I Sistemi Esperti. L approccio probabilistico. Intelligenza Artificiale - Ragionamento 2

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "I Sistemi Esperti. L approccio probabilistico. Intelligenza Artificiale - Ragionamento 2"

Transcript

1 I Sistemi Esperti L approccio probabilistico Intelligenza Artificiale - Ragionamento 2 1

2 SISTEMI ESPERTI (o Sistemi Basati Sulla Conoscenza) (1980) Un sistema basato sulla conoscenza è un sistema in grado di risolvere problemi in un dominio limitato ma con prestazioni simili a quelle di un esperto umano del dominio stesso. Generalmente esamina un largo numero di possibilità e costruisce dinamicamente una soluzione. Intelligenza Artificiale - Ragionamento 2 2

3 "La potenza di un programma intelligente nel risolvere un problema dipende primariamente dalla quantità e qualità di conoscenza che possiede su tale problema". (Feigenbaum) Il programma non è un insieme di istruzioni immutabili che rappresentano la soluzione del problema, ma un ambiente in cui: rappresentare; utilizzare; modificare; una base di conoscenza. Intelligenza Artificiale - Ragionamento 2 3

4 Caratterizzato dalle seguenti proprietà: Generalità. Rappresentazione esplicita della conoscenza. Meccanismi di ragionamento. Capacità di spiegazione. Capacità di operare in domini mal strutturati. Intelligenza Artificiale - Ragionamento 2 4

5 PRINCIPI ARCHITETTURALI Ogni sistema basato sulla conoscenza deveriuscire ad esprimere due tipi di conoscenza in modo separato e modulare: Conoscenza sul dominio dell applica-zione (COSA); Conoscenza su COME utilizzare la conoscenza sul dominio per risolvere problemi (CONTROLLO). Intelligenza Artificiale - Ragionamento 2 5

6 BASE DI CONOSCENZA MOTORE INFERENZI ALE Problemi: Come esprimere la conoscenza sul problema? Quale strategia di controllo utilizzare? Intelligenza Artificiale - Ragionamento 2 6

7 SISTEMI DI PRODUZIONE Un sistema a regole di produzione (production system) è costituito da tre componenti fondamentali: Base di conoscenza a regole (che prende spesso il nome di memoria a lungo termine ) in cui sono contenute le regole di produzione; Memoria di lavoro (memoria a breve termine) in cui sono contenuti i dati e in cui vengono mantenute le conclusioni raggiunte dal sistema; Intelligenza Artificiale - Ragionamento 2 7

8 Motore inferenziale. Ogni regola di produzione ha la seguente forma: if <condizione> then <conclusione/azione> Intelligenza Artificiale - Ragionamento 2 8

9 STRATEGIE DI CONTROLLO Strategia forward (in avanti) o controllo guidato dai dati; while <obiettivo non raggiunto> do begin <MATCH:determina l'insieme delle regole applicabili (cioè le regole il cui antecedente è soddisfatto dai fatti contenuti nella memoria di lavoro)>; <CONFLICT_RESOLUTION: seleziona la regola da applicare>; <FIRE: esegui l'azione associata alla regola> end. Intelligenza Artificiale - Ragionamento 2 9

10 Strategia "backward" (all indietro) o controllo guidato dal goal G. if <G è un fatto nella memoria di lavoro> then <G è dimostrato> else begin <MATCH:seleziona le regole il cui conseguente può essere unificato con G>; <CONFLICT_RESOLUTION: seleziona la regola da applicare>; <l'antecedente della regola selezionata diventa il nuovo obiettivo (congiunzione di obiettivi) da verificare> end. Intelligenza Artificiale - Ragionamento 2 10

11 SISTEMI BASATI SULLA CONOSCENZA ARCHITETTURA Esperto del dominio (INGEGNERE DELLA CONOSCENZA) INTERFACCIA per l acquisizione DELLA CONOSCENZA CONOSCENZA DEL DOMINIO MOTORE INFERENZIALE CONOSCENZA SUL CONTROLLO MEMORIA DEL LAVORO INTERFACCIA con l utente finale UTENTE FINALE Intelligenza Artificiale - Ragionamento 2 11

12 Rappresentazione della Conoscenza: Regole; Frames; Proposizioni Logiche; Vincoli; Procedure; Demoni; Oggetti; Fattori di Certezza, Variabili Fuzzy Intelligenza Artificiale - Ragionamento 2 12

13 Modalità di Inferenza: Ragionamento forward; Ragionamento backward; Risoluzione; Propagazione di vincoli; Strategie di ricerca euristiche; Ragionamento Ipotetico ed Abduttivo... Intelligenza Artificiale - Ragionamento 2 13

14 AMBIENTI SVILUPPO DI UN SISTEMA ESPERTO (ingegneria della conoscenza): a) Skeletal systems (SHELL) Ottenuti togliendo da Sistemi Esperti già costruiti la conoscenza propria del dominio e lasciando solo il motore inferenziale e le facilities di supporto. EMYCIN (Empty MYCIN) deriva da MYCIN; KAS deriva da PROSPECTOR; EXPERT deriva da CASNET. Intelligenza Artificiale - Ragionamento 2 14

15 b) Sistemi general-purpose (TOOLS); KEE, ART, Knowledge-Craft, Nexpert, KAPPA non sono strettamente legati a una particolare classe di problemi: essi permettono una più ampia varietà di rappresentazione della conoscenza e strutture di controllo. c) Linguaggi simbolici (Prolog, Lisp) e non (C, C++). Intelligenza Artificiale - Ragionamento 2 15

16 PASSI DI PROGETTAZIONE IDENTIFICAZIONE delle caratteristiche del problema. CONCETTUALIZZAZIONE. FORMALIZZAZIONE : progetto della struttura in cui organizzare la conoscenza. IMPLEMENTAZIONE : scrittura effettiva della conoscenza sul dominio. VALIDAZIONE. Intelligenza Artificiale - Ragionamento 2 16

17 SCELTA DI UN TOOL: 1. non bisogna utilizzare un Tool più generale del necessario; 2. bisogna testare il Tool costruendo un piccolo prototipo del sistema; 3. bisogna scegliere un Tool che sia affidabile ed mantenuto da chi lo ha sviluppato; 4. quando il tempo di sviluppo è critico, è bene scegliere un Tool con facilities di spiegazioni/interazione incorporate; 5. bisogna considerare le caratteristiche del problema per determinare le caratteristiche che deve avere il Tool. Intelligenza Artificiale - Ragionamento 2 17

18 APPLICAZIONI Migliaia di Sistemi Esperti nei settori più svariati. Interpretazione: Si analizzano dati complessi e potenzialmente rumorosi per la determinazione del loro significato (Dendral, Hearsay-II). Diagnosi: Si analizzano dati potenzialmente rumorosi per la determinazione di malattie o errori (Mycin,...). Intelligenza Artificiale - Ragionamento 2 18

19 Monitoring: I dati si interpretano continuamente per la generazione di allarmi in situazioni critiche. Al sistema è richiesta una risposta in tempo reale soddisfacente (VM). Planning e Scheduling: Si determina una sequenza intelligente di azioni per raggiungere un determinato obiettivo (Molgen). Intelligenza Artificiale - Ragionamento 2 19

20 OBIETTIVO DELLE CATEGORIE GENERALI DI APPLICAZIONI Interpretazione: Inferire descrizioni di situazioni da dati rilevati da sensori. Predizione: Inferire conseguenze future da una data situazione. Diagnosi: Inferire malfunzionamenti da osservazioni. Progetto: Configurare oggetti rispettando vincoli. Intelligenza Artificiale - Ragionamento 2 20

21 Pianificazione: Progettare sequenze di azioni. Monitoring: Confrontare osservazioni in tempo reale per identificare situazioni di allarme. Debugging: Prescrivere rimedi per malfunzionamenti. Riparazione: Eseguire un piano per ottenere il rimedio necessario Intelligenza Artificiale - Ragionamento 2 21

22 Insegnamento: Diagnosi, Debugging e Riparazione del comportamento di uno studente. Controllo: Interpretare, Predire, Riparare, a Monitorare il comportamento di un sistema. Alcune applicazioni ne includono altre. Intelligenza Artificiale - Ragionamento 2 22

23 CLASSIFICAZIONE: SISTEMI DI SINTESI E DI ANALISI Si possono raggruppare le operazioni in termini di quelli che costruiscono un sistema (sintesi) e quelli che interpretano un sistema (analisi). Intelligenza Artificiale - Ragionamento 2 23

24 COSTRUZION E (SINTESI) PROGETT O CONFIGURAZIONE STRUTTURA PIANIFICAZIONE PROCESSO INTERPRETAZIONE (ANALISI) IDENTIFICAZIONE PROGETTO MONITORING DIAGNOSI Intelligenza Artificiale - Ragionamento 2 24

25 CLASSIFICAZIONE E DIAGNOSI (1) Il più semplice tipo di classificazione consiste nell identificare alcuni oggetti sconosciuti o fenomeni come appartenenti a una classe conosciuta di oggetti, eventi o processi. Tipicamente queste classi sono tipi organizzati gerarchicamente e il procedimento di identificazione corrisponde al matching delle osservazioni di entità sconosciute con caratteristiche note delle classi. Intelligenza Artificiale - Ragionamento 2 25

26 Un esempio: Mycin Sviluppato da E.M. Shortliffe a partire dal 1972; Obiettivi: decidere se il paziente ha un infezione che deve essere curata; determinare, se sì, quale è probabilmente l'organismo infettivo; scegliere fra le medicine adatte per combattere l infezione quella più appropriata in rapporto alle condizioni del paziente. Intelligenza Artificiale - Ragionamento 2 26

27 Mycin risolve il problema di identificare un oggetto sconosciuto dalle culture di laboratorio, mediante un matching dei risultati di laboratorio con la gerarchia di batteri. ( 1 ) W. J. Clancey, Heuristic Classification, Artificial Intelligence 27, North Holland, 1985 pp Intelligenza Artificiale - Ragionamento 2 27

28 CARATTERISTICA ESSENZIALE DELLA CLASSIFICAZIONE Il motore di inferenza seleziona partendo da un insieme di soluzioni pre-enumerate. Quindi non costruisce una nuova soluzione. Le evidenze (osservazioni) possono essere incerte per cui il sistema può dare come risposta una lista di possibili ipotesi numerate in ordine di plausibilità. Esistono anche regole di inferenza oltre al matching. Intelligenza Artificiale - Ragionamento 2 28

29 In molti problemi le caratteristiche di una soluzione non sono date direttamente come dati, ma sono inferite mediante regole di inferenza che esprimono: 1.Astrazione definizionale: basata sulle caratteristiche necessarie di un concetto: Se è un mammifero allora allatta i figli. Intelligenza Artificiale - Ragionamento 2 29

30 2. Astrazione qualitativa: coinvolge dati quantitativi e li confronta con valori normali: Se il paziente è adulto e il valore dei globuli bianchi è minore di 2500 allora il valore è basso 3. Generalizzazione in una gerarchia di sottotipi Se il cliente è un giudice, allora è una persona educata Intelligenza Artificiale - Ragionamento 2 30

31 Classificazione Classificare un oggetto significa riconoscerlo come appartenente ad una determinata classe. Una caratteristica essenziale della classificazione è che seleziona da un insieme predefinito di soluzioni. Intelligenza Artificiale - Ragionamento 2 31

32 Le classi identificano delle regolarità e tutti i membri di una classe le condividono (condizioni necessarie). Di solito escludiamo il caso, denominato configurazione, in cui le soluzioni sono un insieme finito, ma molto ampio e quindi determinato dinamicamente come insieme potenza di elementi più semplici (componenti). Intelligenza Artificiale - Ragionamento 2 32

33 CLASSIFICAZIONE SEMPLICE ED EURISTICA Nella classificazione semplice i dati hanno un match diretto con le caratteristiche delle soluzioni (eventualmente dopo un passo di astrazione). Intelligenza Artificiale - Ragionamento 2 33

34 Nella classificazione euristica le soluzioni possono anche essere trovate usando un matching euristico mediante un associazione diretta e euristica con la gerarchia delle soluzioni. Normalmente l associazione euristica è di tipo empirico. Intelligenza Artificiale - Ragionamento 2 34

35 FISICO DEBILITATO EURISTICA INFEZIONE GRAM-NEGATIVA IMMUNODEFICIENZA GENERALIZZAZIONE GENERALIZZAZIONE SOTTOTIPO INFEZIONE DA E.COLI LEUCEMIA DEFINIZIONALE NGB BASSO QUALITATIVA NGB < 2.5 Intelligenza Artificiale - Ragionamento 2 35

36 ASTRAZIONE DEL PAZIENTE MACTH EURISTICO CLASSE DELLE MALATTIE GENERALIZZAZIONE RAFFINAMENTO DELLE IPOTESI DATI DEL PAZIENTE MALATTI E In pratica, nella classificazione euristica i dati del problema opportunamente astratti sono associati con classi di soluzioni di problemi. Intelligenza Artificiale - Ragionamento 2 36

37 Esempi: Mycin, Grundy che seleziona i libri che una persona può preferire mediante una classificazione della personalità e poi del libro che può essere più adatto, Sophie che classifica un circuito elettronico in termini dei componenti che causano un malfunzionamento. Intelligenza Artificiale - Ragionamento 2 37

38 FATTORI DI CERTEZZA Compromesso rispetto a un sistema bayesiano puro. Introdotti per la prima volta nel Sistema Esperto Mycin. Regole non certe (l implicazione corretta sarebbe invertita) mediate da un fattore di certezza. Un fattore di certezza è un numero reale ad hoc che varia fra +1 e -1. Permette l'inserimento di fatti apparentemente contraddittori, ambedue plausibili con differenti valori di certezza. Intelligenza Artificiale - Ragionamento 2 38

39 Fatti: (<attributo> <entità> <valore> <fattore di certezza>. Esempi di fatti espressi in Mycin sono (Lisp): (SITE CULTURE-1 BLOOD 1.0) (IDENT ORGANISM-2 KLEBSIELLA.25) (IDENT ORGANISM-2 E.COLI 0.73) (SENSITIVS ORGANISM-1 PENICILLIN - 1.0) Intelligenza Artificiale - Ragionamento 2 39

40 REGOLE: PREMISE <premessa> ACTION <azione> PREMISE ($AND (SAME CNTXT INFECT PRIMARY- BACTEREMIA) (MEMBF CNTXT SITE STERILESITES) (SAME CNTXT PORTAL G1)) ACTION (CNTXT IDENT BACTEROIDES 0.7) Intelligenza Artificiale - Ragionamento 2 40

41 Significato della regola IF 1)the infection is primary-bacteremia, 2)the site of the culture is one of sterilesites, and 3)the suspected portal of entry of the organism is the gastro-intestinal tract, THEN there is a suggestive evidence (0.7) that the identity of the organism is bacteroides. Intelligenza Artificiale - Ragionamento 2 41

42 OSSERVAZIONI I fattori di certezza iniziali sono forniti dagli esperti. Ogni CF in una regola di Mycin rappresenta il contributo della regola al fattore di confidenza di un ipotesi. Rappresenta in un certo senso una probabilità condizionale P(H E). Intelligenza Artificiale - Ragionamento 2 42

43 In un sistema Bayesiano puro però si deve assumereche la sola evidenza rilevante per H sia E, altrimenti dobbiamo tenere conto delle probabilità congiunte. Dunque Mycin assume che tutte le regole siano indipendenti ed è colui che scrive le regole che deve garantire ciò. Intelligenza Artificiale - Ragionamento 2 43

44 R1: Sviluppato all'università Carnegie-Mellon da John Mc Dermott per conto della Digital a partire dal COMPITO PRINCIPALE: configurare il calcolatore VAX-11 /780 automaticamente. Intelligenza Artificiale - Ragionamento 2 44

45 In base all ordine del cliente, R1 è in grado di: assicurare che l'ordine sia completo; determinare le relazioni spaziali fra le componenti. Un tipico sistema ha più di 100 componenti con varie possibilità di interazione. Intelligenza Artificiale - Ragionamento 2 45

46 Esperti: technical editors * Nato con un nucleo di 250 regole ora ne possiede circa Dal 1980 è un prodotto funzionante Digital. R1 è implementato in OPS-5. Intelligenza Artificiale - Ragionamento 2 46

47 TIPI DI CONOSCENZA IN R1 a) Informazione sui componenti: in memoria di massa sono raccolte informazioni su circa 400 componenti della Digital che il Sistema va a recuperare quando necessario. (RK711-EA!class bundle,!type disk drive!supported yes!component-list RK07-EA* 1 RK611) Intelligenza Artificiale - Ragionamento 2 47

48 b) Conoscenza sui vincoli: è la conoscenza di come associare determinati componenti per formare configurazioni parziali corrette e di come associare fra di loro le configurazioni parziali Distributed-mb-devices-3 IF: current active context is distributing massbus devices AND there is a single port disk drive that has not been assigned to a massbus AND there are no unassigned dual port disk drives AND THEN: assign the disk drive to the massbus Intelligenza Artificiale - Ragionamento 2 48

49 c) MEMORIA DI LAVORO: tiene traccia della conoscenza che viene accumulata dinamicamente durante il processo di configurazione. Intelligenza Artificiale - Ragionamento 2 49

50 CONTROLLO IN R1 Forward Strategia Irrevocabile Tasks non interagenti sistema di produzione decomponibile Nessuna strategia di controllo esplicita Ambiente povero Intelligenza Artificiale - Ragionamento 2 50

51 Regole per il cambio di contesto Check-voltage-and-frequency-1 IF: the MOST CURRENT ACTIVE CONTEXT is checking voltage and frequency AND there is a component that requires one voltage or frequency AND there is another component that requires a different voltage or frequency THEN: ENTER THE CONTEXT of fixing voltage or frequency mismatches. Intelligenza Artificiale - Ragionamento 2 51

52 PROSPETTIVE Verso gruppi di agenti intelligenti cooperanti (ingegneria del software). Cooperazione con un essere umano interfacce grafiche. Integrazione con vari sistemi informatici (interfacce grafiche, database ecc ), tecnologie tradizionali e non (reti neurali, sistemi fuzzy) sistemi ibridi. Intelligenza Artificiale - Ragionamento 2 52

53 Da costose workstations special-purpose (LISP-Machine) verso sistemi Unix o PC con l utilizzo di Tools scritti in linguaggi più tradizionali (C, C++). Sistemi basati sulla conoscenza in aree più semplici : costruzione di libri e manuali non più passivi ma attivi. In fondo, i linguaggi Object-Oriented sono nati nel 1967 e i Database Relazionali negli anni 70 Intelligenza Artificiale - Ragionamento 2 53

54 L approccio probabilistico Teoria della probabilità (richiami) P(A): probabilità incondizionata (o probabilità a priori): quella che si ha in mancanza di qualsiasi altra informazione. Esempio: P(Carie) = 0.1 (In una popolazione, il 10% degli individui ha la carie). Intelligenza Artificiale - Ragionamento 2 54

55 Le proposizioni possono includere uguaglianze che comprendono le cosiddette variabili casuali. Esempio: P(Tempo = Soleggiato) = 0.7 P(Tempo = Piovoso) = 0.2 P(Tempo = Nuvoloso) = 0.08 P(Tempo = Nevoso) = 0.02 Intelligenza Artificiale - Ragionamento 2 55

56 Ogni variabile casuale X ha un dominio di possibili valori (x 1,, x n ). Si possono vedere i simboli proposizionali come variabili causali se si assume che abbiano dominio (vero, falso). Quindi P(Carie) è un abbreviazione di P(Carie = vero) e P( Carie) sta per P(Carie = falso). Intelligenza Artificiale - Ragionamento 2 56

57 Per denotare tutti i valori che può assumere una variabile (discreta) si utilizza una forma vettoriale P(A). Per l esempio precedente: P(Tempo) = 0.7, 0.2, 0.08, 0.02 Questo enunciato definisce una distribuzione di probabilità della variabile Tempo. Intelligenza Artificiale - Ragionamento 2 57

58 L espressione P(Tempo, Carie) denota le probabilità di tutte le combinazioni di valori dell insieme di variabili casuali. Nell esempio, è una tavola di 4 x 2 probabilità. P(A B): probabilità condizionata o a posteriori: probabilità di A dato che tutto ciò che sappiamo è B. Esempio: P(Carie MalDiDenti) = 0.8 (se il paziente ha mal di denti e non c è altra informazione, la probabilità che abbia la carie è dell 80%). La notazione P(X Y) corrisponde ad una tabella bidimensionale con i valori di P(X=x i Y=y j ) per ogni possibile i, j. Intelligenza Artificiale - Ragionamento 2 58

59 Vale la regola del prodotto: P(A B) = P(A B) P(B) (affinché A e B siano veri, occorre che sia vero B e quindi che A sia vero dato B). Dalla precedente: P( A B) = P( A B) P( B) Vale anche: P(A B) = P(B A) P(A) Intelligenza Artificiale - Ragionamento 2 59

60 Assiomi della teoria della probabilità 1) 0 P(A) 1 2) Le proposizioni necessariamente vere (cioè valide) hanno probabilità 1, quelle necessariamente false (cioè insoddisfacibili) hanno probabilità 0; in formule: P(Vero) = 1 e P(Falso) = 0. 3) P(A B) = P(A) + P(B) P(A B) (si desume dal diagramma di Venn). Intelligenza Artificiale - Ragionamento 2 60

61 Dagli assiomi si può dedurre, ad esempio, che P(A A) = P(A) + P( A) P(A A) P(Vero) = P(A) + P( A) P(Falso) 1 = P(A) + P( A) P( A) = 1 P(A) Intelligenza Artificiale - Ragionamento 2 61

62 NOTA: la probabilità delle proposizioni può esprimere, più che una mera statistica, il grado di credenza su un fatto da parte di un agente: deve comunque conformarsi agli assiomi della probabilità (tesi di Bruno De Finetti, gioco delle scommesse tra due agenti). Intelligenza Artificiale - Ragionamento 2 62

63 Probabilità soggettiva Esempio: Qual è la probabilità che l'inter vinca il campionato? Approccio classico: P(I) = 1/18 (insoddisfacente) Approccio frequentista: impraticabile: non si può ripetere il campionato N volte. Intelligenza Artificiale - Ragionamento 2 63

64 De Finetti propone questo approccio: "La probabilità P(E) di un evento E è la frazione di una somma m che un agente ritiene equo sia pagato per la promessa di ricevere in cambio la somma m nel caso E si verifichi" (definizione). In pratica: Lo scommettitore (agente) entra in gioco pagando m P(E) euro. Il bookmaker pagherà m euro se E si verifica, altrimenti niente. Intelligenza Artificiale - Ragionamento 2 64

65 La probabilità così definita corrisponde al grado soggettivo di aspettativa (degree of belief) del verificarsi dell'evento incerto E. Si possono avere due situazioni: esiste una modalità di scommettere tale che l'agente perde sicuramente (Dutch book); non esiste tale modalità: in questo caso l'insieme di beliefs è coerente. De Finetti dimostra che se un insieme di beliefs è coerente (ossia evita un Dutch book) allora tali beliefs devono necessariamente soddisfare gli assiomi della probabilità. Intelligenza Artificiale - Ragionamento 2 65

66 Distribuzione di probabilità congiunta Siano X 1 X n variabili casuali che assumono valori determinati in un dominio, ciascuna con una certa probabilità. Un evento atomico è un'assegnazione di valori particolari a tutte le variabili. Intelligenza Artificiale - Ragionamento 2 66

67 La distribuzione di probabilità congiunta P(X 1 X n ) assegna probabilità a tutti gli eventi atomici (è una tabella n-dimensionale). Esempio: MalDiDenti MalDiDenti Carie Carie Dalla distribuzione di probabilità si desume, ad esempio: P(Carie MalDiDenti) = = 0.11 Intelligenza Artificiale - Ragionamento 2 67

68 oppure P( Carie MalDiDenti) = P( Carie MalDiDenti) P( MalDiDenti) = = 0.80 In generale, per n variabili booleane, occorre specificare 2 n valori per la distribuzione di probabilità. Intelligenza Artificiale - Ragionamento 2 68

69 Regola di Bayes Da: P(A B) = P(A B) P(B) P(A B) = P(B A) P(A) uguagliando le parti a destra, si ha: P ( B A) = P( A B) P( B) P( A) che è detta regola di Bayes. Intelligenza Artificiale - Ragionamento 2 69

70 Per variabili multivalori si ha: P(Y X) = P(X Y) P(Y) / P(X) (da intendere come insieme di equazioni che legano elementi corrispondenti delle tabelle). Vale anche: P(Y X,E) = P(X Y,E) P(Y E) / P(X E) (dove E rappresentano le prove di fondo). Intelligenza Artificiale - Ragionamento 2 70

71 Esempio: Un dottore sa che la meningite induce nel paziente, nel 50% dei casi, un irrigidimento del collo. Sa anche che la probabilità a priori che un paziente abbia la meningite è 1/50.000, quella che un paziente abbia un irrigidimento del collo è 1/20. Sia S = paziente ha irrigidimento del collo, M = paziente ha meningite. Intelligenza Artificiale - Ragionamento 2 71

72 Allora: P(S M) = 0.5 P(M) = 1/50000 P(S) = 1/20 Pertanto: P( S M ) P( M ) P( M S) = = = P( S) Intelligenza Artificiale - Ragionamento 2 72

73 Si osservi che P(S M) riflette il funzionamento della meningite, mentre P(M S) può variare, se ad esempio c è un epidemia di meningite (in qual caso P(M) cresce). Intelligenza Artificiale - Ragionamento 2 73

74 Normalizzazione Si è visto che: La possibilità che un paziente abbia un irrigidimento del collo per un colpo di frusta è: Intelligenza Artificiale - Ragionamento 2 74 ) ( ) ( ) ( ) ( S P M P M S P S M P = ) ( ) ( ) ( ) ( S P W P W S P S W P =

75 La verosimiglianza relativa della meningite e del colpo di frusta, dato un irrigidimento del collo, non richiede la probabilità a priori di un irrigidimento del collo: Intelligenza Artificiale - Ragionamento 2 75 ) ( ) ( ) ( ) ( ) ( ) ( P W W S P M P M S P S P W S M P =

76 Un altro caso in cui non si deve valutare direttamente la probabilità a priori dei sintomi si ha quando si considera un insieme esaustivo di casi. Nell esempio precedente, si considera il caso M e il caso M: Intelligenza Artificiale - Ragionamento 2 76 ) ( ) ( ) ( ) ( S P M P M S P S M P = ) ( ) ( ) ( ) ( S P M P M S P S M P =

77 Ora è anche P(M S) + P( M S) = 1, quindi: P(S) = P(S M) P(M) + P(S M) P( M) e sostituendo sopra: Intelligenza Artificiale - Ragionamento 2 77 ) ( ) ( ) ( ) ( ) ( ) ( ) ( M P M S P M P M S P M P M S P S M P + =

78 Questo processo è detto normalizzazione, poiché tratta 1/P(S) come costante di normalizzazione che permette ai termini condizionali di dare 1 come somma (in altri termini, si preferisce calcolare P(S M) piuttosto che P(S)). Nel caso generale multivalore, la regola di Bayes diventa P(Y X) = αp(x Y) P(Y) dove α è la costante di normalizzazione necessaria per rendere la somma dei valori della tabella P(Y X) pari a 1. Intelligenza Artificiale - Ragionamento 2 78

79 La combinazione delle prove Si suppongano note le due probabilità condizionate: P(Carie MalDiDenti) = 0.8 P(Carie Colpire) = 0.95 e si voglia concludere la probabilità che il sondino colpisca il dente dolorante del paziente. Intelligenza Artificiale - Ragionamento 2 79

80 Per calcolare P(Carie MalDiDenti Colpire) occorerebbe conoscere la probabilità congiunta. Anche l applicazione diretta della regola di Bayes: P( Carie MalDiDenti Colpire = P( Carie) P( MalDiDenti Colpire Carie) P( MalDiDenti Carie) Intelligenza Artificiale - Ragionamento 2 80

81 non aiuta, poiché richiede la conoscenza della probabilità condizionata (in generale, date n variabili individuali differenti, occorre calcolare n 2 valori differenti, e una diagnosi potrebbe dipendere da dozzine di variabili, non solo due!). Intelligenza Artificiale - Ragionamento 2 81

82 In molti domini è possibile semplificare l applicazione della regola di Bayes mediante un processo detto aggionamento bayesiano, il quale incorpora prove un pezzo per volta, modificando la credenza precedente nella variabile ignota. Nel caso in esame, si parte dal considerare il solo MalDiDenti: P( Carie MalDiDenti) = P( Carie) P( MalDiDenti Carie) P( MalDiDenti) Intelligenza Artificiale - Ragionamento 2 82

83 Quando si considera Colpire, si applica la regola di Bayes con MalDiDenti come contesto costante condizionante : P( Carie P( Carie MalDiDenti Colpire) = P( Colpire MalDiDenti Carie) MalDiDenti) = P( Colpire MalDiDenti) P( MalDiDenti Carie) P( Carie) P( MalDiDenti) P( Colpire MalDiDenti Carie) P( Colpire MalDiDenti) Intelligenza Artificiale - Ragionamento 2 83

84 Per calcolare P(Colpire MalDiDenti Carie) occorre un assunzione sostanziale, che parte dalla considerazione che la carie è la causa diretta sia del mal di denti che del colpire la carie con il sondino: pertanto, se si sa che il paziente ha la carie, la probabilità del sondino di colpire la carie non dipende dalla presenza del mal di denti; così, il sondino che finisce nella carie non cambia la probabilità che la carie sia causa del mal di denti. Intelligenza Artificiale - Ragionamento 2 84

85 In formule: P(Colpire Carie MalDiDenti) = P(Colpire Carie) e P(MalDiDenti Carie Colpire) = P(MalDiDenti Carie) equazioni che esprimono l indipen-denza condizionale di MalDiDenti e Colpire dato Carie. Intelligenza Artificiale - Ragionamento 2 85

86 L espressione di prima diventa: P( Carie MalDiDenti Colpire) = P( MalDiDenti Carie) P( Carie) P( MalDiDenti) Si noti che il termine P( Colpire Carie) P( Colpire MalDiDenti) P(Colpire MalDiDenti) che coinvolge le coppie (in generale, triple, ecc.) di sintomi, può essere eliminato: infatti al denominatore c è il prodotto P(Colpire MalDiDenti) P(MalDiDenti) Intelligenza Artificiale - Ragionamento 2 86

87 che è uguale a P(MalDiDenti Colpire) e, come prima, può essere eliminato con la normalizzazione, dato che si può disporre di P(MalDiDenti Carie) e P(Colpire Carie). Concludendo, occorre solo valutare la probabilità a priori per la causa e le probabilità condizionali per ognuno degli effetti. Intelligenza Artificiale - Ragionamento 2 87

88 Nel caso multivalore, per dire che X e Y sono indipendenti dato Z, si scrive: P(X Y,Z) = P(X Z) che rappresenta un insieme di enunciati condizionali indipendenti individuali. La corrispondente semplificazione della regola di Bayes per le prove multiple è P(Z X,Y) = α P(Z) P(X Z) P(Y Z) dove α è una costante di normalizzazione tale che i valori in P(Z X,Y) sommati diano 1. Intelligenza Artificiale - Ragionamento 2 88

89 In pratica, se e n = e 1, e 2,,e n è una sequenza di dati osservati in passato (contesto) e se e è una nuova informazione, il risultato precedente ci dice che: P( H e, en ) P( e H, en ) P( H en ) cioè il nuovo belief è proporzionale ( ) al prodotto del vecchio belief per la verosimiglianza che la nuova informazione possa materializzarsi data l'ipotesi e l'esperienza passata. Intelligenza Artificiale - Ragionamento 2 89

90 Se, come succede spesso, l'esperienza passata è irrilevante a determinare la verosimiglianza, ovverosia si verifica che e e n H, allora la formula precedente si semplifica: P( H e, en ) P( e H ) P( H en ). Intelligenza Artificiale - Ragionamento 2 90

91 Esempio: L'epidemia E può aver causato il morbillo M nel paziente; Il morbillo può aver causato macchie rosse R o febbre F. Effetti di una stessa causa diventano indipendenti una volta nota la causa. Dunque F E M. Intelligenza Artificiale - Ragionamento 2 91

92 Inoltre se E causa M e M causa R, allora conoscere E diventa irrilevante per R una volta che M è noto. Dunque E R M e E F M. L'approccio naturale è modellare gli effetti date le cause, non viceversa: P(e H) piuttosto che P(H e). Intelligenza Artificiale - Ragionamento 2 92

93 Nel nostro esempio: P(M E) P(R M) P(F M) P(E) (a priori, dato che non ha cause) che somigliano a regole del tipo: if M then R, con una certa confidenza (nota: il significato è "if M and tutto il resto è irrilevante then R, con una certa confidenza") Intelligenza Artificiale - Ragionamento 2 93

94 Ora: Il teorema di Bayes ci serve per invertire i legami condizionali nella direzione di interesse. L'indipendenza condizionale ci serve a semplificare eliminando l'informazione irrilevante: Intelligenza Artificiale - Ragionamento 2 94 ), ( ) ( ), ( ),, ( ),, ( E F M P M R P E F M P E F M R P E F R M P =

95 e, a sua volta, quindi che usa le "regole" probabilistiche codificate nel modello. Intelligenza Artificiale - Ragionamento 2 95 ) ( ) ( ) ( ), ( ), ( E M P M F P E M P E M F P E F M P = ) ( ) ( ) ( ),, ( E M P M F P M R P E F R M P

96 Si osservi che il procedimento precedente poteva essere sostituito da un approccio di "bruta forza": L'utilizzo dell'indipendenza condi-zionale riduce la complessità dell'inferenza. Intelligenza Artificiale - Ragionamento 2 96 = = M E F R M P E F R M P E F R P E F R M P E F R M P ),,, ( ),,, ( ),, ( ),,, ( ),, (

Tipologie di pianificatori. Pianificazione. Partial Order Planning. E compiti diversi. Pianificazione gerarchica. Approcci integrati

Tipologie di pianificatori. Pianificazione. Partial Order Planning. E compiti diversi. Pianificazione gerarchica. Approcci integrati Tipologie di pianificatori Pianificazione Intelligenza Artificiale e Agenti II modulo Pianificazione a ordinamento parziale (POP) (HTN) pianificazione logica (SatPlan) Pianificazione come ricerca su grafi

Dettagli

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1 DIAGRAMMI A BLOCCHI TEORIA ED ESERCIZI 1 1 Il linguaggio dei diagrammi a blocchi è un possibile formalismo per la descrizione di algoritmi Il diagramma a blocchi, o flowchart, è una rappresentazione grafica

Dettagli

Dall italiano alla logica proposizionale

Dall italiano alla logica proposizionale Rappresentare l italiano in LP Dall italiano alla logica proposizionale Sandro Zucchi 2009-10 In questa lezione, vediamo come fare uso del linguaggio LP per rappresentare frasi dell italiano. Questo ci

Dettagli

Logica del primo ordine

Logica del primo ordine Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A7_4 V1.3 Logica del primo ordine Il contenuto del documento è liberamente utilizzabile dagli studenti, per studio

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t),

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t), SINTESI. Una classe importante di problemi probabilistici e statistici é quella della stima di caratteristiche relative ad un certo processo aleatorio. Esistono svariate tecniche di stima dei parametri

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

Ricerca non informata in uno spazio di stati

Ricerca non informata in uno spazio di stati Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A5_2 V2.4 Ricerca non informata in uno spazio di stati Il contenuto del documento è liberamente utilizzabile dagli

Dettagli

Elementi di semantica denotazionale ed operazionale

Elementi di semantica denotazionale ed operazionale Elementi di semantica denotazionale ed operazionale 1 Contenuti! sintassi astratta e domini sintattici " un frammento di linguaggio imperativo! semantica denotazionale " domini semantici: valori e stato

Dettagli

Gli algoritmi. Gli algoritmi. Analisi e programmazione

Gli algoritmi. Gli algoritmi. Analisi e programmazione Gli algoritmi Analisi e programmazione Gli algoritmi Proprietà ed esempi Costanti e variabili, assegnazione, istruzioni, proposizioni e predicati Vettori e matrici I diagrammi a blocchi Analisi strutturata

Dettagli

Prolog: aritmetica e ricorsione

Prolog: aritmetica e ricorsione Capitolo 13 Prolog: aritmetica e ricorsione Slide: Aritmetica e ricorsione 13.1 Operatori aritmetici In logica non vi è alcun meccanismo per la valutazione di funzioni, che è fondamentale in un linguaggio

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI Prima di riuscire a scrivere un programma, abbiamo bisogno di conoscere un metodo risolutivo, cioè un metodo che a partire dai dati di ingresso fornisce i risultati attesi.

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Che cosa abbiamo fatto fin ora. Perché? Agente basato su conoscenza. Introduzione alla rappresentazione della conoscenza

Che cosa abbiamo fatto fin ora. Perché? Agente basato su conoscenza. Introduzione alla rappresentazione della conoscenza Che cosa abbiamo fatto fin ora Introduzione alla rappresentazione della conoscenza ovvero Come costruire agenti basati su conoscenza e dotati di capacità di ragionamento Maria Simi, 2014/2015 Abbiamo trattato:

Dettagli

Lezione 10. La Statistica Inferenziale

Lezione 10. La Statistica Inferenziale Lezione 10 La Statistica Inferenziale Filosofia della scienza Secondo Aristotele, vi sono due vie attraverso le quali riusciamo a formare le nostre conoscenze: (1) la deduzione (2) l induzione. Lezione

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

Dall italiano al linguaggio della logica proposizionale

Dall italiano al linguaggio della logica proposizionale Dall italiano al linguaggio della logica proposizionale Dall italiano al linguaggio della logica proposizionale Enunciati atomici e congiunzione In questa lezione e nelle successive, vedremo come fare

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

Se si insiste non si vince

Se si insiste non si vince Se si insiste non si vince Livello scolare: 2 biennio Abilità interessate Valutare la probabilità in diversi contesti problematici. Distinguere tra eventi indipendenti e non. Valutare criticamente le informazioni

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni.

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. Albero semantico Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. A differenza dell albero sintattico (che analizza la formula da un punto di vista puramente

Dettagli

Sistemi di supporto alle decisioni Ing. Valerio Lacagnina

Sistemi di supporto alle decisioni Ing. Valerio Lacagnina Cosa è il DSS L elevato sviluppo dei personal computer, delle reti di calcolatori, dei sistemi database di grandi dimensioni, e la forte espansione di modelli basati sui calcolatori rappresentano gli sviluppi

Dettagli

OGNI SPAZIO VETTORIALE HA BASE

OGNI SPAZIO VETTORIALE HA BASE 1 Mimmo Arezzo OGNI SPAZIO VETTORIALE HA BASE CONVERSAZIONE CON ALCUNI STUDENTI DI FISICA 19 DICEMBRE 2006 2 1 Preliminari Definizione 1.0.1 Un ordinamento parziale (o una relazione d ordine parziale)

Dettagli

MODULO 3 LEZIONE 23 FORMAZIONE DEL MOVIMENTO (SECONDA PARTE)

MODULO 3 LEZIONE 23 FORMAZIONE DEL MOVIMENTO (SECONDA PARTE) MODULO 3 LEZIONE 23 FORMAZIONE DEL MOVIMENTO (SECONDA PARTE) Contenuti Michelene Chi Livello ottimale di sviluppo L. S. Vygotskij Jerome Bruner Human Information Processing Teorie della Mente Contrapposizione

Dettagli

Logica del primo ordine

Logica del primo ordine Logica del primo ordine Sistema formale sviluppato in ambito matematico formalizzazione delle leggi del pensiero strette relazioni con studi filosofici In ambito Intelligenza Artificiale logica come linguaggio

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

CAMPO DI ESPERIENZA: IL SE E L ALTRO

CAMPO DI ESPERIENZA: IL SE E L ALTRO CAMPO DI ESPERIENZA: IL SE E L ALTRO I. Il bambino gioca in modo costruttivo e creativo con gli altri, sa argomentare, confrontarsi, sostenere le proprie ragioni con adulti e bambini. I I. Sviluppa il

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

3. Confronto tra medie di due campioni indipendenti o appaiati

3. Confronto tra medie di due campioni indipendenti o appaiati BIOSTATISTICA 3. Confronto tra medie di due campioni indipendenti o appaiati Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

(anno accademico 2008-09)

(anno accademico 2008-09) Calcolo relazionale Prof Alberto Belussi Prof. Alberto Belussi (anno accademico 2008-09) Calcolo relazionale E un linguaggio di interrogazione o e dichiarativo: at specifica le proprietà del risultato

Dettagli

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. Universitá di Bologna

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. <sacerdot@cs.unibo.it> Universitá di Bologna Linguaggi 18: Semantica della logica del prim ordine Universitá di Bologna 11/04/2011 Outline Semantica della logica del prim ordine 1 Semantica della logica del prim ordine Semantica

Dettagli

VC-dimension: Esempio

VC-dimension: Esempio VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1 Potenza dello studio e dimensione campionaria Laurea in Medicina e Chirurgia - Statistica medica 1 Introduzione Nella pianificazione di uno studio clinico randomizzato è fondamentale determinare in modo

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Algebra di Boole ed Elementi di Logica

Algebra di Boole ed Elementi di Logica Algebra di Boole ed Elementi di Logica 53 Cenni all algebra di Boole L algebra di Boole (inventata da G. Boole, britannico, seconda metà 8), o algebra della logica, si basa su operazioni logiche Le operazioni

Dettagli

Semantica operazionale dei linguaggi di Programmazione

Semantica operazionale dei linguaggi di Programmazione Semantica operazionale dei linguaggi di Programmazione Oggetti sintattici e oggetti semantici Rosario Culmone, Luca Tesei Lucidi tratti dalla dispensa Elementi di Semantica Operazionale R. Barbuti, P.

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

CAMPO DI ESPERIENZA: IL SE E L ALTRO

CAMPO DI ESPERIENZA: IL SE E L ALTRO CAMPO DI ESPERIENZA: IL SE E L ALTRO I. Il bambino gioca in modo costruttivo e creativo con gli altri, sa argomentare, confrontarsi, sostenere le proprie ragioni con adulti e bambini. I I. Sviluppa il

Dettagli

Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante

Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante Introduzione Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante Il problema del massimo flusso è uno dei fondamentali problemi nell ottimizzazione su rete. Esso è presente

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

La ricerca non sperimentale

La ricerca non sperimentale La ricerca non sperimentale Definizione Ricerca osservazionale: : 1. naturalistica Ricerca osservazionale: : 2. osservatori partecipanti Ricerca d archiviod Casi singoli Sviluppo di teorie e verifica empirica

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Algebra Relazionale. algebra relazionale

Algebra Relazionale. algebra relazionale Algebra Relazionale algebra relazionale Linguaggi di Interrogazione linguaggi formali Algebra relazionale Calcolo relazionale Programmazione logica linguaggi programmativi SQL: Structured Query Language

Dettagli

Poniamo il carbonio al centro, tre idrogeni sono legati al carbonio direttamente e uno attraverso l ossigeno

Poniamo il carbonio al centro, tre idrogeni sono legati al carbonio direttamente e uno attraverso l ossigeno Strutture di Lewis E un metodo semplice per ottenere le formule di struttura di composti covalenti nota la formula molecolare, la configurazione elettronica del livello di valenza degli atomi e la connettività

Dettagli

Modelli Binomiali per la valutazione di opzioni

Modelli Binomiali per la valutazione di opzioni Modelli Binomiali per la valutazione di opzioni Rosa Maria Mininni a.a. 2014-2015 1 Introduzione ai modelli binomiali La valutazione degli strumenti finanziari derivati e, in particolare, la valutazione

Dettagli

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys.

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys. METODO DEI MINIMI QUADRATI GIUSEPPE GIUDICE Sommario Il metodo dei minimi quadrati è trattato in tutti i testi di statistica e di elaborazione dei dati sperimentali, ma non sempre col rigore necessario

Dettagli

1. Intorni di un punto. Punti di accumulazione.

1. Intorni di un punto. Punti di accumulazione. 1. Intorni di un punto. Punti di accumulazione. 1.1. Intorni circolari. Assumiamo come distanza di due numeri reali x e y il numero non negativo x y (che, come sappiamo, esprime la distanza tra i punti

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE

STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE La presentazione dei dati per molte ricerche mediche fa comunemente riferimento a frequenze, assolute o percentuali. Osservazioni cliniche conducono sovente

Dettagli

Così come le macchine meccaniche trasformano

Così come le macchine meccaniche trasformano DENTRO LA SCATOLA Rubrica a cura di Fabio A. Schreiber Il Consiglio Scientifico della rivista ha pensato di attuare un iniziativa culturalmente utile presentando in ogni numero di Mondo Digitale un argomento

Dettagli

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della RELAZIONE TRA VARIABILI QUANTITATIVE Lezione 7 a Accade spesso nella ricerca in campo biomedico, così come in altri campi della scienza, di voler studiare come il variare di una o più variabili (variabili

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

Indicizzazione terza parte e modello booleano

Indicizzazione terza parte e modello booleano Reperimento dell informazione (IR) - aa 2014-2015 Indicizzazione terza parte e modello booleano Gruppo di ricerca su Sistemi di Gestione delle Informazioni (IMS) Dipartimento di Ingegneria dell Informazione

Dettagli

Teoria della misurazione e misurabilità di grandezze non fisiche

Teoria della misurazione e misurabilità di grandezze non fisiche Teoria della misurazione e misurabilità di grandezze non fisiche Versione 12.6.05 Teoria della misurazione e misurabilità di grandezze non fisiche 1 Il contesto del discorso (dalla lezione introduttiva)

Dettagli

Guida rapida all uso di ECM Titanium

Guida rapida all uso di ECM Titanium Guida rapida all uso di ECM Titanium Introduzione Questa guida contiene una spiegazione semplificata del funzionamento del software per Chiputilizzare al meglio il Tuning ECM Titanium ed include tutte

Dettagli

Programmazione Funzionale

Programmazione Funzionale Programmazione Funzionale LP imperativi: apparenza simile modello di progettazione = macchina fisica Famiglia dei LP imperativi = progressivo miglioramento del FORTRAN Obiezione: pesante aderenza dei LP

Dettagli

Processi di business sovra-regionali relativi ai sistemi regionali di FSE. Versione 1.0 24 Giugno 2014

Processi di business sovra-regionali relativi ai sistemi regionali di FSE. Versione 1.0 24 Giugno 2014 Processi di business sovra-regionali relativi ai sistemi regionali di FSE Versione 1.0 24 Giugno 2014 1 Indice Indice... 2 Indice delle figure... 3 Indice delle tabelle... 4 Obiettivi del documento...

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

Esistenza di funzioni continue non differenziabili in alcun punto

Esistenza di funzioni continue non differenziabili in alcun punto UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA Esistenza di funzioni continue non differenziabili in alcun punto Relatore Prof. Andrea

Dettagli

QUESTIONARIO SUGLI STILI DI APPRENDIMENTO

QUESTIONARIO SUGLI STILI DI APPRENDIMENTO QUESTIONARIO SUGLI STILI DI APPRENDIMENTO Le seguenti affermazioni descrivono alcune abitudini di studio e modi di imparare. Decidi in quale misura ogni affermazione si applica nel tuo caso: metti una

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Università degli Studi di Parma. Facoltà di Scienze MM. FF. NN. Corso di Laurea in Informatica

Università degli Studi di Parma. Facoltà di Scienze MM. FF. NN. Corso di Laurea in Informatica Università degli Studi di Parma Facoltà di Scienze MM. FF. NN. Corso di Laurea in Informatica A.A. 2007-08 CORSO DI INGEGNERIA DEL SOFTWARE Prof. Giulio Destri http://www.areasp.com (C) 2007 AreaSP for

Dettagli

GLI ASSI CULTURALI. Allegato 1 - Gli assi culturali. Nota. rimessa all autonomia didattica del docente e alla programmazione collegiale del

GLI ASSI CULTURALI. Allegato 1 - Gli assi culturali. Nota. rimessa all autonomia didattica del docente e alla programmazione collegiale del GLI ASSI CULTURALI Nota rimessa all autonomia didattica del docente e alla programmazione collegiale del La normativa italiana dal 2007 13 L Asse dei linguaggi un adeguato utilizzo delle tecnologie dell

Dettagli

Manipolazione di testi: espressioni regolari

Manipolazione di testi: espressioni regolari Manipolazione di testi: espressioni regolari Un meccanismo per specificare un pattern, che, di fatto, è la rappresentazione sintetica di un insieme (eventualmente infinito) di stringhe: il pattern viene

Dettagli

PROGETTO EM.MA PRESIDIO

PROGETTO EM.MA PRESIDIO PROGETTO EM.MA PRESIDIO di PIACENZA Bentornati Il quadro di riferimento di matematica : INVALSI e TIMSS A CONFRONTO LE PROVE INVALSI Quadro di riferimento per la valutazione Quadro di riferimento per i

Dettagli

Il Business Process Management: nuova via verso la competitività aziendale

Il Business Process Management: nuova via verso la competitività aziendale Il Business Process Management: nuova via verso la competitività Renata Bortolin Che cosa significa Business Process Management? In che cosa si distingue dal Business Process Reingeneering? Cosa ha a che

Dettagli

Architettura dei Calcolatori

Architettura dei Calcolatori Architettura dei Calcolatori Sistema di memoria parte prima Ing. dell Automazione A.A. 2011/12 Gabriele Cecchetti Sistema di memoria parte prima Sommario: Banco di registri Generalità sulla memoria Tecnologie

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

Middleware Laboratory. Dai sistemi concorrenti ai sistemi distribuiti

Middleware Laboratory. Dai sistemi concorrenti ai sistemi distribuiti Dai sistemi concorrenti ai sistemi distribuiti Problemi nei sistemi concorrenti e distribuiti I sistemi concorrenti e distribuiti hanno in comune l ovvio problema di coordinare le varie attività dei differenti

Dettagli

Ascrizioni di credenza

Ascrizioni di credenza Ascrizioni di credenza Ascrizioni di credenza Introduzione Sandro Zucchi 2014-15 Le ascrizioni di credenza sono asserzioni del tipo in (1): Da un punto di vista filosofico, i problemi che pongono asserzioni

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

Le funzionalità di un DBMS

Le funzionalità di un DBMS Le funzionalità di un DBMS Sistemi Informativi L-A Home Page del corso: http://www-db.deis.unibo.it/courses/sil-a/ Versione elettronica: DBMS.pdf Sistemi Informativi L-A DBMS: principali funzionalità Le

Dettagli

Corso di Programmazione ad Oggetti

Corso di Programmazione ad Oggetti Corso di Programmazione ad Oggetti Introduzione alla programmazione ad oggetti a.a. 2008/2009 Claudio De Stefano 1 La programmazione modulare Un programma può essere visto come un insieme di moduli che

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 40: Filtro di Kalman - introduzione. Struttura ricorsiva della soluzione.

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 40: Filtro di Kalman - introduzione. Struttura ricorsiva della soluzione. IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI Lezione 40: Filtro di Kalman - introduzione Cenni storici Filtro di Kalman e filtro di Wiener Formulazione del problema Struttura ricorsiva della soluzione

Dettagli

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE variabile casuale (rv): regola che associa un numero ad ogni evento di uno spazio E. variabile casuale di Bernoulli: rv che può assumere solo due valori (e.g.,

Dettagli

Rapida Introduzione all uso del Matlab Ottobre 2002

Rapida Introduzione all uso del Matlab Ottobre 2002 Rapida Introduzione all uso del Matlab Ottobre 2002 Tutti i tipi di dato utilizzati dal Matlab sono in forma di array. I vettori sono array monodimensionali, e così possono essere viste le serie temporali,

Dettagli

3. TEORIA DELL INFORMAZIONE

3. TEORIA DELL INFORMAZIONE 3. TEORIA DELL INFORMAZIONE INTRODUZIONE MISURA DI INFORMAZIONE SORGENTE DISCRETA SENZA MEMORIA ENTROPIA DI UNA SORGENTE NUMERICA CODIFICA DI SORGENTE 1 TEOREMA DI SHANNON CODICI UNIVOCAMENTE DECIFRABILI

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

Cos è l Ingegneria del Software?

Cos è l Ingegneria del Software? Cos è l Ingegneria del Software? Corpus di metodologie e tecniche per la produzione di sistemi software. L ingegneria del software è la disciplina tecnologica e gestionale che riguarda la produzione sistematica

Dettagli

Sistemi Operativi. Interfaccia del File System FILE SYSTEM : INTERFACCIA. Concetto di File. Metodi di Accesso. Struttura delle Directory

Sistemi Operativi. Interfaccia del File System FILE SYSTEM : INTERFACCIA. Concetto di File. Metodi di Accesso. Struttura delle Directory FILE SYSTEM : INTERFACCIA 8.1 Interfaccia del File System Concetto di File Metodi di Accesso Struttura delle Directory Montaggio del File System Condivisione di File Protezione 8.2 Concetto di File File

Dettagli

Progettazione di un DB....in breve

Progettazione di un DB....in breve Progettazione di un DB...in breve Cosa significa progettare un DB Definirne struttura,caratteristiche e contenuto. Per farlo è opportuno seguire delle metodologie che permettono di ottenere prodotti di

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli