R Versoe 0.4- febbrao 005 Vto Rcc vto_rcc@yahoo.com E garatto l permesso d copare, dstrbure
I PARTE: CALCOLO DELLE PROBABILITÀ
rof. Ig. Domzao Mostacc Apput d probabltà e statstca d coteggo I ARTE: CALCOLO DELLE ROBABILITÀ I. Evet ed Est Cosderamo l espermeto d gettare u dado. Gettamo l dado, aspettamo che s ferm e osservamo l
Consentono di descrivere la variabilità all interno della distribuzione di frequenza tramite un unico valore che ne sintetizza le caratteristiche
Metodologa della rcerca pcologa clca - Dott. Luca Flppo Coetoo d decrvere la varabltà all tero della dtrbuzoe d frequeza tramte u uco valore che e tetzza le carattertche Metodologa della rcerca pcologa
Elementi di Matematica Finanziaria. Rendite e ammortamenti. Università Parthenope 1
Elemet d Matematca Fazara Redte e ammortamet Uverstà Partheope 1 S chama redta ua successoe d captal da rscuotere (o da pagare) a scadeze determate S chamao rate della redta sgol captal da rscuotere (o
ERRATA CORRIGE. L intero contenuto del paragrafo 9.2.3 a pagina 47-48 del Capitolato tecnico Determinazione del Canone è sostituito come segue:
Procedura aperta per l affdameto de servz tegrat, gestoal, operatv e d mautezoe multservzo tecologco da esegurs presso gl mmobl d propretà o uso alle Asl ed alle azede ospedalere della regoe Campaa ERRATA
Propagazione di errori
Propagazoe d error Gl error e dat possoo essere amplfcat durate calcol. Rspetto alla propagazoe degl error s può dstguere: comportameto del problema - codzoameto del problema: vedere come le perturbazo
Statistica descrittiva
Statstca descrttva Grafc e tabelle permettoo d fare valutazo qualtatve, o quattatve. C è la ecesstà d stetzzare le caratterstche salet d ua varable: dc d locazoe o d poszoe dc d varabltà o dspersoe Questo
CORSO DI STATISTICA I (Prof.ssa S. Terzi)
CORSO DI STATISTICA I (Prof.ssa S. Terz) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI Eserctazoe 2 2.1 Da u dage svolta su u campoe d lavorator dpedet co doppo lavoro è stata rlevata la dstrbuzoe coguta del reddto
ALCUNI ELEMENTI DI TEORIA DELLA STIMA
ALCUNI ELEMENTI DI TEORIA DELLA STIMA Quado s vuole valutare u parametro θ ad esempo: meda, varaza, proporzoe, oeffete d regressoe leare, oeffete d orrelazoe leare, e) d ua popolazoe medate u ampoe asuale,