identificando (a, 0) con a, (b, 0) con b e posto i =(0, 1) possiamo esprimere un numero complesso nella forma 2 = a + ib. 2 ) a

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "identificando (a, 0) con a, (b, 0) con b e posto i =(0, 1) possiamo esprimere un numero complesso nella forma 2 = a + ib. 2 ) a"

Transcript

1 Numeri Complessi E be oto che o esiste lcu umero rele x tle che x = o, equivletemete, che l equzioe x + = 0 o h soluzioi reli. Cosí come è possibile estedere i umeri rzioli, itroducedo i umeri reli, i modo che equzioi quli d esempio X = 0 bbio soluzioi è che possibile estedere i umeri reli i modo che l equzioe x + = 0 bbi soluzioi. Il sistem di umeri cui si perviee, i umeri complessi, h proprietà molto iteressti, desempio ogi equzioe lgebric h soluzioi complesse. Defiizioe. Nell isieme C = R R delle coppie ordite di umeri reli defiimo u somm e u prodotto poedo: (, b)+(c, d) =( + c, b + d) (, b) (c, d) =(c bd, d + bc) E immedito verificre che queste operzioi soo commuttive e ssocitive e vle l proprietà distributiv del prodotto rispetto ll somm Poiché per ogi umero complesso (, b) si h: (, b)+(0, 0) = (, b) e (, b) (, 0) = (, b) (0, 0) è l elemeto eutro rispetto ll somm e (, 0) è l elemeto eutro rispetto l prodotto. Ioltre si verific subito che (, b) è l opposto di (, b) e,se e b o soo etrmbi ulli, (, b) ( + b, b )=(, 0) + b cioè (/( + b ), b/( + b )è l iverso di (, b). Itroducimo or u ltr otzioe per i umeri complessi che risult prticolrmete efficce per effetture i clcoli. Siccome per ogi (, b) C si h: (, b) =(, 0)+(b, 0) (0, ) idetificdo (, 0) co, (b, 0) co b e posto i =(0, ) possimo esprimere u umero complesso ell form + ib dove, b R ed i C è il umero complesso, detto uità immgiri, tle che i =(0, ) (0, ) = (, 0) =. Ciò sigific che i C il umero è u qudrto. Più i geerle si h: Proposizioe Ogi umero complesso è u qudrto. Dim. Segue dll ugugliz ( ( + b )+ + b + i ) = + ib. Defiizioe 3. Dto u umero complesso z = +i b, defiimo prte rele Re (z), prte immgiri Im (z), modulo z e orm N(z) diz poedo: Re (z) = Im (z) =b z = + b N(z) = z = + b Il umero z = ib si dice coiugto di z e l ppliczioe σ : C C defiit d σ(z) =z è dett coiugio.

2 Proposizioe 4 Vlgoo le segueti proprietà:. (z) =z ;. z + z = z + z ; 3. z z = z z ; 4. z = z ; 5. z = z z ; 6. z R se e solo se z = z ; 7. z =0 se e solo se z =0. Dim. Soo fcili verifiche. Proposizioe 5 L somm e il prodotto di due umeri complessi coiugti soo due umeri reli. Dim. Se z = + ib, si h iftti: z + z = e z z = + b. Proposizioe 6 Dti due umeri complessi z e z si h: z + z z + z. Dim. Si h: z + z =(z + z )(z + z )= z + z + z z + z z. Poiché z z e z z soo coiugti, l loro somm è il umero rele Re (z z ). M l prte rele di u umero complesso è miore o ugule l suo modulo, quidi z z + z z z z = z z. Ne segue z + z z + z + z z =( z + z ). Rppresetzioe trigoometric Poiché u umero complesso è determito d u coppi di umeri reli, possimo rppresetre geometricmete u umero complesso co u puto di u pio dotto di u sistem di coordite crtesie ortogoli. Più precismete ssocido l umero complesso + ib il puto di coordite (, b) si h u corrispodez biuivoc tr umeri complessi e puti del pio. I quest situzioe, qudo cioè i puti soo idetificti co umeri complessi il pio è detto pio di Argd-Guss, l sse x si dice sse rele e l sse y sse immgirio. U umero complesso z è idividuto el pio di Argd-Guss dl suo modulo ρ e, z = + i b se z 0, dll rotzioe tiorri ϑ che il semisse positivo rele deve compiere per b sovrpporsi ll semirett uscete dll origie e che cotiee z. L rotzioe ϑ, misurt z i rditi, è defiit meo di multipli di π e si chim rgometo di z e si deot Arg (z). Quidi l rgometo di z o è uico Arg(z) m se ϑ = Arg (z), ogi umero rele del tipo O ϑ +kπ co k Z è u rgometo di z. Se ρ e ϑ soo il modulo e l rgometo di u umero complesso z = + ib o ullo, si h llor = ρ cos ϑ b = ρ si ϑ edche cos ϑ = b + b si ϑ = + b Dlle formule precedeti si ottiee: z = ρ(cos ϑ + i si ϑ) che è dett form trigoometric del umero complesso z.

3 Proposizioe 7 Se z, z C, sih Arg (z z ) = Arg (z ) + Arg (z ). Dim. Si z = ρ (cos ϑ + i si ϑ )ez = ρ (cos ϑ + i si ϑ ). Allor z z = ρ ρ (cos ϑ + i si ϑ )(cos ϑ + i si ϑ ) = ρ ρ (cos ϑ cos ϑ si ϑ si ϑ )+i (cos ϑ si ϑ + si ϑ cos ϑ ) = ρ ρ (cos(ϑ + ϑ )+i si(ϑ + ϑ ). Corollrio 8 (Formul di de Moivre) Per ogi Z si h [ρ(cos ϑ + i si ϑ)] = ρ (cos ϑ + i si ϑ). Rppresetzioe espoezile I mtemtic u delle fuzioi più importti è sez dubbio l fuzioe espoezile e x. Tle fuzioe si può estedere l cmpo complesso utilizzdo l formul di Eulero, u delle formule più curiose (e più utili) di tutt l mtemtic, che permette di defiire le poteze co espoete immgirio. L formul è l seguete: se ϑ R, e iϑ = cos ϑ + i si ϑ No riportimo l dimostrzioe di tle formul che richiederebbe lcue ozioi di teori delle fuzioi di vribile compless. Dll formul di Eulero si ricv u scrittur più comptt dell rppresetzioe trigoometric di u umero complesso. z = ρ(cos ϑ + i si ϑ) =ρe iϑ Quest otzioe risult prticolrmete comod si per l brevità si per il ftto che, come si può dimostrre, le proprietà delle poteze vlgoo che per l espoezile complesso. Acceimo d lcue cosegueze dell formul (). Se z = + ib C è u umero complesso, llor dll () si ricv e z = e +ib = e e ib = e (cos b + i si b) quidi si può defiire l espoezile di u quluque umero complesso. L fuzioe di vribile compless e z è u fuzioe periodic di periodo immgirio πi per cui si h e z+kπi = e z z C Il ftto che e z o è iiettiv poe problemi per l su iversioe. I effetti l defiizioe di u fuzioe logritmo el cmpo complesso, che se possibile, o è uic e l su itroduzioe poe precchi problemi troppo delicti per essere ffrotti i quest sede. E ivece fcile estedere l cmpo complesso le fuzioi trigoometriche i modo tle che l formul di Eulero vlg i geerle e o solo per u espoete purmete immgirio. Iftti dlle si ricv e iz = cos z + i si z ; si z = eiz e iz i e iz = cos z i si z ; cos z = eiz + e iz. Esempio Se z = ρe iϑ e Z, usdo l otzioe espoezile l formul di de Moivre si riscrive i modo più comptto z = ρ e iϑ Si vogli desempio clcolre ( + i) 00. Poiché +i = e iπ/4 si h ( + i) 00 =( ) 00 e i 00π/4 = 50 e i 5π = 50. () 3

4 Rdici di u umero complesso Dto u umero complesso α e u itero positivo, si dice che z C è u rdice -esim di α se z = α. Utilizzdo l rppresetzioe trigoometric di u umero complesso si può provre il seguete teorem che geerlizz l Proposizioe. Teorem 9 Ogi umero complesso α 0 h rdici -esime distite. Dim. Sio r = α e ϑ = Arg (α), llor il modulo ρ e l rgometo φ di u rdice -esim di α devoo essere tli che ρ = r e φ ϑ (modπ). Quidi ρ = r e φ = ϑ +kπ k Z qui r sigific rdice -esim ritmetic del umero rele positivo r. Vicevers si vede subito che ogi umero complesso dell form β k = r ( cos ϑ +kπ + i se ϑ +kπ ) k Z () è u rdice -esim di α. E chiro che l vrire di k i Z l () o forisce umeri tutti distiti, zi due diversi vlori k e k di k foriscoo lo stesso umero complesso se e solo se ϑ +k π ϑ +k π (modπ) cioè sek k 0 (mod ). Per vere tutte le rdici -esime di α, e ciscu u volt sol, bst duque ttribuire k i vlori 0,,...,. Se α = l () forisce le rdici -esime dell uità ε k = cos kπ + i sekπ k =0,,...,. (3) Le rdici -esime dell uità costituiscoo u gruppo ciclico (moltiplictivo) di ordie esih ε k = ε k. I geertori di questo gruppo soo le rdici -esime primitive dell uità; esse si ottegoo dll (3) qudo k è primo co. I prticolre u rdice primitiv è ε = cos π + i seπ Si osservi che l () si può così riscrivere: β k = β 0 ε k Rppresetdo i umeri complessi el pio di Argd-Guss si vede subito che le rdici dell uità soo i vertici di u poligoo regolre co lti iscritto el cerchio di cetro l origie e rggio e che h u vertice el puto (, 0). Cosiderimo l equzioe x + bx + c = 0, dove, b, c soo umeri reli e 0. Tle equzioe si può riscrivere ell form ( x + b ) 4c b + 4 =0 Se = b 4c 0, l equzioe h le rdici reli ( b ± )/(). Se < 0, l equzioe o h rdici reli m esistoo due rdici complesse coiugte dte d x = b + i e x = b i Questo ftto si esprime dicedo che ogi poliomio di secodo grdo coefficieti reli h due rdici complesse coiugte. Di ftto vle u risultto molto più geerle oto come teorem fodmetle dell lgebr che fferm che ogi poliomio o costte i C[X] h rdici i C. Vi soo molte dimostrzioi di questo teorem, m che le più semplici richiedoo l uso di strumeti che esulo dll mbito di questo corso (fuzioi di due vribili reli oppure fuzioi di vribile compless). Pertto qui ci limiteremo dre l eucito ed lcue importti cosegueze. Teorem 0 (D Alembert) Ogi poliomio coefficieti complessi di grdo positivo possiede i C lmeo u rdice. 4

5 Esercizi Es.. Clcolre l prte rele e l prte immgiri dei segueti umeri complessi: 4+ 3i 5+ 3i, ( +i) 7, i( i) 5,, (i i 3) 3, i. Es.. Risolvere le equzioi: ( + 3i)z =4; ( 3i)z = i; z z i =/3. Es. 3. Determire tutti i umeri complessi z di modulo tli che ( + 3i)z R. Es. 4. Determire i umeri complessi z tli che z 3 R e z =. Es. 5. Scrivere i form trigoometric i segueti umeri complessi: +i, 3 i, 4, 3i,, 3 i, 3+i, cos π/3 i si π/3, Es. 6. si π/4+i cos π/4, cos 0 + i si π/, 4(cos π/4 i si π/4)(si 3π/4+i cos 3π/4), (cos π/4 i si π/3), (si φ i cos φ), Clcolre il modulo dei umeri complessi: + + i, +i +i i 3 i. (+3i)(cos 7 + i si 7), (4+3i)(cos 3 + i si 3) 45. Es. 7. Rppresetre el pio di Guss gli isiemi: {z C Re (z) }, {z C Im (z) =}, {z C z =}, {z C z z =}, {z C z z =0}, {z C z + z =7}, {z C Arg (z) = 5π 3 }, {z C z + z = i}, {z C Re (z) Im(z) =0}. Es. 8. Determire: ) le rdici seste di ; b) le rdici qurte di i; c) le rdici cubiche di ( +i i )3 ; d) le rdici qudrte di + i 3. Es. 9. Determire le rdici dei segueti poliomi: (X i) 5 ; X 4 +; X 3 3X +7X 5; X 6 +X, X 4, ix 3 X 3, 3X 5 i.. 5

NUMERI COMPLESSI. Definizione. Si dice numero complesso z la coppia ordinata di numeri reali (a, b), ossia: z = (a, b)

NUMERI COMPLESSI. Definizione. Si dice numero complesso z la coppia ordinata di numeri reali (a, b), ossia: z = (a, b) NUMERI COMPLESSI Dto u poliomio P(x) di grdo ell vribile (rele) x, o sempre esso mmette rdici, e, qudo le mmette, esse possoo essere i umero iferiore rispetto l grdo del poliomio. (Ricordimo che si dice

Dettagli

LEZIONE Numeri complessi. Sappiamo già come sommare le coppie di numeri reali. Se (a, b ), (a, b ) R 2 allora la coppia somma è

LEZIONE Numeri complessi. Sappiamo già come sommare le coppie di numeri reali. Se (a, b ), (a, b ) R 2 allora la coppia somma è LEZIONE 14 14.1. Numeri complessi. Sppimo già come sommre le coppie di umeri reli. Se, b,, b R 2 llor l coppi somm è, b +, b = +, b + b R 2. Voglimo or defiire che u operzioe di prodotto i R 2. Defiizioe

Dettagli

Complessi. 1 Definizioni Forma trigonometrica: argomento e funzione arcotangente Potenze e radici Polinomi e radici.

Complessi. 1 Definizioni Forma trigonometrica: argomento e funzione arcotangente Potenze e radici Polinomi e radici. Complessi. Idice 1 Defiizioi. 1 Form trigoometric: rgometo e fuzioe rcotgete. 3 Poteze e rdici. 4 4 Poliomi e rdici. 5 5 Estesioe di fuzioi elemetri l cmpo complesso. 6 6 Appedice per i lettori più iteressti.

Dettagli

( x) ( ) ( )( ( ) ( ) ( ) ( ) )

( x) ( ) ( )( ( ) ( ) ( ) ( ) ) C Boccccio Apputi di Alisi Mtemtic CAP IV CAP IV FUNZIONI REALI Per due fuzioi reli f : X R e g : X R si defiiscoo le uove fuzioi f g : X R, f g : X R ed f g : X R l modo seguete: X : f g = f g X : ( )(

Dettagli

2 Sistemi di equazioni lineari.

2 Sistemi di equazioni lineari. Sistemi di equzioi lieri. efiizioe. Si dice equzioe liere elle icogite equzioe dell form () + +...+ = o che (') i= i i = ove,,..., R si chimo coefficieti e R termie oto.,,..., ogi efiizioe. Si dice soluzioe

Dettagli

Matematica e-learning - Corso Zero di Matematica. I Radicali. Prof. Erasmo Modica A.A. 2009/2010

Matematica e-learning - Corso Zero di Matematica. I Radicali. Prof. Erasmo Modica A.A. 2009/2010 Mtemtic e-lerig - Corso Zero di Mtemtic I Rdicli Prof. Ersmo Modic ersmo@glois.it A.A. 2009/200 I umeri turli 2 Le rdici Abbimo visto che l isieme dei umeri reli è costituito d tutti e soli i umeri che

Dettagli

RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO

RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO L stbilità di u sistem liere, ivrite ed prmetri cocetrti può vlutrsi co due criteri diversi che fo rispettivmete riferimeto ll rispost

Dettagli

a ij Indice di riga Indice di colonna Def. Matrice Tabella costituita da m righe ed n colonne. Si dice di tipo m x n o (m,n)

a ij Indice di riga Indice di colonna Def. Matrice Tabella costituita da m righe ed n colonne. Si dice di tipo m x n o (m,n) MTRICI: defiizioi Cosiderimo delle tbelle di umeri, i cui ci si imbtte spesso i molti problemi di mtemtic o di scieze pplicte. Tle tbelle ho u doppio ordimeto, per righe e per coloe, utilizzeremo i segueti

Dettagli

punto di accumulazione per X. Valgono le seguenti

punto di accumulazione per X. Valgono le seguenti 4 I LIMITI Si f : X R R u fuzioe rele di vribile rele. Si puto di ccumulzioe per X. Vlgoo le segueti DEFINIZIONI ( ε ( ε ε ( ε ε. ( ε { } lim f( = l R : > I I ' X I : f( l I I ' X

Dettagli

13. Determinante di una matrice quadrata

13. Determinante di una matrice quadrata Determite di u mtrice qudrt Defiizioe Dti umeri reli,,,,, (-), (-), col simbolo i idiceremo l loro somm ( + + + + + (-) + (-) + ) Quidi, i i := + + + + + (-) + (-) + i Esempio y i = y + y + y + y + + y

Dettagli

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria Vi Aldo Mo ro, 1097-300 15 Chioggi (VE) t el. 0414 965 81 1 - fx 0 414 96 54 3 - ww w. itisri ghi.com POTENZA i N... DIVISIBILITÀ e NUMERI PRIMI...3 MASSIMO COMUN DIVISORE e MINIMO COMUNE MULTIPLO...3

Dettagli

. La n a indica il valore assoluto della radice.

. La n a indica il valore assoluto della radice. RADICALI Defiizioe: U umero irrziole è u umero decimle illimitto o periodico. Esempio:, 0, π Per clcolre il vlore pprossimto di u espressioe coteete rdici coviee mipolre l espressioe per ridurre l mssimo

Dettagli

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: =

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: = LE SUCCESSIONI Si cosideri l seguete sequez di umeri:,,, 3, 5, 8, 3,, 34, 55, 89, 44, 33, detti di Fibocci. Ess rppreset il umero di coppie di coigli preseti ei primi mesi i u llevmeto! Si cosideri l sequez

Dettagli

Successioni. (0, a 0 ), (1, a 1 ), (2, a 2 ),...

Successioni. (0, a 0 ), (1, a 1 ), (2, a 2 ),... Successioi U successioe di umeri reli e u legge che ssoci ogi umero turle = 0, 1, 2, u umero rele, i breve: e u fuzioe N R, Puo essere rppresett co l isieme delle coppie ordite (0, 0 ), (1, 1 ), (2, 2

Dettagli

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE220

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE220 Uiversità degli Studi Rom Tre - Corso di Lure i Mtemtic Tutorto di GE220 A.A. 2010-2011 - Docete: Prof. Edordo Seresi Tutori: Filippo Mri Boci, Amri Iezzi e Mri Chir Timpoe Soluzioi Tutorto 4 (7 Aprile

Dettagli

Capitolo 1. Richiami di teoria elementare

Capitolo 1. Richiami di teoria elementare 7 Cpitolo Richimi di teori elemetre Cei di teori degli isiemi Il cocetto di isieme è u cocetto primitivo, cioè uo di quei presupposti o ssiomi che i mtemtic costituiscoo i fodmeti e dei quli o è dt lcu

Dettagli

Sdl ELEMENTI DI BASE: Potenze. Radicali. Logaritmi

Sdl ELEMENTI DI BASE: Potenze. Radicali. Logaritmi ELEMENTI DI BASE: Poteze Rdicli Logritmi POTENZE L potez co bse ed espoete, o potez - esim di, si idic co ed è il prodotto di fttori tutti uguli d. =... ( volte) 0 = 1 PROPRIETÀ DELLE POTENZE m = +m :

Dettagli

I numeri reali come sezione nel campo dei numeri razionali

I numeri reali come sezione nel campo dei numeri razionali I umeri reli come sezioe el cmpo dei umeri rzioli Come sppimo, el cmpo dei umeri rzioli, le quttro operzioi fodmetli soo sempre possibili, el seso che, effettudo sopr u quluque isieme fiito u sequel fiit

Dettagli

SUCCESSIONI E SERIE DI FUNZIONI { } n( ) f x converge puntualmente su S D ad una =, cioè se. ( n ) ( )

SUCCESSIONI E SERIE DI FUNZIONI { } n( ) f x converge puntualmente su S D ad una =, cioè se. ( n ) ( ) Successioi di fuzioi { } Si SUCCESSIONI E SERIE DI FUNZIONI f u successioe di fuzioi defiite tutte i u sottoisieme D { } Defiizioe : Si dice che l successioe fuzioe f ( ) se, S, risult f f lim f coverge

Dettagli

EQUAZIONI RAZIONALI. Principio di moltiplicazione: 0 è un polinomio.

EQUAZIONI RAZIONALI. Principio di moltiplicazione: 0 è un polinomio. EQUAZIONI RAZIONALI A Dti due poliomi e B, l relzioe: A B scritt llo scopo di determire, se esistoo, vlori reli per i quli A e B ssumoo lo stesso vlore, si chim equzioe lebric ell icoit. U umero è soluzioe

Dettagli

Approssimazione di funzioni mediante Interpolazione polinomiale

Approssimazione di funzioni mediante Interpolazione polinomiale Docete: Cludio Esttico esttico@uisubri.it Approssimzioe di fuzioi medite Lezioe bst su pputi del prof. Mrco Gvio Approssimzioe di fuzioi L pprossimzioe di fuzioi. Iterpolzioe e migliore pprossimzioe..

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Lure i Scieze e Tecologie Agrrie Corso Itegrto: Mtemtic e Sttistic Modulo: Mtemtic (6 CFU) (4 CFU Lezioi CFU Esercitzioi) Corso di Lure i Tutel e Gestioe del territorio e del Pesggio Agro-Forestle

Dettagli

Algebra» Appunti» Logaritmi

Algebra» Appunti» Logaritmi MATEMATICA & FISICA E DINTORNI Psqule Spiezi Algebr» Apputi» Logriti TEOREMA Sio e b ueri reli co R + {} e b R +. Esiste, ed è uico, u uero k R: k b Il uero k è detto rito di b i bse e viee idicto co l

Dettagli

Capitolo 1. Richiami di teoria elementare

Capitolo 1. Richiami di teoria elementare 7 Cpitolo Richimi di teori elemetre Cei di teori degli isiemi Il cocetto di isieme è u cocetto primitivo, cioè uo di quei presupposti o ssiomi che i mtemtic costituiscoo i fodmeti e dei quli o è dt lcu

Dettagli

IL PROBLEMA DEI QUADRATI

IL PROBLEMA DEI QUADRATI IL PROBLEMA DEI QUADRATI MICHELE ROVIGATTI MARGHERITA MORETTI SIMONE MORETTI CATERINA COSTANZO GABRIELE ARGIRÒ 0. INTRODUZIONE. Il problem sce d u quesito di combitoric iserito el testo di u gr di mtemtic

Dettagli

Esercitazioni di Algebra e Geometria. Anno accademico Dott.ssa Sara Ferrari

Esercitazioni di Algebra e Geometria. Anno accademico Dott.ssa Sara Ferrari Eseritzioi di lgebr e Geometri o demio 9- Dott.ss Sr Ferrri e-mil sr.ferrri@ig.uibs.it Eseritzioi: mrtedì 8.-. veerdì 9.-. ttezioe: le lezioi del veerdì iizio esttmete lle 9.. Rievimeto studeti: veerdì

Dettagli

Scuole italiane all estero (Santiago del Cile) 2010 Quesiti QUESITO 1

Scuole italiane all estero (Santiago del Cile) 2010 Quesiti QUESITO 1 www.mtefili.it Scuole itlie ll estero (Stigo del Cile) 21 Quesiti QUESITO 1 Si f(x) = { x2 5, se x 3 x + 2, se x > 3 Si trovi: lim f(x) ; x 3 lim f(x) ; x 3 + lim f(x). x 3 lim f(x) = lim x 3 x 3 (x2 5)

Dettagli

CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE. Saper calcolare semplici limiti, in particolare delle funzioni razionali intere e fratte.

CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE. Saper calcolare semplici limiti, in particolare delle funzioni razionali intere e fratte. CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE OBIETTIVI MINIMI: Sper idividure le fuzioi cotiue Sper pplicre i teorei sui iti Sper idividure le fore ideterite Sper clcolre seplici iti, i prticolre delle fuzioi

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Fcoltà di Igegeri - Lure Triele i Igegeri Meccic Corso di Clcolo Numerico Dott.ss M.C. De Bois Uiversità degli Studi dell Bsilict, Potez Fcoltà di Igegeri Corso di Lure i Igegeri Meccic Ao Accdemico 004/05

Dettagli

Polinomi, disuguaglianze e induzione.

Polinomi, disuguaglianze e induzione. Allemeti Disid Mtemtic Geio 03 Poliomi, disuguglize e iduzioe. Qul è l mssim re di u rettgolo vete perimetro ugule 576? [Suggerimeto: utilizzre le medie e le loro disuguglize.] Svolgimeto. Predimo i cosiderzioe

Dettagli

Liceo Classico di Trebisacce Classe IV B - MATEMATICA. Prof. Mimmo Corrado. Numeri naturali [ ] ( ) ( ) Numeri razionali

Liceo Classico di Trebisacce Classe IV B - MATEMATICA. Prof. Mimmo Corrado. Numeri naturali [ ] ( ) ( ) Numeri razionali Mtemtic www.mimmocorrdo.it Liceo Clssico di Treiscce Clsse IV B - MATEMATICA Esercizi per le vcze estive 0 Prof. Mimmo Corrdo Numeri turli Clcol il vlore delle segueti espressioi. 0 ( ) [ ] ( ) [ ] 0 [

Dettagli

ANALISI MATEMATICA STUDIO DI FUNZIONI

ANALISI MATEMATICA STUDIO DI FUNZIONI ANALISI MATEMATICA STUDIO DI FUNZIONI. RELAZIONI Le fuzioi soo prticolri relzioi; le relzioi (birie) soo sottoisiemi del prodotto crtesio tr due isiemi. L trttzioe prte quidi dl cocetto di prodotto crtesio.

Dettagli

Analisi Matematica I - modulo B

Analisi Matematica I - modulo B Alisi Mtemtic I - modulo B Apputi delle lezioi teute dl Prof. A. Fod Uiversità di Trieste, CdL Mtemtic,.. 2009/200 Il cmpo dei umeri complessi. Defiizioi e prime proprietà Cosiderimo l isieme R R = {(,

Dettagli

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: =

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: = Si cosideri l seguete sequez di umeri:,,, 3, 5, 8, 3,, 34, 55, 89, 44, 33, detti di Fibocci. Ess rppreset il umero di coppie di coigli preseti ei primi mesi i u llevmeto! Si cosideri l sequez otteut dividedo

Dettagli

Scuola delle Biotecnologie - ISTITUZIONI DI MATEMATICHE - a. a. 2006/2007 Prof. Margherita Fochi. Appunti precorso. k k

Scuola delle Biotecnologie - ISTITUZIONI DI MATEMATICHE - a. a. 2006/2007 Prof. Margherita Fochi. Appunti precorso. k k Scuol delle Biotecologie - ISTITUZIONI DI MATEMATICHE -.. 006/007 Prof. Mrgherit Fochi Apputi precorso.- Poliomi.. - Geerlità Def..- Moomio ell vribile di grdo k è l espressioe : Def..- Poliomio ell vribile

Dettagli

(labeling) si ottiene così l insieme a n ordinato (codominio della funzione f ) : Primo termine. Termine Generale

(labeling) si ottiene così l insieme a n ordinato (codominio della funzione f ) : Primo termine. Termine Generale Successioi umeriche / Def. Si chim successioe umeric ogi fuzioe f d N i R defiit i u isieme del tipo I= { N 0 }, co 0 umero turle e che ssoci d u itero di I u umero rele f(). I geerle però porremo f: N

Dettagli

Gerarchia degli infiniti e asintotici per successioni numeriche 1

Gerarchia degli infiniti e asintotici per successioni numeriche 1 Gerrchi degli ifiiti e sitotici per successioi umeriche Sio { } e { } due successioi ifiite Vogo stilire u gerrchi di tli successioi el seso di cofrotre, se possiile, le velocità co le quli le successioi

Dettagli

O. C A L I G A R I S - P. O L I VA A N A L I S I M AT E M AT I C A 1

O. C A L I G A R I S - P. O L I VA A N A L I S I M AT E M AT I C A 1 O. C A L I G A R I S - P. O L I VA A N A L I S I M AT E M AT I C A 1 1. U po di Logic Dicimo proposizioe u ffermzioe di cui simo i grdo di stbilire se è ver o è fls. Assegt u proposizioe P si può costruire

Dettagli

Analisi Matematica I. Università di Padova, Corsi di Laurea in Ingegneria. Paolo Guiotto

Analisi Matematica I. Università di Padova, Corsi di Laurea in Ingegneria. Paolo Guiotto Alisi Mtemtic I Uiversità di Pdov, Corsi di Lure i Igegeri Polo Guiotto ii Premess Questo mterile copre u primo corso di Alisi Mtemtic per corsi di Lure di idirizzo scietifico. L cceto è posto sullo sviluppo

Dettagli

1 Formula di Taylor. 1.1 I Simboli e o( ) Definizione 1.1 Sia I un intorno di x 0 R {± }. Siano f, g : I R con g(x) 0, x I.

1 Formula di Taylor. 1.1 I Simboli e o( ) Definizione 1.1 Sia I un intorno di x 0 R {± }. Siano f, g : I R con g(x) 0, x I. Formul di Tylor. I Simboli e o( ) Defiizioe. Si I u itoro di x 0 R {± }. Sio f, g : I R co g(x) 0, x I. (i) Dicimo che f è sitotic g per x x 0 se f(x) x x 0 g(x) = ; scrivimo: f(x) g(x) per x x 0. (ii)

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO a.s. 2002/2003 CORSO SPERIMENTALE PNI e Progetto Brocca SESSIONE SUPPLETIVA

ESAME DI STATO DI LICEO SCIENTIFICO a.s. 2002/2003 CORSO SPERIMENTALE PNI e Progetto Brocca SESSIONE SUPPLETIVA ESAME DI STATO DI LICEO SCIENTIFICO.s. / CORSO SPERIMENTALE PNI e Progetto Brocc SESSIONE SUPPLETIVA Il cdidto risolv uo dei due problemi e 5 dei quesiti i cui si rticol il questiorio. PROBLEMA. I u pio,

Dettagli

NECESSITÀ DEI LOGARITMI

NECESSITÀ DEI LOGARITMI NECESSITÀ DEI LOGARITMI Nelle equzioi espoezili he imo risolto sior er sempre possiile ridursi equzioi i ui si vev l stess se, l equzioe divetv lgeri sempliemete uguglido gli espoeti. M o tutte le equzioi

Dettagli

Dove la suddivisione dell intervallo [a,b] è individuata dai punti

Dove la suddivisione dell intervallo [a,b] è individuata dai punti 04//205 Clcolo itegrle per fuzioi di u vriile Clcolo itegrle Itegrle defiito Si f:[,] R, limitt ξ ξ 2 ξ 3 ξ 4 ξ 5 0 = 2 3 4 5 = Costruimo l somm di Cuchy-Riem S f f Dove l suddivisioe dell itervllo [,]

Dettagli

Unità Didattica N 35 I sistemi lineari

Unità Didattica N 35 I sistemi lineari Uità Didttic N 5 Uità Didttic N 5 ) Sistem liere di equioi i icogite: teorem di Crmer ) Sistem liere di m equioi i icogite ) Teorem di ouchè-cpelli 4) Sistem di m equioi lieri omogeee i icogite 5) isoluioe

Dettagli

Appunti di Matematica per le Scienze Sociali

Appunti di Matematica per le Scienze Sociali 2014 Apputi di Mtemtic per le Scieze Socili Quello che vete imprto scuol (o lmeo u prte) m che o vi ricordte. [Digitre qui il suto del documeto. Di orm è u breve sitesi del coteuto del documeto. [Digitre

Dettagli

ELLISSE STANDARD. 1. Il concetto

ELLISSE STANDARD. 1. Il concetto ELLIE TANDARD. Il cocetto L icertezz dell posizioe plimetric di u puto i u rete si deiisce ttrverso lo studio dell ellisse stdrd. Prim di pssre lle relzioi mtemtiche che govero questo rgometo è preeribile

Dettagli

VINCENZO AIETA Matrici,determinanti, sistemi lineari

VINCENZO AIETA Matrici,determinanti, sistemi lineari VINCENZO AIETA Mtrici,determiti, sistemi lieri 1 Mtrici 1.1 Defiizioe di cmpo. Dto u isieme A, dotto di due operzioi itere (, ), A Φ, si dice che l struttur lgebric A(, ), di sostego A, è u cmpo se: (1)

Dettagli

Successioni in R. n>a n+1

Successioni in R. n>a n+1 Successioi i R U successioe è u fuzioe f : N R. Si preferisce deotre f() co e quidi u successioe co ( ). Il codomiio di u successioe ( ) è l'isieme dei vlori che ssume l successioe, cioè { } successioe

Dettagli

1^ Lezione. Matrici e determinanti. Operazioni tra matrici. Proprietà delle matrici. Determinante. Proprietà dei determinanti.

1^ Lezione. Matrici e determinanti. Operazioni tra matrici. Proprietà delle matrici. Determinante. Proprietà dei determinanti. Corso di Geometri e lgebr Liere: Mtrici e Determiti 1^ Lezioe Mtrici e determiti. Operzioi tr mtrici. Proprietà delle mtrici. Determite. Proprietà dei determiti. MTRICI E DETERMINNTI Si defiisce mtrice

Dettagli

Capitolo 1. Richiami di teoria elementare

Capitolo 1. Richiami di teoria elementare 7 Cpitolo Richimi di teori elemetre Cei di teori degli isiemi Il cocetto di isieme è u cocetto primitivo, cioè uo di quei presupposti o ssiomi che i mtemtic costituiscoo i fodmeti e dei quli o è dt lcu

Dettagli

RADICALI RADICALI INDICE

RADICALI RADICALI INDICE RADICALI INDICE Rdici qudrte P. Rdici cubiche P. Rdici -esime P. Codizioi di esistez P. Proprietà ivritiv e semplificzioe delle rdici P. Poteze d espoete rziole P. 7 Moltipliczioe e divisioe di rdici P.

Dettagli

Analisi Matematica I

Analisi Matematica I Alisi Mtemtic I Apputi delle lezioi teute dl Prof. A. Fod Uiversità di Trieste, CdL Fisic e Mtemtic,.. 208/209 I umeri turli e il pricipio di iduzioe Nel 898 il mtemtico toriese Giuseppe Peo (858 932),

Dettagli

Fig.7. 1: Nel grafico è rappresentato il vettore di. Fig. 7. 2: Nel grafico è rappresentato un vettore di. = si dice che essi sono uguali se

Fig.7. 1: Nel grafico è rappresentato il vettore di. Fig. 7. 2: Nel grafico è rappresentato un vettore di. = si dice che essi sono uguali se 7 Vettori di R Lo spzio R si ottiee come prodotto crtesio di R moltiplicto per sé stesso volte Gli elemeti di R soo -uple ordite di umeri reli che predoo il ome di vettori R,, co i R i,, se ( ) I R o,

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. DEFINIZIONE DI APPLICAZIONE LINEARE. Sio V e W due spzi vettorili su u medesimo cmpo K. Si :V W u ppliczioe di V i W. Si dice che l è u ppliczioe liere di V i W se soo veriicte

Dettagli

1^ Lezione. Matrici e determinanti. Operazioni tra matrici. Proprietà delle matrici. Determinante. Proprietà dei determinanti.

1^ Lezione. Matrici e determinanti. Operazioni tra matrici. Proprietà delle matrici. Determinante. Proprietà dei determinanti. Corso di Geometri e lger Liere: Mtrici e Determiti ^ Lezioe Mtrici e determiti. Operzioi tr mtrici. Proprietà delle mtrici. Determite. Proprietà dei determiti. - llegto Esercizi MTRICI E DETERMINNTI Si

Dettagli

N 02 B I concetti fondamentali dell aritmetica

N 02 B I concetti fondamentali dell aritmetica Uità Didttic N 0 I cocetti fodmetli dell ritmetic U.D. N 0 B I cocetti fodmetli dell ritmetic 0) Il cocetto di potez 0) Proprietà delle poteze 0) L ozioe di rdice ritmetic 0) Multipli e divisori di u umero

Dettagli

ALCUNI TEOREMI SUI POLINOMI E LORO APPLICAZIONE

ALCUNI TEOREMI SUI POLINOMI E LORO APPLICAZIONE ALCUNI TEOREMI SUI POLINOMI E LORO APPLICAZIONE U poliomio coefficieti reli ell idetermit x è u espressioe formle del tipo x + x + + x+ 0 Al poliomio è ssocit i modo turle u fuzioe poliomile, più precismete

Dettagli

Claudio Estatico

Claudio Estatico Cludio Esttico (esttico@dim.uige.it) Sistemi lieri: Algoritmo di Guss (Elimizioe Gussi) Lezioe bst su pputi del prof. Mrco Gvio Elimizioe Gussi ) Sistemi lieri. ) Mtrice ivers. Sistemi lieri ) Sistemi

Dettagli

Matematica Capitolo 2. Successioni. Ivan Zivko

Matematica Capitolo 2. Successioni. Ivan Zivko Mtemtic Cpitolo Successioi Iv Zivko Defiizioe U successioe ( ) è u isieme di ifiiti umeri orditi:,, 3,.,. Può essere defiit come u fuzioe: N R, Mtemtic Rppresetzioe Per rppresetre u successioe si possoo

Dettagli

Misurare una grandezza fisica significa stabilire quante unità di misura sono contenute nella grandezza stessa.

Misurare una grandezza fisica significa stabilire quante unità di misura sono contenute nella grandezza stessa. L misur: Misurre u grdezz fisic sigific stilire qute uità di misur soo coteute ell grdezz stess. L misur di u grdezz si dice dirett qudo si effettu per cofroto co u grdezz d ess omogee scelt come cmpioe

Dettagli

> Definizione di matrice <

> Definizione di matrice < > Defiizioe di mtrice < Dti due umeri turli m e si defiisce mtrice di tipo (m,) l isieme di m umeri reli disposti orditmete su m righe orizzotli e coloe verticli Se m si h u mtrice qudrt di ordie m m >

Dettagli

Successioni di funzioni

Successioni di funzioni Successioi di fuzioi Defiizioe. U successioe di fuzioi f : A R, N coverge putulmete d u fuzioe f : A R se f (x) = f(x) per ogi x A. L successioe coverge uiformemete d f se ccde che per ogi > 0 esiste N

Dettagli

Unità Didattica N 22B : Serie

Unità Didattica N 22B : Serie 0) L defiizioe di serie umeric 02) I primi teoremi sulle serie umeriche 03) Serie umeric combizioe liere di ltre serie umeriche 04) Serie umeriche termii positivi 05) Criteri di covergez e di divergez

Dettagli

Analisi Matematica I. Paolo Guiotto

Analisi Matematica I. Paolo Guiotto Alisi Mtemtic I Polo Guiotto 3 Premess Il mterile coteuto i queste ote copre il progrmm di u corso di Alisi Mtemtic per u Lure d idirizzo scietifico. L Alisi itroduce gli strumeti del Clcolo Differezile

Dettagli

SEFA Sapienza, Università di Roma Esercizi di Matematica 3 (C.Mascia) Alcune soluzioni di 1-2-3

SEFA Sapienza, Università di Roma Esercizi di Matematica 3 (C.Mascia) Alcune soluzioni di 1-2-3 Esercizio 11 SEFA Spiez, Uiversità di Rom Esercizi di Mtemtic 3 (CMsci) Alcue soluzioi di 1-2-3 11 ovembre 215 1 Foglio 1 i Descrivere i segueti isiemi di R 2 : {1} {2}, {} [1, 2], [, 1] {2}, [, 1] [,

Dettagli

ESERCIZI SULLA MECCANICA DEI SOLIDI

ESERCIZI SULLA MECCANICA DEI SOLIDI ESERZ SULLA MEANA DE SOLD ESERZO Assegto el puto P di u corpo cotiuo il seguete tesore dell tesioe, si determii il vettore dell tesioe sull gicitur vete per ormle ; i j k 6 6 6 4 i, j, k versori degli

Dettagli

PRECORSO DI MATEMATICA III Lezione RADICALI E. Modica LE RADICI

PRECORSO DI MATEMATICA III Lezione RADICALI E. Modica  LE RADICI PRECORSO DI MATEMATICA III Lezioe RADICALI E. Modic tetic@blogscuol.it www.tetic.blogscuol.it LE RADICI Abbio visto che l isiee dei ueri reli è costituito d tutti e soli i ueri che possoo essere rppresetti

Dettagli

, dove s n è la somma parziale n-esima definita da. lim s n = lim s n = + (= ). a n = a 1 + a 2 +...

, dove s n è la somma parziale n-esima definita da. lim s n = lim s n = + (= ). a n = a 1 + a 2 +... . serie umeriche Def. (serie). Dt u successioe ( ) (co R per ogi ), si chim serie di termie geerle l successioe (s ), dove s è l somm przile -esim defiit d () s = + 2 +... + = k. L serie coverge (semplicemete)

Dettagli

Note di Algebra lineare. Prof. Domenico Olanda. Anno accademico

Note di Algebra lineare. Prof. Domenico Olanda. Anno accademico Note di Algebr liere Prof. Domeico Old Ao ccdemico 008-09 Prefzioe Questo volume rccoglie gli pputi di lcue lezioi di lgebr liere e geometri d me svolte presso l Fcoltà di Scieze dell'uiversità "Federico

Dettagli

Progressioni aritmetiche e geometriche

Progressioni aritmetiche e geometriche Progressioi ritmetiche e geometriche 7. Progressioi ritmetiche. Defiizioe. Si dt l successioe umeric:,, 3,, 5,...,,.... Ess rppreset u progressioe ritmetic se l differez fr qulsisi termie dell successioe

Dettagli

OPERAZIONI CON LE FRAZIONI ALGEBRICHE

OPERAZIONI CON LE FRAZIONI ALGEBRICHE OPERAZIONI CON LE FRAZIONI ALGEBRICHE A] SEMPLIFICAZIONE DI UNA FRAZIONE ALGEBRICA Sempliicre u rzioe lgeric sigiic dividere umertore e deomitore per uo stesso ttore diverso d zero. Procedur per sempliicre

Dettagli

Integrazione numerica.

Integrazione numerica. Itegrzioe umeric Autore: prof. RUGGIERO Domeico Itegrzioe umeric. Qui di seguito ci occupimo di metodi umerici volti l clcolo pprossimto di u itegrle defiito perveedo formule ce costituiscoo degli lgoritmi,

Dettagli

M A T E M A T I C A I. Lezioni ed Esercizi. a.a Corso di laurea in Scienze Strategiche

M A T E M A T I C A I. Lezioni ed Esercizi. a.a Corso di laurea in Scienze Strategiche M A T E M A T I C A I Lezioi ed Esercizi.. 7-8 Corso di lure i Scieze Strtegiche Uiversità di Mode e Reggio Emili. Diprtimeto di Fisic, Iformtic, Mtemtic. Prefzioe Quest dispes rccoglie le lezioi del corso

Dettagli

INTEGRALI DI FUNZIONI CONTINUE

INTEGRALI DI FUNZIONI CONTINUE C Boccccio Apputi di Alisi Mtemtic CAP VIII CAP VIII INTEGRALI DI FUNZIONI CONTINUE Si [,] u itervllo chiuso e limitto di R e si Posto, per ogi k,,,, * N risult k k < < < < e per ogi k,,, ) k k L isieme

Dettagli

{ } { } Successioni numeriche. Scheda n 2 pag1. n 2. Pag. 3. Rappresentazione di una successione sul piano cartesiano. Esempio n 1 a) a n

{ } { } Successioni numeriche. Scheda n 2 pag1. n 2. Pag. 3. Rappresentazione di una successione sul piano cartesiano. Esempio n 1 a) a n Successioi umeriche Sched pg Rppresetzioe di u successioe sul pio crtesio Esempio ) { } { } Esempio ) ( ) b) ( ) Esempio ) 5 b) Esercizio L successioi degli esempi,,, soo covergeti, divergeti o idetermite?

Dettagli

Analisi Parametrica della Stabilità

Analisi Parametrica della Stabilità Prof. Crlo Coetio Fodmeti di Automtic A.A. 6/7 Coro di Fodmeti di Automtic A.A. 6/7 Alii Prmetric dell Stbilità Prof. Crlo Coetio Diprtimeto di Medici Sperimetle e Cliic Uiverità degli Studi Mg Greci di

Dettagli

Omotopia, numero d avvolgimento, Logaritmi

Omotopia, numero d avvolgimento, Logaritmi CAPITOLO 5 Omotopi, umero d vvolgimeto, Logritmi 5.. L versioe omotopic dell formul di Cuchy, il umero d vvolgimeto. Comicimo ricorddo l ozioe di omotopi di cmmii. Si A C u perto e sio 0, : [, b] A due

Dettagli

Corso di Laurea in Matematica Analisi Numerica Lezione 5

Corso di Laurea in Matematica Analisi Numerica Lezione 5 Docete: Diel Ler Corso di Lure i Mtemtic Alisi Numeric Lezioe 5 Risoluzioe di sistemi lieri Problem. Dto il sistem di m equzioi i icogite (,,, ) co i,j e b i umeri reli, voglimo determire i vlori di (,,,

Dettagli

a ij Indice di riga Indice di colonna Def. Matrice Tabella costituita da m righe ed n colonne. Si dice di tipo m x n o (m,n)

a ij Indice di riga Indice di colonna Def. Matrice Tabella costituita da m righe ed n colonne. Si dice di tipo m x n o (m,n) MRICI: defiizioi Cosiderimo delle tbelle di umeri, i cui ci si imbtte spesso i molti problemi di mtemtic o di scieze pplicte. le tbelle ho u doppio ordimeto, per righe e per coloe, utilizzeremo i segueti

Dettagli

Esponenziale complesso

Esponenziale complesso Espoeziale complesso P.Rubbioi 1 Serie el campo complesso Per forire il cocetto di serie el campo complesso abbiamo bisogo di itrodurre la defiizioe di limite per successioi di umeri complessi. Defiizioe

Dettagli

A=B se e solo se 1) m=p 2) n=q 3) a i,j =b i,j K per ogni i=1,,m e j=1,,n. Studiamo ora alcune delle proprietà che regolano queste operazioni.

A=B se e solo se 1) m=p 2) n=q 3) a i,j =b i,j K per ogni i=1,,m e j=1,,n. Studiamo ora alcune delle proprietà che regolano queste operazioni. Osservzioe: due trii soo idetihe se e solo se ho lo stesso uero di righe lo stesso uero di oloe e ho le stesse etrte i K: dte A i j i B i j i p j...... j...... q AB se e solo se p q ij ij K per ogi i e

Dettagli

APPLICAZIONI di MATEMATICA A.A

APPLICAZIONI di MATEMATICA A.A APPLICAZIONI di MATEMATICA A.A. 2011-2012 Tracce delle lezioi del 20 e 22 settembre 2011 September 26, 2011 1 Richiami sui umeri complessi 1.1 Forma algebrica. U umero complesso z i forma algebrica è u

Dettagli

Argomento 9 Integrali definiti

Argomento 9 Integrali definiti Argometo 9 Itegrli defiiti Premess. Si f u fuzioe cotiu ell itervllo [, ]. L regioe di pio compres tr l sse x, le due rette verticli di equzioe x = e x =, ed il grfico di f è dett trpezoide reltivo d f

Dettagli

AL210 - Appunti integrativi - 2

AL210 - Appunti integrativi - 2 AL210 - Apputi itegrativi - 2 Prof. Stefaia Gabelli - a.a. 2016-2017 Classi laterali e Teorema di Lagrage Se G è u gruppo fiito, il umero degli elemeti di G si chiama l ordie di G e si idica co G. J.-L.

Dettagli

DISPENSE DI MATEMATICA GENERALE Versione 20/10/06

DISPENSE DI MATEMATICA GENERALE Versione 20/10/06 DISEQUAZIONI IRRAZIONALI ispri: DISPENSE DI MATEMATICA GENERALE Versioe 0/0/06 > [ [ 0, > b { 0 b < 0 { > b b 0, CLASSIFICAZIONE DELLE FUNZIONI Fuzioi lgebriche Fuzioe potez,

Dettagli

ISTITUZIONI DI MATEMATICHE (CORSO Dl LAUREA IN CHIMICA) PROGRAMMA D ESAME PER L A.A. 2009/10

ISTITUZIONI DI MATEMATICHE (CORSO Dl LAUREA IN CHIMICA) PROGRAMMA D ESAME PER L A.A. 2009/10 ISTITUZIONI DI MATEMATICHE (CORSO Dl LAUREA IN CHIMICA) PROGRAMMA D ESAME PER L A.A. 2009/10 Cmpi umerici. Il cmpo rziole come mplimeto dell isieme dei umeri iteri reltivi: proprietà e problemi. Il cmpo

Dettagli

ELEMENTI DI CALCOLO COMBINATORIO. Disposizioni

ELEMENTI DI CALCOLO COMBINATORIO. Disposizioni ELEMENTI DI CALCOLO COMBINATORIO Il clcolo comitorio h come oggetto il clcolo del umero dei modi co i quli possoo essere ssociti, secodo regole stilite, gli elemeti di due o più isiemi o di uo stesso isieme.

Dettagli

Argomento 9 Integrali definiti

Argomento 9 Integrali definiti Argometo 9 Itegrli defiiti Premess. Si f u fuzioe cotiu ell itervllo [, b]. L regioe di pio compres tr l sse x, le due rette verticli di equzioe x = e x = b, ed il grfico di f è dett trpezoide reltivo

Dettagli

SERIE NUMERICHE esercizi. R. Argiolas

SERIE NUMERICHE esercizi. R. Argiolas esercizi R. Argiols L? Quest piccol rccolt di esercizi sulle serie umeriche è rivolt gli studeti del corso di lisi mtemtic I. E bee precisre fi d or che possedere e svolgere gli esercizi di quest dispes

Dettagli

DEFINIZIONE SUCCESSIONE NUMERICA Una successione numerica è una funzione che ha per dominio l insieme dei numeri naturali { 0;1;2;3;...

DEFINIZIONE SUCCESSIONE NUMERICA Una successione numerica è una funzione che ha per dominio l insieme dei numeri naturali { 0;1;2;3;... SUCCESSIONI DEFINIZIONE SUCCESSIONE NUMERICA U successioe ueric è u fuzioe che h per doiio l isiee dei ueri turli { 0;;;; } N o u suo sottoisiee e coe codoiio R, o u suo sottoisiee I vlori che ssue tle

Dettagli

Esercitazione n 4. 1 Serie di Taylor. Esercizio 1: Verificare che la funzione. f(x) = 0 se x = 0

Esercitazione n 4. 1 Serie di Taylor. Esercizio 1: Verificare che la funzione. f(x) = 0 se x = 0 Esercitazioe 4 1 Serie di Taylor Esercizio 1: Verificare che la fuzioe f(x) { e 1/x se x 0 0 se x 0 pur essedo C o è sviluppabile i serie di Taylor i x 0. Sol.: Determiiamo le derivate di f: 0 f (0) lim

Dettagli

- Appunti di Matematica 2 Liceo Scientifico - - I radicali - I radicali 2 = 2 = 4

- Appunti di Matematica 2 Liceo Scientifico - - I radicali - I radicali 2 = 2 = 4 I rdicli I) Cosiderimo l operzioe che ssoci d u umero il suo qudrto Per esempio: x x 9 ( ) ( ) ( ) ( ) 9 Possimo defiire l operzioe ivers? È possibile, dto u umero, idividure u umero di cui è il qudrto??

Dettagli

Liceo Scientifico di Trebisacce Classe Seconda - MATEMATICA. a ab. Prof. Mimmo Corrado. Scomposizioni. Frazioni algebriche

Liceo Scientifico di Trebisacce Classe Seconda - MATEMATICA. a ab. Prof. Mimmo Corrado. Scomposizioni. Frazioni algebriche Liceo Scietifico di Treiscce Clsse Secod - MATEMATICA Esercizi per le vcze estive Prof. Mimmo Corrdo. Esegui le segueti scomposizioi i fttori Scomposizioi z z m m m c m m m m. Clcol M.C.D. e m.c.m. dei

Dettagli

DERIVATE.. Si chiama rapporto incrementale della f (x) relativo al punto x

DERIVATE.. Si chiama rapporto incrementale della f (x) relativo al punto x DERIVATE Si f ( ; Se e soo due puti del suo domiio, si cim icremeto dell fuzioe il vlore f = f( f( Si cim rpporto icremetle dell f ( reltivo l puto e ll'icremeto il rpporto: y = u fuzioe rele defiit ell'itervllo

Dettagli

Unità Didattica N 09 I RADICALI

Unità Didattica N 09 I RADICALI 1 Uità Didttic N 09 I RADICALI 01) I ueri reli 0) I rdicli ritetici 0) Seplificzioe di u rdicle 0) Riduzioe di due o più rdicli llo stesso idice 0) Moltipliczioe di rdicli 06) Divisioe di due rdicli 07)

Dettagli

Unità Didattica N 12. I logaritmi e le equazioni esponenziali

Unità Didattica N 12. I logaritmi e le equazioni esponenziali Uità Didttic N I riti e le equzioi espoezili Uità Didttic N I riti e le equzioi espoezili ) Potez co espoete itero di u uero rele. ) Potez co espoete rziole. ) Potez co espoete rele di u uero rele positivo.

Dettagli

Gli integrali definiti

Gli integrali definiti Gli itegrli defiiti Si f : [, b] u fuzioe cotiu defiit i u itervllo chiuso e limitto e suppoimo che. Cosiderimo l regioe T delimitt dl grfico di f(x), dlle rette x=, x=b e dll sse delle scisse (regioe

Dettagli

GLI INSIEMI NUMERICI

GLI INSIEMI NUMERICI GLI INSIEMI NUMERICI R π, _ -,8,89 Q Z N - 8-8 -8 _,,66 - e, - -,6 _ -,6 6 R Numeri Reli Q Numeri Rzioli Z Numeri Iteri Reltivi N Numeri Nturli Dl digrmm di Eulero-Ve ovvio è che : N è u sottoisieme rorio

Dettagli