Spettro di densità di potenza e rumore termico

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Spettro di densità di potenza e rumore termico"

Transcript

1 Spro di dnsià di ponza rumor rmico lcomunicazioni pr l rospazio. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza-

2 roprià sprali: rasormaa di Fourir RSFORM DI FOURIR NI-RSFORM DI FOURIR S s d s S d d X sis Condizion pr l sisnza dlla rasormaa di Fourir: sgnal quadraicamn sommabil sgnal di nrgia. sis la rasormaa di Fourir pr sgnali di ponza? - r alcuni sis! In snso limi lcomunicazioni pr l rospazio. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza-

3 RSFORM DI FOURIR dll IMULSO lcomunicazioni pr l rospazio. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza- 3

4 RSFORM DI FOURIR dll IMULSO lcomunicazioni pr l rospazio. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza- 4

5 Richiamo impulso mamaico Dinia dall du quazioni: =, d= lrnaivamn dinia com una unzion limi =lim /rc lcomunicazioni pr l rospazio. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza- 5 Qual è la rasormaa di Fourir di un sgnal di ipo dla di Dirac? lim rc Y sin lim La rasormaa di Fourir di un impulso di Dirac è una cosan quindi pr dualià la rasormaa di una cosan è un impulso di Dirac s Y s. Sgnal cosan è un sgnal di ponza: impulso di Dirac consn di sndr anch a sgnali di ponza il conco di rasormaa in snso limi;. Impulso di Dirac modllo orico: nlla ralà non è possibil gnrar una al orma d onda Dirac modlla un impulso srmamn sro.

6 lcomunicazioni pr l rospazio. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza- 6 rasormaa di Fourir di sgnal sinusoidal cos d d d d d s S S Spro sgnal: unico conribuo a rqunza.

7 rasormaa di Fourir di sgnali priodici possibil calcolar la DF di un sgnal priodico? Sruando la sua scriura in sri di Fourir, é possibil, molo smplic: La DF di un sgnal priodico é una squnza di impulsi di Dirac, spaziai di mulipli dlla rqunza ondamnal =/, con psi pari ai coicini dlla sri di Fourir: Sgnali priodici nl mpo DF Squnz di impulsi in rqunza lcomunicazioni pr l rospazio. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza- 7

8 Sgnali priodici: Spro di dnsià di nrgia? Sappiamo ch pr sgnali di nrgia lo Spro di Dnsià di nrgia è dao da S L nrgia oal è daa da S d Ovviamn ciò non si può scrivr pr sgnali di ponza, anch ov sisa rasormaa di Fourir in snso limi quadrao di dla di Dirac d nrgia = ingral dl quadrao andrbb ancora ad ininio!!!! lcomunicazioni pr l rospazio. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza- 8

9 Spro di dnsià di onza I Lo spro di dnsià di ponza di un sgnal di ponza dscriv la disribuzion dlla ponza dl sgnal nl dominio dlla rqunza. Sgnal con ponza il suo spro di dnsià di ponza S è una unzion dlla rqunza ch soddisa l sguni proprià:. L ingral di S sso a uo l ass dll rqunz è pari alla ponza dl sgnal. S d. La unzion S è pari al rapporo ra la ponza dl sgnal connua nll inrvallo [, +] la larghzza dll inrvallo quando la larghzza dll inrvallo nd a zro. S lim, lcomunicazioni pr l rospazio. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza- 9

10 Spro di dnsià di onza II possibil dimosrar ch lo spro di dnsià di ponza è pari alla rasormaa di Fourir dll auocorrlazion dl sgnal. S Y R Dov: R * lim d lcomunicazioni pr l rospazio. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza-

11 lcomunicazioni pr l rospazio. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza- Spro di dnsià di ponza: smpi Sgnal cosan Sgnal sinusoidal K S K X K & 4 4 cos cos S R X * * lim lim lim K K K d K d R * cos 4 cos cos lim cos cos lim lim d d d R

12 Dnsià spral di ponza pr sgnali priodici -La dnsià spral di ponza di un sgnal priodico di priodo è dinia com: Dov gli Xk sono i coicini dll spansion in sri di Fourir. Inai... quindi ilrando passa-banda inorno a k si sra solo la cui ponza val ponza di un sponnzial complsso = ponza di una cosan lcomunicazioni pr l rospazio. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza-

13 smpi Spro di dnsià di ponza La somma di du sgnali priodici snza righ nlla sssa rqunza ha una ponza daa dalla somma dll ponz lcomunicazioni pr l rospazio. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza- 3

14 Sgnali priodici: rno di impulsi Un rno di impulsi di ampizza uniaria, spaziai di cosiuiscono un paricolar sgnal priodico La DF dl sgnal bas é la cosan uniaria: lcomunicazioni pr l rospazio. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza- 4

15 Filri Spro di dnsià di onza Cosa accad allo spro di dnsià di ponza di un sgnal quando il sgnal ransia aravrso un ilro? S H y S y =? S y H S lcomunicazioni pr l rospazio. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza- 5

16 Rumor rmico Qualsiasi conduor con rsisnza R a mpraura suprior allo zro assoluo prsna ai suoi capi una nsion alaoria dovua all agiazion rmica dgli lroni la nsion di rumor ha ddp gaussiana con valor mdio nullo varianza pari K: cosan di Bolzmann.38-3 J/K; n 4 krb R: valor rsisnza Ohm; : valor mpraura Klvin; B: banda monolara Hz Circuio quivaln di un rsisor ral: gnraor di nsion con valor n in sri ad un rsisor idal non rumoroso + - n R R gnraor connsso carico R ; condizion di massimo rasrimno di ponza R =R; n R R' n R' kb 4R onza rasria sulla banda B Lo spro di dnsià di ponza disponibil dl rumor rmico è indipndn dalla rqunza rumor bianco: appro valida ino a 4 GHz quindi su u l band usa ni radar lcomunicazioni pr l rospazio S n k W / Hz Spro di dnsià di ponza bilaro. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza- 6

17 Saisica rumor Cosa vuol dir ch il rumor ha una dnsià di probabilià gaussiana? Isogramma Vols Vols Ralizzazion rumor Conaor mpo lcomunicazioni pr l rospazio. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza- 7

18 uocorrlazion dl rumor Cosa vuol dir ch il rumor è bianco? Spro di dnsià di ponza uniorm in rqunza; uocorrlazion pari a un impulso dla di Dirac uocorrlazion è rlaiva alla prdicibilià nl mpo: dao il valor dl rumor all isan quano è prdicibil il valor dl rumor all isan +? Vols Rumor bianco: disurbo a banda larga il rumor varia molo rapidamn: dal valor di rumor ad un cro isan non è possibil prdir il valor di rumor all isan +. R mpo lcomunicazioni pr l rospazio scondi. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza- 8

19 Rumor bianco Filraggio Dominio dl mpo Dominio dlla rqunza R n.5n S n.5n Il sgnal varia molo rapidamn; Rumor bianco: buona approssimazion dlla ralà; Filraggio rumor bianco: inroduc corrlazion. S n =.5N.5N H H Spro dnsià di ponza rumor bianco in ingrsso al ilro. lcomunicazioni pr l rospazio Spro dnsià di ponza rumor in uscia dal ilro.. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza- 9

20 Figura di Rumor La igura di rumor F Nois Figur cararizza la rumorosià di un disposiivo o di un soosisma: in paricolar misura la dgradazion dl rapporo sgnal/rumor ra ingrsso uscia dovua all aggiuna dl rumor gnrao dal disposiivo si ni =k B Banda B Guadagno G Figura di rumor F so =G si no =G ni + no si : ponza sgnal uil in ingrsso; ni : ponza rumor in ingrsso; so : ponza sgnal uil in uscia; no : ponza rumor in uscia; F si so ni no FIGUR DI RUMOR Figura di rumor dinia con ririmno ad una spciica condizion in ingrsso: rsisor adaao a mpraura =9K: si ni =k B so =G si F si so no ni no GkB Figura di rumor smpr ; Disposiivi idali non rumorosi: no F=; no =G ni + no =F-Gk B no =Gk B+ F-Gk B=FGk B Il disposiivo rumoroso è quivaln ad un disposiivo non rumoroso con in ingrsso una sorgn a mpraura F anziché. lcomunicazioni pr l rospazio ni =k B si + no /G=F-k B Banda B Guadagno G Sisma idal F= so =G si no =FG ni. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza-

21 mpraura quivaln di Rumor La mpraura quivaln di rumor dscrizion alrnaiva ad F cararizza la rumorosià di un disposiivo o di un soosisma: è la mpraura di un rsisor adaao ch, poso all ingrsso dl disposiivo in sam assuno idal, è in grado di produrr una ponza in uscia pari a no. no =Gk B = no /GkB r un disposiivo idal non rumoroso si ha =. La rlazion con la igura di rumor è daa da =F- S in ingrsso al disposiivo sorgn a mpraura s : no G ni SNR so no no GkB F k B Gk SNRi F s s SNRi s s B ni =k s B si + Banda B & Guadagno G Sisma idal F= & = so =G si no no /G=F-k B=k B lcomunicazioni pr l rospazio. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza-

22 Rumor rmico IV Rumor prodoo da un anuaor Lin di rasmission, giuni, giuni roani, duplr sono anuaori: s l anuaor è alla mpraura isica p d è cararizzao da un anuazion L L= si / so, L> no k p L B L L F L p p si Banda B so = si /L Gudagno G=/L ni no = ni /L+k p BL-/L + nuaor idal F= S p = F=L: un anuaor puro pr p = è rasparn al rumor cioè vd in ingrsso in uscia lo ssso rumor. no /G=k p BL- lcomunicazioni pr l rospazio. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza-

23 Rumor rmico V Soosismi in cascaa si Sisma Sisma Banda B & Guadagno G Banda B & Guadagno G so ni =k s B Figura di rumor F mp. di rumor Figura di rumor F mp. di rumor no si Banda B & Guadagno G so =G si Banda B & Guadagno G so =G G si ni =k s B + Sisma idal + Sisma idal no n =k B n =k B si Banda B so =G G si ni =k s B + Guadagno G G Sisma quivaln idal no =G G k s + B lcomunicazioni pr l rospazio no /G G =k B. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza- 3

24 lcomunicazioni pr l rospazio. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza- 4 Rumor rmico VI G G F F F Gnralizzando al caso di N soosismi in cascaa: N N G G G G G G N N G G G F G G F G F F F r soosismi in cascaa il primo sadio è l lmno criico: pr connr la rumorosià global il primo sadio dv assr a bassa cira di rumor ad lvao guadagno. B k G G G G G G B G k G G s no ni no s no

25 Cararizzazion rumor SMIO: Valuazion mpraura di rumor di sisma in =5 K RF =5 K G RF =3 db s =5+5+5/+/=5.5 K m =5 K G m =- db IF = K G IF =3 db lcomunicazioni pr l rospazio. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza- 5

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 )

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 ) Sri di Fourir a mpo coninuo La rapprsnazion di sgnali nl dominio dlla frqunza Jan Bapis Josph Fourir (768 83 ) Fourir sviluppò la oria mamaica dl calor uilizzando funzioni rigonomrich (sni cosni), ch noi

Dettagli

Macroeconomia. Laura Vici. laura.vici@unibo.it. www.lauravici.com/macroeconomia LEZIONE 22. Rimini, 19 novembre 2014

Macroeconomia. Laura Vici. laura.vici@unibo.it. www.lauravici.com/macroeconomia LEZIONE 22. Rimini, 19 novembre 2014 Macroconomia Laura Vici laura.vici@unibo.i www.lauravici.com/macroconomia LEZIONE 22 Rimini, 19 novmbr 2014 Macroconomia 362 I mrcai finanziari in conomia apra Dao ch l acquiso o la vndia di aivià finanziari

Dettagli

I sensori di spostamento

I sensori di spostamento I snsori di sposamno Mol grandzz (prssion, mpraura, forza, acclrazion, c.) vngono rasforma in uno sposamno, prima di ssr convri in un sgnal lrico. 1 I ponziomri i p p i o i p I ponziomri sono snsori di

Dettagli

Trasformata di Fourier (1/7)

Trasformata di Fourier (1/7) 1 rasormaa di Fourier (1/7 + De: Un segnale x( è impulsivo se x ( d < + F : + j X( x( e π d F{ x( }, < < + F -1 + jπ 1 : x( X( e d F { X( }, < < + X( è una rappresenazione di x( nel dominio della requenza

Dettagli

La valutazione finanziaria

La valutazione finanziaria STUDIO BERETTA DOTTTARELLI TTARELLI DOTTORI COMMERCIALISTI ASSOCIATI Srgio Bra La valuazion finanziaria Prmssa Il valor dl capial conomico vin simao considrando i flussi di cassa prodoi in fuuro dall imprsa

Dettagli

Lezione 21 (BAG cap. 19) Regimi di cambio. Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia

Lezione 21 (BAG cap. 19) Regimi di cambio. Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Lzion 21 (BAG cap. 19) Rgimi di cambio Corso di Macroconomia Prof. Guido Ascari, Univrsià di Pavia Il capiolo si occupa Aggiusamno nl mdio priodo d ffi di una svaluazion Crisi dl asso di cambio Tasso di

Dettagli

Errore standard di misurazione. Calcolare l intervallo del punteggio vero

Errore standard di misurazione. Calcolare l intervallo del punteggio vero Error sandard di misurazion Calcolar l inrvallo dl punggio vro Problmi di prcision La prsnza noa dll rror di misura rnd incro il significao dl punggio onuo. L andibilià dl s ci informa di quano rror di

Dettagli

Esempi di domande per l esame di Economia Monetaria

Esempi di domande per l esame di Economia Monetaria Esmpi di domand pr l sam di Economia Monaria La domanda di mona 1. In ch modo gli conomisi di Cambridg modificano l quazion dgli scambi di Fishr con quali consgunz?. Com si possono sprimr i guadagni asi

Dettagli

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale.

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale. Aspaiv In qusa lzion: Discuiamo di prvisioni sull variabili fuur, di aspaiv. Dfiniamo assi di inrss nominal ral. Ridfiniamo lo schma IS-LM con inflazion. 198 Imporanza dll Aspaiv L dcisioni rlaiv a consumo

Dettagli

Il ruolo delle aspettative in economia

Il ruolo delle aspettative in economia Capiolo XV. Il ruolo dll aspaiv in conomia . Tassi di inrss nominali rali Il asso di inrss in rmini di mona è chiamao asso di inrss nominal. Il asso di inrss sprsso in rmini di bni è chiamao asso di inrss

Dettagli

Corso di Comunicazioni Elettriche. 2 RICHIAMI DI TEORIA DEI SEGNALI Prof. Giovanni Schembra TEORIA DEI SEGNALI DETERMINATI

Corso di Comunicazioni Elettriche. 2 RICHIAMI DI TEORIA DEI SEGNALI Prof. Giovanni Schembra TEORIA DEI SEGNALI DETERMINATI Corso di Comunicazioni Eleriche RICHIAMI DI TEORIA DEI SEGNALI Pro. Giovanni Schembra Richiami di Teoria dei segnali TEORIA DEI SEGNALI DETERMINATI Richiami di Teoria dei segnali Valori caraerisici di

Dettagli

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1 Lzion 5. nalisi a tmpo discrto di sistmi ibridi F. Prvidi - Controlli utomatici - Lz. 5 Schma dlla lzion. Introduzion 2. nalisi a tmpo discrto di sistmi ibridi 3. utovalori di un sistma a sgnali campionati

Dettagli

Attuatore: Motore in corrente continua (DC)

Attuatore: Motore in corrente continua (DC) Auaor: Moor in corrn coninua DC Sisma: Movimnazion monoass Modllo pr moor DC Accoppiaor oico Circuio ingrao piloa pr moor DC Sisma di piloaggio razionao Encodr incrmnal 360 impulsi/giro Moor in DC Vi snza

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

ITI GALILEO FERRARIS S. GIOVANNI LA PUNTA APPUNTI DI TELECOMUNICAZIONI PER IL 5 ANNO IND. ELETTRONICA E TELECOMUNICAZIONI

ITI GALILEO FERRARIS S. GIOVANNI LA PUNTA APPUNTI DI TELECOMUNICAZIONI PER IL 5 ANNO IND. ELETTRONICA E TELECOMUNICAZIONI ITI GALILEO FERRARIS S. GIOVANNI LA PUNTA APPUNTI DI TELECOMUNICAZIONI PER IL 5 ANNO IND. ELETTRONICA E TELECOMUNICAZIONI Prof. Ing. R. M. Poro A cura della TELECOMUNICAZIONI Con il ermine elecomunicazioni

Dettagli

Funzioni lineari e affini. Funzioni lineari e affini /2

Funzioni lineari e affini. Funzioni lineari e affini /2 Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

Sistemi trifase. www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 30-10-2012) Sistemi trifase

Sistemi trifase. www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 30-10-2012) Sistemi trifase Ssm rfas www.d.ng.unbo./prs/masr/ddaca.hm vrson dl 0-0-0 Ssm rfas l rasporo la dsrbuzon d nrga lrca avvngono n prvalnza pr mzzo d ln rfas Un ssma rfas è almnao mdan gnraor a r rmnal rapprsnabl mdan rn

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

INTRODUZIONE AI SEGNALI. Fondamenti Segnali e Trasmissione

INTRODUZIONE AI SEGNALI. Fondamenti Segnali e Trasmissione INTRODUZIONE AI SEGNALI Classiicazione dei segnali ( I segnali rappresenano il comporameno di grandezze isiche (ad es. ensioni, emperaure, pressioni,... in unzione di una o piu variabili indipendeni (ad

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

Processi stocastici. Corso Segnale e Rumore Giorgio Brida Giugno/luglio 2007 Pagina 1 di 33

Processi stocastici. Corso Segnale e Rumore Giorgio Brida Giugno/luglio 2007 Pagina 1 di 33 Processi socasici Inroduzione isemi lineari e sazionari; luuazioni casuali, derive e disurbi; processi socasici sazionari in senso lao, unzione di auocorrelazione e spero di poenza; risposa di un sisema

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Univrità di apoli arthnop Facoltà di Inggnria Coro di Tramiioni umrich docnt: rof. Vito acazio 6 a Lzion: // Sommario Calcolo dlla proailità di rror nlla tramiion numrica in prnza di AWG AM inario M inario

Dettagli

Palazzina di Caccia di Stupinigi, Fondazione Ordine Mauriziano

Palazzina di Caccia di Stupinigi, Fondazione Ordine Mauriziano , Fondazion Ordin Mauriziano LE PROPOSTE PER I CENTRI ESTIVI ESTATE 2014 IN PALAZZINA: DIVERTIRSI IMPARANDO VISITE A TEMA E LABORATORI PER I CENTRI ESTIVI Dalla primavra 2014 la palazzina di caccia offr

Dettagli

Sistemi trifase. Parte 2. www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 16-12-2013) Potenza assorbita da un carico trifase (1)

Sistemi trifase. Parte 2. www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 16-12-2013) Potenza assorbita da un carico trifase (1) Ssm rfas ar www.d.ng.unbo./prs/masr/ddaca.hm rson dl 6--0 onza assorba da un carco rfas Un gnrco carco rfas può ssr consdrao un doppo bpolo du por Sclo un rmnal d rfrmno, s può sprmr la ponza sanana assorba

Dettagli

Regimi di cambio. In questa lezione: Studiamo l economia aperta nel breve e nel medio periodo. Studiamo le crisi valutarie.

Regimi di cambio. In questa lezione: Studiamo l economia aperta nel breve e nel medio periodo. Studiamo le crisi valutarie. Rgimi di cambio In qusta lzion: Studiamo l conomia aprta nl brv nl mdio priodo. Studiamo l crisi valutari. Analizziamo brvmnt l Ar Valutari Ottimali. 279 Il mdio priodo Abbiamo visto ch gli fftti di politica

Dettagli

ESERCIZI SULLA DEMODULAZIONE INCOERENTE

ESERCIZI SULLA DEMODULAZIONE INCOERENTE Esrcitazioni dl corso di trasmissioni numrich - Lzion 4 6 Fbbraio 8 ESERCIZI SULLA DEMODULAZIONE INCOERENE I du sgnali passa basso di figura sono utilizzati pr la trasmission di simboli binari quiprobabili

Dettagli

VALORE EFFICACE DEL VOLTAGGIO

VALORE EFFICACE DEL VOLTAGGIO Fisica generale, a.a. /4 TUTOATO 8: ALO EFFC &CCUT N A.C. ALOE EFFCE DEL OLTAGGO 8.. La leura con un mulimero digiale del volaggio ai morsei di un generaore fornisce + in coninua e 5.5 in alernaa. Tra

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

La tabella presenta 4 casi ed i relativi differenziali di rendimento tra un investimento in Dollari ed uno in Euro:

La tabella presenta 4 casi ed i relativi differenziali di rendimento tra un investimento in Dollari ed uno in Euro: MONETA E FINANZA INTERNAZIONALE Lzion 3 ARBITRAGGIO SUI TASSI DI INTERESSE Invsimno sro domanda di valua sra Disinvsimno rischio di cambio prché rndimno ral dipnd da R La ablla prsna 4 casi d i rlaivi

Dettagli

PRINCIPALI VANTAGGI:

PRINCIPALI VANTAGGI: Ricamo-Lasr-Srass IL PRIMO PROGRAMMA AL MONDO CHE PERMETTE IN UN UNICO SOFTWARE: - La crazion di programmi Ricamo - La crazion di disgni Lasr con vari ffi (da uilizzar con ui i macchinari lasr in grado

Dettagli

Aspettative, produzione e politica economica

Aspettative, produzione e politica economica Lzion 18 (BAG cap. 17) Aspttativ, produzion politica conomica Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia 2 1 L aspttativ la curva IS Dividiamo il tmpo in du priodi: 1. un priodo corrnt

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

3. IL SETTORE ESTERO. Le condizioni H-O-S. Intensità fattoriale 3.1. COMMERCIO INTERNAZIONALE. Un economia con due paesi e due prodotti

3. IL SETTORE ESTERO. Le condizioni H-O-S. Intensità fattoriale 3.1. COMMERCIO INTERNAZIONALE. Un economia con due paesi e due prodotti 3. IL SETTORE ESTERO 3.. Commrcio inrnazional 3.2. Il asso di cambio 3.3. Il modllo IS-LM-BP 3.4. Parià scopra parià copra di assi di inrss 3.5. Ipr-razion di assi di cambio (ovrshooing) 3.. COMMERCIO

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost

Dettagli

COMUNE DI VIMERCATE REMUNERAZIONE DEL CONTRAENTE ALLEGATO TECNICO AL CONTRATTO PER SERVIZI ENERGETICI A PRESTAZIONE ENERGETICA GARANTITA

COMUNE DI VIMERCATE REMUNERAZIONE DEL CONTRAENTE ALLEGATO TECNICO AL CONTRATTO PER SERVIZI ENERGETICI A PRESTAZIONE ENERGETICA GARANTITA REMUNERAZIONE DEL CONTRAENTE ALLEGATO TECNICO AL CONTRATTO PER SERVIZI ENERGETICI A PRESTAZIONE ENERGETICA GARANTITA 1. CORRISPETTIVO PER GLI INTERVENTI DI EFFICIENZA O RIQUALIFICAZIONE ENERGETICA Il corrispivo

Dettagli

ESERCIZI DI FISICA TECNICA TRASMISSIONE DEL CALORE PSICROMETRIA FOTOMETRIA ACUSTICA

ESERCIZI DI FISICA TECNICA TRASMISSIONE DEL CALORE PSICROMETRIA FOTOMETRIA ACUSTICA ESERCIZI DI FISICA TECNICA TRASMISSIONE DEL CALORE PSICROMETRIA FOTOMETRIA ACUSTICA Univrsià dgli sudi di Palrmo Diarimno di Enrgica Palrmo, I INDICE SIMBOLI agina I CARATTERI GRECI ESERCIZI TRASMISSIONE

Dettagli

La popolazione in età da 0 a 2 anni residente nel comune di Bologna

La popolazione in età da 0 a 2 anni residente nel comune di Bologna Sttor Programmazion, Controlli La popolazion in tà da 0 a 2 anni rsidnt nl comun di Bologna Maggio 2007 La prsnt nota è stata ralizzata da un gruppo di dirignti funzionari dl Sttor Programmazion, Controlli

Dettagli

TEMPI SOGGETTI AZIONI Gennaio- Docenti dei due ordini di scuola e Pianificazione del progetto ponte per gli Anno

TEMPI SOGGETTI AZIONI Gennaio- Docenti dei due ordini di scuola e Pianificazione del progetto ponte per gli Anno PROGETTO PONTE TRA ORDINI DI SCUOLA Pr favorir la continuità ducativo didattica nl momnto dl passaggio da un ordin di scuola ad un altro, si labora un pont, sul modllo di qullo sottolncato. TEMPI SOGGETTI

Dettagli

Moltiplicazione di segnali lineari

Moltiplicazione di segnali lineari Moliplicazione di segnali lineari Processo non lineare: x ( x ( x ( Meodologia uilizzaa per: Campionameno ed acquisizione dai Processi di comunicazione (modulazione Abbiamo viso con il campionameno dei

Dettagli

Casi clinici Una Esperienza di Trattamento ACUDETOX Antifumo in Fabbrica

Casi clinici Una Esperienza di Trattamento ACUDETOX Antifumo in Fabbrica Una Esprinza di Trattamnto ACUDETOX Antifumo in Fabbrica Rmo ANGELINO Dirttor SC Dipndnz Patologich - ASL 10 Pinrolo TO, Antonio POTOSNJAK I.P. SC Dipndnz Patologich - ASL 10 Pinrolo TO Prmssa La rlazion

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Universià di Napoli Parhenope Facolà di Ingegneria Corso di Comunicazioni Eleriche docene: Prof. Vio Pascazio 2 a Lezione: 13/03/2003 Sommario Schema di un Sisema di TLC Schema di un Sisema di TLC digiale

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

LE PROPOSTE PER I CENTRI ESTIVI Palazzina di Caccia di Stupinigi ESTATE 2015

LE PROPOSTE PER I CENTRI ESTIVI Palazzina di Caccia di Stupinigi ESTATE 2015 LE PROPOSTE PER I CENTRI ESTIVI ESTATE 2015 SPECIALE MOSTRA FRITZ. UN ELEFANTE A CORTE! 20 Maggio 13 sttmbr 2015 IN PALAZZINA: DIVERTIRSI IMPARANDO VISITE A TEMA E LABORATORI PER I CENTRI ESTIVI Anch nlla

Dettagli

R k = I k +Q k. Q k = D k-1 - D k

R k = I k +Q k. Q k = D k-1 - D k 1 AMMORTAMENTO AMMORTAMENTO Dbito inizial D 0 si volv (al tasso fisso t) D k = D k-1 (1+t) R k [D k dbito (rsiduo) al tmpo k, R k pagamnto al tmpo k ] Condizioni [D n =0 : stinzion dl dbito in n priodi

Dettagli

La revisione generale dei conti nazionali del 2005

La revisione generale dei conti nazionali del 2005 La rvision gnral di coni nazionali dl 2005 Roma 21-22 giugno 2006 La dflazion di coni conomici in Ialia: rcni svilui imlmnazion Filio Moauro Isa - Dirzion Cnral dlla Conabilià Nazional (vrsion rovvisoria)

Dettagli

V AK. Fig.1 Caratteristica del Diodo

V AK. Fig.1 Caratteristica del Diodo 1 Raddrizzaore - Generalià I circuii raddrizzaori uilizzano componeni come i Diodi che presenano la caraerisica di unidirezionalià, cioè permeono il passaggio della correne solo in un verso. In figura

Dettagli

1995-2010. Nazionale Regionale Provinciale. Nazionale Regionale Provinciale 2004-2010

1995-2010. Nazionale Regionale Provinciale. Nazionale Regionale Provinciale 2004-2010 Progtto BES dll Provinc (PSU-00003) maggio 2013, abstract Bnssr conomico /Standard matriali di vita TEMA Rl co n il BE S Consumi - Incidn di consumi alimntari sulla spsa dll famigli Rddito + Stima dl rddito

Dettagli

ALLEGATO N.3 STRATEGIE PER IL RECUPERO-POTENZIAMENTO E VALORIZZAZIONE ECCELLENZE

ALLEGATO N.3 STRATEGIE PER IL RECUPERO-POTENZIAMENTO E VALORIZZAZIONE ECCELLENZE ALLEGATO N.3 STRATEGIE PER IL RECUPERO-POTENZIAMENTO E VALORIZZAZIONE ECCELLENZE a. STRATEGIE PER IL RECUPERO DESTINATARI Il Rcupro sarà rivolto agli alunni ch prsntano ancora difficoltà nll adozion di

Dettagli

LA NOSTRA AVVENTURA NEL CREARE UN LIBRO

LA NOSTRA AVVENTURA NEL CREARE UN LIBRO LA NOSTRA AVVENTURA NEL CREARE UN LIBRO Abbiamo iniziato a lggr in class Nonno Tano la casa dll strgh. Lo scopo ra ascoltar comprndr. Sguir la mastra ch dava sprssività alla lttura imparar da lla a lggr.

Dettagli

04/11/2014. Coordinatore per la progettazione. Coordinatore per l esecuzione

04/11/2014. Coordinatore per la progettazione. Coordinatore per l esecuzione Committnt /o Rsponsabil di lavori Imprsa affidataria, Imprs scutrici Lavoratori autonomi 1 Committnt CHI E : soggtto pr conto dl qual l intra opra vin ralizzata, indipndntmnt da vntuali frazionamnti dlla

Dettagli

I mercati dei beni e i mercati finanziari in economia aperta

I mercati dei beni e i mercati finanziari in economia aperta I mrcai di bni i mrcai finanziari in conomia apra Economia apra Mrcai di bni: l opporunià pr i consumaori l imprs di scglir ra bni nazionali bni sri. Mrcai dll aivià finanziari: l opporunià pr gli invsiori

Dettagli

Corso di Analisi: Algebra di Base. 3^ Lezione

Corso di Analisi: Algebra di Base. 3^ Lezione Corso di Analisi: Algbra di Bas ^ Lzion Disquazioni algbrich. Disquazioni di. Disquazioni di. Disquazioni faoriali. Disquazioni biquadraich. Disquazioni binomi. Disquazioni fra. Sismi di disquazioni. Allgao

Dettagli

Circolare n. 1 Prot. n. 758 Roma 29/01/2015

Circolare n. 1 Prot. n. 758 Roma 29/01/2015 Ministro dll Istruzion, dll Univrsità dlla Ricrca Dipartimnto pr il sistma ducativo di istruzion formazion Dirzion Gnral pr gli ordinamnti scolastici la valutazion dl sistma nazional di istruzion Circolar

Dettagli

SCHEDA VALUTAZIONE ANNUALE PERSONALE SCHEDA VALUTAZIONE NEOASSUNTO

SCHEDA VALUTAZIONE ANNUALE PERSONALE SCHEDA VALUTAZIONE NEOASSUNTO Rvision n 3 25/06/2012 SCHEDA VALUTAZIONE ANNUALE SCHEDA VALUTAZIONE NEOASSUNTO Cognom Nom Unità Oprativa Valutator Data valutazion Da compilar s noassunto: Data inizio priodo di prova Data valutazion

Dettagli

PIRELLI & C. REAL ESTATE S.P.A. DOCUMENTO DI INFORMAZIONE ANNUALE

PIRELLI & C. REAL ESTATE S.P.A. DOCUMENTO DI INFORMAZIONE ANNUALE PIRELLI & C. REAL ESTATE S.P.A. Sd in Milano, Via G. Ngri 10 Rgistro dll Imprs di Milano n. 02473170153 DOCUMENTO DI INFORMAZIONE ANNUALE (art. 54 dl Rgolamnto Emittnti Dlibra Consob n. 11971/1999) PERIODO

Dettagli

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione Lzion 6 (BAG cap. 5) Mrcati finanziari aspttativ Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia Schma Lzion Ruolo dll aspttativ nl dtrminar ii przzi di azioni obbligazioni Sclta fra tanti

Dettagli

Un po di teoria. cos è un condensatore?

Un po di teoria. cos è un condensatore? Sudio sperimenale del processo di carica e scarica di un condensaore cos è un condensaore? Un po di eoria Un condensaore è un sisema di due conduori affacciai, dei armaure, separai da un isolane. Esso

Dettagli

SCHEMA PER LA STESURA DEL PIANO DI MIGLIORAMENTO INTRODUZIONE. Per la predisposizione del piano, è necessario fare riferimento alle Linee Guida.

SCHEMA PER LA STESURA DEL PIANO DI MIGLIORAMENTO INTRODUZIONE. Per la predisposizione del piano, è necessario fare riferimento alle Linee Guida. INTRODUZIONE Pr la prdisposizion dl piano, è ncssario far rifrimnto all Lin Guida. Lo schma proposto di sguito è stato sviluppato nll ambito dl progtto Miglioramnto dll prformanc dll istituzioni scolastich

Dettagli

MODULO 01 TERMODINAMICA

MODULO 01 TERMODINAMICA Programmazion di Impianti Trmici Class V TS A.S. 2011-2012 Insgnant: ing. Cardamon Antonio MODULO 01 TERMODINAMICA Prsntazion: con il modulo in oggtto, l allivo è nll condizioni di svolgr calcoli rlativi

Dettagli

Lampade di. emergenza MY HOME. emergenza. Lampade di

Lampade di. emergenza MY HOME. emergenza. Lampade di Lampad di Lampad di MY HOME 97 Lampad Carattristich gnrali Scopi dll illuminazion Ngli ambinti rsidnziali gli apparcchi di illuminazion non sono imposti da lggi o norm, ma divntano comunqu prziosi ausilii.

Dettagli

Procedura Operativa Standard. Internal Dealing. Rev. 0 In vigore dal 28 marzo 2012 COMITATO DI CONTROLLO INTERNO. Luogo Data Per ricevuta

Procedura Operativa Standard. Internal Dealing. Rev. 0 In vigore dal 28 marzo 2012 COMITATO DI CONTROLLO INTERNO. Luogo Data Per ricevuta REDATTO: APPROVATO: APPROVATO: INTERNAL AUDITOR COMITATO DI CONTROLLO INTERNO C.D.A. Luogo Data Pr ricvuta INDICE 1.0 SCOPO E AMBITO DI APPLICAZIONE 2.0 RIFERIMENTI NORMATIVI 3.0 DEFINIZIONI 4.0 RUOLI

Dettagli

IPOTESI ESEMPLIFICATIVA DI ORGANIZZAZIONE DEI CONTENUTI DELLA PROGRAMMAZIONE DI DIPARTIMENTO. PRIMO BIENNIO/SECONDO BIENNIO e ULTIMO ANNO

IPOTESI ESEMPLIFICATIVA DI ORGANIZZAZIONE DEI CONTENUTI DELLA PROGRAMMAZIONE DI DIPARTIMENTO. PRIMO BIENNIO/SECONDO BIENNIO e ULTIMO ANNO IPOTESI ESEMPLIFICATIVA DI ORGANIZZAZIONE DEI CONTENUTI DELLA PROGRAMMAZIONE DI DIPARTIMENTO PRIMO BIENNIO/SECONDO BIENNIO ULTIMO ANNO In cornza con i critri di validazion dlla programmazion di ass (o

Dettagli

Lezione 3. F. Previdi - Automatica - Lez. 3 1

Lezione 3. F. Previdi - Automatica - Lez. 3 1 Lzon 3. Movmno Equlbro F. Prv - Auomaca - Lz. 3 1 Schma lla lzon 1. Movmno ll usca un ssma LTI SISO. Movmno lbro movmno forzao 3. Equlbro un ssma LTI SISO 4. Guaagno saco un ssma LTI SISO F. Prv - Auomaca

Dettagli

MAGAZZINO EX GUALA VIA S. GIOVANNI BOSCO, - ALESSANDRIA PROCEDURA DI CONTROLLO DEGLI ACCESSI ALL INTERNO DELL AREA

MAGAZZINO EX GUALA VIA S. GIOVANNI BOSCO, - ALESSANDRIA PROCEDURA DI CONTROLLO DEGLI ACCESSI ALL INTERNO DELL AREA CITTÀ DI ALESSANDRIA SERVIZIO DI PREVENZIONE E PROTEZIONE PIAZZA DELLA LIBERTÀ n. 1 MAGAZZINO EX VIA S. GIOVANNI BOSCO, - ALESSANDRIA PROCEDURA DI CONTROLLO DEGLI ACCESSI ALL INTERNO DELL AREA FILE: procdura

Dettagli

Decoder per locomotive MX61 model 2000 e MX62

Decoder per locomotive MX61 model 2000 e MX62 ZIMO Manual istruzioni dl Dcodr pr locomotiv MX61 modl 2000 MX62 pr il formato di dati NMRA-DCC nll vrsioni MX61R (con connttor mdio) MX61F (connttor piccolo) MX62W (con 7 cavtti snza connttor) MX62R (

Dettagli

Curriculum Vitae Europass

Curriculum Vitae Europass Curriculum Via Europass Informazioni prsonali Nom(i) / Cognom(i) Paola Pancrazi Da Dal 8 Maggio 2014 al 9 Luglio 2014 Dal 21 april al 5 Luglio 2013. Espro srno DGCS - Afghanisan Principali aivià Supporo

Dettagli

I RENDIMENTI LE SERIE STORICHE FINANZIARIE

I RENDIMENTI LE SERIE STORICHE FINANZIARIE I EDIMETI LE SEIE STOICHE FIAZIAIE Aivià finanziarie Azioni es. Capialia, Mediase,... Tioli di sao BOT, BT, Tassi di cambio Euro/Dollaro, Euro/Serlina, Indici di Borsa S&/MIB, CAC4, ETF Tassi di ineresse

Dettagli

La Formazione in Bilancio delle Unità Previsionali di Base

La Formazione in Bilancio delle Unità Previsionali di Base La Formazion in Bilancio dll Unità Prvisionali di Bas Con la Lgg 3 april 1997, n. 94 sono stat introdott l Unità Prvisionali di Bas (di sguito anch solo UPB), ch rapprsntano un di aggrgazion di capitoli

Dettagli

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4 Corso di Laura in Economia Matmatica pr l applicazioni conomich finanziari Esrcizi 4 Vrificar s l sgunti funzioni, nll intrvallo chiuso indicato, soddisfano l ipotsi dl torma di Roll, in caso affrmativo,

Dettagli

Il condensatore. Carica del condensatore: tempo caratteristico

Il condensatore. Carica del condensatore: tempo caratteristico Il condensaore IASSUNTO: apacia ondensaori a geomeria piana, cilindrica, sferica La cosane dielerica ε r ondensaore ceramico, a cara, eleroliico Il condensaore come elemeno di circuio: ondensaori in serie

Dettagli

Unità didattica: Grafici deducibili

Unità didattica: Grafici deducibili Unità didattica: Grafici dducibili Dstinatari: Allivi di una quarta lico scintifico PNI tal ud è insrita nllo studio dll funzioni rali di variabil ral. Programmi ministriali dl PNI: Dal Tma n 3 funzioni

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche

LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche LEZIONE 3 INDICATORI DELLE RINCIALI VARIABILI MACROECONOMICHE Argomeni raai: definizione e misurazione delle segueni variabili macroecomiche Livello generale dei prezzi, Tasso d inflazione, π IL nominale,

Dettagli

Per tutte le condizioni economiche e contrattuali dei prodotti si rimanda al relativo Foglio Informativo

Per tutte le condizioni economiche e contrattuali dei prodotti si rimanda al relativo Foglio Informativo Foglio Comparativo sull tipologi mutuo ipotcario/fonario pr l acquisto dll abitazion principal (sposizioni trasparnza ai snsi dll art. 2 comma 5 D.L. 29.11.2008 n. 185) Pr tutt l conzioni conomich contrattuali

Dettagli

identificatore titolo descrizione formato Argo Biblioteca Fisco2014 Fisco Argo Inventario Argo Magazzino

identificatore titolo descrizione formato Argo Biblioteca Fisco2014 Fisco Argo Inventario Argo Magazzino 1 2 3 4 5 6 7 8 9 amministrazion rfrnt -mail PEC rfrnt idntificator titolo dscrizion formato rifrimnt o norm soggtto ALUNNI ALUNNI DBMS SQL Sybas installato prsso la scuola ISTRUZIONE Bibliotca Bibliotca

Dettagli

e n. inquinante 2 Frantoio 20.000 3 10 0,70 F.T.

e n. inquinante 2 Frantoio 20.000 3 10 0,70 F.T. QUADRO RIASSUNTIVO DELLE EMISSIONI CONVOGLIATE IN ATMOSFERA (cfr. A.I.A. n. 367/2014) Ei Tipo di Concntrazion Portata Durata Emiss. Camino Provninza n. inquinant rif. Nm 3 /h h / g m 1 Trasporto carbon

Dettagli

I confronti alla base della conoscenza

I confronti alla base della conoscenza I confroni alla ase della conoscenza Un dao uaniaivo rae significao dal confrono con alri dai Il confrono è la prima e più immediaa forma di analisi dei dai I confroni Daa una grandezza G, due suoi valori

Dettagli

CAPITOLO 3 INTRODUZIONE ALLE TURBOMACCHINE

CAPITOLO 3 INTRODUZIONE ALLE TURBOMACCHINE CAPITOLO 3 INTRODUZIONE ALLE TURBOMACCHINE 3.. Inoduzion In quso capiolo analizziamo nl daglio il funzionamno dll ubomaccin, pando dalla dscizion dll asfomazioni c in ss anno luogo. Si passà poi alla dscizion

Dettagli

Lezione n.7. Variabili di stato

Lezione n.7. Variabili di stato Lezione n.7 Variabili di sao 1. Variabili di sao 2. Funzione impulsiva di Dirac 3. Generaori impulsivi per variabili di sao disconinue 3.1 ondizioni iniziali e generaori impulsivi In quesa lezione inrodurremo

Dettagli

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42 Calcolo di intgrali Supponiamo di dovr calcolar l intgral di una funzion in un intrvallo limitato [ min, ma ], di conoscr il massimo d il minimo dlla funzion in tal intrvallo. S gnriamo n punti uniformmnt

Dettagli

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO 132 13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO La prparazion complta dl calciator si ralizza sottoponndo il suo organismo, la sua prsonalità la sua potnzialità motoria, ad una gran quantità di stimoli ch

Dettagli

SOCIETA ITALIANA DI ECONOMIA AGRARIA XLVII Convegno di Studi L agricoltura oltre le crisi Campobasso, 22-25 settembre 2010

SOCIETA ITALIANA DI ECONOMIA AGRARIA XLVII Convegno di Studi L agricoltura oltre le crisi Campobasso, 22-25 settembre 2010 SOCIETA ITALIANA DI ECONOMIA AGRARIA XLVII Convgno di Sudi L agricolura olr l crisi Campobasso, 22-25 smbr 2010 COMUNICAZIONE SIMULAZIONE DELL ADOZIONE DEI SISTEMI DI MUNGITURA AUTOMATICI NELLE AZIENDE

Dettagli

ITALMOBILIARE SOCIETA PER AZIONI

ITALMOBILIARE SOCIETA PER AZIONI ITALMOBILIARE SOCIETA PER AZIONI COMUNICATO STAMPA Informazioni rlativ ai piani di stock option di ITALMOBILIARE S.p.A. ITALCEMENTI S.p.A. già sottoposti alla dcision di rispttivi organi comptnti antcdntmnt

Dettagli

funzione: trasformare un segnale ottico in un segnale elettrico;

funzione: trasformare un segnale ottico in un segnale elettrico; Foorivelaori (a semiconduore) funzione: rasformare un segnale oico in un segnale elerico; ipi: fooconduori; foodiodi (pn, pin, a valanga...) caraerisiche: modo di funzionameno; larghezza di banda; sensibilià;

Dettagli

Per quanto riguarda le procedure di nulla osta bisogna rivolgersi direttamente alla direzione delle scuole.

Per quanto riguarda le procedure di nulla osta bisogna rivolgersi direttamente alla direzione delle scuole. INTRODUZIONE Il prsnt opuscolo contin una raccolta di indirizzi informazioni sull scuol stranir prsnti a Roma. Pr i contatti si suggrisc di utilizzar gli indirizzi in intrnt. Un sito util é anch www.romschools.org

Dettagli

ACCORDO DI COLLABORAZIONE TRA LA REGIONE VENETO E L UNIVERSITA DEGLI STUDI DI PADOVA, L UNIVERSITA DEGLI

ACCORDO DI COLLABORAZIONE TRA LA REGIONE VENETO E L UNIVERSITA DEGLI STUDI DI PADOVA, L UNIVERSITA DEGLI ACCORDO DI COLLABORAZIONE TRA LA REGIONE VENETO E L UNIVERSITA DEGLI STUDI DI PADOVA, L UNIVERSITA DEGLI STUDI DI VERONA, L UNIVERSITA IUAV DI VENEZIA, L UNIVERSITA CA FOSCARI E L AZIENDA REGIONALE PER

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Universià di Napoli Parenope Facolà di Ingegneria Corso di Comunicazioni Elerice docene: Prof. Vio Pascazio a Lezione: 7/04/003 Sommario Caraerizzazione energeica di processi aleaori Processi aleaori nel

Dettagli

Il Dirigente Scolastico

Il Dirigente Scolastico Prot. N. 1305 Bari, 21 fbbraio 2014 PROGRAMMA OPERATIVO NAZIONALE 2007-2013 COMPETENZE PER LO SVILUPPO Union Europa - Fondo Social Europo Con l Europa, invstiamo nl vostro futuro Il Dirignt Scolastico

Dettagli

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...)

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...) COMMISSIONE DELLE COMUNITÀ EUROPEE Bruxlls, xxx COM (2001) yyy final Progtto di RACCOMANDAZIONE DELLA COMMISSIONE dl (...) modificando la raccomandazion 96/280/CE rlativa alla dfinizion dll piccol mdi

Dettagli

Capitolo 7 - Schermature

Capitolo 7 - Schermature Appuni di Compaibilià lomagnica Capiolo 7 - Schmau Inoduzion... fficinza di schmaua... Impoanza dlla schmaua di cavi ch aavsano lo schmo...3 Impoanza dll apu: pincipio di Babin...5 Considazioni gnali...6

Dettagli

FOTODIODI. La fotorivelazione è basata sull effetto fotoelettrico.

FOTODIODI. La fotorivelazione è basata sull effetto fotoelettrico. OODIODI La otorivlazio è basata sull tto otolttrico. I N Ua radiazio lumiosa icidt lla rgio itrisca di u diodo smicoduttor drogato IN polarizzato ivrsamt produc di portatori libri. Ogi coppia di portatori

Dettagli

Mutuo FONDIARIO EDILIZIO STANDARD solo con finalità S.A.L. (Stato Avanzamento Lavori)

Mutuo FONDIARIO EDILIZIO STANDARD solo con finalità S.A.L. (Stato Avanzamento Lavori) FOGLIO INFORMATIVO (D.Lgs 385/01.09.93 succssiv modifich - Dlibrazion CICR dl 04.03.03 ) INFORMAZIONI SULLA BANCA Dnominazion forma giuridica: Banca Apulia S.p.A. Muuo FONDIARIO EDILIZIO STANDARD solo

Dettagli

DOCUMENTO DI INFORMAZIONE ANNUALE

DOCUMENTO DI INFORMAZIONE ANNUALE CAMFIN S.p.A. Sd in Milano, Vial Piro Albrto Pirlli, 25 Rgistro dll Imprs di Milano 00795290154 Capital Social Euro 261.060.734,28 i.v. DOCUMENTO DI INFORMAZIONE ANNUALE (articolo 54 dl Rgolamnto Emittnti

Dettagli

Decalogo alimentazione estate 2012

Decalogo alimentazione estate 2012 con l nu propon 10 przioi conigli pr un limnzion corr icur in un priodo gnrlmn ccompgno d mggior mpo libro, con biudini limnri divr ripo l ro dll nno: mggior numro di pi fuori c, cr nzion gli ppori nuli,

Dettagli

LG ha introdotto NeON 2 dotato di tecnologia CELLO, una cella di nuova concezione che migliora le prestazioni e l'affidabilità. Fino a 320 W 300 W

LG ha introdotto NeON 2 dotato di tecnologia CELLO, una cella di nuova concezione che migliora le prestazioni e l'affidabilità. Fino a 320 W 300 W Tcnologia CELLO IT LG ha introdotto NON 2 dotato di tcnologia CELLO, una clla di nuova conczion ch migliora l prstazioni l'affidabilità. Fino a 320 W 300 W Tcnologia CELLO Cll Connction (Connssion Clla)

Dettagli

Compact-1401. Compact-1401. Listino prezzi F6 Marzo 2013 MICRON

Compact-1401. Compact-1401. Listino prezzi F6 Marzo 2013 MICRON Listino przzi F6 Marzo 013 UNI EN 1401 act-1401 UNI EN 1401 Carbonato di calcio,5 MICRON Tubi di PVC-U pr condott fognari civili d industriali costruiti scondo UNI EN 1401 GRESINTEX DALMINE RESINE Tubi

Dettagli

Integrazione e Integratori delle Informazioni

Integrazione e Integratori delle Informazioni SC.S.I. A.S.O. Ordin Mauriziano Workshop intrrgional sui sistmi informativi pr la gstion la valutazion dll rti oncologich Torino 24-25 maggio 2007 Intgratori dll Andra Bo - A.S.O. Ordin Mauriziano - S.C.

Dettagli