Metodi statistici per l economia (Prof. Capitanio) Slide n. 4. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Metodi statistici per l economia (Prof. Capitanio) Slide n. 4. Materiale di supporto per le lezioni. Non sostituisce il libro di testo"

Transcript

1 Metodi statistici per l economia (Prof. Capitanio) Slide n. 4 Materiale di supporto per le lezioni. Non sostituisce il libro di testo

2 Dipendenza di un carattere QUANTITATIVO da un carattere QUALITATIVO o QUANTITATIVO DISCRETO 1

3 Tempo per trovare lavoro (Y) in mesi Residenza (X) Nord Centro Sud e isole Totale < Totale Media Il tempo che mediamente è occorso per trovare la prima occupazione è differente nelle tre aree geografiche di residenza. In che misura il tempo medio DIPENDE dalla zona geografica di residenza?

4 DIPENDENZA IN MEDIA di Y da X Si osservano valori medi di Y differenti in corrispondenza delle diverse modalità osservate di X Si realizza quando le medie condizionate di Y rispetto a X NON sono tutte uguali 3

5 INDIPENDENZA IN MEDIA di Y da X Si osservano valori medi di Y uguali in corrispondenza delle diverse modalità osservate di X Si realizza quando le medie delle distribuzioni condizionate di Y rispetto a X sono tutte uguali 4

6 SCHEMA TEORICO DI TOTALE INDIPENDENZA Le medie condizionate di Y rispetto a X sono tutte uguali La variabilità delle medie delle distribuzioni condizionate è nulla Le distribuzioni condizionate suddividono l intero collettivo in gruppi LA DEVIANZA TRA I GRUPPI è PARI A ZERO 5

7 Dev TOT (Y) = Dev ENTRO (Y) + Dev TRA (Y) Dev ENTRO (Y) = k ( ) Dev j Y è zero quando all interno di ciascun j =1 gruppo tutte le unità sono uguali Dev TRA (Y) = k ( y j Y ) n j è zero quando le medie di ciascun j =1 gruppo sono uguali (fra le medie dei gruppi non c è variabilità) 6

8 SCHEMA TEORICO DI TOTALE DIPENDENZA le medie condizionate di Y rispetto a X sono massimamente differenti fra loro Dev TRA (Y ) raggiunge il suo valore massimo, che è pari a Dev TOT (Y ) La variabilità delle medie condizionate riassume la variabilità complessiva del carattere Y Inoltre: Dev TRA (Y ) = Dev TOT (Y ) Dev ENTRO (Y ) = 0 7

9 Conosciamo la distribuzione congiunta di due caratteri X e Y - Y è un carattere quantitativo - X è un carattere qualitativo o quantitativo discreto Consideriamo le distribuzioni condizionate di Y dato X Y X =x i = M(Y X = x i ) = 1 Dev(Y X = x i ) = σ Y X =x i Y X = x i i = 1,,,H K j=1 n ii K j=1 y Y j X =x i y j n ij n ij =Var(Y X = x i ) = Dev(Y X = x i ) n ii 8

10 Possiamo calcolare la media della distribuzione marginale Y = H i=1 H n ii i=1 Y X =x i n ii Media ponderata delle medie delle distribuzioni condizionate Nota: se tutte le medie condizionate sono uguali, il loro valore coincide con la media della distribuzione marginale 9

11 H SCOMPOSIZIONE DELLA DEVIANZA Dev(Y ) = Y Y X =x i n + Dev(Y X = x ) ii i i=1 H i=1 Devianza delle (tra le) medie condizionate H i=1 Dev (Y ) = Y Y tra X =x i Somma delle devianze delle condizionate (Dev entro) n ii Quantifica la parte di variabilità dovuta alle differenze TRA i gruppi Quantifica la variabilità INTERNA a ciascun gruppo H i=1 Dev entro (Y ) = Dev(Y X = x i ) 10

12 Vale anche la relazione: 1 n Dev(Y ) = 1 n Dev tra (Y ) + 1 n Dev entro (Y ) Var(Y ) = 1 n H i=1 Y X =x i Y n ii + 1 n H i=1 σ n Y X =x i ii Varianza delle medie σ M(Y X =x i ) Media delle Varianze M σ Y X =x i 11

13 DIPENDENZA IN MEDIA DI Y DA X Si realizza quando le medie condizionate di Y rispetto a X NON sono tutte uguali Si misura attraveso il RAPPORTO DI CORRELAZIONE η Y X = Dev tra (Y ) Dev(Y ) = σ M(Y X ) σ Y 1

14 Dev(Y ) = Dev tra (Y ) + Dev entro (Y ) 0 Dev tra (Y ) Dev(Y ) 0 Dev tra (Y ) Dev(Y ) 1 0 η Y X 1 Il RAPPORTO DI CORRELAZIONE è un indice relativo di dipendenza in media 13

15 η Y X = Dev tra (Y ) Dev(Y ) η Y X = 0 Dev tra (Y ) = 0 TOTALE INDIPENDENZA in media η Y X = 1 Dev tra (Y ) = Dev(Y ) Dev entro (Y ) = 0 MASSIMA DIPENDENZA in media 14

16 Residenza (X) Tempo per trovare Nord Centro Sud e lavoro (Y) in mesi isole Marginale di Y < Marginale di X Media Devianza a) Calcolare la media aritmetica, la devianza e la varianza del tempo occorso per trovare lavoro dopo la laurea per i residenti in centro Italia ( distribuzione condizionata del tempo rispetto a X= Centro ). 15

17 Y X=Centro n j y j y n y n j j j j Totale M(Y X = Centro) = Y X =x Dev(Y X = Centro) = σ X =x 3 3 = 1 y n = 480 n j j 64 = 7.50 j=1 y n ny = = 05 j j j=1 = Dev n = = 3.06 σ X =x = 3.06 =

18 b) Calcolare la media aritmetica, la devianza e la varianza del tempo occorso per trovare lavoro. Possiamo usare la distribuzione marginale Y n j y j y n y n j j j j Totale 00 3 Y = 1 y n MA n j j j=1 17

19 Il calcolo è più rapido se usiamo i risultati appena visti. Residenza (X) Tempo per trovare Nord Centro Sud e lavoro (Y) in mesi isole Marginale Media Devianza numerosità Y = media pesata delle medie delle condizionate Y = = =

20 Residenza (X) Tempo per trovare Nord Centro Sud e lavoro (Y) in mesi isole Marginale Media Devianza numerosità Dev tot (Y ) = Dev tra (Y ) + Dev entro (Y ) Dev entro (Y ) = = Dev (Y ) = Y Y tra X =x j n = ij j=1 = ( ) 96 + ( ) 64 + ( ) 40 = =

21 Residenza (X) Tempo per trovare Nord Centro Sud e lavoro (Y) in mesi isole Marginale Media Devianza numerosità Dev entro (Y ) = Dev tra (Y ) = Dev tot (Y ) = = Var tot (Y ) = =

22 c) Quantificare la dipendenza in media del tempo occorso per trovare lavoro dalla zona geografica di residenza. Dev tot (Y ) = Dev tra (Y ) = η Y X Rapporto di correlazione = Dev tra (Y ) Dev(Y ) = = Si realizza il 19.44% della massima dipendenza possibile L 80.56% della variabilità complessiva è da attribuire alla variabilità interna ai tre gruppi 1

Statistica (Prof. Capitanio) Slide n. 1. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Statistica (Prof. Capitanio) Slide n. 1. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Statistica (Prof. Capitanio) Slide n. 1 Materiale di supporto per le lezioni. Non sostituisce il libro di testo MEDIA GEOMETRICA M g = x g = n n x i i=1 1 PROPRIETA 1) Identità di prodotto ( ) n n M =

Dettagli

Statistica. Alfonso Iodice D Enza iodicede@unicas.it

Statistica. Alfonso Iodice D Enza iodicede@unicas.it Statistica Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () Statistica 1 / 2 Outline 1 2 3 4 () Statistica 2 / 2 Misura del legame Data una variabile doppia (X, Y ), la misura

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1 Dott.ssa Antonella Costanzo a.costanzo@unicas.it A.Studio dell interdipendenza tra variabili: riepilogo Concetto relativo allo studio delle relazioni tra

Dettagli

Prova di autovalutazione Prof. Roberta Siciliano

Prova di autovalutazione Prof. Roberta Siciliano Prova di autovalutazione Prof. Roberta Siciliano Esercizio 1 Nella seguente tabella è riportata la distribuzione di frequenza dei prezzi per camera di alcuni agriturismi, situati nella regione Basilicata.

Dettagli

Un po di statistica. Christian Ferrari. Laboratorio di Matematica

Un po di statistica. Christian Ferrari. Laboratorio di Matematica Un po di statistica Christian Ferrari Laboratorio di Matematica 1 Introduzione La statistica è una parte della matematica applicata che si occupa della raccolta, dell analisi e dell interpretazione di

Dettagli

Titolo della lezione. Analisi dell associazione tra due caratteri: indipendenza e dipendenza

Titolo della lezione. Analisi dell associazione tra due caratteri: indipendenza e dipendenza Titolo della lezione Analisi dell associazione tra due caratteri: indipendenza e dipendenza Introduzione Analisi univariata, bivariata, multivariata Analizzare le relazioni tra i caratteri, per cercare

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 9 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 TEST D IPOTESI Partiamo da un esempio presente sul libro di testo.

Dettagli

STATISTICA DESCRITTIVA BIVARIATA

STATISTICA DESCRITTIVA BIVARIATA STATISTICA DESCRITTIVA BIVARIATA Si parla di Analisi Multivariata quando su ogni unità statistica, appartenente ad una determinata popolazione, si rileva un certo numero s di caratteri X 1, X 2,,X s. Si

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA)

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA) Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 4: Analisi della varianza (ANOVA) Analisi della varianza Analisi della varianza (ANOVA) ANOVA ad

Dettagli

Relazioni statistiche: regressione e correlazione

Relazioni statistiche: regressione e correlazione Relazioni statistiche: regressione e correlazione È detto studio della connessione lo studio si occupa della ricerca di relazioni fra due variabili statistiche o fra una mutabile e una variabile statistica

Dettagli

Statistica. Esercitazione 3 5 maggio 2010 Serie storiche. Connessione e indipendenza statistica

Statistica. Esercitazione 3 5 maggio 2010 Serie storiche. Connessione e indipendenza statistica Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2008/2009 Statistica Esercitazione 3 5 maggio 2010 Serie storiche. Connessione e indipendenza

Dettagli

Esercizi di riepilogo Statistica III canale, anno 2008

Esercizi di riepilogo Statistica III canale, anno 2008 Esercizio 1 - Esercizio 5 esame 22 giugno 2004 Esercizi di riepilogo Statistica III canale, anno 2008 Data la seguente distribuzione di 100 dipendenti di un azienda in base al tempo impiegato (in minuti)

Dettagli

Funzioni. Parte prima. Daniele Serra

Funzioni. Parte prima. Daniele Serra Funzioni Parte prima Daniele Serra Nota: questi appunti non sostituiscono in alcun modo le lezioni del prof. Favilli, né alcun libro di testo. Sono piuttosto da intendersi a integrazione di entrambi. 1

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Nome N. Matricola Ancona, 14 luglio 2015 1. Tre macchine producono gli stessi pezzi

Dettagli

CENNI DI METODI STATISTICI

CENNI DI METODI STATISTICI Corso di Laurea in Ingegneria Aerospaziale CENNI DI METODI STATISTICI Docente: Page 1 Page 2 Page 3 Due eventi si dicono indipendenti quando il verificarsi di uno non influisce sulla probabilità di accadimento

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

RETI DI TELECOMUNICAZIONE

RETI DI TELECOMUNICAZIONE RETI DI TELECOMUNICAZIONE SISTEMI M/G/1 e M/D/1 Sistemi M/G/1 Nei sistemi M/G/1: i clienti arrivano secondo un processo di Poisson con parametro λ i tempi di servizio hanno una distribuzione generale della

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA

ESERCIZI DI STATISTICA DESCRITTIVA ESERCIZI DI STATISTICA DESCRITTIVA ES1 Data la seguente serie di dati su Sesso e Altezza di 8 pazienti, riempire opportunamente due tabelle per rappresentare le distribuzioni di frequenze dei due caratteri,

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi sulla varianza In un azienda che produce componenti meccaniche, è stato

Dettagli

Appunti di Statistica Descrittiva

Appunti di Statistica Descrittiva Appunti di Statistica Descrittiva 30 dicembre 009 1 La tabella a doppia entrata Per studiare dei fenomeni con caratteristiche statistiche si utilizza l espediente della tabella a doppia entrata Per esempio

Dettagli

Osservatorio Conti Correnti Dati sui conti in Italia (Lug 2010 Mag 2015)

Osservatorio Conti Correnti Dati sui conti in Italia (Lug 2010 Mag 2015) Osservatorio Conti Correnti Dati sui conti in Italia (Lug 2010 Mag 2015) Giugno 2015 Avvertenze: Gli indicatori relativi all'utilizzo del sito da parte degli utenti non hanno carattere di certezza o scientificità.

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

ANALISI DELLA VARIANZA A PIU CRITERI DI CLASSIFICAZIONE

ANALISI DELLA VARIANZA A PIU CRITERI DI CLASSIFICAZIONE ANALISI DELLA VARIANZA A PIU CRITERI DI CLASSIFICAZIONE CON REPLICHE INTRODUZIONE Lo studio di un fenomeno non si deve limitareit alla valutazione dei singoli fattori in studio ma molto spesso è importante

Dettagli

LEZIONE n. 5 (a cura di Antonio Di Marco)

LEZIONE n. 5 (a cura di Antonio Di Marco) LEZIONE n. 5 (a cura di Antonio Di Marco) IL P-VALUE (α) Data un ipotesi nulla (H 0 ), questa la si può accettare o rifiutare in base al valore del p- value. In genere il suo valore è un numero molto piccolo,

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale Corso di Statistica e Biometria Introduzione e Statistica descrittiva Corsi di Laurea Triennale Corso di Statistica e Biometria: Introduzione

Dettagli

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Facoltà di Scienze della Comunicazione Università di Teramo Scelta

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 5-Indici di variabilità (vers. 1.0c, 20 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE SIMULAZIONE della PROVA SCRITTA di STATISTICA 23/03/2011

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE SIMULAZIONE della PROVA SCRITTA di STATISTICA 23/03/2011 FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE SIMULAZIONE della PROVA SCRITTA di STATISTICA 23/3/2 ESERCIZIO (2+2+2+2) La seguente tabella riporta la distribuzione della variabile "Stato Civile"

Dettagli

Statistica. Esercitazione 15. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice

Statistica. Esercitazione 15. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice Esercitazione 15 Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () 1 / 18 L importanza del gruppo di controllo In tutti i casi in cui si voglia studiare l effetto di un certo

Dettagli

Capitolo 6. Soluzione degli esercizi a cura di Rosa Falotico

Capitolo 6. Soluzione degli esercizi a cura di Rosa Falotico Capitolo 6 Soluzione degli esercizi a cura di Rosa Falotico Esercizio 6.1 Dopo aver notato che quando le modalità si presentano con frequenze unitarie, la formula per il calcolo della media si semplifica,

Dettagli

STATISTICA (A-K) a.a. 2007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 2007

STATISTICA (A-K) a.a. 2007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 2007 A STATISTICA (A-K) a.a. 007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 007 STESS N.O. RD 00 GORU N.O. RD 006 ) La distribuzione del numero degli occupati (valori x 000) in una provincia

Dettagli

Il rischio di un portafoglio

Il rischio di un portafoglio Come si combinano in un portafoglio i rischi di 2 titoli? dipende dai pesi e dal valore delle covarianze covarianza a a ρ a b ρ a b ρ b b ρ coefficiente di correlazione = cov / ² p = a² ² + b² ² + 2 a

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

Esame di Statistica Prof.ssa Paola Zuccolotto

Esame di Statistica Prof.ssa Paola Zuccolotto Esame di Statistica Prof.ssa Paola Zuccolotto Tema 1 indicare cognome, nome e numero di matricola su tutti i fogli; utilizzare i fogli protocollo per effettuare i calcoli, indicando tutti i passaggi necessari

Dettagli

L Analisi della Varianza ANOVA (ANalysis Of VAriance)

L Analisi della Varianza ANOVA (ANalysis Of VAriance) L Analisi della Varianza ANOVA (ANalysis Of VAriance) 1 CONCETTI GENERALI Finora abbiamo descritto test di ipotesi finalizzati alla verifica di ipotesi sulla differenza tra parametri di due popolazioni

Dettagli

STATISTICA 1 ESERCITAZIONE 1 CLASSIFICAZIONE DELLE VARIABILI CASUALI

STATISTICA 1 ESERCITAZIONE 1 CLASSIFICAZIONE DELLE VARIABILI CASUALI STATISTICA 1 ESERCITAZIONE 1 Dott. Giuseppe Pandolfo 30 Settembre 2013 Popolazione statistica: insieme degli elementi oggetto dell indagine statistica. Unità statistica: ogni elemento della popolazione

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

Economia Aperta. In questa lezione: Analizziamo i mercati dei beni e servizi in economia aperta. Analizziamo i mercati finanziari in economia aperta

Economia Aperta. In questa lezione: Analizziamo i mercati dei beni e servizi in economia aperta. Analizziamo i mercati finanziari in economia aperta Economia Aperta In questa lezione: Analizziamo i mercati dei beni e servizi in economia aperta Analizziamo i mercati finanziari in economia aperta 167 Economia aperta applicata ai mercati dei beni mercati

Dettagli

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114

Dettagli

Analisi Statistica per le Imprese (6 CFU) - a.a. 2010-2011 Prof. L. Neri RICHIAMI DI STATISTICA DESCRITTIVA UNIVARIATA

Analisi Statistica per le Imprese (6 CFU) - a.a. 2010-2011 Prof. L. Neri RICHIAMI DI STATISTICA DESCRITTIVA UNIVARIATA Analisi Statistica per le Imprese (6 CFU) - a.a. 2010-2011 Prof. L. Neri RICHIAMI DI STATISTICA DESCRITTIVA UNIVARIATA 1 Distribuzione di frequenza Punto vendita e numero di addetti PUNTO VENDITA 1 2 3

Dettagli

Excel Terza parte. Excel 2003

Excel Terza parte. Excel 2003 Excel Terza parte Excel 2003 TABELLA PIVOT Selezioniamo tutti i dati (con le relative etichette) Dati Rapporto tabella pivot e grafico pivot Fine 2 La tabella pivot viene messa di default in una pagina

Dettagli

1. Distribuzioni campionarie

1. Distribuzioni campionarie Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 1 VARIABILI QUALITATIVE

STATISTICA DESCRITTIVA - SCHEDA N. 1 VARIABILI QUALITATIVE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) STATISTICA DESCRITTIVA

Dettagli

DISTRIBUZIONI DI PROBABILITÀ

DISTRIBUZIONI DI PROBABILITÀ Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 LE PRINCIPALI DISTRIBUZIONI

Dettagli

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010 LEZIONE 3 "Educare significa aiutare l'animo dell'uomo ad entrare nella totalità della realtà. Non si può però educare se non rivolgendosi alla libertà, la quale definisce il singolo, l'io. Quando uno

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520:

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520: Fig. 10.bis.1 Variazioni percentuali Variazione percentuale di x dalla data zero alla data uno: x1 x 0 %x = 100% x 0 = variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del

Dettagli

Statistica Applicata all edilizia Lezione 2: Analisi descrittiva dei dati

Statistica Applicata all edilizia Lezione 2: Analisi descrittiva dei dati Lezione 2: Analisi descrittiva dei dati E-mail: orietta.nicolis@unibg.it 1 marzo 2011 Prograa 1 Analisi grafica dei dati 2 Indici di posizione Indici di dispersione Il boxplot 3 4 Prograa Analisi grafica

Dettagli

MINIMI QUADRATI. REGRESSIONE LINEARE

MINIMI QUADRATI. REGRESSIONE LINEARE MINIMI QUADRATI. REGRESSIONE LINEARE Se il coefficiente di correlazione r è prossimo a 1 o a -1 e se il diagramma di dispersione suggerisce una relazione di tipo lineare, ha senso determinare l equazione

Dettagli

11. Analisi statistica degli eventi idrologici estremi

11. Analisi statistica degli eventi idrologici estremi . Analisi statistica degli eventi idrologici estremi I processi idrologici evolvono, nello spazio e nel tempo, secondo modalità che sono in parte predicibili (deterministiche) ed in parte casuali (stocastiche

Dettagli

Soluzioni Esercizi elementari

Soluzioni Esercizi elementari Soluzioni sercizi elementari Capitolo. carattere: itolo di Studio, carattere qualitativo ordinato modalità: Diploma, Licenza media, Laurea, Licenza elementare unità statistiche: Individui. carattere: Fatturato,

Dettagli

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della RELAZIONE TRA VARIABILI QUANTITATIVE Lezione 7 a Accade spesso nella ricerca in campo biomedico, così come in altri campi della scienza, di voler studiare come il variare di una o più variabili (variabili

Dettagli

Statistica. Le rappresentazioni grafiche

Statistica. Le rappresentazioni grafiche Statistica Le rappresentazioni grafiche Introduzione Le rappresentazioni grafiche costituiscono uno dei mezzi più efficaci, sia per descrivere in forma visiva i risultati di numerose osservazioni riguardanti

Dettagli

4. Confronto tra medie di tre o più campioni indipendenti

4. Confronto tra medie di tre o più campioni indipendenti BIOSTATISTICA 4. Confronto tra medie di tre o più campioni indipendenti Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla Il metodo della regressione può essere esteso dal caso in cui si considera la variabilità della risposta della y in relazione ad una sola variabile indipendente X ad una situazione più generale in cui

Dettagli

Osservatorio Prestiti

Osservatorio Prestiti Osservatorio Prestiti Dati sui prestiti in Italia (Gen 2005 Sett 2015) Ottobre 2015 Avvertenze: Gli indicatori relativi all'utilizzo del sito da parte degli utenti non hanno carattere di certezza o scientificità.

Dettagli

Osservatorio Prestiti

Osservatorio Prestiti Osservatorio Prestiti Dati sui prestiti in Italia (Gen 2003 Feb 2013) Marzo 2013 Avvertenze: Gli indicatori relativi all'utilizzo del sito da parte degli utenti non hanno carattere di certezza o scientificità.

Dettagli

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -

Dettagli

Osservatorio Prestiti

Osservatorio Prestiti Osservatorio Prestiti Dati sui prestiti in Italia (Gen 2005 Feb 2015) Marzo 2015 Avvertenze: Gli indicatori relativi all'utilizzo del sito da parte degli utenti non hanno carattere di certezza o scientificità.

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

Statistiche campionarie

Statistiche campionarie Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle

Dettagli

OCCUPATI SETTORE DI ATTIVITA' ECONOMICA

OCCUPATI SETTORE DI ATTIVITA' ECONOMICA ESERCIZIO 1 La tabella seguente contiene i dati relativi alla composizione degli occupati in Italia relativamente ai tre macrosettori di attività (agricoltura, industria e altre attività) negli anni 1971

Dettagli

Principi di Economia - Macroeconomia Esercitazione 3 Risparmio, Spesa e Fluttuazioni di breve periodo Soluzioni

Principi di Economia - Macroeconomia Esercitazione 3 Risparmio, Spesa e Fluttuazioni di breve periodo Soluzioni Principi di Economia - Macroeconomia Esercitazione 3 Risparmio, Spesa e Fluttuazioni di breve periodo Soluzioni Daria Vigani Maggio 204. In ciascuna delle seguenti situazioni calcolate risparmio nazionale,

Dettagli

Analisi di scenario File Nr. 10

Analisi di scenario File Nr. 10 1 Analisi di scenario File Nr. 10 Giorgio Calcagnini Università di Urbino Dip. Economia, Società, Politica giorgio.calcagnini@uniurb.it http://www.econ.uniurb.it/calcagnini/ http://www.econ.uniurb.it/calcagnini/forecasting.html

Dettagli

STATISTICA IX lezione

STATISTICA IX lezione Anno Accademico 013-014 STATISTICA IX lezione 1 Il problema della verifica di un ipotesi statistica In termini generali, si studia la distribuzione T(X) di un opportuna grandezza X legata ai parametri

Dettagli

Capitolo 2 Distribuzioni di frequenza

Capitolo 2 Distribuzioni di frequenza Edizioni Simone - Vol. 43/1 Compendio di statistica Capitolo 2 Distribuzioni di frequenza Sommario 1. Distribuzioni semplici. - 2. Distribuzioni doppie. - 3. Distribuzioni parziali: condizionate e marginali.

Dettagli

Sistema di numerazione binario, operazioni relative e trasformazione da base due a base dieci e viceversa di Luciano Porta

Sistema di numerazione binario, operazioni relative e trasformazione da base due a base dieci e viceversa di Luciano Porta Sistema di numerazione binario, operazioni relative e trasformazione da base due a base dieci e viceversa di Luciano Porta Anche se spesso si afferma che il sistema binario, o in base 2, fu inventato in

Dettagli

VARIABILI ALEATORIE CONTINUE

VARIABILI ALEATORIE CONTINUE VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità

Dettagli

Economia Applicata ai sistemi produttivi. 06.05.05 Lezione II Maria Luisa Venuta 1

Economia Applicata ai sistemi produttivi. 06.05.05 Lezione II Maria Luisa Venuta 1 Economia Applicata ai sistemi produttivi 06.05.05 Lezione II Maria Luisa Venuta 1 Schema della lezione di oggi Argomento della lezione: il comportamento del consumatore. Gli economisti assumono che il

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea in Economia e Finanza Statistica 1 A.A. 2015/2016 (8 CFU, corrispondenti a 48 ore di lezione frontale e 24 ore di esercitazione) Prof. Luigi Augugliaro 1 / 39 Introduzione Come si è detto,

Dettagli

Statistica. Alfonso Iodice D Enza iodicede@unina.it

Statistica. Alfonso Iodice D Enza iodicede@unina.it Statistica Alfonso Iodice D Enza iodicede@unina.it Università degli studi di Cassino () Statistica 1 / 16 Outline 1 () Statistica 2 / 16 Outline 1 2 () Statistica 2 / 16 Outline 1 2 () Statistica 2 / 16

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Questa nota consiste perlopiù nella traduzione (con alcune integrazioni) da Descriptive statistics di J. Shalliker e C. Ricketts, 2000, University of Plymouth Consideriamo i dati nel file esercizio10_dati.xls.

Dettagli

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di STATISTICA LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di oggetti; cerca, attraverso l uso della matematica

Dettagli

13. Campi vettoriali

13. Campi vettoriali 13. Campi vettoriali 1 Il campo di velocità di un fluido Il concetto di campo in fisica non è limitato ai fenomeni elettrici. In generale il valore di una grandezza fisica assegnato per ogni punto dello

Dettagli

Economia Aperta. In questa lezione: Analizziamo i mercati dei beni e servizi in economia aperta. Analizziamo i mercati finanziari in economia aperta

Economia Aperta. In questa lezione: Analizziamo i mercati dei beni e servizi in economia aperta. Analizziamo i mercati finanziari in economia aperta Economia Aperta In questa lezione: Analizziamo i mercati dei beni e servizi in economia aperta Analizziamo i mercati finanziari in economia aperta 158 Economia aperta applicata ai mercati dei beni mercati

Dettagli

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva Brugnaro Luca Progetto formativo complessivo Obiettivo: incrementare le competenze degli operatori sanitari nelle metodiche

Dettagli

b. Che cosa succede alla frazione di reddito nazionale che viene risparmiata?

b. Che cosa succede alla frazione di reddito nazionale che viene risparmiata? Esercitazione 7 Domande 1. L investimento programmato è pari a 100. Le famiglie decidono di risparmiare una frazione maggiore del proprio reddito e la funzione del consumo passa da C = 0,8Y a C = 0,5Y.

Dettagli

LABORATORIO-EXCEL N. 2-3 XLSTAT- Pro Versione 7 VARIABILI QUANTITATIVE

LABORATORIO-EXCEL N. 2-3 XLSTAT- Pro Versione 7 VARIABILI QUANTITATIVE LABORATORIO-EXCEL N. 2-3 XLSTAT- Pro Versione 7 VARIABILI QUANTITATIVE DESCRIZIONE DEI DATI DA ESAMINARE Sono stati raccolti i dati sul peso del polmone di topi normali e affetti da una patologia simile

Dettagli

STATISTICA MATEMATICA 1 A.A. 2006/07 LABORATORIO DI SAS A. MICHELETTI

STATISTICA MATEMATICA 1 A.A. 2006/07 LABORATORIO DI SAS A. MICHELETTI STATISTICA MATEMATICA 1 A.A. 2006/07 LABORATORIO DI SAS A. MICHELETTI LEZIONE 2: STATISTICA DESCRITTIVA Istogrammi e torte LAVORO1.SAS data lavoro1; filename dati 'c:\user\sas\laur92fs.txt'; infile dati;

Dettagli

STATISTICA DESCRITTIVA UNIVARIATA

STATISTICA DESCRITTIVA UNIVARIATA Capitolo zero: STATISTICA DESCRITTIVA UNIVARIATA La STATISTICA è la scienza che si occupa di fenomeni collettivi che richiedono lo studio di un grande numero di dati. Il termine STATISTICA deriva dalla

Dettagli

Esercitazioni del corso di Statistica Prof. Mortera a.a. 2008/2009

Esercitazioni del corso di Statistica Prof. Mortera a.a. 2008/2009 Esercitazioni del corso di Statistica Prof. Mortera a.a. 2008/2009 Esercizi di statistica descrittiva 1. Secondo i dati ISTAT 1997 sull occupazione, la Lombardia e il Veneto presentano le seguenti distribuzione

Dettagli

Appunti di complementi di matematica

Appunti di complementi di matematica Appunti di complementi di matematica UITA STATISTICA: è l unità su cui si raccolgono le informazioni oggetto dell indagine e possono essere individui, famiglie, oggetti. UIVERSO STATISTICO O POLAZIOE STATISTICA

Dettagli

Il significato della MEDIA e della MEDIANA in una raccolta di dati numerici

Il significato della MEDIA e della MEDIANA in una raccolta di dati numerici Il significato della MEDIA e della MEDIANA in una raccolta di dati numerici Ogni qual volta si effettua una raccolta di dati di tipo numerico è inevitabile fornirne il valore medio. Ma che cos è il valore

Dettagli

2. Leggi finanziarie di capitalizzazione

2. Leggi finanziarie di capitalizzazione 2. Leggi finanziarie di capitalizzazione Si chiama legge finanziaria di capitalizzazione una funzione atta a definire il montante M(t accumulato al tempo generico t da un capitale C: M(t = F(C, t C t M

Dettagli

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale BIOSTATISTICA 2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

TRACCIA DI STUDIO. Sintesi dei dati. aver eliminato una uguale percentuale di valori estremi sia in basso sia in alto.

TRACCIA DI STUDIO. Sintesi dei dati. aver eliminato una uguale percentuale di valori estremi sia in basso sia in alto. TRACCIA DI STUDIO Sintesi dei dati Per concentrare l inormazione di una serie di misure, è necessario identiicare un indice in grado di rappresentare correttamente la tendenza di un enomeno con una perdita

Dettagli

(a cura di Francesca Godioli)

(a cura di Francesca Godioli) lezione n. 12 (a cura di Francesca Godioli) Ad ogni categoria della variabile qualitativa si può assegnare un valore numerico che viene chiamato SCORE. Passare dalla variabile qualitativa X2 a dei valori

Dettagli

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi.

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi. Iniziamo con definizione (capiremo fra poco la sua utilità): DEFINIZIONE DI VARIABILE ALEATORIA Una variabile aleatoria (in breve v.a.) X è funzione che ha come dominio Ω e come codominio R. In formule:

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso di Statistica medica e applicata Dott.ssa Donatella Cocca 1 a Lezione Cos'è la statistica? Come in tutta la ricerca scientifica sperimentale, anche nelle scienze mediche e biologiche è indispensabile

Dettagli

STATISTICA DESCRITTIVA. Le misure di tendenza centrale

STATISTICA DESCRITTIVA. Le misure di tendenza centrale STATISTICA DESCRITTIVA Le misure di tendenza centrale 1 OBIETTIVO Individuare un indice che rappresenti significativamente un insieme di dati statistici. 2 Esempio Nella tabella seguente sono riportati

Dettagli

Tasso di interesse e capitalizzazione

Tasso di interesse e capitalizzazione Tasso di interesse e capitalizzazione Tasso di interesse = i = somma che devo restituire dopo un anno per aver preso a prestito un euro, in aggiunta alla restituzione dell euro iniziale Quindi: prendo

Dettagli

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno Esercitazione del 18/1/2005 Dott. Claudio Conversano Esercizio 1 (non svolto in aula) Vengono lanciati

Dettagli