Corso di Fisica tecnica e ambientale a.a. 2011/ Docente: Prof. Carlo Isetti

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di Fisica tecnica e ambientale a.a. 2011/2012 - Docente: Prof. Carlo Isetti"

Transcript

1 Corso di Fisica tecnica e ambientale a.a. 0/0 - Docente: Prof. Carlo Isetti LAVORO D NRGIA 5. GNRALITÀ In questo capitolo si farà riferimento a concetto quali lavoro ed energia termini che hanno nella tecnica significati precisi molto diversi dal linguaggio quotidiano. Si accennerà anche forme diverse di energia: energia cinetica legata alla velocità assunta da un corpo e potenziale associata alla sua posizione. 5. LAVORO ' opportuno ricordare la definizione di questa grandezza fisica di grandissima importanza: si consideri un corpo in moto (velocità ), lungo la traiettoria rappresentata in figura. Sul corpo agisce una forza F formante un angolo con il vettore velocità. Nell'intervallo di tempo d il corpo si sposta sulla traiettoria della quantità: scalare: ds d Il lavoro dl compiuto dalla forza F nel tempo d è definito dal seguente prodotto dl Fd s F d Si ricorda che il prodotto scalare di due vettori è pari al prodotto dell'uno per la proiezione dell' altro nella stessa direzione per cui si ha anche dl = F cos ds Il lavoro dl è evidentemente positivo se la componente della forza nella direzione dello spostamento (F cos e ds hanno lo stesso verso.

2 Corso di Fisica tecnica e ambientale a.a. 0/0 - Docente: Prof. Carlo Isetti In generale il lavoro totale compiuto da una forza F F( s) nel tratto di traiettoria compresa tra s ed s sarà dato dalla somma dei singoli contributi dl F d s lungo il percorso da s a s. L'integrazione di tale espressione lungo l'arco di traiettoria potrà effettuarsi con le dovute modalità matematiche, ovviamente solo se sarà conosciuta la funzione F F( s). Se poi sul corpo agiscono più forze, il lavoro totale compiuto da esse risulta pari a quello compiuto dalla risultante delle stesse: dl Fds F ds... Fi ds Frisds Si osservi infine che quando una forza F agisce perpendicolarmente allo spostamento ds, non viene compiuto alcun lavoro (cos = 0). Ad esempio la forza di gravità non compie alcun lavoro su di un corpo in moto su un piano orizzontale. L'unità di misura del lavoro è il "Joule" simbolo (J): il lavoro di un joule corrisponde allo spostamento di metro del punto di applicazione di una forza di Neton agente nella direzione dello spostamento stesso; si ha quindi: (J) = (N) (m) i sempio Un carrello, sottoposto ad una forza peso F = 400 (N), scende lungo un piano inclinato ( = 30 ), azionando un argano. Calcolare il lavoro della forza peso F nel tratto s = 5 (m), ipotizzando nulli tutti gli attriti. Soluzione Considerando solo i moduli si osserva che la componente della forza peso F nella direzione dello spostamento vale F cos dove = (90 - = 60. Si ha, quindi: L = F cos s = 400 (N) cos 60 5 (m) = 3000 (J)

3 Corso di Fisica tecnica e ambientale a.a. 0/0 - Docente: Prof. Carlo Isetti 5.3 NRGIA CINTICA Si consideri un corpo (massa m) in moto su di un piano senza attrito con velocità o. A partire dall'istante o su di esso agisce una forza F costante e parallela alla direzione del moto per secondi. Il moto lungo l'asse x è quindi uniformemente caratterizzato da un'accelerazione a costante. Il lavoro dl compiuto dalla forza applicata F in un tratto dx è: dl F ds F dx I moduli di F e di a sono esprimibili da: F = m a = m d/d dx = d per cui: d dl F dx m d m d d Il lavoro L compiuto dalla forza F è: L m 0 d m m 0 c, cioè, L eguaglia la variazione della quantità cinetica del corpo Δ c. m m 0 o variazione di energia Si introduce qui per la prima volta il termine "energia". Si può osservare che il corpo, qualora riducesse la sua velocità da a o potrebbe, a sua volta, rendere disponibile opposta quantità di lavoro L : ' L m 0 m L'unità di misura della energia cinetica e, pertanto, di qualunque altra forma di energia, è quindi uguale all'unità di lavoro [J]. c

4 Corso di Fisica tecnica e ambientale a.a. 0/0 - Docente: Prof. Carlo Isetti 5.4 NRGIA POTNZIAL GRAVITAZIONAL Mentre, come descritto, l'energia in forma cinetica risulta associata al moto di un corpo, con il termine di energia potenziale si intende definire una forma di energia (capacità di compiere un lavoro) associata alla posizione del corpo stesso. Si possono considerare forme diverse di energia potenziale, la più comune è l'energia potenziale gravitazionale. Si immagini, ad esempio, di muovere una massa m ( = cost.) dalla quota H alla quota H ; per fare cio è ovviamente necessario applicare al corpo una forza esterna F' eguale e contraria alla forza peso F = - m g agente sul corpo. Il lavoro L', compiuto dalla forza F' applicata è: L ', H ' F ds m g H ( H H ) m g H mgh L'espressione ottenuta suggerisce l'idea di attribuire alla massa m alla quota H un energia di posizione p o energia potenziale gravitazionale: p = m g H Grazie a questa idea di nuovo può scriversi: L', = p e cioè la variazione di energia potenziale corrisponde al lavoro della forza esterna applicata. In riferimento ora al lavoro L, compiuto dalla forza peso F risulta: L, = - p ' opportuno osservare che la variazione di energia potenziale p dipende solo dalla differenza di quota (H - H ) = h e non dal cammino percorso.

5 Corso di Fisica tecnica e ambientale a.a. 0/0 - Docente: Prof. Carlo Isetti Si può osservare che se il corpo viene portato lungo il cammino A B tratteggiato in figura dalla quota H alla quota H, risulta possibile scomporre il percorso secondo una successione di spostamenti orizzontali e verticali. I tratti orizzontali non possono fornire contributi al lavoro complessivo essendo sia la forza applicata F' o che quella peso F perpendicolari allo spostamento. Gli unici contributi significativi riguardano quindi i soli tratti verticali di percorso. Quando il lavoro compiuto da una forza è indipendente dal percorso, come ad esempio si è appene visto per la forza peso F, si dice che tale forza è conservativa e in tal caso è sempre possibile introdurre una funzione energia potenziale p che dipende solo dalla posizione del corpo. Se una forza è conservativa, anche il lavoro totale da essa effettuato lungo un qualsiasi percorso chiuso, e cioè un percorso che riporti il corpo in esame nella stessa posizione iniziale, è nullo. Ad esempio, si consideri il percorso complessivamente chiuso indicato in figura ( andata, ritorno). Risulta evidentemente, in riferimento ai lavori fatti dalla forza peso: L + L = - m g (H - H ) - m g (H - H ) = 0 Si usa esprimere tale condizione nel linguaggio matematico con l'espressione sintetica: dl F ds 0 ove il simbolo indica che l'integrale è da valutarsi lungo una qualunque linea chiusa.

6 Corso di Fisica tecnica e ambientale a.a. 0/0 - Docente: Prof. Carlo Isetti 5.5 NRGIA POTNZIAL LASTICA Un altro comune esempio di forma di energia legata solo alla posizione è fornito dal comportamento di una molla allungata o compressa. Si consideri la molla rappresentata in figura; in posizione di riposo nessuna forza è applicata all'estremo della molla (x = 0). Per allungare la molla della quantità x occorre applicare una forza F' uguale e contraria alla forza di reazione della molla F el, la quale, come già detto, dipende linearmente dallo spostamento x dalla posizione di equilibrio (legge di Hooke) F el = - kx, dove con k è indicata la costante elastica della molla. Si consideri ora il lavoro che la forza applicata F'= - F el deve compiere per allungare la molla dalla posizione di riposo della molla (x = 0) alla generica posizione x. L x k x dx k x k (0) x0 k x e Ossia, anche in questo caso si osserva come la variazione di energia potenziale elastica corrisponda al lavoro della forza esterna applicata. 5.6 PRINCIPIO DI CONSRVAZION DLL' NRGIA MCCANICA Si consideri la caduta di un corpo (massa m). Alla quota H la velocità del corpo sia. Supponendo trascurabile la forza di attrito con l aria il corpo si muoverà verso il basso con moto uniformemente accelerato. Alla quota H il corpo ha percorso uno spazio s= - (H - H ); è stato complessivamente compiuto dalla forza peso F= -mg un lavoro L, pari a: L, H H F ds H H m g ds m g ( H H) p 0 Il lavoro compiuto dalla forza peso L, eguaglia, d'altra parte come già visto, la variazione di energia cinetica: L, c m m

7 Corso di Fisica tecnica e ambientale a.a. 0/0 - Docente: Prof. Carlo Isetti Uguagliando le due espressioni del lavoro L, : c = - p, quindi: m m =- (m g H - m g H ) Tale relazione può essere anche scritta nella forma: p cost. c p c Si può dire che in ogni istante durante la caduta, la somma dell'energia cinetica e dell'energia potenziale è costante e cioè pari all'energia totale meccanica iniziale del sistema T. Si supponga ora di voler calcolare la velocità del corpo raggiunta alla quota H e cioè dopo una caduta s = - (H - H ). Si supponga il corpo fermo nello stato iniziale (indice, quota H, = 0). Anziché usare l equazione esprimente la velocità del punto materiale per moto uniformemente accelerato come = f (o, a, s) già illustrata nel capitolo di cinematica ottenendo immediatamente: = g s si può ottenere lo stesso risultato in modo assai semplice facendo uso di questa importante idea di conservazione. In particolare, essendo: c = 0 si può scrivere: T c T p, cioè: m = (m g H - m g H ) Da cui si riottiene, ricavando, la nota relazione di cinematica del moto uniformemente accelerato: p p g H H ) g s ( p c Più in generale, si può affermare che l'energia cinetica e potenziale (energia meccanica) di un sistema di corpi (ad esempio il nostro pianeta ed il corpo m qui considerato) è costante se nell'ambito del sistema stesso agiscono solo forze conservative e sono assenti scambi di energia o di lavoro con tutto ciò che è esterno al sistema.

8 Corso di Fisica tecnica e ambientale a.a. 0/0 - Docente: Prof. Carlo Isetti 5.7 PRINCIPIO DI CONSRVAZION DLL' NRGIA In riferimento all'esempio prima discusso, e cioè alla caduta libera di un corpo in assenza di forze di attrito, ci si può chiedere che cosa comporta invece la presenza di tali forze tipicamente non conservative (attrito con aria). Come si può facilmente osservare, in presenza di attrito, il corpo di massa m raggiunge la quota H prima considerata, animato da una velocità minore di quella raggiunta nel caso precedente, e cioè:. In conseguenza di ciò risulta: C C per cui è anche: p c T ossia, l' energia meccanica totale del sistema T = T non si è conservata. Un'analisi più approfondita mostra, però, che la quantità di energia mancante o decremento di energia meccanica M verificatosi in realtà corrisponde esattamente al lavoro meccanico dissipato in attrito L a. Tale lavoro di attrito si ritroverà, come si vedrà nella parte di termodinamica, in una maggiore energia di eccitazione delle molecole del corpo e dell'aria circostante e cioè in una nuova forma di energia, detta energia termica. Se tale termine L a = M viene considerato nel bilancio energetico, si può ancora scrivere : T T T cos t. In generale, in riferimento ora un sistema fisico qualunque (porzione di materia o spazio racchiuso entro ben distinti confini) che sia "isolato" da ciò che lo circonda (il termine isolato significa che si è operato in modo da evitare la possibilità di scambi di energia nelle sue varie forme attraverso i confini del sistema). In tali condizioni, se all'interno del sistema sono individuabili ad un certo istante forme di energia di tipo,, 3, e se il sistema si è trasformato fino ad assumere una nuova ripartizione di forme di energia,,,. risulterà sempre: Ossia, l'energia totale del sistema non varia. Il principio di conservazione dell'energia può essere così enunciato: "in un sistema isolato l'energia non si crea nè si distrugge, in ogni trasformazione la sua quantità totale rimane costante."

9 Corso di Fisica tecnica e ambientale a.a. 0/0 - Docente: Prof. Carlo Isetti sempio Un corpo di massa m =.5 (kg), fermo inizialmente ad un altezza dal suolo di H=3 (m) su di un piano inclinato (=30 ) scivola senza attrito. Quale sarà la velocità assunta dal corpo alla fine del piano inclinato? Soluzione Il problema può essere facilmente risolto applicando il principio di conservazione dell' energia. Inizialmente al sistema compete solo energia potenziale di tipo gravitazionale ( = 0) pari a: p = m g H Dopo aver percorso tutto il piano inclinato, l'energia potenziale iniziale si è trasformata totalmente in energia cinetica. Si può quindi scrivere per la conservazione dell' energia totale:, cioè: pertanto: p = c m g H m Risulterà, quindi: gh = 7.7 [m/s] Se avessimo voluto risolvere il problema con l equazione esprimente la velocità per moto uniformemente accelerato avremmo dovuto valutare il modulo dell accelerazione causata dalla componente della forza peso F nella direzione dello spostamento. Analogamente all esempio già visto nell esempio all inizio del capitolo il modulo dell accelerazione vale a = g cos dove = (90 - = 60. Lo spazio percorso vale. Si ha, quindi: s = H/sin [m] g cos s ( m / s) In presenza della forza di attrito, la velocità acquistata sul piano inclinato sarà minore; il principio di conservazione dell'energia potrà applicarsi solo tenendo conto dell'energia dissipata in attrito corrispondente al lavoro effettuato dalla forza di attrito L a.

10 5.8 POTNZA Corso di Fisica tecnica e ambientale a.a. 0/0 - Docente: Prof. Carlo Isetti La potenza rappresenta la rapidità con cui viene eseguito un lavoro: se in un intervallo di tempo si esegue il lavoro L, la potenza media P m è: L s Pm F [J/s] Come è già stato similmente definito il concetto di velocità istantanea, possiamo definire la potenza istantanea come : L s P lim F F [J/s] 0 L'unità di potenza nel sistema S.I. è il "att" ( W = J/s), talvolta viene ancora usata come unità il "cavallo vapore" ( Cv = 735 W). Nella pratica è molto usato (come unità di misura dell'energia) il kilovattora [kw h] e cioè, ad esempio, l'energia complessivamente consumata da un motore della potenza di kw in un ora ( kwh = J). Si osserva, poi, che la potenza utilile fornita da un motore all utilizzatore, non corrisponde mai a quella che questo potrebbe potenzialmente fornire in assenza di attriti interni. Sulla base del principio di conservazione dell energia la parte di energia mancante si è convertita in energia termica (calore) in conseguenza di questi fenomeni interni. sempio Una pompa per irrigazione trasferisce, ogni 0 min, 30 m 3 di acqua in un canale con un dislivello h = 0 (m) sopra il livello di un fiume. Si valuti, applicando il principio di conservazione dell energia e supponendo assente ogni attrito, la potenza meccanica richiesta dalla pompa. In base al principio di conservazione dell'energia, il lavoro teorico necessario per sollevare m (kg) di acqua è pari alla variazione di energia potenziale: La potenza sarà, quindi: L = m g h L mgh Vgh P ove si è posto m = V con densità dell'acqua ( = 000 kg/m 3 ). Risulta quindi: L mgh Vgh P 450 ( W) 0 60 Ovviamente, in un caso reale la potenza necessaria sarà maggiore di quanto calcolato perché una parte di lavoro meccanico verrà dissipata per attriti.

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Forze Conservative. Il lavoro eseguito da una forza conservativa lungo un qualunque percorso chiuso e nullo.

Forze Conservative. Il lavoro eseguito da una forza conservativa lungo un qualunque percorso chiuso e nullo. Lavoro ed energia 1. Forze conservative 2. Energia potenziale 3. Conservazione dell energia meccanica 4. Conservazione dell energia nel moto del pendolo 5. Esempio: energia potenziale gravitazionale 6.

Dettagli

percorso fatto sul tratto orizzontale). Determinare il lavoro (minimo) e la potenza minima del motore per percorrere un tratto.

percorso fatto sul tratto orizzontale). Determinare il lavoro (minimo) e la potenza minima del motore per percorrere un tratto. Esercizio 1 Una pietra viene lanciata con una velocità iniziale di 20.0 m/s contro una pigna all'altezza di 5.0 m rispetto al punto di lancio. Trascurando ogni resistenza, calcolare la velocità della pietra

Dettagli

Seconda Legge DINAMICA: F = ma

Seconda Legge DINAMICA: F = ma Seconda Legge DINAMICA: F = ma (Le grandezze vettoriali sono indicate in grassetto e anche in arancione) Fisica con Elementi di Matematica 1 Unità di misura: Massa m si misura in kg, Accelerazione a si

Dettagli

Esercitazione VIII - Lavoro ed energia II

Esercitazione VIII - Lavoro ed energia II Esercitazione VIII - Lavoro ed energia II Forze conservative Esercizio Una pallina di massa m = 00g viene lanciata tramite una molla di costante elastica = 0N/m come in figura. Ammesso che ogni attrito

Dettagli

LAVORO, ENERGIA E POTENZA

LAVORO, ENERGIA E POTENZA LAVORO, ENERGIA E POTENZA Nel linguaggio comune, la parola lavoro è applicata a qualsiasi forma di attività, fisica o mentale, che sia in grado di produrre un risultato. In fisica la parola lavoro ha un

Dettagli

Per vedere quando è che una forza compie lavoro e come si calcola questo lavoro facciamo i seguenti casi.

Per vedere quando è che una forza compie lavoro e come si calcola questo lavoro facciamo i seguenti casi. LAVORO ED ENERGIA TORNA ALL'INDICE Quando una forza, applicata ad un corpo, è la causa di un suo spostamento, detta forza compie un lavoro sul corpo. In genere quando un corpo riceve lavoro, ce n è un

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

L=F x s lavoro motore massimo

L=F x s lavoro motore massimo 1 IL LAVORO Nel linguaggio scientifico la parola lavoro indica una grandezza fisica ben determinata. Un uomo che sposta un libro da uno scaffale basso ad uno più alto è un fenomeno in cui c è una forza

Dettagli

GIRO DELLA MORTE PER UN CORPO CHE SCIVOLA

GIRO DELLA MORTE PER UN CORPO CHE SCIVOLA 8. LA CONSERVAZIONE DELL ENERGIA MECCANICA IL LAVORO E L ENERGIA 4 GIRO DELLA MORTE PER UN CORPO CHE SCIVOLA Il «giro della morte» è una delle parti più eccitanti di una corsa sulle montagne russe. Per

Dettagli

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg.

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg. Spingete per 4 secondi una slitta dove si trova seduta la vostra sorellina. Il peso di slitta+sorella è di 40 kg. La spinta che applicate F S è in modulo pari a 60 Newton. La slitta inizialmente è ferma,

Dettagli

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. 4pe 0 r. Fisica II CdL Chimica

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. 4pe 0 r. Fisica II CdL Chimica Potenziale Elettrico Q V 4pe 0 R Q 4pe 0 r C R R R r r B q B r A A independenza dal cammino Superfici Equipotenziali Due modi per analizzare i problemi Con le forze o i campi (vettori) per determinare

Dettagli

LA DINAMICA LE LEGGI DI NEWTON

LA DINAMICA LE LEGGI DI NEWTON LA DINAMICA LE LEGGI DI NEWTON ESERCIZI SVOLTI DAL PROF. GIANLUIGI TRIVIA 1. La Forza Exercise 1. Se un chilogrammo campione subisce un accelerazione di 2.00 m/s 2 nella direzione dell angolo formante

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100

Dettagli

1 LA CORRENTE ELETTRICA CONTINUA

1 LA CORRENTE ELETTRICA CONTINUA 1 LA CORRENTE ELETTRICA CONTINUA Un conduttore ideale all equilibrio elettrostatico ha un campo elettrico nullo al suo interno. Cosa succede se viene generato un campo elettrico diverso da zero al suo

Dettagli

Sistemi materiali e quantità di moto

Sistemi materiali e quantità di moto Capitolo 4 Sistemi materiali e quantità di moto 4.1 Impulso e quantità di moto 4.1.1 Forze impulsive Data la forza costante F agente su un punto materiale per un intervallo di tempo t, si dice impulso

Dettagli

63- Nel Sistema Internazionale SI, l unità di misura del calore latente di fusione è A) J / kg B) kcal / m 2 C) kcal / ( C) D) kcal * ( C) E) kj

63- Nel Sistema Internazionale SI, l unità di misura del calore latente di fusione è A) J / kg B) kcal / m 2 C) kcal / ( C) D) kcal * ( C) E) kj 61- Quand è che volumi uguali di gas perfetti diversi possono contenere lo stesso numero di molecole? A) Quando hanno uguale pressione e temperatura diversa B) Quando hanno uguale temperatura e pressione

Dettagli

A. 5 m / s 2. B. 3 m / s 2. C. 9 m / s 2. D. 2 m / s 2. E. 1 m / s 2. Soluzione: equazione oraria: s = s0 + v0

A. 5 m / s 2. B. 3 m / s 2. C. 9 m / s 2. D. 2 m / s 2. E. 1 m / s 2. Soluzione: equazione oraria: s = s0 + v0 1 ) Un veicolo che viaggia inizialmente alla velocità di 1 Km / h frena con decelerazione costante sino a fermarsi nello spazio di m. La sua decelerazione è di circa: A. 5 m / s. B. 3 m / s. C. 9 m / s.

Dettagli

Precorsi 2014. Fisica. parte 1

Precorsi 2014. Fisica. parte 1 Precorsi 2014 Fisica parte 1 Programma ministeriale per il test Grandezze fisiche Una grandezza fisica è una caratteristica misurabile di un entità fisica. Sono grandezze fisiche: velocità, energia di

Dettagli

La Termodinamica ed I principi della Termodinamica

La Termodinamica ed I principi della Termodinamica La Termodinamica ed I principi della Termodinamica La termodinamica è quella branca della fisica che descrive le trasformazioni subite da un sistema (sia esso naturale o costruito dall uomo), in seguito

Dettagli

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA PROGRAMMA DI MATEMATICA E FISICA Classe VA scientifico MATEMATICA MODULO 1 ESPONENZIALI E LOGARITMI 1. Potenze con esponente reale; 2. La funzione esponenziale: proprietà e grafico; 3. Definizione di logaritmo;

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME 6. IL CONDNSATOR FNOMNI DI LTTROSTATICA MOTO DI UNA CARICA IN UN CAMPO LTTRICO UNIFORM Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice

Dettagli

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.

Dettagli

Programmazione Modulare

Programmazione Modulare Indirizzo: BIENNIO Programmazione Modulare Disciplina: FISICA Classe: 2 a D Ore settimanali previste: (2 ore Teoria 1 ora Laboratorio) Prerequisiti per l'accesso alla PARTE D: Effetti delle forze. Scomposizione

Dettagli

La corrente elettrica

La corrente elettrica Unità didattica 8 La corrente elettrica Competenze Costruire semplici circuiti elettrici e spiegare il modello di spostamento delle cariche elettriche. Definire l intensità di corrente, la resistenza e

Dettagli

IL MOTO. 1 - Il moto dipende dal riferimento.

IL MOTO. 1 - Il moto dipende dal riferimento. 1 IL MOTO. 1 - Il moto dipende dal riferimento. Quando un corpo è in movimento? Osservando la figura precedente appare chiaro che ELISA è ferma rispetto a DAVIDE, che è insieme a lei sul treno; mentre

Dettagli

1) IL MOMENTO DI UNA FORZA

1) IL MOMENTO DI UNA FORZA 1) IL MOMENTO DI UNA FORZA Nell ambito dello studio dei sistemi di forze, diamo una definizione di momento: il momento è un ente statico che provoca la rotazione dei corpi. Le forze producono momenti se

Dettagli

Unità 12. La corrente elettrica

Unità 12. La corrente elettrica Unità 12 La corrente elettrica L elettricità risiede nell atomo Modello dell atomo: al centro c è il nucleo formato da protoni e neutroni ben legati tra di loro; in orbita intorno al nucleo si trovano

Dettagli

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA ANALISI EDIANTE LO SPETTRO DI RISPOSTA arco BOZZA * * Ingegnere Strutturale, già Direttore della Federazione regionale degli Ordini degli Ingegneri del Veneto (FOIV), Amministratore di ADEPRON DINAICA

Dettagli

GIRO DELLA MORTE PER UN CORPO CHE ROTOLA

GIRO DELLA MORTE PER UN CORPO CHE ROTOLA 0. IL OETO D IERZIA GIRO DELLA ORTE ER U CORO CHE ROTOLA ell approfondimento «Giro della morte per un corpo che scivola» si esamina il comportamento di un punto materiale che supera il giro della morte

Dettagli

Soluzione degli esercizi sul moto rettilineo uniformemente accelerato

Soluzione degli esercizi sul moto rettilineo uniformemente accelerato Liceo Carducci Volterra - Classe 3 a B Scientifico - Francesco Daddi - 8 novembre 00 Soluzione degli esercizi sul moto rettilineo uniformemente accelerato Esercizio. Un corpo parte da fermo con accelerazione

Dettagli

Esercizi sul moto rettilineo uniformemente accelerato

Esercizi sul moto rettilineo uniformemente accelerato Liceo Carducci Volterra - Classe 3 a B Scientifico - Francesco Daddi - 8 novembre 010 Esercizi sul moto rettilineo uniformemente accelerato Esercizio 1. Un corpo parte da fermo con accelerazione pari a

Dettagli

9. Urti e conservazione della quantità di moto.

9. Urti e conservazione della quantità di moto. 9. Urti e conservazione della quantità di moto. 1 Conservazione dell impulso m1 v1 v2 m2 Prima Consideriamo due punti materiali di massa m 1 e m 2 che si muovono in una dimensione. Supponiamo che i due

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca Trascrizione del testo e redazione delle soluzioni di Paolo Cavallo. La prova Il candidato svolga una relazione

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione 1. L elettrone ha una massa di 9.1 10-31 kg ed una carica elettrica di -1.6 10-19 C. Ricordando che la forza gravitazionale

Dettagli

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE a cura di G. SIMONELLI Nel motore a corrente continua si distinguono un sistema di eccitazione o sistema induttore che è fisicamente

Dettagli

Note di fisica. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, luglio 2012. 1 Quantità di moto.

Note di fisica. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, luglio 2012. 1 Quantità di moto. Note di fisica. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, luglio 2012. Indice 1 Quantità di moto. 1 1.1 Quantità di moto di una particella.............................. 1 1.2 Quantità

Dettagli

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione METODO DELLE FORZE CORSO DI PROGETTZIONE STRUTTURLE a.a. 010/011 Prof. G. Salerno ppunti elaborati da rch. C. Provenzano 1. METODO DELLE FORZE PER L SOLUZIONE DI STRUTTURE IPERSTTICHE 1.1 Introduzione

Dettagli

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t;

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t; CAPITOLO CIRCUITI IN CORRENTE CONTINUA Definizioni Dato un conduttore filiforme ed una sua sezione normale S si definisce: Corrente elettrica i Q = (1) t dove Q è la carica che attraversa la sezione S

Dettagli

CAPITOLO I CORRENTE ELETTRICA. Copyright ISHTAR - Ottobre 2003 1

CAPITOLO I CORRENTE ELETTRICA. Copyright ISHTAR - Ottobre 2003 1 CAPITOLO I CORRENTE ELETTRICA Copyright ISHTAR - Ottobre 2003 1 INDICE CORRENTE ELETTRICA...3 INTENSITÀ DI CORRENTE...4 Carica elettrica...4 LE CORRENTI CONTINUE O STAZIONARIE...5 CARICA ELETTRICA ELEMENTARE...6

Dettagli

IL FENOMENO DELLA RISONANZA

IL FENOMENO DELLA RISONANZA IL FENOMENO DELLA RISONANZA Premessa Pur non essendo possibile effettuare una trattazione rigorosa alle scuole superiori ritengo possa essere didatticamente utile far scoprire agli studenti il fenomeno

Dettagli

Studio sperimentale della propagazione di un onda meccanica in una corda

Studio sperimentale della propagazione di un onda meccanica in una corda Studio sperimentale della propagazione di un onda meccanica in una corda Figura 1: Foto dell apparato sperimentale. 1 Premessa 1.1 Velocità delle onde trasversali in una corda E esperienza comune che quando

Dettagli

Dinamica e Misura delle Vibrazioni

Dinamica e Misura delle Vibrazioni Dinamica e Misura delle Vibrazioni Prof. Giovanni Moschioni Politecnico di Milano, Dipartimento di Meccanica Sezione di Misure e Tecniche Sperimentali giovanni.moschioni@polimi.it VibrazionI 2 Il termine

Dettagli

ANNO SCOLASTICO 2014/2015 I.I.S. ITCG L. EINAUDI SEZ.ASSOCIATA LICEO SCIENTIFICO G. BRUNO PROGRAMMA DI FISICA. CLASSE: V A Corso Ordinario

ANNO SCOLASTICO 2014/2015 I.I.S. ITCG L. EINAUDI SEZ.ASSOCIATA LICEO SCIENTIFICO G. BRUNO PROGRAMMA DI FISICA. CLASSE: V A Corso Ordinario ANNO SCOLASTICO 2014/2015 I.I.S. ITCG L. EINAUDI SEZ.ASSOCIATA LICEO SCIENTIFICO G. BRUNO PROGRAMMA DI FISICA CLASSE: V A Corso Ordinario DOCENTE: STEFANO GARIAZZO ( Paola Frau dal 6/02/2015) La corrente

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

b) quando la biglia si ferma tutta la sua energia cinetica sara stata trasformata in energia potenziale della molla. Quindi

b) quando la biglia si ferma tutta la sua energia cinetica sara stata trasformata in energia potenziale della molla. Quindi B C:\Didattica\SBAC_Fisica\Esercizi esame\sbac - problemi risolti-18jan2008.doc problema 1 Una biglia di massa m = 2 kg viene lasciata cadere (da ferma) da un'altezza h = 40 cm su di una molla avente una

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Capitolo 2 Equazioni differenziali ordinarie 2.1 Formulazione del problema In questa sezione formuleremo matematicamente il problema delle equazioni differenziali ordinarie e faremo alcune osservazioni

Dettagli

1 Introduzione alla dinamica dei telai

1 Introduzione alla dinamica dei telai 1 Introduzione alla dinamica dei telai 1.1 Rigidezza di un telaio elementare Il telaio della figura 1.1 ha un piano solo e i telai che hanno un piano solo, sono chiamati, in questo testo, telai elementari.

Dettagli

FONTI DI ENERGIA SFRUTTATE DALL UOMO NELL ANTICHITA

FONTI DI ENERGIA SFRUTTATE DALL UOMO NELL ANTICHITA FONTI DI ENERGIA SFRUTTATE DALL UOMO NELL ANTICHITA Lavoro della classe III H Scuola secondaria di 1 1 grado L. Majno - Milano a.s. 2012-13 13 Fin dall antichità l uomo ha saputo sfruttare le forme di

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

175 CAPITOLO 14: ANALISI DEI PROBLEMI GEOTECNICI IN CONDIZIONI LIMITE

175 CAPITOLO 14: ANALISI DEI PROBLEMI GEOTECNICI IN CONDIZIONI LIMITE 175 ntroduzione all analisi dei problemi di collasso. L analisi del comportamento del terreno potrebbe essere fatta attraverso dei modelli di comportamento elasto plastici, ma questo tipo di analisi richiede

Dettagli

Appunti di fisica generale a cura di Claudio Cereda test Olimpiadi della Fisica divisi per argomento

Appunti di fisica generale a cura di Claudio Cereda test Olimpiadi della Fisica divisi per argomento Grandezze fisiche 1. Un amperometro può essere usato con diverse portate. In una misura con la portata di 0.5 A l'indice risulta deviato di 15 divisioni. Quale delle seguenti portate ci darà la misura

Dettagli

4capitolo. Le leggi che governano il moto dei corpi. sommario. 4.1 La prima legge della dinamica. 4.4 La legge di gravitazione universale

4capitolo. Le leggi che governano il moto dei corpi. sommario. 4.1 La prima legge della dinamica. 4.4 La legge di gravitazione universale 4capitolo Le leggi che governano il moto dei corpi sommario 4.1 La prima legge della dinamica 4.1.1 La Terra è un riferimento inerziale? 4.2 La seconda legge della dinamica 4.2.1 La massa 4.2.2 Forza risultante

Dettagli

Elettronica Circuiti nel dominio del tempo

Elettronica Circuiti nel dominio del tempo Elettronica Circuiti nel dominio del tempo Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Circuiti nel dominio del tempo 14 aprile 211

Dettagli

GRANDEZZE ALTERNATE SINUSOIDALI

GRANDEZZE ALTERNATE SINUSOIDALI GRANDEZZE ALTERNATE SINUSOIDALI 1 Nel campo elettrotecnico-elettronico, per indicare una qualsiasi grandezza elettrica si usa molto spesso il termine di segnale. L insieme dei valori istantanei assunti

Dettagli

1^A - Esercitazione recupero n 4

1^A - Esercitazione recupero n 4 1^A - Esercitazione recupero n 4 1 In un cartone animato, un gatto scocca una freccia per colpire un topo, mentre questi cerca di raggiungere la sua tana che si trova a 5,0 m di distanza Il topo corre

Dettagli

PRINCIPI BASILARI DI ELETTROTECNICA

PRINCIPI BASILARI DI ELETTROTECNICA PRINCIPI BASILARI DI ELETTROTECNICA Prerequisiti - Impiego di Multipli e Sottomultipli nelle equazioni - Equazioni lineari di primo grado e capacità di ricavare le formule inverse - nozioni base di fisica

Dettagli

Per confronto, un 1kg di un combustibile rinnovabile come una biomassa legnosa può in genere contenere 4.2kWh.

Per confronto, un 1kg di un combustibile rinnovabile come una biomassa legnosa può in genere contenere 4.2kWh. Guida del principiante sull Energia e la Potenza L'articolo presentato da N Packer, Staffordshire University, UK, febbraio 2011. Energia L'energia è la capacità di fare lavoro. Come spesso accade, le unità

Dettagli

Associazione per l Insegnamento della Fisica Giochi di Anacleto 2014 - Soluzioni a Domande e Risposte

Associazione per l Insegnamento della Fisica Giochi di Anacleto 2014 - Soluzioni a Domande e Risposte 9ik8ujm Quesito 1 Risposta B Associazione per l Insegnamento della Fisica La formazione di una stella è dovuta alla contrazione gravitazionale di una nube di gas e polveri Da una stessa nube generalmente

Dettagli

Energia potenziale elettrica

Energia potenziale elettrica Energia potenziale elettrica La dipendenza dalle coordinate spaziali della forza elettrica è analoga a quella gravitazionale Il lavoro per andare da un punto all'altro è indipendente dal percorso fatto

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

La dinamica delle collisioni

La dinamica delle collisioni La dinamica delle collisioni Un video: clic Un altro video: clic Analisi di un crash test (I) I filmati delle prove d impatto distruttive degli autoveicoli, dato l elevato numero dei fotogrammi al secondo,

Dettagli

LABORATORIO I-A. Cenni sui circuiti elettrici in corrente continua

LABORATORIO I-A. Cenni sui circuiti elettrici in corrente continua 1 UNIVERSITÀ DIGENOVA FACOLTÀDISCIENZEM.F.N. LABORATORIO IA Cenni sui circuiti elettrici in corrente continua Anno Accademico 2001 2002 2 Capitolo 1 Richiami sui fenomeni elettrici Esperienze elementari

Dettagli

Apprendimento dei concetti relativi alle misure dirette, indirette ed alla propagazione degli errori

Apprendimento dei concetti relativi alle misure dirette, indirette ed alla propagazione degli errori U n i v e r s i t à d e g l i S t u d i d i U d i n e - Facoltà di Ingegneria Laboratorio di Fisica Generale 1 1 Il sistema massa-molla: Apprendimento dei concetti relativi alle misure dirette, indirette

Dettagli

Derivazione elementare dell espressione della quantità di moto e dell energia in relativività ristretta

Derivazione elementare dell espressione della quantità di moto e dell energia in relativività ristretta Derivazione elementare dell espressione della quantità di moto e dell energia in relativività ristretta L. P. 22 Aprile 2015 Sommario L espressione della quantità di moto e dell energia in relatività ristretta

Dettagli

Teoria quantistica della conduzione nei solidi e modello a bande

Teoria quantistica della conduzione nei solidi e modello a bande Teoria quantistica della conduzione nei solidi e modello a bande Obiettivi - Descrivere il comportamento quantistico di un elettrone in un cristallo unidimensionale - Spiegare l origine delle bande di

Dettagli

REC HRA 350 UNITA' DI RECUPERO ATTIVA

REC HRA 350 UNITA' DI RECUPERO ATTIVA REC HRA 350 UNITA' DI RECUPERO ATTIVA Unita' di climatizzazione autonoma con recupero calore passivo efficienza di recupero > 50% e recupero di calore attivo riscaldamento, raffrescamento e ricambio aria

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

Temperatura dilatazione lineare, superficiale, volumetrica

Temperatura dilatazione lineare, superficiale, volumetrica Temperatura dilatazione lineare, superficiale, volumetrica ESERCIZIO N 1 La temperatura in una palestra è di 18 C mentre all esterno il termometro segna la temperatura di 5 C. Quanto vale la differenza

Dettagli

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante Circuiti Elettrici Schema riassuntivo Leggi fondamentali dei circuiti elettrici lineari Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante La conseguenza

Dettagli

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A.

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A. Travature reticolari piane : esercizi svolti e omenico., Fuschi., isano., Sofi. SRZO n. ata la travatura reticolare piana triangolata semplice illustrata in Figura, determinare gli sforzi normali nelle

Dettagli

Motori Elettrici. Principi fisici. Legge di Lenz: se in un circuito elettrico il flusso concatenato varia nel tempo si genera una tensione

Motori Elettrici. Principi fisici. Legge di Lenz: se in un circuito elettrico il flusso concatenato varia nel tempo si genera una tensione Motori Elettrici Principi fisici Legge di Lenz: se in un circuito elettrico il flusso concatenato varia nel tempo si genera una tensione Legge di Biot-Savart: un conduttore percorso da corrente di intensità

Dettagli

Le prossime 6 domande fanno riferimento alla seguente tavola di orario ferroviario

Le prossime 6 domande fanno riferimento alla seguente tavola di orario ferroviario Esercizi lezioni 00_05 Pag.1 Esercizi relativi alle lezioni dalla 0 alla 5. 1. Qual è il fattore di conversione da miglia a chilometri? 2. Un tempo si correva in Italia una famosa gara automobilistica:

Dettagli

Esercizi e Problemi di Termodinamica.

Esercizi e Problemi di Termodinamica. Esercizi e Problemi di Termodinamica. Dr. Yves Gaspar March 18, 2009 1 Problemi sulla termologia e sull equilibrio termico. Problema 1. Un pezzetto di ghiaccio di massa m e alla temperatura di = 250K viene

Dettagli

F U N Z I O N I. E LORO RAPPRESENTAZIONE GRAFICA di Carmine De Fusco 1 (ANCHE CON IL PROGRAMMA PER PC "DERIVE")

F U N Z I O N I. E LORO RAPPRESENTAZIONE GRAFICA di Carmine De Fusco 1 (ANCHE CON IL PROGRAMMA PER PC DERIVE) F U N Z I O N I E LORO RAPPRESENTAZIONE GRAFICA di Carmine De Fusco 1 (ANCHE CON IL PROGRAMMA PER PC "DERIVE") I N D I C E Funzioni...pag. 2 Funzioni del tipo = Kx... 4 Funzioni crescenti e decrescenti...10

Dettagli

Le prestazioni delle pompe di calore: aspetti normativi e legislativi CENTRALI FRIGORIFERE NUOVE TECNOLOGIE E RISPARMIO ENERGETICO

Le prestazioni delle pompe di calore: aspetti normativi e legislativi CENTRALI FRIGORIFERE NUOVE TECNOLOGIE E RISPARMIO ENERGETICO CENTRALI FRIGORIFERE NUOVE TECNOLOGIE E RISPARMIO ENERGETICO Cagliari 8 maggio 2014 Prof. Ing. Carlo Bernardini SEER e SCOP Metodi di prova, valutazione a carico parziale e calcolo del rendimento stagionale

Dettagli

APPLICAZIONE MODELLISTICA PER LA VALUTAZIONE DELLA QUALITÀ DELL ARIA NELL AREA DI INSEDIAMENTO DEL CENTRO AGRO ALIMENTARE TORINESE

APPLICAZIONE MODELLISTICA PER LA VALUTAZIONE DELLA QUALITÀ DELL ARIA NELL AREA DI INSEDIAMENTO DEL CENTRO AGRO ALIMENTARE TORINESE APPLICAZIONE MODELLISTICA PER LA VALUTAZIONE DELLA QUALITÀ DELL ARIA NELL AREA DI INSEDIAMENTO DEL CENTRO AGRO ALIMENTARE TORINESE Introduzione La porzione di territorio situata a sud-ovest dell Area Metropolitana

Dettagli

ED. Equazioni cardinali della dinamica

ED. Equazioni cardinali della dinamica ED. Equazioni cardinali della dinamica Dinamica dei sistemi La dinamica dei sistemi di punti materiali si può trattare, rispetto ad un osservatore inerziale, scrivendo l equazione fondamentale della dinamica

Dettagli

Corrente elettrica (regime stazionario)

Corrente elettrica (regime stazionario) Corrente elettrica (regime stazionario) Metalli Corrente elettrica Legge di Ohm Resistori Collegamento di resistori Generatori di forza elettromotrice Metalli Struttura cristallina: ripetizione di unita`

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Appunti sull orientamento con carta e bussola

Appunti sull orientamento con carta e bussola Appunti sull orientamento con carta e bussola Indice Materiale necessario... 2 Orientiamo la carta topografica con l'aiuto della bussola... 2 Azimut... 2 La definizione di Azimut... 2 Come misurare l azimut...

Dettagli

Quando troncare uno sviluppo in serie di Taylor

Quando troncare uno sviluppo in serie di Taylor Quando troncare uno sviluppo in serie di Taylor Marco Robutti October 13, 2014 Lo sviluppo in serie di Taylor di una funzione è uno strumento matematico davvero molto utile, e viene spesso utilizzato in

Dettagli

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014)

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) Le grandezze fisiche. Metodo sperimentale di Galilei. Concetto di grandezza fisica e della sua misura. Il Sistema internazionale di Unità

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

ESERCITAZIONE Rispondi a ciascuna delle seguenti domande in 10 righe

ESERCITAZIONE Rispondi a ciascuna delle seguenti domande in 10 righe ESERCITAZIONE Rispondi a ciascuna delle seguenti domande in 10 righe CAPITOLO 1 La carica elettrica e la legge di Coulomb La carica elettrica e la legge di Coulomb: conduttori ed isolanti. Vari tipi di

Dettagli

La scelta razionale del consumatore (Frank - Capitolo 3)

La scelta razionale del consumatore (Frank - Capitolo 3) La scelta razionale del consumatore (Frank - Capitolo 3) L'INSIEME OPPORTUNITÁ E IL VINCOLO DI BILANCIO Un paniere di beni rappresenta una combinazione di beni o servizi Il vincolo di bilancio o retta

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

12. LO SCAMBIO TERMICO PER CONVEZIONE

12. LO SCAMBIO TERMICO PER CONVEZIONE 12. LO SCAMBIO TERMICO PER CONVEZIONE 12.1 Introduzione Una seconda modalità di trasmissione del calore, detta convezione termica, ha luogo quando almeno uno dei due corpi che si scambiano calore è un

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

GEOTECNICA. ing. Nunziante Squeglia 13. OPERE DI SOSTEGNO. Corso di Geotecnica Corso di Laurea in Ingegneria Edile - Architettura

GEOTECNICA. ing. Nunziante Squeglia 13. OPERE DI SOSTEGNO. Corso di Geotecnica Corso di Laurea in Ingegneria Edile - Architettura GEOTECNICA 13. OPERE DI SOSTEGNO DEFINIZIONI Opere di sostegno rigide: muri a gravità, a mensola, a contrafforti.. Opere di sostegno flessibili: palancole metalliche, diaframmi in cls (eventualmente con

Dettagli

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE - Matematica - Griglie di valutazione Materia: Matematica Obiettivi disciplinari Gli obiettivi indicati si riferiscono all intero percorso della classe quarta

Dettagli

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI Le disequazioni fratte Le disequazioni di secondo grado I sistemi di disequazioni Alessandro Bocconi Indice 1 Le disequazioni non lineari 2 1.1 Introduzione.........................................

Dettagli

Statiche se la trasformazione dell energia avviene senza organi in movimento (es. Trasformatori.)

Statiche se la trasformazione dell energia avviene senza organi in movimento (es. Trasformatori.) Macchine elettriche parte Macchine elettriche Generalità Definizioni Molto spesso le forme di energia in natura non sono direttamente utilizzabili, ma occorre fare delle conversioni. Un qualunque sistema

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

3. GLI AEROSTATI: CARATTERISTICHE FUNZIONALI I E STRUTTURALI

3. GLI AEROSTATI: CARATTERISTICHE FUNZIONALI I E STRUTTURALI 3. GLI AEROSTATI: CARATTERISTICHE FUNZIONALI I E STRUTTURALI L aerostato è un aeromobile che, per ottenere la portanza, ossia la forza necessaria per sollevarsi da terra e volare, utilizza gas più leggeri

Dettagli