Fibonacci s project. La matematica che non si vede. Marco Moscatelli

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Fibonacci s project. La matematica che non si vede. Marco Moscatelli"

Transcript

1 Fibonacci s project La matematica che non si vede Marco Moscatelli

2 Quale di questi rettangoli è il più bello? Test dei rettangoli

3 Test dei rettangoli Nel rettangolo che avete scelto, ci guardereste un film? Sono stati mostrati questi rettangoli a 1000 persone, chiedendo loro di scegliere, quali fra i rettangoli in figura, fosse il loro preferito. Il test è stato poi ripetuto diverse e diverse volte e alla fine vince sempre questo rettangolo. Ma, perchè proprio questo rettangolo? Per ora accontentiamoci di sapere che alla maggior parte delle persone piace quel tipo di rettangolo.

4 Carta di credito, tv e iphone Tutti sapete cos'è un bancomat e o una carta di credito, un iphone e una tv. Partiamo dalla carta di credito. La carta di credito è un rettangolo, ma che rettangolo è? Se la guardiamo bene assomiglia tantissimo al rettangolo che piace maggiormente alle persone. Un caso? Può essere.

5 Carta di credito, tv e iphone Passiamo alla tv. Molti anni fa le tv erano rettangoli che assomigliavano più a quadrati, poi si sono sempre di più schiacciate assomigliando sempre di più a un rettangolo, fino ad arrivare alla famosa risoluzione 16:9, Conoscete tutti la risoluzione 16:9? 16:9 vuol dire che il rapporto tra il lato maggiore del rettangolo e quello minore si può ridurre a 16:9. Anche questo accontentiamoci di tenerlo lì per ora.

6 Carta di credito, tv e iphone Anche lo schermo dell iphone sembra avere delle caratteristiche particolari: - Assomiglia tantissimo al rettangolo di prima - Ha una risoluzione che si avvicina a 16:9

7 Uomo di Leonardo e Partenone L'avete mai visto l'uomo di Leonardo? E il partenone? Leonardo ha costruito il suo ideale di uomo perfetto dicendo: quest'uomo è perfetto, è bello! Il partenone è stato costruito in modo che fosse "bello ; con "bello" intendo una cosa che magari può non piacere, ma sicuramente se costruita in altro modo sarebbe piaciuta ancora meno. Ad esempio l uomo di leonardo con le braccia o le gambe più lunghe o il partenone con 3 pilastri in meno o 5 in più ecc

8 Relazione con la matematica Andiamo a vedere ora cosa c'entra la matematica in tutto questo. Semplicemente facendo delle divisioni ci accorgiamo che il rettangolo scelto dalla maggior parte delle persone ha un rapporto di circa 1,618, la carta di credito allo stesso modo, dividendo il lato maggiore con quello minore dà come risultato 1,585 (85,60 / 53,98). Il partenone? Dividendo i lati dei rettangoli del partenone si ottiene un numero che si avvicina a 1,618. Fermiamoci un secondo qui e diamo un senso a questi valori. Cosa c entra Fibonacci in tutto ciò? Nulla, più o meno. Fibonacci ha avuto il merito di scoprire la famosissima successione che parte così: 1,1 Il termine successivo è dato dalla somma dei due precedenti, cioè il terzo numero è 1+1=2, il quarto termine è 1+2=3 e così via... 0,1,1,2,3,5,8,13,21,34,55,89,144 ecc Che cos'ha di tanto particolare questa semplice successione? In realtà questa successione ha un sacco di particolarità, quella che mi interessa di più per ora è che se divido un qualsiasi termine della successione per il suo precedente ottengo un valore che si avvicina sempre di più al valore 1,618...

9 Relazione con la matematica Progressione: 1/1=1 2/1=1.5 5/3=1, /5=1,6 13/8=1,625 21/13=1, /21=1, /34=1, /55=1, /89=1, /144= 1, /233= 1, /288= 1, /322= 1, /377=1, /411= 1, /432= /466= /521= /555= /576=

10 Il rettangolo aureo Che cos è un rettangolo aureo? E come si costruisce? Un rettangolo aureo è un rettangolo tale che il rapporto tra i lati sia esattamente 1,618 Di seguito la semplice costruzione:

11 La sezione aurea Perché ci siamo fissati sul valore 1,618? La sezione aurea (o rapporto aureo o numero aureo o costante di Fidia o proporzione divina), nell'ambito delle arti figurative e della matematica, indica il rapporto fra due lunghezze disuguali, delle quali la maggiore è medio proporzionale tra la minore e la somma delle due.

12 Alcune proprietà Di seguito, giocando un po con le operazioni matematiche, sono riportate alcune caratteristiche del numero aureo. Inoltre c è una relazione con il triangolo di Tartaglia: la somma delle diagonali è proprio la successione di Fibonacci. Relazione con il triangolo di Tartaglia

13 Alcune proprietà Se dividiamo qualsiasi numero per il secondo che lo precede nella sequenza, otterremo sempre due come risultato, e come resto il numero immediatamente precedente il divisore. Cioè, data la successione di Fibonacci Scelgo il 144 e lo divido per 2 numeri prima cioè /55=2 con il resto di 34 (il numero prima di 55) Scelgo il 610 e lo divido per 2 numeri prima cioè /233=2 con il resto di 144 (il numero prima di 233)

14 Alcune proprietà A partire da qualsiasi termine della successione, contandone 10, la somma di questi 10 termini è un multiplo di 11. Non solo, il risultato è 11 volte il settimo termine del pezzo di successione scelta Cioè, data la successione di Fibonacci Parto da 21 e quindi prendo i termini che vanno da 21 a 1597 e li sommo =4147=377*11 Oppure parto da 2 e quindi prendo i termini che vanno da 2 a 144 e li sommo =374=34*11

15 Alcune proprietà Prendendo qualsiasi quaterna consecutiva della successione di Fibonacci siamo in grado di ottenere una terna pitagorica (a,b,c). Prendiamo ad esempio la quaterna 5, 8, 13, 21 a si ottiene moltiplicando il primo termine per l ultimo: a=5*21=105 b si ottiene moltiplicando il secondo per il terzo per 2: a=2*8*13=208 c è il quadrato del secondo + il quadrato del terzo: a=8 2 *13 2 =233 (105,208,233) è una terna pitagorica, infatti = 233 2

16 Alcune proprietà Esiste un altra relazione con Pitagora. Prendendo 3 termini consecutivi della successione il prodotto del primo e dell ultimo differisce di uno dal quadrato del secondo. Cioè prendendo la terna (5,8,13) si ha che 5*13 = 65 e 8 2 = 64 (65 differisce di 1 da 64) Di seguito è riportato un giochino che sfrutta questa proprietà della successione di Fibonacci.

17 La spirale aurea Esistono infiniti tipi di spirali in natura ma molte assomigliano a quella aurea. Come viene costruita? Partendo da due quadrati di lato 1 costruisco un quadrato che ha lato la somma dei 2 quadrati precedenti, proprio come la successione di Fibonacci. A sinistra possiamo vedere la costruzione e a destra l esempio in natura.

18 Il Partenone Ecco un altro esempio di costruzione che si riconduce ai rettangoli aurei: La suddivisione in figura mostra come si può costruire la successione di Fibonacci per tutto il Partenone.

19 L uomo di Leonardo Ogni rapporto de L uomo di Leonardo è in rapporto aureo: altezza con altezza ombelico, braccio con avambraccio, avambraccio con mano, mano con dita ecc.

20 Fibonacci in musica Nel pianoforte viene dato particolare rilievo alla struttura della tastiera, in special modo con parallelismi fra i numeri di questa e quelli di Fibonacci. I tredici tasti delle ottave, distinti in otto bianchi e cinque neri, a loro volta divisi in gruppi da due e tre tasti ciascuno; 2, 3, 5, 8, 13 appartengono infatti tutti alla successione di Fibonacci, ma anche in questo caso, ancor più che nel precedente, si tratta di una coincidenza che non può neppure essere attribuita a una specifica volontà del costruttore, trattandosi di una soluzione motivata unicamente dall'evoluzione strutturale dello strumento. Inoltre numerando le note da 1 a 7 modulando i numeri maggiori di 7 si è scoperto che i primi 16 termini della successione danno una melodia ricorsiva.

21 Fibonacci in chimica Alcuni elementi chimici sono più stabili di altri, e tale maggiore stabilità chimica è connessa, tramite i numeri magici, alla successione di Fibonacci. La stabilità nucleare è il numero di nucleoni (cioè protoni o neutroni) per cui all'interno del nucleo atomico si formano livelli energetici completi. Tali numeri sono: 2, 8, 20, 28, 50, 82, 126. Ecco in seguito come la successione di Fibonacci ha a che fare anche con la chimica:

22 L angolo aureo b a Come per i segmenti esiste anche la proporzione aurea, o divina proporzione, per gli archi di una circonferenza; e perché no? A pensarci bene gli archi di una circonferenza non sono altro che linee curve e quindi possono essere rapportate tra loro. Chiamiamo l arco più corto a e l arco più lungo b e scriviamo la proporzione: a:b=b:2πr che diventa (per semplicità si pone r=1) a:b=b:2π Ponendo a=x si ha b=2π-x la proporzione diventa: x:(2π-x)=(2π-x):2π

23 L angolo aureo Con la proprietà delle proporzioni tali per cui il prodotto dei medi è uguale a quello degli estremi si ottiene Svolgendo i conti si ottiene: (2π-x) 2 =2πx X 2-6πx + 4π 2 = 0 Risolvendo si ottiene x=3π-π 5 (che per intenderci è il nostro a di partenza) E di conseguenza 2π-x= π 5 -π (che per intenderci è il nostro b di partenza) Se eseguo il rapporto b/a, dopo svariati conti, ottengo che b/a= che altro non è che il nostro numero aureo

24 L angolo aureo Non ci resta che calcolare quanto misura l angolo al centro dell arco a e per farlo basta impostare una semplicissima proporzione: 2π : 360 = 3π - π 5 : α Facendo un paio di conti si ottiene α = 137,51 Questo è l angolo aureo. Ovviamente anch esso impatta sui fenomeni naturali. Ad esempio osserviamo questa margherita:

25 L angolo aureo Apparentemente non dice nulla, ma se osservo attentamente scopro che sono disposti esattamente seguendo l angolo aureo: Il primo petalo con il secondo forma un angolo aureo, proseguendo in questo senso ottengo tutti i petali del fiore (che sono 21 non un numero a caso) e se osservo attentamente l angolo tra il 21-esimo petalo e il primo è ancora un angolo aureo.

26 La fillotassi La fillotassi studia il modo in cui le foglie e i rami si distribuiscono intorno al fusto. Le foglie si dispongono attorno al ramo in modo da ottenere più luce possibile. Osserviamo la figura sottostante: Prendiamo la pianticella a sinistra e notiamo che la prima e l ultima foglia sono nella stessa posizione, numeriamo quindi le foglie (partendo da 0) dalla prima fino a quella che si trova nella medesima posizione. Cosa notiamo? Il numero tra la prima e l ultima foglia differisce di 8 (anche stavolta non è un numero a caso).

27 La fillotassi Ma non fermiamoci a questo. Contiamo quanti giri hanno dovuto fare le foglie prima di tornare nella posizione iniziale: 5 giri (e anche stavolta il numero non è per niente a caso). Cosa c entra tutto ciò con l angolo aureo? Bhe 5 giri sono 5 volte 360, 5*360 =1800. Abbiamo a disposizione 8 foglie, 1800 /8=225 e =135 molto molto vicino all angolo aureo di 137,51.

28 Alcune curiosità Numeri e natura In un fiore il numero dei «sepali», dei «petali», degli «stami» e dei «carpelli» molto spesso riproduce una cifra appartenente alla successione numerica di Fibonacci, infatti osserviamo fiori con: - 3 petali come ad esempio gigli e iris; - 5 ranuncoli, rosa selvatica, larkspur, colombina, ciliegio; - 8 il delphinium; - 13 margherita, calendula, cineraria; - 21 margherita, astro, occhio nero, loto (susan, susanna), cicoria; - 34 margherita, piantaggine, pytethrum; - 55, 89 margherite, e specie della famiglia delle asteraceae.

29 Alcune curiosità Le spirali Osserviamo attentamente queste immagini: Il numero delle spirali in senso orario (rosse) è 8, mentre quello in senso antiorario è 13, 8 e 13 sono 2 numeri consecutivi della successione di Fibonacci.

30 Alcune curiosità Le spirali Nei girasoli vale lo stesso principio: il numero delle spirali in senso orario è 34, mentre quello in senso antiorario è 55, 34 e 55 è una coppia di numeri della successione di Fibonacci.

31 Alcune curiosità Le spirali Osservando le immagini possiamo notare come la galassia, la tromba d aria e la tromba d acqua riproducano in maniera abbastanza precisa la spirale aurea.

32 Conclusioni Cosa voglio dimostrare con questo: il bello, la bellezza delle cose non è governata da un numero, da un rapporto, da un qualcosa già scritto, ma è esattamente il contrario: io costruisco, disegno, immagino una cosa, la rendo bella e con una discreta percentuale queste cose belle si possono ricondurre alla successione di Fibonacci. è proprio questo il bello di tutta questa storia: non costruisco, immagino, disegno in base ad una legge prestabilita, ma immagino, disegno e creo e tutto o quasi si può ricondurre a quello. Molti di voi penseranno: si bhe quindi? Bhe quindi è un modo alternativo di farvi vedere come la matematica sta nelle cose quotidiane, nelle cose che viviamo, che la matematica non è solo fare 2+2 o risolvere un equazione o risolvere un problema senza sapere il perchè; la matematica ha un perché, dietro un equazione, un numero, o un problema, la matematica si riflette nelle più classiche azioni e cose di ogni giorno.

33 Conclusioni Si potrebbe stare a parlare giornate intere perché ci sono un sacco di esempi e un sacco di altre cose interessanti che coinvolgono Fibonacci e la sua successione ma per ora è meglio fermarsi qui. Spero di avervi passato un pochino di fascino in queste piccole curiosità e questo piccolo rapporto tra la matematica e il mondo che ci circonda. Su internet ci sono molti link e molte informazioni, basta cercare Fibonacci o sezione aurea o successione di Fibonacci. Chiudo con una citazione di Einstein: quella del mistero è la più straordinaria esperienza che ci è dato di vivere. È l emozione fondamentale situata al centro della vera arte e della vera scienza. Da questo punto di vista chi sa e non prova meraviglia, chi non si stupisce più di niente è come simile ad un morto, ad una candela che non fa più luce

34 Contatti Marco Moscatelli Mail: Blog: moscaohfive.blogspot.it

Categoria Student Per studenti degli ultimi due anni della scuola secondaria di secondo grado

Categoria Student Per studenti degli ultimi due anni della scuola secondaria di secondo grado Categoria Student Per studenti degli ultimi due anni della scuola secondaria di secondo grado. Risposta A). Il triangolo ABC ha la stessa altezza del triangolo AOB ma base di lunghezza doppia (il diametro

Dettagli

C è solo un acca tra pi e phi ing. Rosario Turco, prof. Maria Colonnese

C è solo un acca tra pi e phi ing. Rosario Turco, prof. Maria Colonnese C è solo un acca tra pi e phi ing. Rosario Turco, prof. Maria Colonnese Introduzione Nell articolo vengono mostrate vari possibili legami tra la costante di Archimede (pi greco) e la sezione aurea (phi).

Dettagli

La spirale iperbolica: Fu descritta per la prima volta da Pierre Varignon (1654-1722). L equazione, espressa in coordinate polari, è del tipo:

La spirale iperbolica: Fu descritta per la prima volta da Pierre Varignon (1654-1722). L equazione, espressa in coordinate polari, è del tipo: Esistono delle forme geometriche che sono in grado, per complessi fattori psicologici non del tutto chiariti, di comunicarci un senso d equilibrio, di gradimento e di benessere. Tra queste analizzeremo

Dettagli

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Angela è nata nel 1997,

Dettagli

PERCORSO DIDATTICO SULLE SUCCESSIONI NUMERICHE

PERCORSO DIDATTICO SULLE SUCCESSIONI NUMERICHE PERCORSO DIDATTICO SULLE SUCCESSIONI NUMERICHE Nuclei Fondanti: Relazioni e Funzioni, Geometria Tipo di scuola e classe: Liceo Scientifico, classe II Riferimenti alle Indicazioni Nazionali: OBIETTIVI SPECIFICI

Dettagli

CAPITOLO 1: "A CHE COSA SERVONO I TASTI NERI?"

CAPITOLO 1: A CHE COSA SERVONO I TASTI NERI? CAPITOLO 1: "A CHE COSA SERVONO I TASTI NERI?" La nostra sala prove era nientemeno che lo scantinato del Liceo Scientifico Galilei, opportunamente equipaggiato grazie al fondo studenti. Avrò avuto sì e

Dettagli

L : L/2 = 1 : ½ = 2 : 1

L : L/2 = 1 : ½ = 2 : 1 LA SCALA PITAGORICA (e altre scale) 1 IL MONOCORDO I Greci, già circa 500 anni prima dell inizio dell era cristiana, utilizzavano un semplice strumento: il monocordo. Nel monocordo, un ponticello mobile

Dettagli

Matematica Discreta 2005 Esercizi di preparazione

Matematica Discreta 2005 Esercizi di preparazione Matematica Discreta 2005 Esercizi di preparazione Esercizio 1. Supponiamo di avere un rettangolo di cartone di dimensioni intere n e m e di tagliarlo successivamente secondo la seguente regola: togliamo

Dettagli

La trigonometria prima della trigonometria. Maurizio Berni

La trigonometria prima della trigonometria. Maurizio Berni La trigonometria prima della trigonometria Maurizio Berni 9 maggio 2010 Negli istituti tecnici agrari la trigonometria viene affrontata: nella seconda classe in Disegno e Topografia (risoluzione di triangoli

Dettagli

Università degli Studi di Verona Corsi di Laurea in Matematica Applicata, Informatica e Informatica Multimediale. Test di autovalutazione (matematica)

Università degli Studi di Verona Corsi di Laurea in Matematica Applicata, Informatica e Informatica Multimediale. Test di autovalutazione (matematica) Università degli Studi di Verona Corsi di Laurea in Matematica Applicata, Informatica e Informatica Multimediale Test di autovalutazione (matematica) 1. Eseguendo la divisione con resto di 3437 per 225

Dettagli

Tullia Norando. imparare la matematica. S. Giovanni Valdarno Montevarchi Figline Valdarno 21 23 febbraio 2008

Tullia Norando. imparare la matematica. S. Giovanni Valdarno Montevarchi Figline Valdarno 21 23 febbraio 2008 Il piacere di insegnare, il piacere di imparare la matematica S. Giovanni Valdarno Montevarchi Figline Valdarno 21 23 febbraio 2008 Proporzioni Numeri Valore estetico Natura Arte 2 Rapporto tra misure

Dettagli

Kangourou Italia Gara del 20 marzo 2003 Categoria Cadet Per studenti di terza media o prima superiore

Kangourou Italia Gara del 20 marzo 2003 Categoria Cadet Per studenti di terza media o prima superiore 15-20-.qxd 29/03/2003 8.22 Pagina 16 Kangourou Italia Gara del 20 marzo 2003 Categoria Per studenti di terza media o prima superiore I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Quale dei seguenti

Dettagli

Le progressioni geometriche. Dai chicchi di riso ai frattali passando per la crescita esponenziale: Un ipotesi di percorso didattico

Le progressioni geometriche. Dai chicchi di riso ai frattali passando per la crescita esponenziale: Un ipotesi di percorso didattico Le progressioni geometriche Dai chicchi di riso ai frattali passando per la crescita esponenziale: Un ipotesi di percorso didattico Tre ipotesi per una chiacchierata (e per un percorso didattico) La ricompensa

Dettagli

INDICE PROGRAMMA CORSO

INDICE PROGRAMMA CORSO INDICE PROGRAMMA CORSO PRIMA LEZIONE: Componenti di un computer: Hardware, Software e caratteristiche delle periferiche. SECONDA LEZIONE: Elementi principali dello schermo di Windows: Desktop, Icone, Mouse,

Dettagli

Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica

Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica a.a. 2006/2007 Docente Ing. Andrea Ghedi Lezione 2 IL PIANO CARTESIANO 1 Il piano cartesiano In un piano

Dettagli

la squadratura del foglio Copia.notebook September 21, 2012

la squadratura del foglio Copia.notebook September 21, 2012 la squadratura del foglio cancellare il cerchio di costruzione e lasciare tutti i punti individuati per ricavare la squadratura del foglio e la sua divisione in 4 parti uguali 1 la squadratura del foglio

Dettagli

I quesiti dal 2008 al 2012 a cura di Daniela Valenti

I quesiti dal 2008 al 2012 a cura di Daniela Valenti I quesiti dal 2008 al 2012 a cura di Daniela Valenti Geometria del piano e dello spazio, trigonometria [2008, ORD] Si consideri la seguente proposizione: Se due solidi hanno uguale volume, allora, tagliati

Dettagli

B. Vogliamo determinare l equazione della retta

B. Vogliamo determinare l equazione della retta Risoluzione quesiti ordinamento Quesito N.1 Indicata con α la misura dell angolo CAB, si ha che: 1 Area ( ABC ) = AC AB sinα = 3 sinα π 3 sinα = 3 sinα = 1 α = Il triangolo è quindi retto in A. La misura

Dettagli

I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno

I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno Kangourou Italia Gara del 19 marzo 2015 Categoria Cadet Per studenti di terza della scuola secondaria di primo grado e prima della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti

Dettagli

Dipartimento di Scienze Biomediche, Sperimentali e Cliniche «Mario Serio»

Dipartimento di Scienze Biomediche, Sperimentali e Cliniche «Mario Serio» PRECORSO 2014 Problemi di Matematica Giovanni Romano Dipartimento di Scienze Biomediche, Sperimentali e Cliniche «Mario Serio» PRECORSO 2014: ciclo formativo di orientamento alle prove di ammissione ai

Dettagli

Kangourou Italia Gara del 18 marzo 2004 Categoria Benjamin Per studenti di prima o seconda media. I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno

Kangourou Italia Gara del 18 marzo 2004 Categoria Benjamin Per studenti di prima o seconda media. I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 9-14-.qxd 22/02/2004 16.53 Pagina 10 Kangourou Italia Gara del 18 marzo 2004 Categoria Per studenti di prima o seconda media I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. (10 x 100) x (20 x 80)

Dettagli

cm, (C) cm, (D) cm, (B) cm, (E) (A) 262 6) Per quanti valori distinti del numero reale b l equazione x 2 + bx 16 = 0,

cm, (C) cm, (D) cm, (B) cm, (E) (A) 262 6) Per quanti valori distinti del numero reale b l equazione x 2 + bx 16 = 0, PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede-GaraTriennio 19 novembre 2008 1) La prova consiste di

Dettagli

IGiochidiArchimede--Soluzionibiennio

IGiochidiArchimede--Soluzionibiennio PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede--Soluzionibiennio 17 novembre 2010 Griglia delle risposte

Dettagli

Passaggi essenziali per la creazione di un filmato con NERO VISION 10

Passaggi essenziali per la creazione di un filmato con NERO VISION 10 Passaggi essenziali per la creazione di un filmato con NERO VISION 10 0. È attiva la schermata Modifica Video 1. Importo i file video e immagine che desidero 2. Li trascino nella timeline 3. Seleziono

Dettagli

INVALSI. Ministero dell Istruzione dell Università e della Ricerca

INVALSI. Ministero dell Istruzione dell Università e della Ricerca X MATEMATICA_COP_Layout 1 15/03/11 08:51 Pagina 2 Ministero dell Istruzione dell Università e della Ricerca INVALSI Istituto nazionale per la valutazione del sistema educativo di istruzione e di formazione

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

MODULO DI MATEMATICA. di accesso al triennio. Potenze. Proporzioni. Figure piane. Calcolo di aree

MODULO DI MATEMATICA. di accesso al triennio. Potenze. Proporzioni. Figure piane. Calcolo di aree MODULO DI MATEMATICA di accesso al triennio Abilità interessate Utilizzare terminologia specifica. Essere consapevoli della necessità di un linguaggio condiviso. Utilizzare il disegno geometrico, per assimilare

Dettagli

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 6/7 SIMULAZIONE DI II PROVA - A Tempo a disposizione: cinque ore E consentito l uso della calcolatrice non programmabile. Non è consentito uscire dall aula

Dettagli

Angius Anna Carla Licheri Daniele Monaco Emanuele Podda Francesco Puddu Alessio Saba Carolina Tedde Gregorio

Angius Anna Carla Licheri Daniele Monaco Emanuele Podda Francesco Puddu Alessio Saba Carolina Tedde Gregorio Angius Anna Carla Licheri Daniele Monaco Emanuele Podda Francesco Puddu Alessio Saba Carolina Tedde Gregorio Per superficie minima si intende quella superficie che minimizza la propria area. E difficile

Dettagli

I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno

I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno Kangourou Italia Gara del 21 marzo 2002 Categoria Cadet Per studenti di terza media e prima superiore Regole: La prova è individuale. Ogni tipo di calcolatrice è vietato Vi è una sola risposta esatta per

Dettagli

n L ambiente di lavoro

n L ambiente di lavoro n L ambiente di lavoro n Usare Cabri n Comprendere Cabri n L ambiente di lavoro 1 Che cosa è Cabri Il programma Cabri* è stato sviluppato da Jean-Marie Laborde e Franck Bellemain presso l Institut d Informatique

Dettagli

FINALE ITALIANA 1998. 16 maggio 1998 - Università Bocconi

FINALE ITALIANA 1998. 16 maggio 1998 - Università Bocconi FINALE ITALIANA 1998 16 maggio 1998 - Università Bocconi 1. UN PROBLEMA TURCO Scrivere le quattro cifre del numero 1998 nelle caselle sottostanti in modo che il risultato delle operazioni indicate sia

Dettagli

geometriche. Parte Sesta Trasformazioni isometriche

geometriche. Parte Sesta Trasformazioni isometriche Parte Sesta Trasformazioni isometriche In questa sezione di programma di matematica parliamo della geometria delle trasformazioni che studia le figure geometriche soggette a movimenti. Tali movimenti,

Dettagli

SCUOLA DELL INFANZIA ANDERSEN 1 CIRCOLO SPINEA ANNO SCOLASTICO 2005-06. Prog. MATEMATICA Gruppo ANNI 5 Periodo MARZO Documentazione di MIELE GIOVANNA

SCUOLA DELL INFANZIA ANDERSEN 1 CIRCOLO SPINEA ANNO SCOLASTICO 2005-06. Prog. MATEMATICA Gruppo ANNI 5 Periodo MARZO Documentazione di MIELE GIOVANNA SCUOLA DELL INFANZIA ANDERSEN 1 CIRCOLO SPINEA ANNO SCOLASTICO 2005-06 Prog. MATEMATICA Gruppo ANNI 5 Periodo MARZO Documentazione di MIELE GIOVANNA Il progetto sulla Terza Dimensione Queste attività si

Dettagli

LA MACCHINA FOTOGRAFICA

LA MACCHINA FOTOGRAFICA D LA MACCHINA FOTOGRAFICA Parti essenziali Per poter usare la macchina fotografica, è bene vedere quali sono le sue parti essenziali e capire le loro principali funzioni. a) OBIETTIVO: è quella lente,

Dettagli

La scala musicale e le alterazioni

La scala musicale e le alterazioni La scala musicale e le alterazioni Unità didattica di Educazione Musicale classe seconda Obiettivi del nostro lavoro Acquisire il concetto di scala musicale e di intervallo. Conoscere la struttura della

Dettagli

Kangourou Italia Gara del 15 marzo 2007 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria

Kangourou Italia Gara del 15 marzo 2007 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria Testi_07.qxp 16-04-2007 12:02 Pagina 5 Kangourou Italia Gara del 15 marzo 2007 Categoria Per studenti di quarta o quinta della scuola primaria I quesiti dal N. 1 al N. 8 valgono 3 punti ciascuno 1. Osserva

Dettagli

Corso Base di Fotografia

Corso Base di Fotografia 01 OBIETTIVO e LUCE L elemento più importante di una macchina fotografica è rappresentato dall OBIETTIVO definito l occhio di ogni macchina fotografica : - è l obiettivo a permettere di vedere il soggetto

Dettagli

Heidi Gebauer Juraj Hromkovič Lucia Keller Ivana Kosírová Giovanni Serafini Björn Steffen. Programmare con LOGO

Heidi Gebauer Juraj Hromkovič Lucia Keller Ivana Kosírová Giovanni Serafini Björn Steffen. Programmare con LOGO Heidi Gebauer Juraj Hromkovič Lucia Keller Ivana Kosírová Giovanni Serafini Björn Steffen Programmare con LOGO 1 Istruzioni di base Un istruzione è un comando che il computer è in grado di capire e di

Dettagli

14. Sia p il più grande numero primo che divide 251001. Allora: A 150 p 199 B 100 p 149 C p 99 D 200 p 249 E 250 p 299 F p 300

14. Sia p il più grande numero primo che divide 251001. Allora: A 150 p 199 B 100 p 149 C p 99 D 200 p 249 E 250 p 299 F p 300 Unione Matematica Italiana Scuola Normale Superiore Ministero della Pubblica Istruzione Gara Nazionale lassi Prime 013 Problemi Nella lista che segue la risposta corretta è sempre la vviamente, nelle 36

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008 PRVA SPERIMENTALE P.N.I. 8 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 8 Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Nel piano riferito

Dettagli

1 n. Intero frazionato. Frazione

1 n. Intero frazionato. Frazione Consideriamo un intero, prendiamo un rettangolo e dividiamolo in sei parti uguali, ciascuna di queste parti rappresenta un sesto del rettangolo, cioè una sola delle sei parti uguali in cui è stato diviso.

Dettagli

PROVA DI MATEMATICA - Scuola Secondaria di II grado - Classe Seconda

PROVA DI MATEMATICA - Scuola Secondaria di II grado - Classe Seconda PROVA DI MATEMATICA - Scuola Secondaria di II grado - Classe Seconda Rilevazione degli apprendimenti Anno Scolastico 2011 2012 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Seconda Spazio per

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

A cura di: intelletto.

A cura di: intelletto. Van Gogh A cura di: Andrea giordano Luciano Esposito Eleonora Garofalo Aniello Ferrara Luigi Sanseverino Giovanni Scuotto Simone Eboli Dante, Il Paradiso: E dei saper che tutti hanno diletto quando la

Dettagli

Motorino elettrico fatto in casa

Motorino elettrico fatto in casa Realiz zato da Giovanni Gerardi VA P.N.I. a.s. 2010-11 Motorino elettrico fatto in casa Premesse. In una lezione di fisica verso metà marzo la professoressa di matematica e fisica Maria Gruarin ha introdotto

Dettagli

IGiochidiArchimede-GaraTriennio 22 novembre 2006

IGiochidiArchimede-GaraTriennio 22 novembre 2006 PROGTTO OLIMPII I MTMTI U.M.I. UNION MTMTI ITLIN SUOL NORML SUPRIOR IGiochidirchimede-GaraTriennio novembre 006 1) La prova consiste di 5 problemi; ogni domanda è seguita da cinquerisposteindicate con

Dettagli

Maschere a Venezia CAP I

Maschere a Venezia CAP I Maschere a Venezia 7 CAP I In un pomeriggio di fine marzo Altiero Ranelli, un giovane giornalista de Il Gazzettino di Venezia, entra nell ufficio del direttore. - Ho una grande notizia. - grida contento.

Dettagli

Kangourou Italia Gara del 18 marzo 2004 Categoria Cadet Per studenti di terza media o prima superiore

Kangourou Italia Gara del 18 marzo 2004 Categoria Cadet Per studenti di terza media o prima superiore 15-20-.qxd 22/02/2004 22.51 Pagina 16 Kangourou Italia Gara del 18 marzo 2004 Categoria Per studenti di terza media o prima superiore I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Qual è il risultato

Dettagli

Alice e la zuppa di quark e gluoni

Alice e la zuppa di quark e gluoni Alice e la zuppa di quark e gluoni Disegnatore: Jordi Boixader Storia e testo: Federico Antinori, Hans de Groot, Catherine Decosse, Yiota Foka, Yves Schutz e Christine Vanoli Produzione: Christine Vanoli

Dettagli

SERVIZIO NAZIONALE DI VALUTAZIONE 2010 11

SERVIZIO NAZIONALE DI VALUTAZIONE 2010 11 SERVIZIO NAZIONALE DI VALUTAZIONE 2010 11 Rapporto tecnico sulle caratteristiche delle prove INVALSI 2011 Scuola secondaria di secondo grado classe II MATEMATICA Domanda D1 item a D1. Nella tabella che

Dettagli

Acqua, sapone e superfici minime

Acqua, sapone e superfici minime SISSA PER LA SCUOLA Acqua, sapone e superfici minime Un gioco matematico per le scuole medie Titolo: Acqua, sapone e superfici minime Area: Matematica Tipo di attività: Gioco A chi è rivolta: Ragazzi delle

Dettagli

Macchine semplici. Vantaggi maggiori si ottengono col verricello differenziale (punto 5.5.) e col paranco differenziale (punto 5.6).

Macchine semplici. Vantaggi maggiori si ottengono col verricello differenziale (punto 5.5.) e col paranco differenziale (punto 5.6). Macchine semplici Premessa Lo studio delle macchine semplici si può considerare come una fase propedeutica allo studio delle macchine composte, poiché il comportamento di molti degli organi che compongono

Dettagli

Soluzioni Categoria Sup-T (Alunni Triennio Scuole Superiori)

Soluzioni Categoria Sup-T (Alunni Triennio Scuole Superiori) Il Responsabile coordinatore dei giochi: Prof. Agostino Zappacosta Chieti tel. 0871 65843 (cell.: 340 47 47 952) e-mail: agostino_zappacosta@libero.it Quinta Edizione Giochi di Achille e la tartaruga Giochi

Dettagli

GeoGebra. Introduzione a. Integrazione per la versione 3.2. Judith e Markus Hohenwarter www.geogebra.org. Versione italiana di Ada Sargenti

GeoGebra. Introduzione a. Integrazione per la versione 3.2. Judith e Markus Hohenwarter www.geogebra.org. Versione italiana di Ada Sargenti Introduzione a GeoGebra Integrazione per la versione 3.2 Judith e Markus Hohenwarter www.geogebra.org Versione italiana di Ada Sargenti 1 1. Introduzione a GeoGebra per la versione 3.2 Ultima modifica:

Dettagli

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento RTICL rchimede 4 esame di stato seconda prova scritta per il liceo scientifico di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario PRBLEM Siano f e g le funzioni

Dettagli

2. NUMERO DA INDOVINARE

2. NUMERO DA INDOVINARE 1. L ASINO DI TOBIA (Cat. 3) Tobia è andato in paese ed ha acquistato 6 sacchi di provviste. Li vuole trasportare con il suo asino fino alla sua casa sulla cima del monte. Ecco i sacchi di provviste sui

Dettagli

5 V quinque. www.proiezionidiborsa.com. Il Trading System basato sull'algoritmo Kappa

5 V quinque. www.proiezionidiborsa.com. Il Trading System basato sull'algoritmo Kappa 5 V quinque Il Trading System basato sull'algoritmo Kappa 2 Titolo 5 V quinque Autore www.proiezionidiborsa.com Editore www.proiezionidiborsa.com Siti internet www.proiezionidiborsa.com 3 ATTENZIONE: questo

Dettagli

Aritmetica: operazioni ed espressioni

Aritmetica: operazioni ed espressioni / A SCUOLA DI MATEMATICA Lezioni di matematica a cura di Eugenio Amitrano Argomento n. : operazioni ed espressioni Ricostruzione di un abaco dell epoca romana - Museo RGZ di Magonza (Germania) Libero da

Dettagli

Guida rapida - versione Web e Tablet

Guida rapida - versione Web e Tablet Guida rapida - versione Web e Tablet Cos è GeoGebra? Un pacchetto completo di software di matematica dinamica Dedicato all apprendimento e all insegnamento a qualsiasi livello scolastico Gestisce interattivamente

Dettagli

Maturità Scientifica PNI, sessione ordinaria 2000-2001

Maturità Scientifica PNI, sessione ordinaria 2000-2001 Matematica per la nuova maturità scientifica A. Bernardo M. Pedone Maturità Scientifica PNI, sessione ordinaria 000-00 Problema Sia AB un segmento di lunghezza a e il suo punto medio. Fissato un conveniente

Dettagli

Richiami di meccanica

Richiami di meccanica Prof. Alessandro Stranieri Lezione n. 1 Richiami di meccanica - Tipologie di movimento - E opportuno iniziare questa sintesi degli elementi di meccanica da applicare ai movimenti del corpo umano precisando

Dettagli

OROLOGIO SOLARE Una meridiana equatoriale

OROLOGIO SOLARE Una meridiana equatoriale L Osservatorio di Melquiades Presenta OROLOGIO SOLARE Una meridiana equatoriale Il Sole, le ombre e il tempo Domande guida: 1. E possibile l osservazione diretta del Sole? 2. Come è possibile determinare

Dettagli

COSTRUZIONI E DISEGNO RELATIVO E NOZIONI DI GEOMETRIA DESCRITTIVA (SEZIONE DI AGRIMENSURA)

COSTRUZIONI E DISEGNO RELATIVO E NOZIONI DI GEOMETRIA DESCRITTIVA (SEZIONE DI AGRIMENSURA) Istruzioni e programmi d insegnamento per gli istituti tecnici approvati con regio decreto 2 ottobre 1891 n. 622 (Raccolta ufficiale delle leggi e dei decreti del Regno d Italia, Roma, Stamperia Reale,

Dettagli

Piega, ripiega e... spiega. Laboratori sulla matematica con il foglio di carta

Piega, ripiega e... spiega. Laboratori sulla matematica con il foglio di carta Piega, ripiega e... spiega Laboratori sulla matematica con il foglio di carta Tutto comincia con un... Tutto comincia con un quadrato! Tutto comincia con un quadrato! Osserviamo: Trovate delle linee? I

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

05-Casa Figini. AutoCAD, SketchUp. IUAV-ClaSA, A. A. 2010-11. Corso di Disegno Digitale; professor Matteo Ballarin.

05-Casa Figini. AutoCAD, SketchUp. IUAV-ClaSA, A. A. 2010-11. Corso di Disegno Digitale; professor Matteo Ballarin. 05-Casa Figini. AutoCAD, SketchUp Passiamo ora a disegnare le scale, partendo da quella che, dal piano terra, porta al primo. 2 Archivio Figini, AAF Milano e Archivio Figini Pollini, AFP MART. Avrete notato

Dettagli

3; 2 1 2 ;5 3;0 1; 2

3; 2 1 2 ;5 3;0 1; 2 Risolvere mediante la fattorizzazione le seguenti equazioni. 1. 4 12 +9=0 0; 3 2 2. 7 +14 8=0 1;2;4 3. 4 12 +9=0 3 2 ; 3 2 4. +2 = 3 4 1 2 ;3 2 +4=0 5. +3 +1=0 + 2 =3 6. + +2 4=15 3; 2 1 2 ;5 3;0 1; 2

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2012 2013 PROVA DI MATEMATICA. Scuola secondaria di II grado. Classe Seconda Fascicolo 1

Rilevazione degli apprendimenti. Anno Scolastico 2012 2013 PROVA DI MATEMATICA. Scuola secondaria di II grado. Classe Seconda Fascicolo 1 PROVA DI MATEMATICA - Scuola Secondaria di II grado - Classe Seconda Rilevazione degli apprendimenti Anno Scolastico 2012 2013 PROVA DI MATEMATICA Scuola secondaria di II grado Classe Seconda Fascicolo

Dettagli

E solo questione di metodo:

E solo questione di metodo: E solo questione di metodo: problemi e algoritmi di matematica elementare Progetto Lauree Scientifiche Scuola Estiva di Matematica (4092015) Stefano Finzi Vita Dipartimento di Matematica - Sapienza Università

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2012 2013 PROVA DI MATEMATICA. Scuola secondaria di II grado. Classe Seconda Fascicolo 5

Rilevazione degli apprendimenti. Anno Scolastico 2012 2013 PROVA DI MATEMATICA. Scuola secondaria di II grado. Classe Seconda Fascicolo 5 Rilevazione degli apprendimenti Anno Scolastico 2012 2013 PROVA DI MATEMATICA Scuola secondaria di II grado Classe Seconda Fascicolo 5 Spazio per l etichetta autoadesiva ISTRUZIONI Troverai nel fascicolo

Dettagli

Laboratorio di dinamiche socio-economiche

Laboratorio di dinamiche socio-economiche Dipartimento di Matematica Università di Ferrara giacomo.albi@unife.it www.giacomoalbi.com 21 febbraio 2012 Seconda parte: Econofisica La probabilità e la statistica come strumento di analisi. Apparenti

Dettagli

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA Tutti gli anni, affrontando l argomento della divisibilità, trovavo utile far lavorare gli alunni sul Crivello di Eratostene. Presentavo ai ragazzi una

Dettagli

Piano Lauree Scientifiche Progetto MATEMATICA e STATISTICA Sapienza Università di Roma a.a. 2010/11

Piano Lauree Scientifiche Progetto MATEMATICA e STATISTICA Sapienza Università di Roma a.a. 2010/11 Piano Lauree Scientifiche Progetto MATEMATICA e STATISTICA Sapienza Università di Roma a.a. 2010/11 Corso di formazione rivolto a insegnanti delle Superiori Giuseppe Accascina accascina@dmmm.uniroma1.it

Dettagli

Algoritmo. Funzioni calcolabili. Unità 28

Algoritmo. Funzioni calcolabili. Unità 28 Prerequisiti: - Conoscenza dei numeri naturali e interi e delle loro proprietà. - Acquisizione del concetto di funzione. Questa unità è riservata al primo biennio dei Licei, eccezion fatta per il Liceo

Dettagli

Le curve ellittiche sono un gioiello della matematica. Sono state studiate per secoli per la loro bellezza e importanza.

Le curve ellittiche sono un gioiello della matematica. Sono state studiate per secoli per la loro bellezza e importanza. Come fare soldi con le curve ellittiche L. Göttsche Le curve ellittiche sono un gioiello della matematica. Sono state studiate per secoli per la loro bellezza e importanza. È difficile spiegare la bellezza

Dettagli

Ministero dell Istruzione dell Università e della Ricerca ESAME DI STATO. Anno Scolastico 2013 2014 PROVA NAZIONALE

Ministero dell Istruzione dell Università e della Ricerca ESAME DI STATO. Anno Scolastico 2013 2014 PROVA NAZIONALE Ministero dell Istruzione dell Università e della Ricerca ESAME DI STATO Anno Scolastico 2013 2014 Prova di Matematica - Fascicolo 1 PROVA NAZIONALE Prova di Matematica Scuola Secondaria di primo grado

Dettagli

La sezione di Matematica della prova nazionale

La sezione di Matematica della prova nazionale La sezione di Matematica della prova nazionale Giorgio Bolondi Roma, 18 aprile 2008 Presentazione Prova Nazionale 1 Cosa può valutare? I diversi processi valutativi messi in atto dall insegnante accompagnano

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT 1 Sessione suppletiva Il candidato risolva uno dei due problemi e dei 1 quesiti in cui si articola il questionario. PRBLEM 1 Si consideri la funzione reale

Dettagli

Descrizione dell unità. Titolo Frazioni con la LIM. Autore Barbara Bianconi

Descrizione dell unità. Titolo Frazioni con la LIM. Autore Barbara Bianconi Descrizione dell unità Titolo Frazioni con la LIM Autore Barbara Bianconi Tematica Come si traducono nel linguaggio della matematica un quarto in musica, una fetta di pizza, un terzo di un percorso prestabilito?

Dettagli

Le scale di riduzione

Le scale di riduzione Le scale di riduzione Le dimensioni di un oggetto, quando sono troppo grandi perché siano riportate sul foglio da disegno, si riducono in scala. Scala 1 a 200 (si scrive 1 : 200) rappresenta una divisione.

Dettagli

Syllabus delle conoscenze per il modulo: matematica. Esempi di domande

Syllabus delle conoscenze per il modulo: matematica. Esempi di domande Syllabus delle conoscenze per il modulo: matematica Esempi di domande Nelle pagine che seguono sono riportati, come esempio, quindici quesiti proposti nel 2008/09. Le risposte corrette (che si consiglia

Dettagli

GRUPPO AMICI DEL PRESEPE Monte Porzio Catone www.presepitalia.it Corso Presepistico on-line

GRUPPO AMICI DEL PRESEPE Monte Porzio Catone www.presepitalia.it Corso Presepistico on-line GRUPPO AMICI DEL PRESEPE Monte Porzio Catone www.presepitalia.it Corso Presepistico on-line LA PROSPETTIVA Indice Indice... 1 -Cenni sulla prospettiva e rispetto delle proporzioni.... 2 Amici del Presepe

Dettagli

Distanziometri laser STABILA: Il prodotto giusto per ogni lavoro.

Distanziometri laser STABILA: Il prodotto giusto per ogni lavoro. Il compatto: Misuratore laser di distanza LD 320 Il genio del computo metrico: Misuratore laser di distanza LD 420 Il puntatore: Misuratore laser di distanza LD 500 Distanziometri laser STABILA: Il prodotto

Dettagli

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x).

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x). Esame liceo Scientifico : ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMI Problema. Sia ABCD un quadrato di lato, P un punto di AB e γ la circonferenza

Dettagli

Un po di giochi. Prof. Giorgio Bolondi Università degli Studi di Bologna ForMATH project. Giorgio Bolondi

Un po di giochi. Prof. Giorgio Bolondi Università degli Studi di Bologna ForMATH project. Giorgio Bolondi Un po di giochi Prof. Università degli Studi di Bologna ForMATH project Palline, pallette e pallone (per le classi III, IV e V). Gabriele è molto orgoglioso della sua collezione di palle rimbalzine; ne

Dettagli

Premessa. Le figure per fare esperimenti

Premessa. Le figure per fare esperimenti Copyright Alessandro de Simone 2003 2004 2005 (www.alessandrodesimone.net) - È vietato trascrivere, copiare, stampare, tradurre, riprodurre o divulgare il presente documento, anche parzialmente, senza

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO PAGINA: 1 PROGRAMMA CONSUNTIVO A.S.2014-15 SCUOLA: Liceo Linguistico Teatro alla Scala DOCENTE: BASSO RICCI MARIA MATERIA: MATEMATICA- INFORMATICA Classe 2 Sezione A CONTENUTI Sistemi lineari numerici

Dettagli

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

Le applicazioni degli integrali al calcolo di aree e volumi nelle prove di maturità

Le applicazioni degli integrali al calcolo di aree e volumi nelle prove di maturità Le applicazioni degli integrali al calcolo di aree e volumi nelle prove di maturità Angelo Ambrisi Ne plus ultra. Non si va oltre! Gli integrali costituiscono le colonne d Ercole dell insegnamento della

Dettagli

Il diario di Francesco

Il diario di Francesco Il diario di Francesco Alunno: Francesco Altomare (Classe V A Programmatori Mercurio sez. Tecnico Economico, I.I.S. A. Guarasci Rogliano - Cs) Docenti referenti: Prof. Alessandro Citro, Insegnante di italiano

Dettagli

NUMERI PIENI GIOCHI SUL QUADRATO. Incrocio sulle 4e verticali e orizzontali

NUMERI PIENI GIOCHI SUL QUADRATO. Incrocio sulle 4e verticali e orizzontali NUMERI PIENI GIOCHI SUL QUADRATO Incrocio sulle 4e verticali e orizzontali Ultimamente mi è stato chiesto di pubblicare un sistema sui numeri pieni. Da lungo tempo non consideravo questi giochi perché

Dettagli

Excel Guida introduttiva

Excel Guida introduttiva Excel Guida introduttiva Informativa Questa guida nasce con l intento di spiegare in modo chiaro e preciso come usare il software Microsoft Excel. Questa è una guida completa creata dal sito http://pcalmeglio.altervista.org

Dettagli

Svolgimento della prova

Svolgimento della prova Svolgimento della prova D1. Il seguente grafico rappresenta la distribuzione dei lavoratori precari in Italia suddivisi per età nell anno 2012. a. Quanti sono in totale i precari? A. Circa due milioni

Dettagli

Pre Test 2008... Matematica

Pre Test 2008... Matematica Pre Test 2008... Matematica INSIEMI NUMERICI Gli insiemi numerici (di numeri) sono: numeri naturali N: insieme dei numeri interi e positivi {1; 2; 3; 4;...} numeri interi relativi Z: insieme dei numeri

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una NUMERI INTERI E NUMERI DECIMALI Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una cassetta sono contenuti 45 penne e che una lamiera misura 1,35 m. dl lunghezza,

Dettagli