LEZIONE 3. Typeset by AMS-TEX

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LEZIONE 3. Typeset by AMS-TEX"

Transcript

1 LEZIONE 3 3 Risoluzione di sistemi Supponiamo che AX = B sia un sistema di equazioni lineari Ad esso associamo la sua matrice completa (A B Per la Proposizione 236 sappiamo di poter trasformare, con operazioni elementari di riga, la matrice A in una nuova matrice A fortemente ridotta per righe: con le stesse operazioni elementari si ottiene una nuova matrice (A B corrispondente, in generale, ad un nuovo sistema di equazioni lineari A X = B, diverso dal precedente ma ad esso equivalente Risolvendo, se possibile, tale sistema con il metodo descritto nell Esempio 22 si ottiene l insieme delle soluzioni del sistema da cui siamo partiti Se A X = B è compatibile, il numero delle incognite espresse in funzione delle rimanenti è esattamente il numero dei pivot, cioè il numero delle righe contenenti entrate non nulle È chiaro che da ogni matrice A con operazioni elementari di riga, si potranno ottenere varie matrici fortemente ridotte per righe, anche molto diverse: infatti, ad ogni passo, bisogna fare una scelta del pivot Si può, però, dimostrare che Proposizione 3 Sia A R m,n e siano A ed A due matrici ridotte per righe ottenute da A con una successione finita di operazioni elementari di riga Allora i numeri di righe di A e di A contenenti entrate non nulle coincidono Si comprende che tale numero di righe non nulle rivesta un importanza particolare nell algebra delle matrici, pertanto merita un nome particolare Definizione 32 Sia A R m,n e sia A una matrice ridotta per righe ottenuta da A con una successione finita di operazioni elementari di riga Il numero di righe di A contenenti entrate non nulle viene detto rango di A ed indicato con il simbolo rk(a In particolare rk(a m per definizione Inoltre rk(a coincide con il numero di pivot di una forma fortemente ridotta per righe di A: ognuno di essi si trova necessariamente in una colonna diversa, quindi si ha anche rk(a n Abbiamo perciò dimostrato che Proposizione 33 Sia A R m,n Allora rk(a min{ m, n } Più in generale vale la seguente Proposizione 34 Sia A R m,n Allora rk(a = rk( t A Typeset by AMS-TEX

2 2 3 RISOLUZIONE DI SISTEMI Esempio 35 Si consideri la matrice A = Poiché con operazioni elementari di riga A può essere trasformata in una delle due matrici 6 37/4 2 3 Â =, A 3 9/4 =, 2 7/ segue che rk(a = rk(â = rk(a = 3 Siamo ora pronti ad enunciare e dimostrare il principale risultato sulla teoria dei sistemi di equazioni lineari, detto Teorema di Rouché Capelli Proposizione 36 Siano A R m,n, B R m, e si considerino i sistemi (36 (362 AX = B, AX = m, i Il Sistema (36 è compatibile se e solo se rk(a = rk(a B ii Se il Sistema (36 è compatibile allora le sue soluzioni dipendono da n rk(a parametri liberi iii Se il Sistema (36 è compatibile e X è una sua soluzione fissata allora ogni altra sua soluzione X è della forma X = X + Y ove Y appartiene all insieme delle soluzioni del Sistema (362 Dimostrazione Iniziamo con il dimostrare l affermazione i Per quanto visto sopra possiamo sempre assumere che A sia una matrice fortemente ridotta per righe Si possono presentare due situazioni per le righe della matrice completa (A B Il primo caso è quello in cui esiste una riga di A, diciamo quella di indice i, con entrate tutte nulle che si prolunga in (A B a una riga con entrate non tutte nulle: chiaramente l entrata non nulla deve essere l i esima entrata di B, cioè b i Ciò significa che nel Sistema (36 figura un equazione della forma = b i che, per l ipotesi b i, non ha soluzioni Quindi il Sistema (36 è, in questo caso, incompatibile: inoltre i numeri di righe di A e di (A B contenenti entrate non nulle differiscono di, cioè rk(a = rk(a B, dunque rk(a rk(a B Nel secondo caso ogni riga di A con entrate tutte nulle si prolunga in (A B a una riga con entrate tutte nulle In questo caso si può risolvere il Sistema (36 come spiegato nell Esempio 246 Quindi il Sistema (36 è, in questo caso,

3 LEZIONE 3 3 compatibile: inoltre i numeri di righe di A e di (A B contenenti entrate non nulle coincidono, cioè rk(a = rk(a B Ciò conclude la dimostrazione dell affermazione i e dimostra anche l affermazione ii: infatti possiamo esprimere le incognite i cui coefficienti sono i pivot (in totale rk(a in funzione delle rimanenti (in totale n rk(a, cui possiamo dare valori arbitrari Passiamo alla dimostrazione dell affermazione iii A tale scopo si tenga conto che AX = B Sia X R n = R n, una soluzione del Sistema (36, cioè tale che AX = B: posto Y = X X si ha AY = A(X X = AX AX = m, m, = m,, quindi Y è soluzione del Sistema (362 Viceversa sia Y R n = R n, una soluzione del Sistema (362, cioè tale che AY = m, : posto X = Y + X si ha AX = A(Y + X = AY + AX = m, + B = B, quindi X è soluzione del Sistema (36 Esempio 37 Si consideri il sistema Le matrici incompleta e completa del sistema sono a b c d e = A =, (A B = Ricordando quanto visto nell Esempio 237, con operazioni elementari di riga A si riduce alla matrice ridotta per righe 2 3 Â = Applichiamo le stesse operazioni di riga alla matrice completa (A B: poiché l effetto di tali operazioni sulla parte a sinistra della sbarra verticale lo conosciamo

4 4 3 RISOLUZIONE DI SISTEMI (otteniamo A, limitiamoci ad indicare l operazione e l effetto su B (A B R R 2 R 2 R 3 R 3 2R R 4 R 4 R (A B 2 3 = R 3 R 3 R 2 R 4 R 4 +R 2 Si noti che rk(a = rk(a = 3 mentre rk(a B = rk(a B = 4: da questo deduciamo che il sistema AX = B è incompatibile Esempio 38 Si consideri ora il sistema A = a b c d e = Le matrici incompleta e completa del sistema sono A =, (A B = Ricordando quanto visto nell Esempio 238, con operazioni elementari di riga A si riduce alla matrice fortemente ridotta per righe 6 37/4 A 3 9/4 = 2 7/2 Applichiamo le stesse operazioni di riga alla matrice completa (A B: risulta (A B R R 2 R 2 R 3 R 3 2R R 4 R 4 R (Â B 2 3 = R 3 R 3 R 2 R 4 R 4 +R 2

5 LEZIONE 3 5 Poiché rk(a = rk(â = 3 = rk(â B = rk(a B segue che il sistema in esame è compatibile Ha senso, perciò, proseguire con le operazioni elementari di riga riducendo fortemente la matrice completa del sistema /2 R 2 R 2 /2 R R (Â B 4 R 4 /2 2 R 2 +3R 4 /2 R R R 4 R R R 2 /2 /2 /2 6 37/4 5/4 3/4 R 3 R 4 3 9/4 3/4 2 7/2 /2 /2 Quindi il sistema AX = B è equivalente al sistema A X = B, che è compatibile perché rk(a = rk(a = 3 = rk(a B = rk(a B In particolare le incognite corrispondenti ai pivot sono a, b, c e si ha a = /2 6d 37e/4, b = 3d + 9e/4, c = /2 + 2d + 7e/2 L insieme delle sue soluzioni è { (/2 6d 37e/4, 3d + 9e/4, /2 + 2d + 7e/2, d, e d, e R } Per esempio in corrsipondenza a d = e = otteniamo la soluzione particolare X = (/2,, /2,, Si noti che ogni altra soluzione è della forma /2 /2 + d e 37/4 9/4 7/2 al variare di d e e in R Si verifichi che le soluzioni del sistema AX = m, sono tutte e sole le matrici della forma al variare di d e e in R 6 37/4 3 9/4 d 2 + e 7/2 Si è preferito utilizzare la notazione matriciale delle soluzioni per dare maggiore evidenza alla decomposizione delle stesse come somma di certe matrici Più in

6 6 3 RISOLUZIONE DI SISTEMI generale sia A R m,n con rk(a = r: allora sappiamo che l insieme delle soluzioni X R n = R n, del sistema omogeneo AX = m, è della forma { t r+ X r+ + + t n X n R n = R n, t r+,, t n R } dove X r+,, X n R n sono n r soluzioni fissate Tali soluzioni vengono spesso dette soluzioni base del sistema AX = m, Si noti che la loro scelta dipende dalla riduzione operata, quindi le soluzioni base di un sistema omogeneo non sono univocamente determinate: quello che è sempre univocamente determinato è il loro numero, cioè n rk(a 32 Equazioni matriciali Negli Esempi 37 e 38 si sono studiati più sistemi diversi AX = B, AX 2 = B 2,, AX p = B p aventi la stessa matrice incompleta A Tale tipo di problema si presenta in varie situazioni (vedremo in seguito il problema del calcolo della matrice inversa È evidente che è inutile ripetere le stesse operazioni per ciascun sistema: è più conveniente risolvere i sistemi simultaneamente, cioè considerare l equazione matriciale AX = B ove X e B sono rispettivamente una matrice incognita ed una numerica aventi colonna di indice j pari ad X j e B j rispettivamente Definizione 32 Siano A = (a i,j i m j n R m,n, B = (b i,h i m h p R m,p Un equazione matriciale lineare con matrice incompleta A e matrice dei termini noti B è un equazione della forma (32 AX = B ove X è una matrice incognita n p La matrice a, a,2 a,n a 2, a 2,2 a 2,n (A B = a m, a m,2 a m,n b, b,p b 2, b 2,p b m, b m,p viene detta matrice completa dell Equazione (32 L Equazione (32 si dice omogenea se B = m,p, non omogenea altrimenti Una soluzione dell Equazione (32 è una matrice numerica X per cui vale l identità numerica AX = B: se esiste una soluzione l Equazione (32 si dice compatibile, incompatibile altrimenti L Equazione (32 può essere pensata come sistema di mp equazioni, una per ogni entrata di B, in np incognite, una per ogni entrata di X Si noti però che la riga di indice i di A definisce esattamente p equazioni di tale grande sistema, una per ogni entrata della riga di indice i

7 LEZIONE 3 7 Fissato un tale i, l entrata a i,j moltiplica nelle equazioni considerate tutte le entrate x h,j di X per h =,, p Indicata con X h la riga di indice h di X, possiamo allora pensare all Equazione (32 come un sistema di m equazioni corrispondenti alle m righe di (A B nelle n incognite vettoriali della forma a, X + a,2 X a,n X n = ( b, b,p a 2, X + a 2,2 X a 2,n X n = ( b 2, b 2,p a m, X + a m,2 X a m,n X n = ( b m, b m,p Ne segue che il metodo di soluzione delle equazioni matriciali è totalmente analogo a quello dei sistemi di equazioni lineari (che ne sono un caso particolare quando la matrice dei termini noti si riduce ad un unica colonna Infatti esso si basa sulla riduzione della matrice completa (A B con operazioni elementari di riga che continuano ad avere senso anche per incognite di tipo vettoriale Diamo alcuni esempi Esempio 322 Si consideri l equazione matriciale 2 2 (322 X =, 2 la cui matrice completa è ( 2 2 2, corrispondente al sistema { X + 2X 2 = ( 2 2X + X 2 = ( Trasformando (A B con operazioni elementari di riga otteniamo (A B R 2 R 2 2R 2 2 R 2 R 2 / ( 2 2 R R 2R 2 2/3 /3 2/3 Pertanto l Equazione (322 è equivalente a X = ( /3 2/3 ovvero al sistema ad incognite vettoriali { X = ( /3 X 2 = ( 2/3 che, come unica soluzione, ha ovviamente la matrice /3 2/3,

8 8 32 EQUAZIONI MATRICIALI Esempio 323 Si consideri l equazione matriciale (323 2 X =, la cui matrice completa è ( 2 L Equazione (323 equivale al sistema { X + 2X 2 + X 3 = ( X X 2 + X 3 = ( Trasformando (A B con operazioni elementari di riga otteniamo ( (A B R 2 R 2 R 2 3 R 2 R 2 /3 ( 2 ( R R 2R 2 /3 /3 /3 Pertanto l Equazione (323 è equivalente a X = /3 /3 ovvero a { X + X 3 = ( /3 X 2 = ( /3 Quindi l insieme delle soluzioni dell Equazione (323 è x 3, /3 x 3,2 /3 x 3, x 3,2 x 3,, x 3,2 R Perciò le soluzioni dipendono da = 3 2 = n rk(a righe libere Anche per equazioni matriciali vale il Teorema di Rouché Capelli Lo enunciamo omettendone la dimostrazione in quanto totalmente analoga a quella della Proposizione 334

9 LEZIONE 3 9 Proposizione 324 Siano A R m,n, B R m,p e si considerino le equazioni matriciali (324 (3242 AX = B, AX = m,p i L Equazione (324 è compatibile se e solo se rk(a = rk(a B ii Se l Equazione (324 è compatibile allora le matrici n p che sono sue soluzioni dipendono da n rk(a righe libere iii Se l Equazione (324 è compatibile e X è una sua soluzione fissata allora ogni altra sua soluzione X è della forma X = X + Y ove Y appartiene all insieme delle soluzioni dell Equazione (3242 Esempio 325 Si considerino i sistemi degli Esempi 37 e 38 Invece di risolverli separatamente consideriamo l equazione a a 2 b b 2 (325 A = c c 2 = d d 2 e e 2 La matrice completa dell Equazione (325 è (A B = Con le operazioni elementari indicate nell Esempio 327, tenendo conto dei già citati Esempi 37 e 38, possiamo trasformarla nella matrice 6 37/4 /2 3 9/4 (A B = 2 7/2 /2 Deduciamo che l Equazione (325 è incompatibile perché rk(a = 3 < 4 = rk(a B (infatti ogni sua soluzione darebbe una soluzione del sistema avente come colonna dei termini noti la prima colonna di B, che è incompatibile: si veda l Esempio Matrice inversa e suo calcolo Un caso particolarmente interessante di applicazione dei metodi di risoluzione di equazioni matriciali è quello del calcolo dell inversa di una matrice Quando si ha un prodotto è naturale porsi il problema dell esistenza dell elemento inverso

10 33 MATRICE INVERSA E SUO CALCOLO Definizione 33 Sia A R n,n A si dice invertibile se esiste B R n,n tale che AB = BA = I n Non è detto che una matrice quadrata abbia inversa come mostra il seguente esempio Esempio 332 Si consideri una qualsiasi matrice A R n,n tale che A p = n,n in tal caso A si dice nilpotente Esistono molte matrici non nulle con tale proprietà: per esempio la matrice E,2 = è tale che che E 2,2 = 2,2 Se esistesse una matrice B tale che AB = I n allora Invece la matrice è invertibile Sia infatti allora BA = AB = I 2 A p = A p I n = A p AB = A p B = n,n B = n,n A = B = 2 2 : Proposizione 333 Sia A R n,n Valgono le seguenti proprietà: (MI B R n,n è tale che AB = I n se e solo se BA = I n ; (MI2 se esistono B, C R n,n tali che AB = BA = I n e AC = CA = I n allora B = C Definizione 334 Sia A R n,n invertibile L unica matrice B R n,n tale che AB = BA = I n viene detta inversa di A e viene indicata con A In tal caso si pone A = I n ed A p = (A p per ogni intero p Osservazione 335 Sia A R n,n una matrice invertibile Cosa si può dire circa l invertibilità di t A? In forza della condizione (MI della Proposizione 223 si tratta di stabilire se l equazione matriciale t AX = I n ha soluzione e, in caso affermativo, di determinarla Trasponendo entrambe i membri si ottiene t XA = t I n = I n, sicché, moltiplicando a destra per A, che sappiamo esistere perché A è invertibile per ipotesi, si ottiene t X = t XI n = t X(AA = ( t XAA = I n A = A da cui si deduce per trasposizione del primo e dell ultimo membro che l equazione ha soluzione e che questa è X = t (A, cioè se A R n,n è invertibile allora tale

11 LEZIONE 3 è t A e si ha ( t A = t (A Poiché t ( t A = A si deduce anche il viceversa, cioè A R n,n è invertibile se e solo se tale è t A Sia poi B R n,n un altra matrice invertibile Cosa si può dire circa l invertibilità di AB?In modo analogo a quanto visto sopra si tratta di determinare l eventuale soluzione dell equazione matriciale ABX = I n Come nel caso precedente, moltiplicando a sinistra per B A otteniamo X = I n X = B BX = B I n BX = B (A ABX = = (B A (ABX = (B A I n = B A Deduciamo allora che se A, B R n,n sono invertibili allora tale è AB e si ha (AB = B A È vero o falso che vale il viceversa, cioè che se A, B R n,n e AB è invertibili allora anche A e B lo sono? In base alla definizione 33 ed alla Proposizione 333 (MI, il problema del calcolo dell inversa di una matrice si riduce al problema della risoluzione dell equazione matriciale AX = I n ove A R n,n Chiedere che una tale equazione sia compatibile equivale a chiedere se la matrice A sia invertibile Infatti se l equazione è compatibile la sua unica soluzione è A Per la Proposizione 36, data A R n,n l equazione AX = I n è compatibile se e solo se rk(a = rk(a I n : quest ultima matrice è fortemente ridotta per righe ed il suo rango è esattamente rk(i n = n Abbiamo perciò dimostrato Proposizione 336 A R n,n è invertibile se e solo se rk(a = n Si noti che, se A è invertibile, per calcolarne l inversa si può procedere come segue Si scrive la matrice completa (A I n : con trasformazioni elementari di riga si riduce tale matrice alla matrice fortemente ridotta (A A Su ogni riga di A ci deve essere un entrata pari ad, poiché rk(a = n: poiché ci sono n colonne su ogni riga tutte le entrate sono nulle eccetto una che vale e che si trova sempre in una colonna diversa Quindi, semplicemente con permutazioni di riga, si può ulteriormente trasformare (A A in una nuova matrice della forma (I n A A questo punto si osservi che l equazione di partenza è equivalente a I n X = A, dunque A = A Esempio 337 Si consideri la matrice A = 2 2 3

12 2 33 MATRICE INVERSA E SUO CALCOLO Vogliamo stabilire se A è invertibile e, in caso affermativo, determinarne l inversa A tale scopo scriviamo la matrice (A I 3 trasformandola, come spiegato sopra, con operazioni elementari di riga: R 3 R 3 +R 2 2 : R 3 R 3 3R 2 si noti che a questo punto osserviamo che rk(a = 3, dunque A è invertibile per la Proposizione 336, perciò ha senso continuare il calcolo di A Risulta 2 2 R 3 R 3 / /2 5/2 /2 /2 3/2 /2 3 /2 5/2 /2 /2 3/2 /2 /2 /2 /2 /2 5/2 /2 /2 3/2 /2 /2 5/2 /2 /2 /2 /2 /2 3/2 /2 /2 5/2 /2 /2 3/2 /2 /2 /2 /2 /2 3/2 /2 R R R R +R 2 R R 2 R 2 R 3 R 2 R 2 R 3 R R 2R 3 Concludiamo che /2 5/2 /2 A = /2 3/2 /2 /2 /2 /2 L eventuale esistenza della matrice inversa della matrice incompleta di un equazione permette di risolvere l equazione in maniera intuitiva Infatti se vogliamo risolvere l equazione matriciale AX = B e sappiamo che A R n,n è una matrice invertibile allora per ottenere la soluzione basta dividere ambo i membri per

13 LEZIONE 3 3 A, ovvero l equazione ha come unica soluzione la matrice X = A B (e non BA!: le equazioni (o i sistemi AX = B con A R n,n invertibile vengono detti equazioni (o sistemi di Cramer ed il metodo di soluzione sopra indicato è alla base del metodo di Cramer per la risoluzione di sistemi che illustreremo brevemente nel corso della prossima lezione Ci limitiamo qui a dare il seguente Esempio 338 Si consideri il sistema ( Poiché sappiamo che la matrice è invertibile, con inversa A = a b c = /2 5/2 /2 A = /2 3/2 /2, /2 /2 /2 segue che l unica soluzione del Sistema (338 è a b c = /2 5/2 /2 /2 3/2 /2 /2 /2 /2 2 = 3 3

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m LEZIONE 4 41 Equazioni matriciali Negli Esempi 336 e 337 si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = B 2,, AX p = B p aventi la stessa matrice incompleta A Tale tipo di problema si presenta

Dettagli

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g LEZIONE 3 3.. Matrici fortemente ridotte per righe. Nella precedente lezione abbiamo introdotto la nozione di soluzione di un sistema di equazioni lineari. In questa lezione ci poniamo il problema di descrivere

Dettagli

LEZIONE 4. { x + y + z = 1 x y + 2z = 3

LEZIONE 4. { x + y + z = 1 x y + 2z = 3 LEZIONE 4 4.. Operazioni elementari di riga. Abbiamo visto, nella precedente lezione, quanto sia semplice risolvere sistemi di equazioni lineari aventi matrice incompleta fortemente ridotta per righe.

Dettagli

LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati.

LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati. LEZIONE 2 2 Sistemi di equazioni lineari Definizione 2 Un equazione lineare nelle n incognite x, x 2,, x n a coefficienti reali, è un equazione della forma (2 a x + a 2 x 2 + + a n x n = b, ove a j, b

Dettagli

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5.

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5. SISTEMI LINEARI Esercizi Esercizio. Risolvere, se possibile, i seguenti sistemi: x y z = 0 x + y + z = 3x + y + z = 0 x y = 4x + z = 0, x y z = 0. Svolgimento. Procediamo con operazioni elementari di riga

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

LEZIONE i i 3

LEZIONE i i 3 LEZIONE 5 51 Determinanti In questo lezione affronteremo da un punto di vista prettamente operativo la nozione di determinante, descrivendone le proprietà ed i metodi di calcolo, senza entrare nei dettagli

Dettagli

LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X),

LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X), LEZIONE 1 1.1. Matrice di un applicazione lineare. Verifichiamo ora che ogni applicazione lineare f: R n R m è della forma µ A per un unica A R m,n. Definizione 1.1.1. Per ogni j 1,..., n indichiamo con

Dettagli

Fondamenti di ALGEBRA LINEARE E GEOMETRIA

Fondamenti di ALGEBRA LINEARE E GEOMETRIA Fondamenti di ALGEBRA LINEARE E GEOMETRIA Corso di laurea in Ingegneria Gestionale 2011-2012 Michel Lavrauw Dipartimento di Tecnica e Gestione dei Sistemi Industriali Università di Padova Lezione 19 Capitolo

Dettagli

LEZIONE 12. v = α 1 v α n v n =

LEZIONE 12. v = α 1 v α n v n = LEZIONE 12 12.1. Combinazioni lineari. Definizione 12.1.1. Sia V uno spazio vettoriale su k = R, C e v 1,..., v n V vettori fissati. Un vettore v V si dice combinazione lineare di v 1,..., v n se esistono

Dettagli

Lezione 7: Il Teorema di Rouché-Capelli

Lezione 7: Il Teorema di Rouché-Capelli Lezione 7: Il Teorema di Rouché-Capelli In questa lezione vogliamo rivisitare i sistemi lineari e dare alcuni risultati che ci permettono di determinare dato un sistema lineare se ammette soluzioni e da

Dettagli

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016.

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016. Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016 Di seguito si riporta il riassunto degli argomenti svolti; i riferimenti sono a parti del Cap8 Elementi di geometria e algebra lineare Par5

Dettagli

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari A. Bertapelle 25 ottobre 212 Cos è un sistema lineare? Definizione Un sistema di m equazioni lineari (o brevemente sistema lineare) nelle n incognite x 1,..., x n, a coefficienti

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI 1 Rappresentazione di dati strutturati MATRICI E SISTEMI LINEARI Gli elementi di una matrice, detti coefficienti, possono essere qualsiasi e non devono necessariamente essere omogenei tra loro; di solito

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Capitolo Sistemi di equazioni lineari.8 Il Teorema di Cramer Si consideri un generico sistema

Dettagli

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Antonio Lanteri e Cristina Turrini UNIMI - 2016/2017 Antonio Lanteri e Cristina Turrini (UNIMI - 2016/2017 Elementi di Algebra Lineare

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3 SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni

Dettagli

Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI

Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI Pagine di Algebra lineare di premessa al testo Pagine di Geometria di Sara Dragotti Parte terza: SISTEMI LINEARI 1. Definizioni Dato un campo K ed m 1 polinomi su K in n indeterminate di grado non superiore

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

Note sui sistemi lineari

Note sui sistemi lineari Note sui sistemi lineari Sia K un campo e siano m e n due numeri interi positivi. Sia A M(m n, K) e sia b K m. Consideriamo il sistema lineare Ax = b nell incognita x K n (o, se preferite, nelle incognite

Dettagli

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE Giovanni Villani Matrici Definizione 1 Si definisce matrice di tipo m n una funzione che associa

Dettagli

Esercizi svolti sui sistemi lineari

Esercizi svolti sui sistemi lineari Francesco Daddi - www.webalice.it/francesco.daddi Esercizi svolti sui sistemi lineari Esercizio 1. Risolvere il seguente sistema lineare al variare del parametro reale t: tx+(t 1)y + z =1 (t 1)y + tz =1

Dettagli

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,

Dettagli

Applicazioni eliminazione di Gauss

Applicazioni eliminazione di Gauss Applicazioni eliminazione di Gauss. Premessa Nel seguito supporremo sempre di applicare il metodo di eliminazione di Gauss allo scopo di trasformare la matrice del sistema Ax = b in una matrice triangolare

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Vettori e matrici Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utentiunifeit/lorenzopareschi/ lorenzopareschi@unifeit Lorenzo Pareschi Univ Ferrara

Dettagli

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Esercizi svolti 1. Matrici e operazioni fra matrici 1.1 Date le matrici 1 2 1 6 A = B = 5 2 9 15 6 risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Osservazione iniziale: qualunque

Dettagli

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se Lezioni di Algebra Lineare. Versione novembre 2008 VI. Il determinante Il determinante det A di una matrice A, reale e quadrata, è un numero reale associato ad A. Dunque det è una funzione dall insieme

Dettagli

Il teorema di Rouché-Capelli

Il teorema di Rouché-Capelli Luciano Battaia Questi appunti (1), ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia, campus di Treviso, contengono un

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari I sistemi di equazioni si incontrano in natura in molti problemi di vita reale. Per esempio, prendiamo in considerazione una bevanda a base di uova, latte e succo d arancia.

Dettagli

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi:

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: SPAZI VETTORIALI Esercizi Esercizio. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: V := { (a, a, a) V a R }, V 2 := { (a, b, a) V a, b R }, V 3 := { (a, 2a, a + b)

Dettagli

LEZIONE 1 C =

LEZIONE 1 C = LEZIONE 1 11 Matrici a coefficienti in R Definizione 111 Siano m, n Z positivi Una matrice m n a coefficienti in R è un insieme di mn numeri reali disposti su m righe ed n colonne circondata da parentesi

Dettagli

LEZIONE 9. Figura 9.1.1

LEZIONE 9. Figura 9.1.1 LEZIONE 9 9.1. Equazioni cartesiane di piani. Abbiamo visto come rappresentare parametricamente un piano. Un altro interessante metodo di rappresentazione di un piano nello spazio è tramite la sua equazione

Dettagli

4 Autovettori e autovalori

4 Autovettori e autovalori 4 Autovettori e autovalori 41 Cambiamenti di base Sia V uno spazio vettoriale tale che dim V n Si è visto in sezione 12 che uno spazio vettoriale ammette basi distinte, ma tutte con la medesima cardinalità

Dettagli

Geometria e Topologia I (U1-4) 2006-mag-10 61

Geometria e Topologia I (U1-4) 2006-mag-10 61 Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

LEZIONE 9. k, tenendo conto delle formule che permettono di calcolare il prodotto scalare ed il prodotto vettoriale, otteniamo

LEZIONE 9. k, tenendo conto delle formule che permettono di calcolare il prodotto scalare ed il prodotto vettoriale, otteniamo LEZIONE 9 9.1. Prodotto misto. Siano dati i tre vettori geometrici u, v, w V 3 (O) definiamo prodotto misto di u, v e w il numero u, v w. Fissiamo un sistema di riferimento O ı j k in S 3. Se u = u x ı

Dettagli

3x 2 = 6. 3x 2 x 3 = 6

3x 2 = 6. 3x 2 x 3 = 6 Facoltà di Scienze Statistiche, Algebra Lineare 1 A, GParmeggiani LEZIONE 7 Sistemi lineari Scrittura matriciale di un sistema lineare Def 1 Un sistema di m equazioni ed n incognite x 1, x 2, x n, si dice

Dettagli

Def. 1. Si chiamano operazioni elementari sulle righe di A le tre seguenti operazioni:

Def. 1. Si chiamano operazioni elementari sulle righe di A le tre seguenti operazioni: Facoltà di Scienze Statistiche, Algebra Lineare 1 A, G.Parmeggiani LEZIONE 5 Operazioni elementari sulle righe di una matrice Sia A una matrice m n. Def. 1. Si chiamano operazioni elementari sulle righe

Dettagli

Geometria BIAR Esercizi 2

Geometria BIAR Esercizi 2 Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si

Dettagli

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione CONICHE Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oy sia data la conica C di equazione 7 2 + 2 3y + 5y 2 + 32 3 = 0. Calcolare le equazioni di una rototraslazione che riduce

Dettagli

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari MATEMATICA a.a. 2014/15 8. Sistemi di equazioni lineari SISTEMI LINEARI Si definisce sistema lineare un sistema di p equazioni di primo grado in q incognite. a11x1 + a12 x2 +... + a1 qxq = k1 a21x1 + a22x2

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)

Dettagli

LEZIONE 10. S(C,ρ) Figura 10.1

LEZIONE 10. S(C,ρ) Figura 10.1 LEZIONE 10 10.1. Sfere nello spazio. In questa lezione studieremo alcuni oggetti geometrici non lineari, circonferenze e sfere nello spazio A 3. Poiché le proprietà delle circonferenze nel piano sono del

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

4 0 = 4 2 = 4 4 = 4 6 = 0.

4 0 = 4 2 = 4 4 = 4 6 = 0. Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono

Dettagli

Terminiamo gli esercizi dell ultima lezione. (LUCIDI) Calcolare, se possibile, AC, CA, CH e HC. (LUCIDI)

Terminiamo gli esercizi dell ultima lezione. (LUCIDI) Calcolare, se possibile, AC, CA, CH e HC. (LUCIDI) Terminiamo gli esercizi dell ultima lezione. (LUCIDI) Esempi Calcolare, se possibile, AC, CA, CH e HC. (LUCIDI) Osservazioni per le matrici quadrate a) Data A M n (K) è possibile definire ricorsivamente

Dettagli

1 se k = r i. 0 altrimenti. = E ij (c)

1 se k = r i. 0 altrimenti. = E ij (c) Facoltà di Scienze Statistiche, Algebra Lineare A, G.Parmeggiani LEZIONE 5 Matrici elementari e loro inverse Si fissi m un numero naturale. Per ogni i, j m con i j siano E ij (c) (ove c è uno scalare )

Dettagli

Intersezione e somma di sottospazi vettoriali

Intersezione e somma di sottospazi vettoriali Capitolo 6 Intersezione e somma di sottospazi vettoriali 6.1 Introduzione Ricordiamo le definizioni di intersezione e somma di due sottospazi vettoriali. Anche in questo caso rimandiamo al testo di geometria

Dettagli

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA LOGARITMI L uguaglianza: a x = b nella quale a e b rappresentano due numeri reali noti ed x un incognita, è un equazione

Dettagli

Esercitazione 6 - Soluzione

Esercitazione 6 - Soluzione Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione

Dettagli

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5.

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. A.A. 2015-2016. CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. Esercizio 5.1. Determinare le ultime tre cifre di n = 13 1625. (Suggerimento. Sfruttare il Teorema di Eulero-Fermat)

Dettagli

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice Pordenone Corso di Matematica e Statistica 3 Algebra delle UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica Università di Udine

Dettagli

Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo.

Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo. Capitolo 3 Il campo Z n 31 Introduzione Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo 32 Le classi resto Definizione

Dettagli

2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A =

2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A = Esercizio 1. Risolvere il sistema lineare 2x 5y +4z = x 2y + z =5 x 4y +6z =10 (1) Soluz. La matrice dei coefficienti è 1 4 6, calcoliamone il rango. Il determinante di A è (applico la regola di Sarrus):

Dettagli

Dipendenza e indipendenza lineare (senza il concetto di rango)

Dipendenza e indipendenza lineare (senza il concetto di rango) CAPITOLO 5 Dipendenza e indipendenza lineare (senza il concetto di rango) Esercizio 5.1. Scrivere un vettore w R 3 linearmente dipendente dal vettore v ( 1, 9, 0). Esercizio 5.2. Stabilire se i vettori

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

Esercizi sui sistemi di equazioni lineari.

Esercizi sui sistemi di equazioni lineari. Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la

Dettagli

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero LEZINE 8 8.1. Prodotto scalare. Dati i vettori geometrici v = v x ı + v y j + v z k e w = wx ı + j + k di R 3 definiamo prodotto scalare di v e w il numero v, w = ( v x v y v z ) w x = v x + v y + v z.

Dettagli

Giuseppe Accascina. Note del corso di Geometria e Algebra

Giuseppe Accascina. Note del corso di Geometria e Algebra Giuseppe Accascina Note del corso di Geometria e Algebra Corso di Laurea Specialistica in Ingegneria Gestionale Anno Accademico 26-27 ii Istruzioni per l uso Faremo spesso riferimento a ciò che è stato

Dettagli

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica G. Pareschi COMPLEMENTI ED ESEMPI SUI NUMERI INTERI. 1. Divisione con resto di numeri interi 1.1. Divisione con resto. Per evitare fraintendimenti nel caso in cui il numero a del Teorema 0.4 sia negativo,

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Pivoting e stabilità Se la matrice A non appartiene a nessuna delle categorie precedenti può accadere che al k esimo passo risulti a (k) k,k = 0, e quindi il

Dettagli

x 2 + (x+4) 2 = 20 Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati per le EQUAZIONI di PRIMO GRADO.

x 2 + (x+4) 2 = 20 Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati per le EQUAZIONI di PRIMO GRADO. EQUAZIONI DI SECONDO GRADO Un'equazione del tipo x 2 + (x+4) 2 = 20 è un'equazione DI SECONDO GRADO IN UNA INCOGNITA. Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati

Dettagli

Matematica II,

Matematica II, Matematica II 181111 1 Matrici a scala Data una riga R = [a 1 a 2 a n ] di numeri reali non tutti nulli il primo elemento non nullo di R si dice pivot di R Cosi il pivot di R compare come j mo elemento

Dettagli

Esercizi svolti. delle matrici

Esercizi svolti. delle matrici Esercizi svolti. astratti. Si dica se l insieme delle coppie reali (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di R La risposta è sì, perchè l unica coppia reale che soddisfa

Dettagli

Lezioni di Algebra Lineare. II. Aritmetica delle matrici e eliminazione di Gauss. versione ottobre 2008

Lezioni di Algebra Lineare. II. Aritmetica delle matrici e eliminazione di Gauss. versione ottobre 2008 versione ottobre 2008 Lezioni di Algebra Lineare II. Aritmetica delle matrici e eliminazione di Gauss Contenuto. 1. Somma di matrici e prodotto di una matrice per uno scalare 2. Prodotto di matrici righe

Dettagli

LEZIONE 15. (15.1.2) p(x) = a 0 x n + a 1 x n a n 1 x + a n = a h x n h.

LEZIONE 15. (15.1.2) p(x) = a 0 x n + a 1 x n a n 1 x + a n = a h x n h. LEZIONE 15 15.1. Polinomi a coefficienti complessi e loro e loro radici. In questo paragrafo descriveremo alcune proprietà dei polinomi a coefficienti complessi e delle loro radici. Già nel precedente

Dettagli

LEZIONE 8. Figura 8.1.1

LEZIONE 8. Figura 8.1.1 LEZIONE 8 8.1. Equazioni parametriche di rette. In questo paragrafo iniziamo ad applicare quanto spiegato sui vettori geometrici per dare una descrizione delle rette nel piano e nello spazio. Sia r S 3

Dettagli

Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari

Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari In questa lezione ci dedicheremo a studiare a fondo quali proprietà della matrice dei coefficienti di un sistema (e della

Dettagli

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f LEZIONE 23 23.1. Riduzione delle coniche a forma canonica. Fissiamo nel piano un sistema di riferimento Oxy e consideriamo un polinomio di grado 2 in x, y a meno di costanti moltiplicative non nulle, diciamo

Dettagli

Argomento 13 Sistemi lineari

Argomento 13 Sistemi lineari Sistemi lineari: definizioni Argomento 3 Sistemi lineari I Un equazione nelle n incognite x,,x n della forma c x + + c n x n = b ove c,,c n sono numeri reali (detti coefficienti) eb è un numero reale (detto

Dettagli

Sistemi II. Sistemi II. Elisabetta Colombo

Sistemi II. Sistemi II. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, http://users.mat.unimi.it/users/colombo/programmabio.html 1 2 3 con R.C.+ o 1.10 Rango massimo e determinante con R.C.+

Dettagli

SISTEMI DI EQUAZIONI LINEARI

SISTEMI DI EQUAZIONI LINEARI Capitolo 3 SISTEMI DI EQUAZIONI LINEARI 1 Generalità e algoritmo di Gauss Nel capitolo precedente abbiamo visto come per risolvere problemi legati allo studio degli spazi vettoriali lo strumento tecnico

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

Esercitazioni di Algebra e Geometria

Esercitazioni di Algebra e Geometria Esercitazioni di Algebra e Geometria Anno Accademico 2010 2011 Dott.ssa Elisa Pelizzari e-mail elisa.peli@libero.it Esercitazioni: lunedì 14.30 16.30 venerdì 14.30 16.30 Ricevimento studenti: venerdì 13.30

Dettagli

1 Definizione di sistema lineare omogeneo.

1 Definizione di sistema lineare omogeneo. Geometria Lingotto. LeLing1: Sistemi lineari omogenei. Ārgomenti svolti: Definizione di sistema lineare omogeneo. La matrice associata. Concetto di soluzione. Sistemi equivalenti. Operazioni elementari

Dettagli

1 Definizione di sistema lineare non-omogeneo.

1 Definizione di sistema lineare non-omogeneo. Geometria Lingotto LeLing: Sistemi lineari non-omogenei Ārgomenti svolti: Sistemi lineari non-omogenei Il metodo di Gauss-Jordan per sistemi non-omogenei Scrittura della soluzione generale Soluzione generale

Dettagli

Dipendenza e indipendenza lineare

Dipendenza e indipendenza lineare Dipendenza e indipendenza lineare Luciano Battaia Questi appunti () ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia campus

Dettagli

1 Equazioni parametriche e cartesiane di sottospazi affini di R n

1 Equazioni parametriche e cartesiane di sottospazi affini di R n 2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale

Dettagli

1 Ampliamento del piano e coordinate omogenee

1 Ampliamento del piano e coordinate omogenee 1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di

Dettagli

Inversa di una matrice

Inversa di una matrice Geometria Lingotto. LeLing: La matrice inversa. Ārgomenti svolti: Inversa di una matrice. Unicita e calcolo della inversa. La inversa di una matrice. Il gruppo delle matrici invertibili. Ēsercizi consigliati:

Dettagli

Parte 1. Sistemi lineari, algoritmo di Gauss, matrici

Parte 1. Sistemi lineari, algoritmo di Gauss, matrici Parte 1. Sistemi lineari, algoritmo di Gauss, matrici A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Brevi richiami sugli insiemi, 1 Insiemi numerici, 3 3 L insieme R n, 4 4 Equazioni

Dettagli

1 Relazione di congruenza in Z

1 Relazione di congruenza in Z 1 Relazione di congruenza in Z Diamo ora un esempio importante di relazione di equivalenza: la relazione di congruenza modn in Z. Definizione 1 Sia X = Z, a,b Z ed n un intero n > 1. Si dice a congruo

Dettagli

CAPITOLO IV RISOLUZIONE DEI SISTEMI LINEARI COL METODO DEI DETERMINANTI

CAPITOLO IV RISOLUZIONE DEI SISTEMI LINEARI COL METODO DEI DETERMINANTI CAPITOLO IV RISOLUZIONE DEI SISTEMI LINEARI COL METODO DEI DETERMINANTI 1. REGOLA DI CRAMER Sia S un sistema lineare di n ( 2) equazioni in n incognite su un campo K : a 11 x 1 + a 12 x 2 + + a 1n x n

Dettagli

LE EQUAZIONI DIFFERENZIALI. che, insieme alle loro derivate, soddisfano un equazione differenziale.

LE EQUAZIONI DIFFERENZIALI. che, insieme alle loro derivate, soddisfano un equazione differenziale. LE EQUAZIONI DIFFERENZIALI I problemi incontrati fin ora nel corso di studi di matematica erano tutti di tipo numerico, cioè la loro risoluzione ha sempre portato alla determinazione di uno o più numeri

Dettagli

La riduzione a gradini e i sistemi lineari (senza il concetto di rango)

La riduzione a gradini e i sistemi lineari (senza il concetto di rango) CAPITOLO 4 La riduzione a gradini e i sistemi lineari (senza il concetto di rango) Esercizio 4.1. Risolvere il seguente sistema non omogeneo: 2x+4y +4z = 4 x z = 1 x+3y +4z = 3 Esercizio 4.2. Risolvere

Dettagli

Forme bilineari simmetriche

Forme bilineari simmetriche Forme bilineari simmetriche Qui il campo dei coefficienti è sempre R Definizione 1 Sia V uno spazio vettoriale Una forma bilineare su V è una funzione b: V V R tale che v 1, v 2, v 3 V b(v 1 + v 2, v 3

Dettagli

SISTEMI LINEARI, METODO DI GAUSS

SISTEMI LINEARI, METODO DI GAUSS SISTEMI LINEARI, METODO DI GAUSS Abbiamo visto che un sistema di m equazioni lineari in n incognite si può rappresentare in forma matriciale come A x = b dove: A è la matrice di tipo (m, n) dei coefficienti

Dettagli

Lezione 4 - Esercitazioni di Algebra e Geometria - Anno accademico

Lezione 4 - Esercitazioni di Algebra e Geometria - Anno accademico Trasformazioni elementari sulle matrici Data una matrice A K m,n definiamo su A le seguenti tre trasformazioni elementari: T : scambiare tra loro due righe (o due colonne) di A; T : sommare ad una riga

Dettagli

Matematica II,

Matematica II, Matematica II,.05.04 Diamo qui la nozione di determinante di una matrice quadrata, le sue prime proprieta, e ne deriviamo una caratterizzazione delle matrici non singolari e una formula per l inversa di

Dettagli

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1 . Scimone a.s 1997 98 pag 1 TEORI DELLE MTRICI Dato un campo K, definiamo matrice ad elementi in K di tipo (m, n) un insieme di numeri ordinati secondo righe e colonne in una tabella rettangolare del tipo

Dettagli

Definizione 1. Una matrice n m a coefficienti in K é una tabella del tipo. ... K m, detto vettore riga i-esimo, ed a im

Definizione 1. Una matrice n m a coefficienti in K é una tabella del tipo. ... K m, detto vettore riga i-esimo, ed a im APPUNTI ed ESERCIZI su matrici, rango e metodo di eliminazione di Gauss Corso di Laurea in Chimica, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 23 Aprile 2010 Matrici, rango e metodo

Dettagli

ESERCIZI SULLE MATRICI

ESERCIZI SULLE MATRICI ESERCIZI SULLE MATRICI Consideriamo il sistema lineare a, x + a, x + + a,n x n = b a, x + a, x + + a,n x n = b a m, x + a m, x + + a m,n x n = b m di m equazioni in n incognite che ha a, a,n A = a m, a

Dettagli

1. Un sistema di m equazioni lineari in n incognite x 1,... x n aventi tutte termine noto nullo A =...

1. Un sistema di m equazioni lineari in n incognite x 1,... x n aventi tutte termine noto nullo A =... Algebra/ Algebra Lineare, 230207 1 Un sistema di m equazioni lineari in n incognite x 1, x n aventi tutte termine noto nullo a i1 x 1 + a i2 x 2 + + a in x n = 0, i = 1,, m si dice omogeneo; ponendo x

Dettagli

Parte 12b. Riduzione a forma canonica

Parte 12b. Riduzione a forma canonica Parte 2b. Riduzione a forma canonica A. Savo Appunti del Corso di Geometria 202-3 Indice delle sezioni. Coniche, 2. Esempio di riduzione, 4 3. Teoremi fondamentali, 6 4. Come determinare l equazione canonica,

Dettagli

1 Funzioni reali di una variabile reale

1 Funzioni reali di una variabile reale 1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f

Dettagli