METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 4 2016"

Transcript

1 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n

2 GLI INSIEMI NUMERICI N Numeri naturali Z : Numeri interi Q : Numeri razionali R : Numeri reali

3 Q A meno di isomorfismi!!! R 5 π Digitare l'equazione qui N Z

4 I NUMERI NATURALI

5 IL CONCETTO DI SUCCESSIVO Il fulcro della consapevolezza numerica dei bambini è la successione dei vocaboli numerali che: - inizia da un numero particolare: uno - dopo ogni numero c è sempre un altro numero - nel contare non si torna mai indietro Ciò è espresso con il concetto di «passaggio al successivo»

6 Da conquistare 1) il successivo di n è n+1 (cioè passare al successivo equivale ad aggiungere 1) 2) I numeri naturali sono infiniti N.B.: Il meccanismo dell aggiungere uno è legato ragionamento per ricorrenza, con il quale una proprietà può essere estesa da un caso particolare all altro.

7 I Naturali e l ordinamento Comunque presi due numeri naturali m e n, può accadere soltanto una delle tre possibilità: n < m oppure n = m oppure n > m (Legge di Tricotomia) È sempre possibile quindi confrontare due qualunque numeri naturali!!

8 LE OPERAZIONI DI ADDIZIONE E SOTTRAZIONE

9 ADDIZIONE Che vuol dire a + b? Sommare ad a tante unità quante sono quelle contenute in b E necessario quindi l aspetto cardinale del numero, cioè la consapevolezza che il numero b esprime una numerosità, ma anche il ragionamento per ricorrenza, cioè aggiungere 1 b volte

10 I termini dell addizione 18+ addendo 13= addendo 31 Somma

11 PROPRIETÀ DELL ADDIZIONE È una operazione interna: m, n N, m + n N Ciò vuol dire che l operazione somma ha sempre un risultato tra i naturali Vale la proprietà associativa: m, n, p N, m + n + p = m + (n + p) Tale proprietà permette di estendere l operazione somma a più addendi senza doversi preoccupare dell ordine con cui vengono eseguite le operazioni Vale la proprietà commutativa: m, n N, m + n = n + m Neutralità dello 0: n N, n + 0 = 0 + n = n Tale proprietà evidenzia la prima funzione dello 0 nelle operazioni

12 In molti testi si trovano le proprietà enunciate nel seguente modo:

13 Ricordiamo Rivediamo le proprietà dell uguaglianza: Proprietà riflessiva: a = a Proprietà simmetrica: a = b b = a Proprietà transitiva: a = b e b = c a = c N.B.: la proprietà simmetrica fa si che io possa leggere una uguaglianza in entrambi i sensi Es: (12+5)+7=17+7 perciò 17+7=(12+5)+7 quindi: Non esiste la proprietà dissociativa!!!!!!

14 SOTTRAZIONE Che vuol dire a b? Si può vedere in due modi: (1)Togliere ad a tante unità quante sono quelle contenute in b (2)Trovare quel numero c che sommato a b da come risultato a L espressione (1) presenta una procedura con cui eseguire l operazione L espressione (2) presenta la sottrazione come operazione inversa dell addizione.

15 I termini della sottrazione 65 - minuendo 31 = sottraendo 34 differenza

16 Proprietà la sottrazione non è una operazione interna all insieme dei numeri naturali: è possibile associare un risultato solo se a b (requisito necessario: saper riconoscere il maggiore tra due numeri) Non vale la proprietà commutativa Non vale la proprietà associativa Es.: (15-7)-5 15-(7-5) Vale la proprietà invariantiva: la differenza tra due numeri non cambia se ad entrambi si addiziona o si sottrae lo stesso numero. a b = a + c (b + c)

17 Le proprietà delle operazioni e il calcolo mentale 55+27=55+(20+7)= (55+20)+7=75+7=82 Quali proprietà abbiamo applicato? In ogni passaggio (escluso l ultimo) sempre la proprietà associativa 55+27= = (50+20)+(5+7)=70+12=82 In questo caso proprietà associativa e proprietà commutativa = (125-25)-(75-25)=100-50=50 Qui è applicata la proprietà invariantiva

18 Con attenzione possiamo coinvolgere insieme addizione e sottrazione: 33+49=33+(50-1)=(33+50)-1=83-1= 82 Di fatto abbiamo applicato la proprietà associativa anche in presenza della sottrazione. Perché è possibile?

19 LE OPERAZIONI DI MOLTIPLICAZIONE E DIVISIONE

20 Moltiplicazione Solitamente la moltiplicazione viene presentate come addizione ripetuta. m n = m + m + + m n volte In questo caso i due numeri hanno un ruolo diverso: il simbolo m mantiene il ruolo di numero, mentre n è un aggettivo numerale cardinale (riferito a volte ). Anche i nomi assegnati ai due numeri evidenziano quanto sopra affermato

21 I termini della moltiplicazione

22 Si può rappresentare la moltiplicazione anche in un altro modo, che fa si che entrambi i fattori assumano lo stesso ruolo. Vediamolo con un esempio: colonne 5 colonne 5 righe 4 righe Come si può vedere, in questo modo è più facile riconoscere la proprietà commutativa

23 Proprietà della moltiplicazione È una operazione interna: Vale la proprietà associativa: m, n N, m n N m, n, p N, Vale la proprietà commutativa: m, n N, Neutralità dell 1: n N, m n p = m (n p) m n = n m n 1 = 1 n = n 0 è elemento assorbente: n N, n 0 = 0 la seconda funzione dello 0 nelle operazioni

24 Il legame tra addizione e moltiplicazione è la proprietà distributiva del prodotto rispetto alla somma In formula: a (b + c) = a b + a c Usando la proprietà commutativa, si può anche scrivere: (b + c) a = b a + c a 24

25 Osservazioni 1 1) Già nella scrittura della relazione sono necessarie le parentesi, per indicare qual è l ordine delle operazioni. Per esempio: a (b + c) a b + c 3 (7 + 5) = = = = novembre 2013 R. Manara 25

26 Osservazioni 2 2) Infatti, il ruolo delle due operazioni non è simmetrico: non c è modo di distribuire la somma sul prodotto. (a b) + c (a c) + (b c) 16 novembre 2013 R. Manara 26

27 Osservazioni 3 3) Leggendo la proprietà da destra a sinistra, si individua la proprietà del raccoglimento : a (b + c) = a b + a c (2) 16 novembre 2013 R. Manara 27

28 Le due letture operative (1) a ( b + c) = a b + a c Per moltiplicare un numero per una somma, si moltiplica quel numero per ciascun addendo e si sommano i risultati. (2) a b + a c = a (b + c) Una somma di prodotti in cui ogni addendo presenta lo stesso fattore (fattore comune), si può trasformare nel prodotto di quel fattore per la somma dei fattori restanti in ogni addendo. 16 novembre 2013 R. Manara 28

29 Osservazioni 4 4) Vale anche la proprietà distributiva del prodotto rispetto alla differenza: (b c) a = b a - c a 16 novembre 2013 R. Manara 29

30 Ancora un po di calcolo mentale = = = (proprietà...) = = (proprietà ) = = = = (proprietà..) = = 425 (proprietà....) Oppure: = = = =

31 Concetto di Multiplo Il numero a si dice multiplo di b se esiste un numero c tale che: a = b c Dato un qualunque numero n, i suoi multipli sono tutti i numeri che si ottengono moltiplicando n per i vari numeri naturali. Per esempio, se il numero assegnato è 3, i suoi multipli sono: 3 0=0, 3 1=3, 3 2=6, 3 3=9,, 3 10=30,, 3 25=75, Quanti sono? Evidentemente tanti quanti sono i numeri naturali. 0 è multiplo di qualsiasi numero I multipli di 2 si chiamano numeri pari Se un numero non è pari allora si dice dispari

32 LA DIVISIONE non è una operazione interna all insieme dei numeri naturali: all operazione a: b è possibile associare un risultato solo se a è multiplo di b Non vale la proprietà commutativa Non vale la proprietà associativa: 12: 4 : 3 è possibile 12: 4: 3 non è possibile

33 Proprietà della divisione Neutralità dell 1 n N n: 1 = n Comportamento dello 0: - n N 0: n = 0 -non è possibile la divisione per 0 infatti non esiste un m N tale che 0 m = n Vale la proprietà invariantiva m: n = m p : n p = m: c : (n: c) Vale la proprietà distributiva della divisione rispetto all addizione o sottrazione (quando le operazioni sono possibili) m ± n : p = (m: p) ± (n: p)

34 Il concetto di Divisore Il numero b si dice divisore di a se esiste un numero c tale che: a = b c Ogni numero è divisore di se stesso 1 è divisore di ciascun numero I divisori di un numero sono sempre in numero finito: quanti sono?

35 I Numeri primi Un numero che ammette come divisori solo se stesso e l unità si dice primo Se un numero non è primo si dice composto 0 e 1 non sono né primi né composti I numeri primi sono infiniti: la prima dimostrazione la dobbiamo a Euclide La distribuzione dei numeri primi all interno dei naturali non ha una apparente regolarità. Oggi i numeri primi sono molto utilizzati in crittografia

36 Criteri di divisibilità un numero è divisibile per 2 se termina con una cifra pari (0,2,4,6,8) un numero è divisibile per 3 se la somma delle sue cifre è 3 o un multiplo di 3 un numero è divisibile per 4 se le ultime due cifre sono 00 oppure formano un numero multiplo di 4 un numero è divisibile per 5 se la sua ultima cifra è 0 o 5 un numero è divisibile per 6 se è divisibile sia per 2 che per 3 un numero è divisibile per 9 se la somma delle sue cifre è 9 o un multiplo di 9 un numero è divisibile per 10 se la sua ultima cifra è 0

37 La Divisione con il resto Dati due qualunque numeri naturali a e b (b 0), esistono sempre, e sono unici, due numeri q ed r tali che: a = b q + r Ciò vuol dire che la divisione con il resto è sempre possibile. N.B.1: il resto è sempre minore del divisore, cioè 0 r < b N.B.2: La divisione con resto può essere vista come una generalizzazione della divisione

LEZIONE N 3 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA

LEZIONE N 3 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA LEZIONE N 3 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA GLI INSIEMI NUMERICI N Numeri naturali Z : Numeri interi Q : Numeri razionali R : Numeri reali Q A meno di isomorfismi!!! R 5 π 2 3 11

Dettagli

LEZIONE 1. del 10 ottobre 2011

LEZIONE 1. del 10 ottobre 2011 LEZIONE 1 del 10 ottobre 2011 CAPITOLO 1: Numeri naturali N e numeri interi Z I numeri naturali sono 0, 1, 2, 3, 4, 5, Questi hanno un ordine. Di ogni numero naturale, escluso lo 0, esistono il precedente

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali 1. ADDIZIONE Le quattro operazioni fondamentali Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:

Dettagli

4 + 7 = 11. Possiamo quindi dire che:

4 + 7 = 11. Possiamo quindi dire che: Consideriamo due numeri naturali, per esempio 4 e 7. Contando successivamente, dopo le unità del primo, le unità del secondo si esegue l operazione aritmetica detta addizione, il cui simbolo è + ; 4 +

Dettagli

Parte Seconda. Prova di selezione culturale

Parte Seconda. Prova di selezione culturale Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:

Dettagli

Il Sistema di numerazione decimale

Il Sistema di numerazione decimale Il Sistema di numerazione decimale Il NUMERO è un oggetto astratto, rappresentato da un simbolo (o cifra) ed è usato per contare e misurare. I numeri usati per contare, 0,1,2,3,4,5,. sono detti NUMERI

Dettagli

Moltiplicazione. Divisione. Multipli e divisori

Moltiplicazione. Divisione. Multipli e divisori Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini

Dettagli

Conclusione? Verifica la proprietà commutativa per le altre operazioni.

Conclusione? Verifica la proprietà commutativa per le altre operazioni. Le proprietà delle operazioni.( teoria / esercizi pag. 15 24) Proprietà: Sono delle regole che permettono di svolgere dei calcoli più semplicemente. Operazioni: Tu conosci le operazioni numeriche:, 1)

Dettagli

Conoscenze. 1. L addizione è l operazione che associa a due numeri, detti, un... numero, detto, che si ottiene...

Conoscenze. 1. L addizione è l operazione che associa a due numeri, detti, un... numero, detto, che si ottiene... Conoscenze 1. L addizione è l operazione che associa a due numeri, detti, un... numero, detto, che si ottiene...... 2. La sottrazione è l operazione che associa a due numeri, detti rispettivamente... e..,

Dettagli

Richiami di aritmetica (1)

Richiami di aritmetica (1) Richiami di aritmetica (1) Operazioni fondamentali e loro proprietà Elevamento a potenza e proprietà potenze Espressioni aritmetiche Scomposizione: M.C.D. e m.c.m Materia: Matematica Autore: Mario De Leo

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali SINTESI Unità 3 Le quattro operazioni fondamentali Addizione Si dice somma di due numeri naturali il numero che si ottiene contando di seguito al primo tanti numeri consecutivi quante sono le unità del

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali Le quattro operazioni fondamentali ADDIZIONE Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:

Dettagli

Operazioni in N Le quattro operazioni Definizioni e Proprietà

Operazioni in N Le quattro operazioni Definizioni e Proprietà Operazioni in N Le quattro operazioni Definizioni e Proprietà Prof.Enrico Castello Concetto di Operazione NUMERO NUMERO OPERAZIONE RISULTATO PROCEDIMENTO CHE PERMETTE DI ASSOCIARE A DUE NUMERI, DATI IN

Dettagli

La tabella dell addizione Completa la tabella e poi rispondi alle domande.

La tabella dell addizione Completa la tabella e poi rispondi alle domande. La tabella dell addizione Completa la tabella e poi rispondi alle domande. CCCCCCCCCCCC + 0 4 5 6 7 8 9 0 0 4 5 6 7 8 9 0 A ogni coppia ordinata di numeri naturali corrisponde sempre un numero naturale?

Dettagli

ESERCIZIARIO DI MATEMATICA

ESERCIZIARIO DI MATEMATICA Dipartimento di rete matematica ESERCIZIARIO DI MATEMATICA PER PREPARARSI ALLA SCUOLA SUPERIORE progetto Continuità SCUOLA SECONDARIA DI I GRADO Istituti comprensivi: Riva Riva Arco Dro Valle dei Laghi

Dettagli

L insieme dei numeri Relativi (Z)

L insieme dei numeri Relativi (Z) L insieme dei numeri Relativi (Z) L esigenza dei numeri relativi Due precise situazioni ci spingono ad ampliare l'insieme de numeri naturali (N): una di carattere pratico, un'altra di carattere più teorico.

Dettagli

Dott. Dallavalle Riccardo UNITA DIATTICA nr. 5 Gli argomenti di oggi:

Dott. Dallavalle Riccardo UNITA DIATTICA nr. 5 Gli argomenti di oggi: Gli argomenti di oggi: Le operazioni matematiche con i numeri INTERI RELATIVI Come facciamo a fare la ADDIZIONE con i numeri interi relativi? Consideriamo un esempio: (+5) + (+7) =? Come potrei fare? Prova

Dettagli

Operatori di confronto:

Operatori di confronto: Operatori di confronto: confrontano tra loro due numeri e come risultato danno come risposta o operatore si legge esempio risposta = uguale a diverso da > maggiore di < minore di maggiore o uguale a minore

Dettagli

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA)

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) Nel presente documento sono elencati gli esercizi da svolgere nel corso delle vacanze estive 2017 da parte degli studenti

Dettagli

Le operazioni fondamentali con i numeri relativi

Le operazioni fondamentali con i numeri relativi SINTESI Unità Le operazioni fondamentali con i numeri relativi Addizione La somma di due numeri relativi concordi è il numero relativo che ha lo stesso segno degli addendi e come valore assoluto la somma

Dettagli

Si ottiene facendo precedere i numeri naturali dal segno + o dal segno -.

Si ottiene facendo precedere i numeri naturali dal segno + o dal segno -. I numeri naturali non sono adatti per risolvere tutti i problemi. Esempio. La temperatura atmosferica di un mattino estivo, sopra lo zero, viene indicata con un numero preceduto dal segno + (+19 C, +25

Dettagli

MATEMATICA CLASSE QUARTA

MATEMATICA CLASSE QUARTA MATEMATICA CLASSE QUARTA a) I NUMERI NATURALI E LE 4 OPERAZIONI U.D.A. : 1 I NUMERI NATURALI 1. Conoscere l evoluzione dei sistemi di numerazione nella storia dell uomo. 2. Conoscere e utilizzare la numerazione

Dettagli

LE OPERAZIONI CON I NUMERI

LE OPERAZIONI CON I NUMERI ARITMETICA PREREQUISITI l conoscere le caratteristiche del sistema di numerazione decimale CONOSCENZE 1. il concetto di somma 2. le proprietaá dell'addizione 3. il concetto di differenza 4. la proprietaá

Dettagli

= < < < < < Matematica 1

= < < < < < Matematica  1 NUMERI NATURALI N I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,... L insieme dei numeri naturali è indicato con la lettera. Si ha cioè: N= 0,1,2,3,4,5,6,7,.... L insieme dei naturali privato

Dettagli

La tabella è completa perché l'addizione è un'operazione sempre possibile.

La tabella è completa perché l'addizione è un'operazione sempre possibile. Operazioni aritmetiche fondamentali in N Addizione Operazione che a due numeri (addendi) ne associa un terzo (somma) ottenuto contando di seguito al primo tante unità quante ne rappresenta il secondo.

Dettagli

1 (UNO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME UNITARIO B = (CLASSI CHE HANNO LA LIM) SOLO LA 4ª A HA LA LIM QUINDI L INSIEME È UNITARIO.

1 (UNO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME UNITARIO B = (CLASSI CHE HANNO LA LIM) SOLO LA 4ª A HA LA LIM QUINDI L INSIEME È UNITARIO. I NUMERI NATURALI DEFINIAMO NUMERI NATURALI I NUMERI A CUI CORRISPONDE UN INSIEME. 0 (ZERO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME VUOTO. A = (ALUNNI DI 4ª A CON I CAPELLI ROSSI) NESSUN ALUNNO HA

Dettagli

MAPPA 1 NUMERI. Strumenti e rappresentazioni grafiche

MAPPA 1 NUMERI. Strumenti e rappresentazioni grafiche MAPPA 1 Strumenti e rappresentazioni grafiche Tabella a doppia entrata Una tabella a doppia entrata è formata da righe e colonne. Per convenzione, si legge in senso orario (nel verso indicato dalla freccia).

Dettagli

Le tecniche di calcolo mentale rapido usano alcune proprietà delle operazioni. Le principali proprietà utilizzate sono: 3 + 2 = 2 + 3 3 2 = 2 3

Le tecniche di calcolo mentale rapido usano alcune proprietà delle operazioni. Le principali proprietà utilizzate sono: 3 + 2 = 2 + 3 3 2 = 2 3 Calcolo mentale rapido Proprietà delle operazioni Le tecniche di calcolo mentale rapido usano alcune proprietà delle operazioni. Le principali proprietà utilizzate sono: Proprietà commutativa dell addizione

Dettagli

Numeri relativi: numeri il cui valore dipende dal segno che li precede.

Numeri relativi: numeri il cui valore dipende dal segno che li precede. . Definizioni e proprietà Numeri relativi: numeri il cui valore dipende dal segno che li precede. + 4 è un numero positivo, cioè maggiore di 0, perché preceduto dal segno + (il segno + davanti ai numeri

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA 7 LEZIONE

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA 7 LEZIONE METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA 7 LEZIONE I NUMERI INTERI Z I NUMERI INTERI I numeri interi sono quelli che vengono chiamati numeri con il segno. Essi costituiscono un ampliamento

Dettagli

Le operazioni fondamentali in R

Le operazioni fondamentali in R La REGOLA DEI SEGNI: 1. ADDIZIONE Le operazioni fondamentali in R + per + dà + per dà + + per dà per + dà Esempi: (+5) + (+9) = + 5 + 9 = + 14 (+5) + ( 3) = + 5 3 = + 2 ( 5) + ( 9) = 5 9 = 14 ( 5) + (+3)

Dettagli

Prontuario degli argomenti di Algebra

Prontuario degli argomenti di Algebra Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.

Dettagli

OPERAZIONI IN Q = + = = = =

OPERAZIONI IN Q = + = = = = OPERAZIONI IN Q A proposito delle operazioni tra numeri razionali, affinché il passaggio da N a vero e proprio ampliamento è necessario che avvengano tre cose: Q risulti un ) le proprietà di ciascuna operazione

Dettagli

L insieme dei numeri naturali e le quattro operazioni aritmetiche

L insieme dei numeri naturali e le quattro operazioni aritmetiche n L insieme dei numeri naturali e le quattro operazioni aritmetiche [p. 23] n Le potenze [p. 27] n Espressioni [p. 30] n Divisibilità, numeri primi, MCD e mcm [p. 34] L insieme dei numeri naturali e le

Dettagli

Richiami di aritmetica

Richiami di aritmetica Richiami di aritmetica I numeri naturali L insieme dei numeri naturali, che si indica con N, comprende tutti i numeri interi maggiori di zero. Operazioni fondamentali OPERAZIONE SIMBOLO RISULTATO TERMINI

Dettagli

x + y = t x y = t x y = t x : y = t a b c = a (b c) (a b) : c = a (b: c) b : c am bn = (ab) m+n a : b

x + y = t x y = t x y = t x : y = t a b c = a (b c) (a b) : c = a (b: c) b : c am bn = (ab) m+n a : b Vero Falso 1. L addizione è sempre possibile in N. 2. La sottrazione è sempre possibile in N. 3. Se x + y = t, x e y si chiamano fattori. 4. Se x y = t, t si chiama differenza. 5. Se x y = t, t si chiama

Dettagli

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi.

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi. NUMERI RAZIONALI Q Nell insieme dei numeri naturali e nell insieme dei numeri interi relativi non è sempre possibile effettuare l operazione di divisione. Infatti, eseguendo la divisione 7 2 si ottiene

Dettagli

4 0 = 4 2 = 4 4 = 4 6 = 0.

4 0 = 4 2 = 4 4 = 4 6 = 0. Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono

Dettagli

Liceo scientifico Pascal Manerbio Esercizi di matematica per le vacanze estive

Liceo scientifico Pascal Manerbio Esercizi di matematica per le vacanze estive Di alcuni esercizi non verranno riportati i risultati perché renderebbero inutile lo svolgimento degli stessi. Gli esercizi seguenti risulteranno utili se i calcoli saranno eseguiti mentalmente applicando

Dettagli

Numeri interi relativi

Numeri interi relativi Numeri interi relativi 2 2.1 I numeri che precedono lo zero Con i numeri naturali non sempre è possibile eseguire l operazione di sottrazione. In particolare, non è possibile sottrarre un numero più grande

Dettagli

posso assicurare che le mie sono ancora maggiori

posso assicurare che le mie sono ancora maggiori PROF. SSA G. CAFAGNA CLASSI: 1 B, 1 G, 1 I, 1 M, 1 N Non preoccuparti delle difficoltà che incontri in matematica, ti posso assicurare che le mie sono ancora maggiori (Albert Einstein) ADDIZIONE I due

Dettagli

1 Multipli di un numero

1 Multipli di un numero Multipli di un numero DEFINIZIONE. I multipli di un numero sono costituiti dall insieme dei prodotti ottenuti moltiplicando quel numero per la successione dei numeri naturali. I multipli del numero 4 costituiscono

Dettagli

La tabella dell addizione Completa la tabella e poi rispondi alle domande.

La tabella dell addizione Completa la tabella e poi rispondi alle domande. La tabella dell addizione Completa la tabella e poi rispondi alle domande. CCCCCCCCCCCC + 0 4 5 6 7 8 9 0 0 4 5 6 7 8 9 0 A ogni coppia ordinata di numeri naturali corrisponde sempre un numero naturale?

Dettagli

Gli insiemi numerici. Operazioni e loro proprietà

Gli insiemi numerici. Operazioni e loro proprietà Gli insiemi numerici N= 0, 1,, 3 Insieme dei numeri naturali Z=, 1, 0, 1,, 3 Insieme dei numeri interi relativi Q= m/n mεz, nεz con n 0 Insieme dei numeri razionali Operazioni e loro proprietà ADDIZIONE

Dettagli

I RADICALI QUADRATICI

I RADICALI QUADRATICI I RADICALI QUADRATICI 1. Radici quadrate Definizione di radice quadrata: Si dice radice quadrata di un numero reale positivo o nullo a, e si indica con a, il numero reale positivo o nullo (se esiste) che,

Dettagli

ESERCIZI DI MATEMATICA PER GLI ISCRITTI ALLE CLASSI PRIME DELLA SEZIONE TECNICA

ESERCIZI DI MATEMATICA PER GLI ISCRITTI ALLE CLASSI PRIME DELLA SEZIONE TECNICA ISTITUTO DI ISTRUZIONE SUPERIORE Liceo Scientifico Istituto Tecnico Industriale ALDO MORO Via Gallo Pecca n. 4/6 10086 RIVAROLO CANAVESE Via Gallo Pecca n. 4/6-10086 Rivarolo Canavese Via Gallo Pecca n.

Dettagli

NUMERI ED OPERAZIONI indicatori descrittori valutazione

NUMERI ED OPERAZIONI indicatori descrittori valutazione NUMERI ED OPERAZIONI indicatori descrittori valutazione classe 1^ riconoscimento e e dei simboli matematici gruppi di oggetti in relazione alla quantità sa riconoscere i simboli ci sa stabilire relazioni

Dettagli

INSIEME N. L'insieme dei numeri naturali (N) è l'insieme dei numeri interi e positivi.

INSIEME N. L'insieme dei numeri naturali (N) è l'insieme dei numeri interi e positivi. INSIEME N L'insieme dei numeri naturali (N) è l'insieme dei numeri interi e positivi. N = {0;1;2;3... Su tale insieme sono definite le 4 operazioni di base: l'addizione (o somma), la sottrazione, la moltiplicazione

Dettagli

1 Relazione di congruenza in Z

1 Relazione di congruenza in Z 1 Relazione di congruenza in Z Diamo ora un esempio importante di relazione di equivalenza: la relazione di congruenza modn in Z. Definizione 1 Sia X = Z, a,b Z ed n un intero n > 1. Si dice a congruo

Dettagli

Progetto Matematica in Rete - Numeri naturali - I numeri naturali

Progetto Matematica in Rete - Numeri naturali - I numeri naturali I numeri naturali Quali sono i numeri naturali? I numeri naturali sono : 0,1,,3,4,5,6,7,8,9,10,11 I numeri naturali hanno un ordine cioè dati due numeri naturali distinti a e b si può sempre stabilire

Dettagli

ESERCIZI DI PREPARAZIONE E CONSOLIDAMENTO PER I FUTURI STUDENTI DEL PRIMO LEVI

ESERCIZI DI PREPARAZIONE E CONSOLIDAMENTO PER I FUTURI STUDENTI DEL PRIMO LEVI ESERCIZI DI PREPARAZIONE E CONSOLIDAMENTO PER I FUTURI STUDENTI DEL PRIMO LEVI si campa anche senza sapere che cos è un equazione, senza sapere suonare uno strumento musicale, senza conoscere il nome del

Dettagli

REGOLE FACILI ITALIANO e MATEMATICA

REGOLE FACILI ITALIANO e MATEMATICA REGOLE FACILI ITALIANO e MATEMATICA -classi 3, 4, 5 scuola primaria- A cura di www.imparaconpietro.altervista.org INDICE SCHEDE REGOLE DI ITALIANO: Monosillabi 1 Articoli partitivi 2 Preposizioni 3 Aggettivi

Dettagli

SCOMPOSIZIONE IN FATTORI PRIMI:

SCOMPOSIZIONE IN FATTORI PRIMI: SCOMPOSIZIONE IN FATTORI PRIMI: 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229

Dettagli

Primo modulo: Aritmetica

Primo modulo: Aritmetica Primo modulo: Aritmetica Obiettivi 1. ordinamento e confronto di numeri;. riconoscere la rappresentazione di un numero in base diversa dalla base 10; 3. conoscere differenza tra numeri razionali e irrazionali;

Dettagli

Corso di Analisi Matematica. L insieme dei numeri reali

Corso di Analisi Matematica. L insieme dei numeri reali a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica L insieme dei numeri reali Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

Logica matematica e ragionamento numerico

Logica matematica e ragionamento numerico 5 Logica matematica e ragionamento numerico Abilità di calcolo! I quiz raccolti in questo capitolo sono finalizzati alla valutazione della rapidità e della precisione con cui esegui i calcoli matematici:

Dettagli

ELEMENTI di TEORIA degli INSIEMI

ELEMENTI di TEORIA degli INSIEMI ELEMENTI di TEORI degli INSIEMI & 1. Nozioni fondamentali. ssumeremo come primitivi il concetto di insieme e di elementi di un insieme. Nel seguito gli insiemi saranno indicati con lettere maiuscole (,,C,...)

Dettagli

La proprietà associativa Applica la proprietà associativa, come nell esempio.

La proprietà associativa Applica la proprietà associativa, come nell esempio. La proprietà associativa Applica la proprietà associativa, come nell esempio. es.: (3 + 47) + 0 = 3 + (47 + 0) = 3 + 47 + 0 = 80 (9 +) + 74 =...... +... +... = 58 + (5 + 79) =... +... +... =...... +...

Dettagli

1.5 DIVISIONE TRA DUE POLINOMI

1.5 DIVISIONE TRA DUE POLINOMI Matematica C Algebra. Le basi del calcolo letterale.5 Divisione tra due polinomi..5 DIVISIONE TRA DUE POLINOMI Introduzione Ricordiamo la divisione tra due numeri, per esempio 47:4. Si tratta di trovare

Dettagli

L insieme dei numeri Relativi

L insieme dei numeri Relativi L insieme dei numeri Relativi ITIS Feltrinelli anno scolastico 007-008 R. Folgieri 007-008 1 Ampliamento di N e Q: i relativi Nell insieme N non possiamo fare operazioni quali -1 perché il risultato non

Dettagli

ASTUCCIO DELLE REGOLE

ASTUCCIO DELLE REGOLE Silvia Tabarelli ASTUCCIO DELLE REGOLE di MATEMATICA SCUOLA PRIMARIA Facilità di lettura Facilità di consultazione Facilità di comprensione 4 6 9 3 Ecco l ASTUCCIO DELLE REGOLE DI MATEMATICA per la scuola

Dettagli

Scheda per il recupero 1

Scheda per il recupero 1 A Ripasso Le operazioni in N e le loro proprietà OPERAZIONE PROPRIETÀ ESEMPI Addizione Interna a N (ovvero la somma di due numeri naturali è sempre un numero naturale) Commutativa a þ b ¼ b þ a Associativa

Dettagli

I numeri relativi. Definizioni Rappresentazione Operazioni Espressioni Esercizi. Materia: Matematica Autore: Mario De Leo

I numeri relativi. Definizioni Rappresentazione Operazioni Espressioni Esercizi. Materia: Matematica Autore: Mario De Leo I numeri relativi Definizioni Rappresentazione Operazioni Espressioni Esercizi Materia Matematica Autore Mario De Leo Definizioni I numeri relativi sono i numeri preceduti dal simbolo (positivi) o dal

Dettagli

Il primo insieme numerico che abbiamo scoperto è stato l insieme dei numeri naturali, l insieme N. L impossibilità di trovare in N il quoziente tra

Il primo insieme numerico che abbiamo scoperto è stato l insieme dei numeri naturali, l insieme N. L impossibilità di trovare in N il quoziente tra Il primo insieme numerico che abbiamo scoperto è stato l insieme dei numeri naturali, l insieme N. L impossibilità di trovare in N il quoziente tra due numeri naturali ci ha portati a vedere la frazione

Dettagli

Ampliamento di N: le frazioni

Ampliamento di N: le frazioni L insieme dei numeri Razionali ITIS Feltrinelli anno scolastico 2007-2008 R. Folgieri 2007-2008 1 Ampliamento di N: le frazioni Nell insieme N non possiamo fare operazioni quali 13:5 perché il risultato

Dettagli

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra e di Matematica

Dettagli

SCHEDA N 4 - Interi.

SCHEDA N 4 - Interi. SCHEDA N 4 - Interi. L'impossibilità di eseguire sempre la sottrazione nell'insieme N dei numeri naturali ha portato alla costruzione dei numeri interi relativi, o semplicemente dei numeri interi. Elementarmente,

Dettagli

LA FRAZIONE. apparente: se il numeratore è multiplo o uguale al denominatore e il valore della frazione è un numero intero.

LA FRAZIONE. apparente: se il numeratore è multiplo o uguale al denominatore e il valore della frazione è un numero intero. LA FRAZIONE Una frazione è un modo per esprimere una quantità basandosi sulla divisione di un oggetto in un certo numero di parti della stessa dimensione. ES: Il denominatore: indica il numero totale di

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI Assumiamo come primitivo il concetto di insieme e quello di appartenenza di un elemento a un insieme. La notazione x A indica

Dettagli

Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N.

Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N. MULTIPLI E DIVISORI Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N. Poiché N = 0,1,2,3...7...95,..104.. Zero è multiplo di

Dettagli

I NUMERI NATURALI E I NUMERI INTERI

I NUMERI NATURALI E I NUMERI INTERI TEORIA I NUMERI NATURALI E I NUMERI INTERI. CHE COSA SONO I NUMERI NATURALI Conosci già i numeri naturali: 0,, 2, 3, 4, 5, 6, 7, 8, 9, 0... I puntini stanno a significare che l elenco prosegue all infinito.

Dettagli

CURRICOLO DI ISTITUTO

CURRICOLO DI ISTITUTO ISTITUTO COMPRENSIVO G.PERLSC Ferrara CURRICOLO DI ISTITUTO NUCLEO TEMTICO Il numero CONOSCENZE BILIT S C U O L P R I M R I classe 1^ L alunno conosce: i numeri naturali, nei loro aspetti cardinali e ordinali,

Dettagli

PREVISIONE DEL TIPO DI NUMERO DECIMALE GENERATO DA UNA FRAZIONE di Luciano Porta

PREVISIONE DEL TIPO DI NUMERO DECIMALE GENERATO DA UNA FRAZIONE di Luciano Porta PREVISIONE DEL TIPO DI NUMERO DECIMALE GENERATO DA UNA FRAZIONE di Luciano Porta Lo studio dei numeri decimali, se non si limita all utilizzo non ragionato di formule, ci può condurre molto lontano e ci

Dettagli

INSIEME Q. Le operazioni di addizione, moltiplicazione e sottrazione erano operazioni già chiuse su Z, e lo rimangono in Q. Alcune definizioni

INSIEME Q. Le operazioni di addizione, moltiplicazione e sottrazione erano operazioni già chiuse su Z, e lo rimangono in Q. Alcune definizioni INSIEME Q L'insieme dei numeri razionali (Q) è un'estensione dell'insieme dei numeri interi Z. Ai numeri positivi e negativi interi si aggiungono, così, anche i numeri decimali. Tale estensione, però,

Dettagli

Classe ALLENAMENTO INVALSI MATEMATICA (4) - Numeri (2) Cognome e Nome Classe Data

Classe ALLENAMENTO INVALSI MATEMATICA (4) - Numeri (2) Cognome e Nome Classe Data Classe 1-3 - ALLENAMENTO INVALSI MATEMATICA (4) - Numeri (2) Cognome e Nome Classe Data 1. Quale valore deve avere il perché la seguente uguaglianza sia vera? 24,5 : 100 = 2,45 : [ ] B. 1 [ ] C. 0,1 [

Dettagli

PROGETTAZIONE DISCIPLINARE MATEMATICA classe 2^

PROGETTAZIONE DISCIPLINARE MATEMATICA classe 2^ PROGETTAZIONE DISCIPLINARE MATEMATICA classe 2^ PER RICONOSCERE, RAPPRESENTARE E RISOLVERE PROBLEMI I. Q. II. Q. CONTENUTI / ATTIVITA 1 bim. 2 bim. 3 bim. 4 bim. 1a) Individuazione di situazioni problematiche

Dettagli

LABORATORIO Costruzione di un ipertesto. Studio delle varie specie di numeri dai numeri naturali ai numeri reali

LABORATORIO Costruzione di un ipertesto. Studio delle varie specie di numeri dai numeri naturali ai numeri reali LABORATORIO Costruzione di un ipertesto Studio delle varie specie di numeri dai numeri naturali ai numeri reali Ideato dal corsista prof. Gerardo Mazzeo Nocera Inferiore - 27/04/2002 SCHEMA DI LAVORO PREMESSA

Dettagli

I numeri reali sulla retta e nei calcoli. Daniela Valenti, Treccani scuola

I numeri reali sulla retta e nei calcoli. Daniela Valenti, Treccani scuola I numeri reali sulla retta e nei calcoli Daniela Valenti, Treccani scuola 1 Un video per esplorare il tema Dove si trovano i numeri reali? Guardiamo un breve video per trovare le prime risposte I numeri

Dettagli

CIRCOLO DIDATTICO DI CALUSO PROGRAMMAZIONE PER CICLI

CIRCOLO DIDATTICO DI CALUSO PROGRAMMAZIONE PER CICLI ASSE CULTURALE: MATEMATICO DISCIPLINA: MATEMATICA TEMATICA PORTANTE: NUMERO CIRCOLO DIDATTICO DI CALUSO PROGRAMMAZIONE PER CICLI Ciclo Microcompetenze specifiche Metodologia Contenuti Verifica 1 ciclo

Dettagli

MAPPA MULTIPLI E DIVISORI

MAPPA MULTIPLI E DIVISORI MAPPA MULTIPLI E DIVISORI 1 MULTIPLI E DIVISORI divisibilità definizione di multiplo criteri di divisibilità definizione di divisore numeri primi e numeri composti scomposizione in fattori primi calcolo

Dettagli

Sommario. 1. Che cos è la matematica? Numeri naturali e sistemi di numerazione 23

Sommario. 1. Che cos è la matematica? Numeri naturali e sistemi di numerazione 23 Sommario 1. Che cos è la matematica? 1 1.1. Un sapere onnipresente e temuto 1 1.2. La domanda più difficile 6 1.3. Che cosa ci insegna la storia 10 1.4. Ai primordi delle rappresentazioni simboliche 11

Dettagli

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica G. Pareschi COMPLEMENTI ED ESEMPI SUI NUMERI INTERI. 1. Divisione con resto di numeri interi 1.1. Divisione con resto. Per evitare fraintendimenti nel caso in cui il numero a del Teorema 0.4 sia negativo,

Dettagli

I numeri naturali sono

I numeri naturali sono n L insieme dei numeri naturali n Le quattro operazioni aritmetiche n Le potenze n Espressioni n Divisibilità n Numeri primi n Massimo comune divisore e minimo comune multiplo n L insieme dei numeri naturali

Dettagli

Radicali. Consideriamo la funzione che associa ad un numero reale il suo quadrato:

Radicali. Consideriamo la funzione che associa ad un numero reale il suo quadrato: Radicali Radice quadrata Consideriamo la funzione che associa ad un numero reale il suo quadrato: il cui grafico è il seguente: Il grafico della funzione si trova al di sopra dell asse delle x ed è simmetrico

Dettagli

UNITA D APPRENDIMENTO. Lo spazio e le figure

UNITA D APPRENDIMENTO. Lo spazio e le figure Lo spazio e le figure Utilizzare il piano cartesiano per rappresentare punti mediante le coordinate Effettuare trasformazioni topologiche rilevando le invarianti (guanto di gomma) Individuare e riconoscere

Dettagli

Monomi L insieme dei monomi

Monomi L insieme dei monomi Monomi 10 10.1 L insieme dei monomi Definizione 10.1. Un espressione letterale in cui numeri e lettere sono legati dalla sola moltiplicazione si chiama monomio. Esempio 10.1. L espressione nelle due variabili

Dettagli

Esercizi svolti di aritmetica

Esercizi svolti di aritmetica 1 Liceo Carducci Volterra - Classi 1A, 1B Scientifico - Francesco Daddi - 15 gennaio 29 Esercizi svolti di aritmetica Esercizio 1. Dimostrare che il quadrato di un numero intero che finisce per 25 finisce

Dettagli

Le frazioni algebriche

Le frazioni algebriche Le frazioni algebriche Le frazioni algebriche, a differenza delle frazioni numeriche, sono frazioni che prevedono al denominatore espressioni polinomiali. Le seguenti, ad esempio, sono frazioni algebriche

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1)

APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1) LGEBR \ CLCOLO LETTERLE \ MONOMI (1) Un monomio è un prodotto di numeri e lettere; gli (eventuali) esponenti delle lettere sono numeri naturali (0 incluso). Ogni numero (reale) può essere considerato come

Dettagli

Lezione 4. Sommario. L artimetica binaria: I numeri relativi e frazionari. I numeri relativi I numeri frazionari

Lezione 4. Sommario. L artimetica binaria: I numeri relativi e frazionari. I numeri relativi I numeri frazionari Lezione 4 L artimetica binaria: I numeri relativi e frazionari Sommario I numeri relativi I numeri frazionari I numeri in virgola fissa I numeri in virgola mobile 1 Cosa sono inumeri relativi? I numeri

Dettagli

CLASSE QUARTA. Denominazione di numeri entro il

CLASSE QUARTA. Denominazione di numeri entro il MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE 1. L alunno sviluppa un atteggiamento positivo rispetto alla matematica, anche grazie a molte esperienze in contesti significativi,che gli hanno fatto

Dettagli

ABILITÀ. COMPETENZE L'alunno: ( B-H ) L'alunno sa: associare alla quantità il numero ( simbolo e nome ) i numeri ordinali

ABILITÀ. COMPETENZE L'alunno: ( B-H ) L'alunno sa: associare alla quantità il numero ( simbolo e nome ) i numeri ordinali TRAGUARDI DI COMPETENZA L alunno opera con i numeri naturali nel calcolo scritto e mentale NUMERI L'alunno: ( B-H ) la serie numerica fino al 100 associare alla quantità il numero ( simbolo e nome ) i

Dettagli

5 + 8 = 13 5,2 + 8,4 = 13,6

5 + 8 = 13 5,2 + 8,4 = 13,6 concetto di addizione i termini dell addizione sono gli addendi il risultato è la somma addendo addendo 5 + 8 = 13 somma 5,2 + 8,4 = 13,6 proprietà commutativa se cambio l ordine degli addendi il risultato

Dettagli

Matematica ed Elementi di Statistica. Regole di calcolo

Matematica ed Elementi di Statistica. Regole di calcolo a.a. 2011/12 Laurea triennale in Scienze della Natura Matematica ed Elementi di Statistica Regole di calcolo Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

Sistemi di Numerazione

Sistemi di Numerazione Sistemi di Numerazione Corso Università Numeri e Numerali Il numero cinque 5 V _ Π Arabo Romano Maya Greco Cinese Il sistema decimale Sistemi Posizionali 1 10 3 + 4 10 2 + 9 10 1 + 2 10 0 Sistemi Posizionali

Dettagli

Conversione di base. Conversione decimale binario. Si calcolano i resti delle divisioni per due

Conversione di base. Conversione decimale binario. Si calcolano i resti delle divisioni per due Conversione di base Dato N>0 intero convertirlo in base b dividiamo N per b, otteniamo un quoto Q 0 ed un resto R 0 dividiamo Q 0 per b, otteniamo un quoto Q 1 ed un resto R 1 ripetiamo finché Q n < b

Dettagli

Esame di INFORMATICA (*) Operazioni Aritmetiche: Somma. Lezione 3. Operazioni Aritmetiche: Somma. Operazioni Aritmetiche: Somma

Esame di INFORMATICA (*) Operazioni Aritmetiche: Somma. Lezione 3. Operazioni Aritmetiche: Somma. Operazioni Aritmetiche: Somma Università degli Studi di L Aquila Facoltà di Biotecnologie Esame di INFORMATICA A.A. 2008/09 Lezione 3 Operazioni Aritmetiche: Somma + 1 0 1 0 (*) 1 0 1 0 (*) con riporto di 1 2 Operazioni Aritmetiche:

Dettagli

Algebra. I numeri relativi

Algebra. I numeri relativi I numeri relativi I numeri relativi sono quelli preceduti dal segno > o dal segno . I numeri positivi sono quelli preceduti dal segno + (zero escluso). I numeri negativi sono quelli preceduti

Dettagli

per un altro; le più importanti sono quelle di seguito elencate.

per un altro; le più importanti sono quelle di seguito elencate. 2 Abilità di calcolo I quiz raccolti in questo capitolo sono finalizzati alla valutazione della rapidità e della precisione con cui esegui i calcoli matematici. Prima di cimentarti con i test proposti,

Dettagli

MATEMATICA SCUOLA PRIMARIA CLASSE SECONDA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE RELATIVI A NUMERI

MATEMATICA SCUOLA PRIMARIA CLASSE SECONDA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE RELATIVI A NUMERI MATEMATICA SCUOLA PRIMARIA CLASSE SECONDA NUMERI L alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali e sa valutare l opportunità di ricorrere a una calcolatrice. OBIETTIVI

Dettagli