Elementi di Statistica descrittiva Parte II

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Elementi di Statistica descrittiva Parte II"

Transcript

1 Elemet d Statstca descrttva Parte II Nella prma parte d queste ote s soo llustrate le tecche utlzzate per rappresetare dat, maera stetca, medate tabelle e grafc Tal tecche soo applcabl sa a caratter quattatv che qualtatv Da quato vsto fora, ua popolazoe o u campoe è caratterzzata da ua dstrbuzoe d frequeze a og valore dstto corrspode ua frequeza relatva, la somma delle frequeze relatve è sempre, ma come soo dstrbut fra le vare frequeze var added che sommat dao? Uo de compt prcpal della statstca descrttva è lo studo delle dstrbuzo I questa secoda parte vedamo come stetzzare, tramte u umero, dat raccolt: alcue d queste tecche possoo essere usate solo co caratter umerc, altre ache co caratter qualtatv Elemet d Statstca descrttva Parte II Paaa

2 Rappresetazoe umerca Valor d stes Idc d poszoe Gl dc d poszoe dett ache mede servoo a dvduare u sgolo valore rappresetatvo della dstrbuzoe Se, come caso lmte, tutt valor fossero ugual fra d loro l dce d poszoe cocderebbe co questo uco valore Elemet d Statstca descrttva Parte II Paaa

3 Meda Sao u,u,,u osservazo umerche, s defsce meda artmetca o meda campoara o semplcemete meda: u + u + + u u k j j j Relatvamete all Esempo, esprmamo la meda sulle 0 osservazo /0,85 La fuzoe MEDIA d Ecel forsce la meda Oltre alla meda artmetca s defsce ache ua meda geometrca, che qu o cosderamo Elemet d Statstca descrttva Parte II Paaa

4 Propretà della meda u La meda è sempre compresa fra l mmo e l massmo de dat, o è detto che cocda co uo de dat La meda della somma d pù grupp d osservazo è uguale alla somma delle mede d cascu gruppo Il prodotto d per la meda è uguale alla somma degl dat Chamado scarto la dffereza d u dato dalla meda, la somma degl scart è ulla S dmostra che la meda è quel umero c che rede mma la somma u-c+u-c + +u-c somma degl scart elevat al quadrato La meda può essere calcolata solo per caratter quattatv Elemet d Statstca descrttva Parte II Paaa

5 Meda approssmata Se gl dat osservat soo attrbut ad ua varable cotua e se s dspoe della tabella relatva a dat raggruppat, s può dare ua valutazoe approssmata della meda, usado valor cetral delle k class e le frequeze assolute d og classe k f * 5 La meda approssmata vee utlzzata quado o s dspoe de dat grezz, ma de dat gà raggruppat class come capta spesso co varabl umerche cotue * è l valore cetrale della -esma classe Elemet d Statstca descrttva Parte II Paaa 5

6 classe fa Esempo: meda approssmata tot 0 0 Relatvamete all Esempo, esprmamo la meda approssmata La meda esatta è 9, Esempo della parte I I questo caso abbamo la varable cotua forta raggruppata class d ampezza 0,5 Il valore esatto 9,8 era stato calcolato utlzzado dat grezz che ora suppoamo d o avere pù a dsposzoe Elemet d Statstca descrttva Parte II Paaa 6

7 Moda Sao,,, k k valor osservat caratterzzat class d frequeza d osservazo ed f,f,,f k le relatve frequeze, s defsce moda l valore osservato caratterzzate la classe che corrspode alla massma frequeza La moda può o essere uca Se è uca, la dstrbuzoe s dce umodale Se o è uca, la dstrbuzoe s dce b-, tr-, -modale Relatvamete all Esempo, la moda è e la dstrbuzoe è umodale classe tot fa La scelta del valore pù frequete è alcu cas pù sgfcatva della scelta della meda I partcolare la moda è sempre u valore osservato, la meda può o esserlo La moda può essere determata per qualuque tpo d carattere Se la dstrbuzoe è suddvsa class s ha, vece della moda, ua classe modale classe corrspodeza della quala s ha la frequeza massma La fuzoe MODA d Ecel forsce la moda Elemet d Statstca descrttva Parte II Paaa 7

8 Medaa Sao u,u,,u valor osservat ordat modo crescete, medaa è l valore osservato che occupa la poszoe cetrale, se è dspar, oppure la meda artmetca de due valor cetral, se è par Relatvamete all Esempo, ordado 0 valor osservat modo crescete: 0 valore valore 5 Otteamo come medaa +/ La medaa può essere calcolata per caratter quattatv oppure per caratter qualtatv ordabl S dmostra che, el caso d caratter quattatv, la medaa è quel valore c che rede mma la somma u-c + u-c + + u-c somma de valor assolut degl scart La fuzoe MEDIANA d Ecel determa la medaa Elemet d Statstca descrttva Parte II Paaa 8

9 Quartl e percetl Se u,u,,u soo ordat modo crescete, s dcoo prmo, secodo, terzo quartle Q,Q,Q que tre valor che dvdoo l seme de dat part ugual I quartl soo de put d separazoe tal che l 5% de dat è <Q, l 50% è <Q, l 75% è <Q Il secodo quartle cocde co la medaa I dat soo dvs da quartl grupp coteet lo stesso umero d elemet S dce dffereza terquartle la dffereza Q - Q Se dvdamo l seme ordato u,u,,u 00 part ugual, valor d dvsoe soo dett percetl U cetesmo de dat soo mor del prmo percetle, due cetesm de dat soo mor del secodo percetle, ecc Il 5 percetle cocde col prmo quartle, l 50 percetle cocde col secodo quartle, l 75 percetle cocde col terzo quartle 9 La fuzoe QUARTILE d Ecel determa u quartle Il prmo parametro* rchesto dalla fuzoe detfca l seme de dat, l secodo parametro l quartle Esempo: QUARTILEC:C50; determa l quartle de dat coteut elle celle C:C50 La fuzoe PERCENTILE d Ecel determa u percetle Il prmo parametro detfca l seme de dat, l secodo parametro l percetle Esempo: PERCENTILEC:C50; determa l percetle de dat coteut elle celle C:C50 * NOTE su parametr delle fuzo Ecel U parametro stablsce u valore d ua varable dpedete e lo passa alla fuzoe, come rsultato la fuzoe vee calcolata per quel valore Il parametro deve essere scrtto mmedatamete dopo l ome della fuzoe racchuso fra paretes tode, o s devoo usare altr tp d paretes Esempo: RADQ9 calcola la fuzoe radce quadrata per l valore 9 della varable dpedete Alcue fuzo possoo rchedere pù d u parametro I tal caso parametr devoo essere separat dal carattere ; Esempo: MEDIA-;;,5 calcola la fuzoe meda per tre valor delle varabl U parametro può dcare, vece che u umero, ua fuzoe Esempo: MEDIA-;RADQ9;,5 calcola lo stesso valore dell esempo precedete U parametro può dcare le coordate d ua cella I tal caso l valore della varable è l valore coteuto ella cella Esempo: MEDIA-;B;,5 calcola lo stesso valore dell esempo precedete se la cella B cotee l valore U parametro può dcare pù valor coteut ua matrce d celle cotgue, che sul foglo d lavoro determao u rettagolo I tal caso l parametro deve dcare due vertc oppost del rettagolo Esempo: MEDIAC5:E6;8 calcola la meda d sette valor: se umer coteut ella matrce rghe tre coloe compresa fra la cella C5 e la cella E6 e l umero 8 Elemet d Statstca descrttva Parte II Paaa 9

10 Rappresetazoe umerca Valor d stes Idc d dspersoe 0 Gl dc d dspersoe servoo a descrvere la dspersoe della dstrbuzoe, ossa che msura dat soo raggruppat toro a u dce d poszoe Elemet d Statstca descrttva Parte II Paaa 0

11 Varaza U dce d dspersoe è u valore che qualche seso dca come dat umerc osservat s dstrbuscoo attoro ad u dce d poszoe Sao u, u,,u osservazo umerche, s defsce varaza la quattà: u + u + + u Valor pccol d varaza dcao che dat soo cocetrat vco alla meda u Nella varaza le dffereze vegoo elevate al quadrato per evtare che dffereze d sego opposto tedao ad aullars recprocamete I tal modo le dffereze d maggor valore vegoo esaltate La varaza può essere calcolata solo per caratter quattatv Elemet d Statstca descrttva Parte II Paaa

12 Propretà della varaza u La varaza è o egatva; La varaza è ulla se e solo se lo soo tutt gl scart, ossa se tutt gl valor osservat soo ugual fra loro; S può dmostrare che: u Elemet d Statstca descrttva Parte II Paaa

13 Devazoe stadard Sao u, u,,u osservazo umerche, s defsce devazoe stadard o scarto quadratco medo: u La devazoe stadard s esprme co la stessa utà d msura de dat osservat La varaza o ha le stesse dmeso fsche della caratterstca esame La devazoe stadard, elmado questo coveete, forsce ua gradezza drettamete cofrotable co la caratterstca Elemet d Statstca descrttva Parte II Paaa

14 Esempo: devazoe stadard I seguet sem: -00,00 e 50,50 hao la stessa meda 00 Gl scart quadratc soo dvers: Gl scart quadratc soo: 00 e 50 Cò sgfca che dat del prmo seme soo molto pù dspers attoro alla meda rspetto a quell del secodo Elemet d Statstca descrttva Parte II Paaa

15 Varaza campoara Se l carattere esame è otteuto da u campoe della popolazoe che s vuole studare, la varaza usata fora forsce ua valutazoe sottostmata della varaza della popolazoe La dffereza è tato pù sesble quato pù pccolo è l campoe Per elmare questa dstorsoe s moltplca la varaza per l rapporto: S ottee così la varaza campoara: u La varaza campoara è sempre maggore della varaza Quato pù umeroso è l campoe, tato pù varaza e varaza campoara s avvcao 5 La fuzoe VARPOP d Ecel determa la varaza La fuzoe DEVSTPOP d Ecel determa la devazoe stadard La fuzoe VAR d Ecel determa la varaza campoara La fuzoe DEVST d Ecel determa la devazoe stadard campoara Elemet d Statstca descrttva Parte II Paaa 5

16 Paaa 6 Elemet d Statstca descrttva Parte II 6 Varaza Varaza approssmata approssmata f f * * Relatvamete all Esempo, esprmamo la meda sulle 0 osservazo, utlzzado valor cetral delle class e le frequeze: la meda è 9 La varaza approssmata rsulta:

17 Il grafco a scatola bo plot, bo ad whskers ma oppure: Valor aomal,5q-q Q Medaa Q m Q-Q,5Q-Q 7 Il grafco a scatola, altrmet detto bo plot, è ua tpologa d rappresetazoe grafca proposta dallo statstco amercao J W Tukey; essa s ottee da ua sere d dat, da cu rcava dat sgfcatv trascurado quell o mportat Il grafco è costruto el modo seguete: La scatola è u rettagolo e rappreseta l 50% de valor I essa è evdezato u valore termedo d rfermeto d solto la medaa, talvolta la meda Il bordo superore rappreseta l terzo quartle Q, l bordo ferore rappreseta l prmo quartle Q; I due baff whsker che escoo basso e alto rappresetao rspettvamete valor mor del quartle e maggor del quartle m e ma soo valor rlevat mmo e massmo Sccome e dat grezz possoo essere preset valor aomal che fluscoo sulla lughezza de baff ma poco sugl altr valor, d solto s prefersce la varate d bo plot rappresetata ella parte destra della fgura e che vee costruta come segue: La lughezza de baff o può superare u certo lmte prestablto tpcamete,5 volte la dffereza terquartle; gl evetual valor che escoo da baff vegoo evdezat, uo per uo sgolarmete Nell esempo rportato fgura o c erao valor aomal feror a Q, qud l baffo ferore o subsce modfche Superormete a Q esstoo vece due valor aomal che vegoo evdezat, metre l baffo superore vee rdotto d lughezza, fo al pù grade de valor regolar Elemet d Statstca descrttva Parte II Paaa 7

Lezione 4. La Variabilità. Lezione 4 1

Lezione 4. La Variabilità. Lezione 4 1 Lezoe 4 La Varabltà Lezoe 4 1 Defzoe U valore medo, comuque calcolato, o è suffcete a rappresetare l seme delle osservazo effettuate (o l seme de valor assut dalla varable statstca); è ecessaro qud affacare

Dettagli

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione?

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione? Prma dstrb. Secoda dstrb. Totale Meda 0 5 8 35 85 63 63/5 =3,6 5 5 38 40 45 63 63/5 =3,6 Due dstrbuzo, stessa meda ma quale delle due la meda rappreseta, stetzza meglo la stuazoe? Le mede stetzzao la dstrbuzoe,

Dettagli

Indici di asimmetria. Elementi di Statistica descrittiva Parte IV. Simmetria di una distribuzione di frequenze. Primo indice di asimmetria (1/3)

Indici di asimmetria. Elementi di Statistica descrittiva Parte IV. Simmetria di una distribuzione di frequenze. Primo indice di asimmetria (1/3) Smmetra d ua dstrbuzoe d frequeze Ua dstrbuzoe s dce asmmetrca se o è possble dvduare (aalzzado u stogramma) u asse vertcale che tagl la dstrbuzoe due part specularmete ugual Idc d asmmetra Rferedoc a

Dettagli

CORSO DI STATISTICA I (Prof.ssa S. Terzi)

CORSO DI STATISTICA I (Prof.ssa S. Terzi) CORSO DI STATISTICA I (Prof.ssa S. Terz) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI Eserctazoe 2 2.1 Da u dage svolta su u campoe d lavorator dpedet co doppo lavoro è stata rlevata la dstrbuzoe coguta del reddto

Dettagli

Le misure di variabilità

Le misure di variabilità arlea Pllat - Semar d Statstca (SVIC) "Le msure d varabltà e cocetrazoe" La varabltà L atttude d u carattere quattatvo X ad assumere valor dfferet tra le utà compoet u seme statstco è chamata varabltà

Dettagli

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100 ESERCIZIO Data la seguete dstrbuzoe percetuale delle famgle talae per class d reddto, espresso mlo d lre, (ao 995, fote Istat): Class d reddto % famgle Fo a 5 5.3 5-5 6. 5-35. 35-45 8.6 45-55 3.6 Oltre

Dettagli

III Esercitazione: Sintesi delle distribuzioni semplici secondo un carattere qualitativo ordinale.

III Esercitazione: Sintesi delle distribuzioni semplici secondo un carattere qualitativo ordinale. III Eserctazoe: Stes delle dstrbuzo semplc secodo u carattere qualtatvo ordale. Eserczo 3 dvdu ao seguet ttol d studo: Lceza elemetare, Lceza elemetare, ploma, Lceza meda, Lceza elemetare, Lceza meda,

Dettagli

Esercizi su Rappresentazioni di Dati e Statistica

Esercizi su Rappresentazioni di Dati e Statistica Esercz su Rappresetazo d Dat e Statstca Eserczo Esprmete forma percetuale e traducete u aerogramma dat della seguete tabella: Nord Cetro Sud Isole Totale 5 58 866 0 95 36 4 35 30 6 79 56 57 399 08 Soluzoe

Dettagli

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100)

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100) ESERCIZIO Il Moblty Maager d u azeda ha rlevato l umero d chlometr percors settmaalmete da 60 mpegat. I dat soo rportat ello schema successvo. 67 4 93 58 66 87 5 53 86 8 7 47 56 70 54 86 48 43 60 58 5

Dettagli

Caso studio 10. Dipendenza in media. Esempio

Caso studio 10. Dipendenza in media. Esempio 09/03/06 Caso studo 0 S cosder la seguete dstrbuzoe degl occupat Itala secodo l umero d ore settmaal effettvamete lavorate e l settore d attvtà (cfr. Itala cfre, Ao 008, pag. 7 ): Ore lavorate Settore

Dettagli

MEDIA DI Y (ALTEZZA):

MEDIA DI Y (ALTEZZA): Uverstà d Casso Eserctazo d Statstca del 4 Marzo 0 Dott. Mrko Bevlacqua ESERCIZIO Su u collettvo d dvdu soo stat rlevat caratter X Peso( kg) e Altezza ( cm) otteamo la seguete dstrbuzoe d frequeza coguta:

Dettagli

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che:

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che: Eserctazoe VI: Il teorema d Chebyshev Eserczo La statura meda d u gruppo d dvdu è par a 73,78cm e la devazoe stadard a 3,6. Qual è la frequeza relatva delle persoe che hao ua statura superore o ferore

Dettagli

INDICI DI VARIABILITA

INDICI DI VARIABILITA INDICI DI VARIABILITA Defzoe d VARIABILITA': la varabltà s può defre come l'atttude d u carattere ad assumere dverse modaltà quattatve. La varabltà è la quattà d dspersoe presete e dat. Idc d varabltà

Dettagli

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno Idc d Poszoe Gl dc s poszoe soo msure stetche ( valor caratterstc ) che descrvoo la tedeza cetrale d u feomeo La tedeza cetrale è, prma approssmazoe, la modaltà della varable verso la quale cas tedoo a

Dettagli

CORSO DI STATISTICA I (Prof.ssa S. Terzi) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI. Esercitazione n 3

CORSO DI STATISTICA I (Prof.ssa S. Terzi) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI. Esercitazione n 3 ORSO I STTISTI I (Prof.ssa S. Terz) STUIO ELLE ISTRIUZIONI SEMPLII Eserctazoe 3 3. ata la seguete dstrbuzoe de reddt: lass d reddto Reddter Reddto medo 6.500-7.500 4 6.750 7.500-8.500 7.980 8.500-9.500

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 26 Febbrao 200 Dott. Mrko Bevlacqua ESERCIZIO Cosderado le class d altezza 60 6; 6 70; 70 78; 78 86 per u collettvo d 20 persoe, s può affermare che l ALTEZZA dpede

Dettagli

Elementi di Statistica descrittiva Parte III

Elementi di Statistica descrittiva Parte III Elemet d Statstca descrttva Parte III Paaa Idce d asmmetra (/) Idce d forma che esprme l grado d asmmetra (skewess) d ua dstrbuzoe. Sao u, u,,u osservazo umerche. Chamamo dce d asmmetra l espressoe: c

Dettagli

Indipendenza in distribuzione

Indipendenza in distribuzione Marlea Pllat - Semar d Statstca (SVIC) "Lo studo delle relazo tra due caratter" Aals delle relazo tra due caratter Dpedeza dstrbuzoe s basa sul cofroto delle dstrbuzo codzoate Dpedeza meda s basa sul cofroto

Dettagli

frazione 1 n dell ammontare complessivo del carattere A x

frazione 1 n dell ammontare complessivo del carattere A x La Cocetrazoe Il cocetto d cocetrazoe rguarda l modo cu l ammotare totale d u carattere quattatvo trasferble s rpartsce tra utà statstche. Tato pù tale ammotare è addesato u sottoseme d utà, tato pù s

Dettagli

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

3 Variabilità. variabilità. Senza deviazione dalla norma il progresso non è possibile. (Frank Zappa) Statistica - 9CFU

3 Variabilità. variabilità. Senza deviazione dalla norma il progresso non è possibile. (Frank Zappa) Statistica - 9CFU 3 Varabltà 3 varabltà Seza devazoe dalla orma l progresso o è possble (Frak Zappa) 68 Statstca - 9CFU 3 Varabltà 3. varabltà Defzo Varabltà E l atttude d u feomeo ad assumere dverse modaltà. Essa è msurata

Dettagli

SERVIZIO DAF: FONTI STATISTICHE

SERVIZIO DAF: FONTI STATISTICHE Gacomo Bulgarell Uffco Servz Statstc SERVIZIO DAF: FONTI STATISTICHE Mercoledì 3 ottobre 202 4. La Statstca (III) Idc d poszoe Nella rcerca scetfca e tecologca, così come elle sceze ecoomche, socal e poltche,

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 4 VARIABILI QUANTITATIVE Trasformazioni lineari Indici di covarianza e correlazione

STATISTICA DESCRITTIVA - SCHEDA N. 4 VARIABILI QUANTITATIVE Trasformazioni lineari Indici di covarianza e correlazione Matematca e statstca: da dat a modell alle scelte www.dma.uge/pls_statstca Resposabl scetfc M.P. Rogat e E. Sasso (Dpartmeto d Matematca Uverstà d Geova) STATISTICA DESCRITTIVA - SCHEDA N. 4 VARIABILI

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA Le msure d tedeza cetrale OBIETTIVO Idvduare u dce che rappreset sgfcatvamete u seme d dat statstc. Esempo Nella tabella seguete soo rportat valor del tasso glcemco rlevat su 0 pazet:

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA COSIDERAZIOI PRELIMIARI SULLA STATISTICA La Statstca trae suo rsultat dall osservazoe de feome che c crcodao. Gl stess feome per essere oggetto d statstca devoo essere adeguatamete umeros modo tale che

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione Corso d laurea Sceze Motore Corso d Statstca Docete: Dott.ssa Immacolata Scacarello Lezoe 9: Covaraza e correlazoe Altr tp d dpedeza L dce Ch-quadro presetato ella lezoe precedete stablsce l grado d dpedeza

Dettagli

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso ESERCIZIO Co rfermeto a dvers modell d auto del medesmo segmeto d mercato e cldrata s soo rlevat dat sul prezzo d lsto mglaa d euro (X), la veloctà massma dcharata km/h (Y) ed l peso kg (Z). I dat soo

Dettagli

Matematica elementare art.1 di Raimondo Valeri

Matematica elementare art.1 di Raimondo Valeri Matematca elemetare art. d Ramodo Valer I questo artcolo voglamo provare che esste ua formula per calcolare l umero de dvsor d u dato umero aturale seza cooscere la scomposzoe fattor prm del umero stesso.

Dettagli

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0)

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0) Massm e Mm Fuzo d pù varabl Massm e Mm Dezoe: Sa z = (, ) ua uzoe deta u seme E U puto (, E s dce puto d massmo (rsp mmo) relatvo per (, ) se esste δ > tale che ((, ) B((, ), δ ) E (, ) (, ) (rsp (, )

Dettagli

Voti Diploma Classico Scientifico Tecn. E Comm Altro

Voti Diploma Classico Scientifico Tecn. E Comm Altro 4 Data la seguete dstrbuzoe doppa de vot rportat ad u esame secodo l Dploma posseduto: Vot 8-3-5 6-8 9-30 Dploma Classco 8 4 5 Scetfco 5 7 7 5 Tec E Comm 8 0 0 Altro 3 a) s calcol la meda artmetca de vot

Dettagli

ELABORAZIONE DEI DATI

ELABORAZIONE DEI DATI ELABORAZIONE DEI DATI QUESTA FASE SERVE AD ESPRIMERE IN MODO SINTETICO I RISULTATI DELL INDAGINE SVOLTA CALCOLANDO DEGLI INDICI: VALORI MEDI INDICI DI VARIABILITA I valor med Il valore medo è u valore

Dettagli

Premessa. Abbiamo più volte enfatizzato come questo processo di sintesi comporta un prezzo da pagare in termini di perdita di informazioni.

Premessa. Abbiamo più volte enfatizzato come questo processo di sintesi comporta un prezzo da pagare in termini di perdita di informazioni. Le Msure d Cetraltà Le msure d cetraltà Premessa Il passaggo da u eleco d modaltà alle dstrbuzo d frequeze co modaltà dstte (carattere qualtatvo o dscreto) e co class d modaltà (carattere cotuo o dscreto

Dettagli

Capitolo 4 Le Misure di Centralità

Capitolo 4 Le Misure di Centralità Captolo 4 Le Msure d Cetraltà Le msure d cetraltà Premessa Il passaggo da u eleco d modaltà alle dstrbuzo d frequeze co modaltà dstte (carattere qualtatvo o dscreto) e co class d modaltà (carattere cotuo

Dettagli

x... Gli indici sintetici La media aritmetica Gli indici sintetici Indici assoluti Indici relativi Indici normalizzati Forma

x... Gli indici sintetici La media aritmetica Gli indici sintetici Indici assoluti Indici relativi Indici normalizzati Forma Gl dc stetc Tedeza cetrale Forma Varabltà Cosetoo l passaggo da ua pluraltà d formazo ad u uca msura umerca; Stetzzao l tera dstrbuzoe u sgolo valore, cosetedo così cofrot el tempo, ello spazo o tra crcostaze

Dettagli

Capitolo 2 Errori di misura: definizioni e trattamento

Capitolo 2 Errori di misura: definizioni e trattamento Captolo Error d msura: )Geeraltà defzo e trattameto I cocett d meda, varaza e devazoe stadard s utlzzao ormalmete per otteere formazo sulla botà d ua msura. I geerale, s assume come msura m della gradezza

Dettagli

Interpolazione. Definizione: per interpolazione si intende la ricerca di una funzione matematica che approssima l andamento di un insieme di punti.

Interpolazione. Definizione: per interpolazione si intende la ricerca di una funzione matematica che approssima l andamento di un insieme di punti. Iterpolazoe Defzoe: per terpolazoe s tede la rcerca d ua fuzoe matematca che approssma l adameto d u seme d put. Iterpolazoe MATEMATICA Calcola ua fuzoe che passa PER tutt put Tp d terpolazoe Iterpolazoe

Dettagli

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione IV

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione IV Uverstà degl Stud d Napol Partheope Facoltà d Sceze Motore a.a. 011/01 Statstca Lezoe IV E-mal: paolo.mazzocch@upartheope.t Webste: www.statmat.upartheope.t Fuzoe d regressoe Attraverso la fuzoe d regressoe

Dettagli

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI Uverstà degl Stud d Mlao Bcocca CdS ECOAMM Corso d Metod Statstc per l Ammstrazoe delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI 1. Carta d cotrollo per frazoe d o coform (carta U resposable d produzoe,

Dettagli

Dott.ssa Marta Di Nicola

Dott.ssa Marta Di Nicola RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quado s cosderao due o pù caratter (varabl) s possoo esamare ache l tpo e l'testà delle relazo che sussstoo tra loro. http://www.bostatstca.uch.tt Nel caso cu per

Dettagli

Consentono di descrivere la variabilità all interno della distribuzione di frequenza tramite un unico valore che ne sintetizza le caratteristiche

Consentono di descrivere la variabilità all interno della distribuzione di frequenza tramite un unico valore che ne sintetizza le caratteristiche Metodologa della rcerca pcologa clca - Dott. Luca Flppo Coetoo d decrvere la varabltà all tero della dtrbuzoe d frequeza tramte u uco valore che e tetzza le carattertche Metodologa della rcerca pcologa

Dettagli

ESERCIZI SU DISTRIBUZIONI CAMPIONARIE

ESERCIZI SU DISTRIBUZIONI CAMPIONARIE Corso d Ifereza Statstca Eserctazo A.A. 009/0 ESERCIZI SU DISTRIBUZIONI CAMPIONARIE Eserczo I cosumator d marmellata ua data popolazoe soo l 40%. Determare la probabltà che, per u campoe beroullao d =

Dettagli

TRATTAMENTO STATISTICO DEI DATI ANALITICI

TRATTAMENTO STATISTICO DEI DATI ANALITICI TRATTAMENTO STATISTICO DEI DATI ANALITICI Nell aals chmca u aalsta effettua u umero lmtato d prove e cosdera la meda de rsultat otteut per poter arrvare a determare o l valore VERO d ua determata gradezza

Dettagli

Sommario. Facoltà di Economia francesco mola. Distribuzioni (cont.) Distribuzioni di frequenza. Distribuzioni Distribuzioni di quantità

Sommario. Facoltà di Economia francesco mola. Distribuzioni (cont.) Distribuzioni di frequenza. Distribuzioni Distribuzioni di quantità Corso d Statstca Facoltà d Ecooma fracesco mola a.a. 2-2 2 Sommaro Dstrbuzo d frequeza Rappresetazo grafche Dagramm a barre Istogramm Fuzoe d rpartzoe emprca Lezoe 2 lez2_2-2 statstca-fracesco mola 2 Dstrbuzo

Dettagli

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

Sommario. Facoltà di Economia. Obiettivo. Quando studiarla? Lezione n 7. X: carattere quantitativo tra le unità statistiche. Quando studiarla?

Sommario. Facoltà di Economia. Obiettivo. Quando studiarla? Lezione n 7. X: carattere quantitativo tra le unità statistiche. Quando studiarla? Corso d Statstca acoltà d Ecooma a.a. - La cocetrazoe Quado studarla? Obettvo Dagramma d Lorez apporto d cocetrazoe rea d cocetrazoe Esemp Sommaro Lezoe 7 Lez7-a.a. - statstca-fracesco mola Quado studarla?

Dettagli

ALCUNI ELEMENTI DI STATISTICA DESCRITTIVA

ALCUNI ELEMENTI DI STATISTICA DESCRITTIVA ALCUNI ELEMENTI DI STATISTICA DESCRITTIVA The last step of reaso s to ackowledge that there s a fty of thgs that go beyod t. B. Pascal La Statstca ha come scopo la coosceza quattatva de feome collettv.

Dettagli

La distribuzione statistica doppia (o bivariata)

La distribuzione statistica doppia (o bivariata) Marlea Pllat - Semar d Statstca (SVIC) "Le dstrbuzo doppe" La dstrbuzoe statstca doppa (o bvarata) Se u seme d utà statstche s osservao gl stat d gradezza assut da due caratter e s ottee ua -pla statstca

Dettagli

corrispondenza della generica i-esima modalità. Indicando con #(.) la cardinalità di un insieme, per esse si ha, rispettivamente:

corrispondenza della generica i-esima modalità. Indicando con #(.) la cardinalità di un insieme, per esse si ha, rispettivamente: Corso d Statstca docete: Domeco Vstocco Le requeze cumulate S cosder ua varable qualtatva ordale X Per essa, oltre alle requeze assolute, relatve e ercetual, è ossble calcolare ache le requeze cumulate

Dettagli

Propagazione di errori

Propagazione di errori Propagazoe d error Gl error e dat possoo essere amplfcat durate calcol. Rspetto alla propagazoe degl error s può dstguere: comportameto del problema - codzoameto del problema: vedere come le perturbazo

Dettagli

DI IDROLOGIA TECNICA PARTE II

DI IDROLOGIA TECNICA PARTE II FACOLTA DI INGEGNERIA Laurea Specalstca Igegera Cvle NO Guseppe T Aroca CORSO DI IDROLOGIA TECNICA PARTE II Aals e prevsoe statstca delle varabl drologche Lezoe X: Scelta d u modello probablstco Aals e

Dettagli

Lezione 3. Gruppi risolubili.

Lezione 3. Gruppi risolubili. Lezoe 3 Prerequst: Lezo 1 2 Class d cougo e cetralzzat rupp rsolubl I questo captolo troducamo ua ozoe che come vedremo seguto fuge da raccordo tra la teora de grupp e la teora de camp Defzoe 31 Dato u

Dettagli

LA REGRESSIONE LINEARE SEMPLICE

LA REGRESSIONE LINEARE SEMPLICE LA REGRESSIONE LINEARE SEMPLICE L ANALISI DI REGRESSIONE La regressoe è volta alla rcerca d u modello atto a descrvere la relazoe esstete tra ua varable Dpedete e ua varable dpedete (regressoe semplce)

Dettagli

Modulo di Fisica Tecnica. Differenze finite per problemi di conduzione in regime instazionario

Modulo di Fisica Tecnica. Differenze finite per problemi di conduzione in regime instazionario Dpartmeto d Meccaca, Strutture, Ambete e Terrtoro UNIVERSITÀ DEGLI STUDI DI CASSINO Laurea Specalstca Igegera Meccaca: Modulo d Fsca Tecca Lezoe d: Dffereze fte per problem d coduzoe regme stazoaro /20

Dettagli

Analisi di dati vettoriali. Direzioni e orientazioni

Analisi di dati vettoriali. Direzioni e orientazioni Aals d dat vettoral Drezo e oretazo I tal caso, dat soo msurat term d agol e spesso soo rfert al ord geografco (statstca crcolare) Soo rappresetat su ua crcofereza Dat d drezoe: flusso ua specfca drezoe,

Dettagli

Variabili casuali ( ) 1 2 n

Variabili casuali ( ) 1 2 n Varabl casual &. Valore edo. Data ua varable casuale = ( x,x 2, K,x ) (.) cu valor assuoo le rspettve probabltà P = p,p, K,p (.2) s defsce valore edo la quattà ( ) 2 = [ ] T M = M = P = xp (.3) Sgfcato:

Dettagli

Formulario e tavole. Complementi per il corso di Statistica Medica

Formulario e tavole. Complementi per il corso di Statistica Medica Complemet per l corso d Statstca Medca Formularo e tavole Ne è cosetto l uso all esame scrtto, ma og Studete deve cosultare solo l propro formularo, e essu altro materale! Statstca Descrttva destà ampea

Dettagli

NOTA METODOLOGICA PER L ANALISI DELLE CAUSE DI MORTE

NOTA METODOLOGICA PER L ANALISI DELLE CAUSE DI MORTE OTA METODOOGICA PER AAISI DEE CAUSE DI MORTE SITESI METADATI Fote de dat archvo del Regstro d Mortaltà Regoale della Toscaa Area della rlevazoe Utà Satare ocal della Toscaa (suddvsoe 12 U.S.. e rspettve

Dettagli

Sommario. Corso di Statistica Economia e Commercio. Distribuzioni (cont Distribuzioni di frequenza. Distribuzioni

Sommario. Corso di Statistica Economia e Commercio. Distribuzioni (cont Distribuzioni di frequenza. Distribuzioni Corso d Statstca Ecooma e Commerco Lezoe a.a. - Fracesco Mola z z z Sommaro Dstrbuzo d frequeza Rappresetazo grafche Dagramm a barre Istogramm Fuzoe d rpartzoe emprca a.a. - statstca-fracesco mola Dstrbuzo

Dettagli

Organizzazione del corso. Elementi di Informatica. Orario lezioni ed esami. Crediti. Dispense e lucidi. Ricevimento studenti

Organizzazione del corso. Elementi di Informatica. Orario lezioni ed esami. Crediti. Dispense e lucidi. Ricevimento studenti Orgazzazoe del corso Elemet d Iformatca Prof. Alberto Brogg Dp. d Igegera dell Iformazoe Uverstà d Parma Teora: archtettura del calcolatore, elemet d formatca, algortm, lguagg, sstem operatv Laboratoro:

Dettagli

Numeri complessi Pag. 1 Adolfo Scimone 1998

Numeri complessi Pag. 1 Adolfo Scimone 1998 Numer compless Pag. Adolfo Scmoe 998 NUMERI COMPLESSI Come sappamo, o esstoo el campo de umer real le radc d dce par de umer egatv. Ammettamo pertato l esstea della radce quadrata del umero. Questo uovo

Dettagli

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N LE MEDIE LEZIOE MEDIE ALGEBRICHE: calcolate con operazon algebrche su valor del carattere (meda artmetca) per varabl Rassumere le nformazon: MEDIA ARITMETICA MEDIAA, MODA, QUATILI MEDIE LASCHE: determnate

Dettagli

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione Artmetca 06/07 Esercz svolt classe Quarta lezoe Rcorreze o lear Sa a c a cq ua rcorreza dove {c }, c C e c 0. Sa P C[λ] l polomo caratterstco della rcorreza. Allora ua soluzoe partcolare della rcorreza

Dettagli

La volatilità storica, le misure di rischio asimmetrico e la tracking error volatility

La volatilità storica, le misure di rischio asimmetrico e la tracking error volatility Ecooma degl termedar fazar Lors Nadott, Claudo Porzo, Daele Prevat Copyrght 00 The McGraw-Hll Compaes srl Approfodmeto 4.3w La msurazoe del rscho (a cura d Atoo Meles Uverstà Partheope) La volatltà storca,

Dettagli

Appunti di. Elaborazione dei dati sperimentali

Appunti di. Elaborazione dei dati sperimentali Apput d Elaboraoe de dat spermetal Corso d sca er cors d Laurea Igegera Uverstà d adova sura d ua gradea fsca Ua gradea fsca s rappreseta co uo (o pù) umer segut da ua utà d msura. Il umero che quatfca

Dettagli

Design of experiments (DOE) e Analisi statistica

Design of experiments (DOE) e Analisi statistica Desg of epermets (DOE) e Aals statstca L utlzzo fodametale della metodologa Desg of Epermets è approfodre la coosceza del sstema esame Determare le varabl pù sgfcatve; Determare l campo d varazoe delle

Dettagli

Lezione 2 a - Statistica descrittiva per variabili quantitative

Lezione 2 a - Statistica descrittiva per variabili quantitative Lezone 2 a - Statstca descrttva per varabl quanttatve Esempo 5. Nella tabella seguente sono rportat valor del tasso glcemco rlevat su 10 pazent: Pazente Glcema (mg/100cc) 1 x 1 =103 2 x 2 =97 3 x 3 =90

Dettagli

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto CORSO DI LAUREA IN ECONOMIA AZIENDALE Metod Statstc per le decso d mpresa (Note ddattche) Bruo Chadotto 5. Campo casual e dstrbuzo campoare - Campo casual Nel Cap. 3 d queste ote s è avuto modo d dstguere

Dettagli

Verifica e scelta del modello probabilistico

Verifica e scelta del modello probabilistico Verfca e scelta del modello probablstco L elaborazoe statstca de dat comporta u certo umero d potes, qual ad esempo la forma della dstrbuzoe ed l metodo utlzzato per stmare parametr. Data ua qualsas potes

Dettagli

STATISTICA Lezioni ed esercizi

STATISTICA Lezioni ed esercizi Uverstà d Toro QUADERNI DIDATTICI del Dpartmeto d Matematca MARIA GARETTO STATISTICA Lezo ed esercz Corso d Laurea Botecologe A.A. / Quadero # Novembre M. Garetto - Statstca Prefazoe I questo quadero

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modell descrttv, statstca e smulazone Master per Smart Logstcs specalst Roberto Cordone (roberto.cordone@unm.t) Statstca descrttva Cernusco S.N., govedì 28 gennao 2016 (9.00/13.00) 1 / 15 Indc d poszone

Dettagli

Attualizzazione. Attualizzazione

Attualizzazione. Attualizzazione Attualzzazoe Il problema erso alla captalzzazoe prede l ome d attualzzazoe Abbamo ua operazoe fazara elemetare e dato l motate M dobbamo determare l corrspodete captale zale C L'attualzzazoe è la operazoe

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

MISURE E GRANDEZZE FISICHE

MISURE E GRANDEZZE FISICHE R. Campaella Ig. Meccaca v. Peruga Gradezze fsche Rev. 12.02.21 MISRE E GRANDEZZE FICHE 1 Itroduzoe Nella descrzoe de feome la fsca s serve d legg, elle qual tervegoo gradezze fsche qual: la lughezza,

Dettagli

FUNZIONI LOGICHE FORME CANONICHE SP E PS

FUNZIONI LOGICHE FORME CANONICHE SP E PS FUNZIONI LOGICHE FORME CANONICHE SP E PS Ua fuzoe logca può essere espressa quattro forme: 1. attraverso ua proposzoe logca; 2. attraverso ua tabella della vertà; 3. attraverso u espressoe algebrca; 4.

Dettagli

Vogliamo ora riprendere i concetti principali per poi applicarli a qualche esempio concreto.

Vogliamo ora riprendere i concetti principali per poi applicarli a qualche esempio concreto. UNITA 13 PARTE PRIMA STATISTICA DESCRITTIVA: RICHIAMI E APPROFONDIMENTI Par.1 Popolazoe e dat statstc Nel beo ha zato a studare come s descrvoo, s rappresetao e s terpretao cosddett feome collettv, coè

Dettagli

Def. Si dice variabile aleatoria discreta X una variabile che può assumere valori X1, X

Def. Si dice variabile aleatoria discreta X una variabile che può assumere valori X1, X Prof.ssa Emauela Baudo Fabrza De Berard VARIABILI ALEATORIE DISCRETE E DISTRIBUZIONI DI PROBABILITA Def. S dce varable aleatora dscreta X ua varable che può assumere valor X, X,... X corrspodet ad evet

Dettagli

UNI CEI ENV 13005 (GUIDA ALL ESPRESSIONE DELL INCERTEZZA DI MISURA)

UNI CEI ENV 13005 (GUIDA ALL ESPRESSIONE DELL INCERTEZZA DI MISURA) UI CEI EV 3005 (GUIDA ALL ESPRESSIOE DELL ICERTEZZA DI MISURA Uverstà degl Stud d Bresca Corso d Fodamet della Msurazoe A.A. 00-03 Apput a cura d Gorgo Cor 3835 UI CEI EV 3005 0. ITRODUZIOE 0. COCETTO

Dettagli

Algoritmi e Strutture Dati. Alberi Binari di Ricerca

Algoritmi e Strutture Dati. Alberi Binari di Ricerca Algortm e Strutture Dat Alber Bar d Rcerca Alber bar d rcerca Motvazo gestoe e rcerche grosse quattà d dat lste, array e alber o soo adeguat perché effcet tempo O) o spazo Esemp: Matemeto d archv DataBase)

Dettagli

statistica è la tecnica che ha come scopo la conoscenza quantitativa dei fenomeni collettivi.

statistica è la tecnica che ha come scopo la conoscenza quantitativa dei fenomeni collettivi. CORSO DI BASE IN STATISTICA a cura d Paolo Padolf e Gula Cavr Ua possble defzoe d statstca (data da Guseppe Let, professore d Isttuzo d statstca presso la Facoltà d Sceze statstche dell Uverstà d Roma)

Dettagli

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto CORSO DI LAUREA I ECOOMIA AZIEDALE Metod Statstc per le decso d mpresa (ote ddattche) Bruo Chadotto 4 STATISTICA DESCRITTIVA I questo captolo s rtrovao espost, ua prospettva emprca, molt de cocett trodott

Dettagli

Tabelle Statistiche. Massimo Alfonso Russo Dipartimento di Scienze Economiche, Matematiche e Statistiche Università di Foggia

Tabelle Statistiche. Massimo Alfonso Russo Dipartimento di Scienze Economiche, Matematiche e Statistiche Università di Foggia Tabelle Statstche Massmo Alfoso Russo Dpartmeto d Sceze Ecoomche, Matematche e Statstche Uverstà d Fogga STATISTICA I - 2009 - Fogga Cocett d base Serazoe Dat d tpo quattatvo. Sere Dat d tpo qualtatvo;

Dettagli

Incertezza di misura

Incertezza di misura Icertezza d msura Itroduzoe e rcham Come gà detto rsultat umerc ottebl dalle msurazo soo trsecamete caratterzzat da aleatoretà è duque sempre ecessaro stmare ua fasca d valor attrbubl come msura al msurado;

Dettagli

2 si da eguale peso alle misure senza tener conto dell incertezza, che in generale possono essere diverse.

2 si da eguale peso alle misure senza tener conto dell incertezza, che in generale possono essere diverse. 5 MEDIE PESTE Come combare msure separate? Esempo, msure Msura d : ± Msura d B: B ± B Se s effettua la meda artmetca: B s da eguale peso alle msure seza teer coto dell certezza, che geerale possoo essere

Dettagli

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura Damca Modello damco ello spazo de gut: relazoe tra le coppe d attuazoe a gut ed l moto della struttura smulazoe del moto aals e progettazoe delle traettore progettazoe del sstema d cotrollo progetto de

Dettagli

Lezione 1. I numeri complessi

Lezione 1. I numeri complessi Lezoe Prerequst: Numer real: assom ed operazo. Pao cartesao. Fuzo trgoometrche. I umer compless Nell'attuale teora de umer compless cofluscoo due fodametal dee, ua artmetca, l'altra geometrca. La prma,

Dettagli

per il controllo qualità in campo tessile ing. Piero Di Girolamo

per il controllo qualità in campo tessile ing. Piero Di Girolamo edtg project M.R. Oofro ELEMENTI DI STATISTICA per l cotrollo qualtà campo tessle g. Pero D Grolamo prefazoe PREFAZIONE I l cotrollo d qualtà el tessle-abbglameto, u sstema ecoomco globalzzato, che da

Dettagli

17. FATICA AD AMPIEZZA VARIABILE

17. FATICA AD AMPIEZZA VARIABILE 7. FIC D MPIEZZ VRIBILE G. Petrucc Lezo d Costruzoe d Macche Spesso compoet struttural soo soggett a store d carco elle qual ccl d fatca hao ampezza varable (fg.), ad esempo ccl co tesoe alterata a (o

Dettagli

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto CORO DI LAUREA IN ECONOMIA AZIENDALE Metod tatstc per le decso d mpresa (Note ddattche) Bruo Chadotto 7. Teora del test delle potes I questo captolo s affrota l problema della verfca d potes statstche

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

Laboratorio di Fisica I: laurea in Ottica e Optometria. Misura di una resistenza con il metodo VOLT-AMPEROMETRICO

Laboratorio di Fisica I: laurea in Ottica e Optometria. Misura di una resistenza con il metodo VOLT-AMPEROMETRICO Laboratoro d Fsca I: laurea Ottca e Optoetra Msura d ua ressteza co l etodo OLTMPEOMETICO descrzoe s sura ua ressteza utlzzado u voltetro e u llaperoetro sfruttado la relazoe : Per coduttor ohc è dpedete

Dettagli

Matrice: tabella di m righe ed n colonne. A T matrice trasposta di A=(a ij ) di elementi a ijt =a ji. Serena Morigi Università di Bologna 1

Matrice: tabella di m righe ed n colonne. A T matrice trasposta di A=(a ij ) di elementi a ijt =a ji. Serena Morigi Università di Bologna 1 Matrc Matrce: tabella d m rghe ed coloe T matrce trasposta d (a j ) d elemet a jt a j Serea Morg Uverstà d Bologa Matrc Matrce quadrata m sottomatrc Matrce rettagolare m Serea Morg Uverstà d Bologa Matrc

Dettagli

COMPLEMENTI DI STATISTICA. L. Greco, S. Naddeo

COMPLEMENTI DI STATISTICA. L. Greco, S. Naddeo COMPLEMENTI DI STATISTICA L. Greco, S. Naddeo INDICE. GENERALITA SULLA VERIFICA DI IPOTESI. Itroduzoe 4. I test d sgfcatvtà 5.3 Gl tervall d cofdeza 7.4 Le potes alteratve.5 La poteza del test 5.6 Il test

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Excel o ha ua fuzoe per calcolare automatcamete gl dc d cocetrazoe e per costrure la curva d Lorez. Tuttava è possble calcolare tal dc e costrure tale grafco co alcue procedure. La cocetrazoe può essere

Dettagli

SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1

SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1 SIMULAZIONE DI ESAME ESERCIZI Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero ESERCIZIO. Alcu autor hao studato se la depressoe possa essere assocata a dc serologc d process autommutar

Dettagli

Il modello di regressione lineare semplice (1) Studio della dipendenza riepilogo

Il modello di regressione lineare semplice (1) Studio della dipendenza riepilogo Studo della dpedeza replogo Abbamo vsto due msure d assocazoe tra caratter: ) msure d assocazoe basate sull dpedeza dstrbuzoe ( χ, V d Cramer) possoo essere applcate a coppe d caratter qualuque (ache etrambe

Dettagli

MATEMATICA E STATISTICA. Dai dati ai modelli, alle scelte: rappresentazione, interpretazione e previsione

MATEMATICA E STATISTICA. Dai dati ai modelli, alle scelte: rappresentazione, interpretazione e previsione MATEMATICA E STATISTICA Da dat a modell, alle scelte: rappresetazoe, terpretazoe e prevsoe Progetto Lauree Scetfche Laborator d Matematca d Geova Il materal soo l rsultato d 4 a d lavoro coguto tra docet

Dettagli

Autori. Versione 2.0. Giorgio Della Rocca (*) Marco Di Zio (*) Orietta Luzi (*) Giorgia Simeoni (*) (*) ISTAT - Servizio MTS (**) ISTAT - Servizio PSM

Autori. Versione 2.0. Giorgio Della Rocca (*) Marco Di Zio (*) Orietta Luzi (*) Giorgia Simeoni (*) (*) ISTAT - Servizio MTS (**) ISTAT - Servizio PSM IDEA (Idces for Data Edtg Assessmet) - Sstema per la valutazoe degl effett d procedure d cotrollo e correzoe de dat e per l calcolo degl dcator SIDI Versoe 2.0 Autor Gorgo Della Rocca (*) Marco D Zo (*)

Dettagli

13 Valutazione dei modelli di simulazione

13 Valutazione dei modelli di simulazione 3 Valutazoe de modell d smulazoe I modell d smulazoe o sosttuscoo la coosceza, ma soo puttosto u mezzo per orgazzarla. Quado l modello è utlzzato per aalzzare u sstema attuado smulazo, è mportate capre

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Statistica Computazioale Questa ota cosiste per la maggior parte ella traduzioe (co alcue modifiche e itegrazioi) da Descriptive statistics di J. Shalliker e C. Ricketts, 000, Uiversity of Plymouth Questa

Dettagli

Leasing: aspetti finanziari e valutazione dei costi

Leasing: aspetti finanziari e valutazione dei costi Leasg: aspett fazar e valutazoe de cost Descrzoe Il leasg è u cotratto medate l quale ua parte (locatore), cede ad u altro soggetto (locataro), per u perodo d tempo prefssato, uo o pù be, sao ess mobl

Dettagli