RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come"

Transcript

1 RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a a 1n a 21 a a 2n a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può anche indicarsi con A = [a ij ], i = 1, 2,..., m j = 1, 2,..., n Se m = n la matrice è quadrata e n è il suo ordine

2 RICHIAMI SULLE MATRICI Per una matrice quadrata gli elementi a ii, i = 1, 2,..., n formano la diagonale principale e gli elementi a i,n+1 i quella secondaria. Si definisce Traccia di A la quantità T r A = n i=1 a ii Se m = 1 (o n = 1) si parla di vettore riga (o colonna) intendendo per vettore un vettore colonna. La matrice nulla di IR n n è quella in cui a ij = 0 i, j = 1, 2,..., n. La matrice unità di IR n n è quella in cui a ij = δ ij con δ ij simbolo di Kronecker (1 se i = j, 0 se i j). Si indica con I n o con I.

3 RICHIAMI SULLE MATRICI Si chiama Trasposta di A la matrice A T = [a T ij ], at ij = a ji, i = 1, 2,..., m j = 1, 2,..., n In campo complesso si introduce la Trasposta coniugata A H = [a H ij ], ah ij = ā ji, i = 1, 2,..., m j = 1, 2,..., n Talvolta si rappresenta la matrice con le sue sottomatrici. In particolare si può usare la forma A = [A 1 A 2... A n ] dove A i sono i vettori colonna, ovvero A i = [a 1i, a 2i,..., a mi ] T

4 OPERAZIONI TRA MATRICI Il prodotto tra matrici NON È COMMUTATIVO ovvero (in generale) BA AB. Inoltre può accadere che AB = 0 anche se A, B 0. Il prodotto interno o scalare tra due vettori X = [x 1, x 2,..., x n ] T Y = [y 1, y 2,..., y n ] T è dato da < X, Y >= X T Y = n k=1 x k y k X e Y sono ortogonali se < X, Y >= 0

5 BASI IN IR n Un sistema di r vettori X 1, X 2,..., X r (in uno spazio reale o complesso) è ortogonale se < X i, Y j >= 0 per i j. È ortonormale se < X i, Y j >= δ ij Si chiama lunghezza Euclidea la quantità < X, X >. Si indica anche con X 2

6 RICHIAMI SULLE MATRICI Si chiama determinante di A la somma degli n! prodotti associati distinti, ovvero deta = π P S(π)a 1,j1 a 2,j2... a n,jn dove π è la generica permutazione j 1, j 2,..., j n dell insieme P delle permutazioni di 1, 2,..., n e S(π) vale ±1 se π è pari o dispari A è singolare se det A = 0, regolare se det A 0

7 RICHIAMI SULLE MATRICI Data A(m n) e due interi h, k con 0 < h m e 0 < k n. Sopprimendo m h righe e n k colonne si ottiene una sottomatrice. Se h = k i corrispondenti determinanti sono detti minori di A Se m = n si dice sottomatrice principale di testa di ordine k quella ottenuta sopprimendo le righe e le colonne di indici maggiori di k. I relativi determinanti sono i minori principali di testa

8 RICHIAMI SULLE MATRICI L inversa di A è la matrice tale che A 1 A = AA 1 = I Esiste se e solo se det A 0. Per il Teorema di Binet det A 1 = 1/det A Si chiama rango di A l intero che indica l ordine massimo dei minori non nulli di A. Si indica con r(a).

9 RICHIAMI SULLE MATRICI: MATRICI PARTICOLARI Hermitiana (Antihermitiana): se A H = A (A H = A) Simmetrica (Antisimmetrica): se A T = A (A T = A) Triangolare superiore: se a ij = 0 per i > j Triangolare inferiore: se a ij = 0 per i < j Hessenberg superiore: se a ij = 0 per i > j + 1 Hessenberg inferiore: se a ij = 0 per i < j 1 a banda di ampiezza 2k + 1: se a ij = 0 per i j > k Tridiagonale: è a banda di ampiezza 3 Diagonale: è a banda di ampiezza 1

10 RICHIAMI SULLE MATRICI: MATRICI PARTICOLARI Sparsa: molti elementi non nulli Diagonale dominante per righe (per colonne): se a ii > n j=i j i a ij a ii > n j=i j i a ji Definita positiva (negativa): se è Hermitiana e X H AX > 0 (< 0), X 0 Semidefinita positiva (negativa): la disegualianza vale in senso debole

11 RICHIAMI SULLE MATRICI: MATRICI PARTICOLARI Criterio di Sylvester Affinché una matrice quadrata e hermitiana (simmetrica) sia definita positiva, è necessario e sufficiente che risulti det A k > 0 k = 1, 2,..., n A k essendo le sottomatrici principali di testa di A

12 RICHIAMI SULLE MATRICI Valgono le seguenti proprietà: Gli elementi della diagonale principale di una matrice reale definita positiva sono positivi Se la matrice (reale) A è definita positica si ha a 2 ij < a iia jj e l elemento di massimo modulo di A è sulla diagonale Una matrice diagonalmente dominante è regolare Una matrice definita positiva è regolare, e la sua inversa è definita positiva

13 RICHIAMI SULLE MATRICI: MATRICI TRASFORMANTI ELEMENTARI Si chiamano in questo modo le matrici che, applicate ad una data matrice A producono: Scambio di righe (o colonne) Somma sulla i esima riga della j esima moltiplicata per una costante c (e analoga operazione sulle colonne) moltiplicazione della i esima riga (o colonna) per una costante c 0

14 RICHIAMI SULLE MATRICI: MATRICI TRASFORMANTI ELEMENTARI Matrice di Permutazione: P ij = La P ij è simmetrica, ortogonale e det P ij = 1 La moltiplicazione a sinistra (destra) di A (m n) per una matrice P ij (m m) ( P ij (n n) ) produce uno scambio delle righe (colonne) i e j di A

15 RICHIAMI SULLE MATRICI: MATRICI TRASFORMANTI ELEMENTARI Matrici E ij (c): si ottengono dalla matrice identità ponendo la costante c nell elemento ij (i j). Moltiplicare a sinistra (destra) una matrice A(m n) per una matrice E ij (c)(m m) ( E ij (c)(m m) ) equivale a sommare sulla riga (colonna) j la riga (colonna) i moltiplicata per c Le matrici E ij (c) sono regolari e si ha det E ij (c) = 1, Eij 1 (c) = E ij( c), e Eij T (c) = E ji(c)

16 RICHIAMI SULLE MATRICI: MATRICI TRASFORMANTI ELEMENTARI Matrici M i (c): sono ottenute da I ponendo la costante c (non nulla) sulla i esimo elemento della diagonale Moltiplicare a sinistra (destra) la matrice A(m n) per una matrice M i (c)(m m) (M i (c)(n n)) equivale a moltiplicare per c la riga i esima (la colonna i esima di A) La M i (c) è regolare e det M i (c) = c, da cui M 1 i (c) = M i (1/c)

17 RICHIAMI SULLE MATRICI: AUTOVALORI E AUTOVETTORI Dati uno scalare λ ed un vettore X 0, questi sono Autovalore e Autovettore di A se AX = λx ovvero (A λi) = 0 λ è soluzione dell equazione caratteristica det A λi = 0. Dallo sviluppo del determinante si ottiene il polinomio caratteristico di grado n Anche se A è reale, autovalori e autovettori possono essere complessi. Ad autovalori reali (complessi) saranno associati autovettori reali (complessi)

18 RICHIAMI SULLE MATRICI: AUTOVALORI E AUTOVETTORI Per proprietà note risulta n i=1 λ i = T r A, n i=1 λ i = det A L insieme {λ i } degli autovalori è detto spettro di A e si chiama raggio spettrale il massimo modulo degli autovalori: ρ(a) = max 1 i n λ i

19 RICHIAMI SUGLI SPAZI VETTORIALI NORMATI Dato un insieme S ed un campo di scalari K, S è uno spazio vettoriale (o lineare) su K se sono definite: Addizione da S S in S, che associa ad ogni coppia in S un altro elemento appartenente ad S, detto somma: X, Y S X + Y S Moltiplicazione da K S in S, che associa ad ogni coppia formata da un elemento appartenente a K e un elemento appartenente ad S un elemento appartenente ad S, detto prodotto: X S, α K αx S

20 RICHIAMI SUGLI SPAZI VETTORIALI NORMATI E se queste operazioni verificano le seguenti proprietà: X + Y = Y + X α(βx) = (αβ)x, α, β K (X + Y ) + Z = X + (Y + Z) α(x + Y ) = αx + αy, α K (α + β)x = αx + βx α, β K 0 S X + 0 = X, 1X = X X, X S X + ( X) = 0 L elemento 0 è detto elemento neutro dell addizione e X è detto opposto di X.

21 RICHIAMI SUGLI SPAZI VETTORIALI NORMATI Dati r n vettori X 1, X 2,... X r dello spazio reale o complesso di dimensione n, essi sono linearmente indipendenti se la α 1 X 1 + α 2 X α r X r = 0 sussiste solo se α k = 0 k = 1, 2,..., r Uno spazio vettoriale S ha una dimensione finita n se esiste in S un sistema B di n vettori linearmente indipendenti in grado di generare tutti gli elementi di S attraverso opportune combinazioni lineari.

22 RICHIAMI SUGLI SPAZI VETTORIALI NORMATI L applicazione da S a IR + {0} è una norma se X = 0 X = 0 αx = α X, α K, X S X + Y X + Y, X, Y S In uno spazio normato di dimensione finita ogni norma è una funzione continua In uno spazio normato di dimensione finita, tutte le norme sono equivalenti ovvero per ogni coppia (1), (2) esistono due costanti m, M tali che per ogni X S vale la m X (1) X (2) M X (1)

23 RICHIAMI SUGLI SPAZI VETTORIALI NORMATI Si chiama distanza la X Y Si definisce intorno di raggio r di X 0 di S l insieme I r (X 0 ) = {X : X S, d(x, X 0 ) = X X 0 r} Se la disegualianza vale in senso stretto l intorno è aperto Data una successione {X n }, X n S, di dice convergente a X e si scrive lim n X n = X se lim n X n X = 0

24 NORME DI VETTORI Nello spazio reale a n dimensioni, si definisce norma p per un vettore X la quantità X p = n i=1 x i p 1/p Le più usate sono X 1 = n i=1 x i X 2 = [ n i=1 x i 2] 1/2 X = max 1 i n x i norma uno norma due o euclidea norma infinito o uniforme

25 NORME DI VETTORI Disegualianza di Cauchy-Schwartz: X T Y X 2 Y 2 Graficamente, le tre norme forniscono i seguenti intorni x 2 x 2 x 2 X r X r X r x 1 x 1 x 1

26 NORME DI MATRICI Anche per le matrici è introdotto il concetto di norma. Una applicazione : R n n R n U{0} è norma di una matrice se verifica le seguenti condizioni A = 0 A = 0 αa = α A α R, A R n n A + B A + B A B A B A, B R n n A, B R n n Le norme che soddisfano quest ultima condizione sono dette di Schwartz

27 NORME DI MATRICI Le più usate sono A 1 = max 1 j n n i=1 a ij A = max 1 j n n j=1 a ij A F = A 2 = ( n i=1 n j=1 a 2 ij) 1/2 ϱ(a T A) norma uno infinito o uniforme di Frobenius o euclidea due o spettrale Generalmente si usano le norme 1, e di Frobenius (dette anche canoniche). Esiste una classe di norme, dette indotte che applicate a matrici quadrate soddisfano la relazione di compatibilità AX A X A R n n X R n

28 NORME DI MATRICI Teorema : Se è una norma verificante la condizione di compatibilità e A è una matrice quadrata, risulta ρ(a) A Una matrice A R n n è convergente se la successione delle sue potenze {A k } converge alla matrice nulla, ovvero se lim k A k = 0 per una qualsiasi norma. Teorema : Sia A R n n, allora lim k Ak = 0 ρ(a) < 1

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dottssa MC De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Corso di Calcolo Numerico - Dottssa MC De Bonis

Dettagli

Lezioni del corso di Geometria e Algebra. prof. Michele Mulazzani dott. Alessia Cattabriga

Lezioni del corso di Geometria e Algebra. prof. Michele Mulazzani dott. Alessia Cattabriga Lezioni del corso di Geometria e Algebra prof Michele Mulazzani dott Alessia Cattabriga AA 20001/2002 Indice 1 Equazioni e sistemi lineari 4 11 Alcune strutture algebriche 4 12 Operazioni standard su K

Dettagli

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti Corso di Analisi Numerica - AN1 Parte 2: metodi diretti per sistemi lineari Roberto Ferretti Richiami sulle norme e sui sistemi lineari Il Metodo di Eliminazione di Gauss Il Metodo di Eliminazione con

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24 Contenuto Endomorfismi auto-aggiunti. Matrici simmetriche. Il teorema spettrale Gli autovalori di una matrice simmetrica sono tutti reali. (Dimostrazione fatta usando i numeri complessi). Dimostrazione

Dettagli

Appunti di Algebra Lineare e Matrici

Appunti di Algebra Lineare e Matrici Appunti di Algebra Lineare e Matrici Basilio Bona Dipartimento di Automatica e Informatica Politecnico di Torino Internal Report: DAUIN/BB-2003-09-01 Capitolo 1 Matrici e vettori Il lettore interessato

Dettagli

AL. Algebra vettoriale e matriciale

AL. Algebra vettoriale e matriciale PPENDICI L. lgebra vettoriale e matriciale Vettori Somma di vettori: struttura di gruppo Come abbiamo richiamato nell introduzione vi sono delle grandezze fisiche caratterizzabili come vettori, cioè tali

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Algebra Lineare e Geometria

Algebra Lineare e Geometria Algebra Lineare e Geometria Corso di Laurea in Ingegneria Elettronica A.A. 2013-2014 Prova d esame del 16/06/2014. 1) a) Determinare la matrice associata all applicazione lineare T : R 3 R 4 definita da

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

Lezioni di Geometria e Algebra. Fulvio Bisi, Francesco Bonsante, Sonia Brivio

Lezioni di Geometria e Algebra. Fulvio Bisi, Francesco Bonsante, Sonia Brivio Lezioni di Geometria e Algebra Fulvio Bisi, Francesco Bonsante, Sonia Brivio CAPITOLO 4 Applicazioni lineari 1. Definizioni ed esempi. In questo capitolo ci proponiamo di studiare le funzioni tra spazi

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2)

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Algebra e Geometria Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Traccia delle lezioni che saranno svolte nell anno accademico 2012/13 I seguenti appunti

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

Metodi diretti per la soluzione di sistemi lineari

Metodi diretti per la soluzione di sistemi lineari Metodi diretti per la soluzione di sistemi lineari N Del Buono 1 Introduzione Consideriamo un sistema di n equazioni in n incognite a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1, a 21 x 1 + a 22 x

Dettagli

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici C. Vergara 3. Metodo della fattorizzazione LU per la risoluzione di un sistema lineare Errori di arrotondamento. Prima di affrontare la

Dettagli

ISTITUZIONI DI MATEMATICA I. (prof. M.P.Cavaliere) SPAZI VETTORIALI SU R

ISTITUZIONI DI MATEMATICA I. (prof. M.P.Cavaliere) SPAZI VETTORIALI SU R ISTITUZIONI DI MATEMATICA I (prof MPCavaliere) SPAZI VETTORIALI SU R Abbiamo visto parlando dei numeri complessi che i punti P del piano possono essere determinati da coppie di numeri reali, se è dato

Dettagli

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU 9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A LU 9.1 Il metodo di Gauss Come si è visto nella sezione 3.3, per la risoluzione di un sistema lineare si può considerare al posto

Dettagli

Prodotto elemento per elemento, NON righe per colonne Unione: M R S

Prodotto elemento per elemento, NON righe per colonne Unione: M R S Relazioni binarie Una relazione binaria può essere rappresentata con un grafo o con una matrice di incidenza. Date due relazioni R, S A 1 A 2, la matrice di incidenza a seguito di varie operazioni si può

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE

LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE FLAVIO ANGELINI Sommario Queste note hanno lo scopo di indicare a studenti di Economia interessati alla finanza quantitativa i concetti essenziali

Dettagli

Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. L : V W

Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. L : V W Matematica B - a.a 2006/07 p. 1 Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. Definizione 1. La funzione L : V W si dice una applicazione

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Terzo Appello del corso di Geometria e Algebra II Parte - Docente F. Flamini, Roma, 7/09/2007 SVOLGIMENTO COMPITO III APPELLO

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA Si svolgano cortesemente i seguenti esercizi ESERCIZIO (6 PUNTI) METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 2 GENNAIO 25 Una volta identificato, nel piano complesso α, il dominio di convergenza della

Dettagli

Parte 2. Metodi Matematici per la Meccanica Quantistica. Spazi di pre-hilbert e spazi di Hilbert. Gianpiero CATTANEO

Parte 2. Metodi Matematici per la Meccanica Quantistica. Spazi di pre-hilbert e spazi di Hilbert. Gianpiero CATTANEO Parte Metodi Matematici per la Meccanica Quantistica Spazi di pre-hilbert e spazi di Hilbert Gianpiero CATTANEO 10 giugno 008 Indice I - Spazi con Prodotto Interno e Spazi di Hilbert 5 1 Spazi con Prodotto

Dettagli

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE 2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 INTRODUZIONE Il problema agli autovalori di un operatore La trattazione del problema agli autovalori di un operatore fatta negli spazi finitodimensionali

Dettagli

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Esame di Geometria (Prof. F. Tovena) Argomenti: Proprietà di nucleo e immagine di una applicazione lineare. dim V = dim

Dettagli

Diagonalizzazione di matrici e applicazioni lineari

Diagonalizzazione di matrici e applicazioni lineari CAPITOLO 9 Diagonalizzazione di matrici e applicazioni lineari Esercizio 9.1. Verificare che v = (1, 0, 0, 1) è autovettore dell applicazione lineare T così definita T(x 1,x 2,x 3,x 4 ) = (2x 1 2x 3, x

Dettagli

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1 SPAZI METRICI Nel piano R 2 o nello spazio R 3 la distanza fra due punti è la lunghezza, o norma euclidea, del vettore differenza di questi due punti. Se p = (x, y, z) è un vettore in coordinate ortonormali,

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f).

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f). Due Matrici A,B. Ker f = ker g. 1- Ridurre a scala A e B e faccio il sistema. 2 Se Vengono gli stessi valori allora, i ker sono uguali. Cauchy 1 autovalore, 1- Metto a matrice x1(0),x2(0),x3(0) e la chiamo

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE110 A.A. 2014-2015 - Docente: Prof. Angelo Felice Lopez Tutori: Federico Campanini e Giulia Salustri Soluzioni Tutorato 13

Dettagli

STRUTTURE ALGEBRICHE

STRUTTURE ALGEBRICHE STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente operazione), oppure legge di composizione interna. Per definizione

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Lezione 9: Cambio di base

Lezione 9: Cambio di base Lezione 9: Cambio di base In questa lezione vogliamo affrontare uno degli argomenti piu ostici per lo studente e cioè il cambio di base all interno di uno spazio vettoriale, inoltre cercheremo di capire

Dettagli

Prova scritta di Geometria 2 Prof. M. Boratynski

Prova scritta di Geometria 2 Prof. M. Boratynski 10/9/2008 Es. 1: Si consideri la forma bilineare simmetrica b su R 3 associata, rispetto alla base canonica {e 1, e 2, e 3 } alla matrice 3 2 1 A = 2 3 0. 1 0 1 1) Provare che (R 3, b) è uno spazio vettoriale

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA

CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA COGNOME NOME CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA SIMULAZIONE SCRITTO DI MATEMATICA DISCRETA, SECONDA PARTE Per ottenere la sufficienza bisogna rispondere in modo corretto ad almeno

Dettagli

Applicazioni lineari

Applicazioni lineari Applicazioni lineari Esempi di applicazioni lineari Definizione. Se V e W sono spazi vettoriali, una applicazione lineare è una funzione f: V W tale che, per ogni v, w V e per ogni a, b R si abbia f(av

Dettagli

Il gruppo dei vettori

Il gruppo dei vettori Capitolo Terzo Il gruppo dei vettori 3.1. Le strutture di gruppo e di corpo Un operazione binaria (1) definita in un insieme è un applicazione fra il quadrato cartesiano dell insieme e l insieme stesso,

Dettagli

Stabilità di Lyapunov

Stabilità di Lyapunov Stabilità di Lyapunov Flaviano Battelli Dipartimento di Scienze Matematiche Università Politecnica delle Marche Ancona Introduzione. In queste note presentiamo i primi elementi della teoria della stabilità

Dettagli

Insiemi con un operazione

Insiemi con un operazione Capitolo 3 Insiemi con un operazione 3.1 Gruppoidi, semigruppi, monoidi Definizione 309 Un operazione binaria su un insieme G è una funzione: f : G G G Quindi, un operazione binaria f su un insieme G è

Dettagli

Modelli Dinamici per l Ingegneria Gestionale

Modelli Dinamici per l Ingegneria Gestionale dispense per il corso di Modelli Dinamici per l Ingegneria Gestionale Lorenzo Farina e Luca Benvenuti Dipartimento di Informatica e Sistemistica A. Ruberti Via Ariosto 25, 85 Roma Anno Accademico 2/2 dispense

Dettagli

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2))

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2)) Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Applicazioni Lineari 1. Sia f : R 3 R 3 l applicazione lineare definita da f(x, y, z) = (x + ky + z, x y + 2z, x + y z) per ogni (x,

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Versione ottobre novembre 2008 Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Contenuto 1. Applicazioni lineari 2. L insieme delle

Dettagli

APPLICAZIONI LINEARI. B si definisce surriettiva. 9 quando ogni elemento di. B risulta IMMAGINE di. almeno un elemento di A.

APPLICAZIONI LINEARI. B si definisce surriettiva. 9 quando ogni elemento di. B risulta IMMAGINE di. almeno un elemento di A. APPLICAZIONI LINEARI Siano V e W due spazi vettoriali, di dimensione m ed n sullo stesso campo di scalari R. Una APPLICAZIONE ƒ : V W viene definita APPLICAZIONE LINEARE od OMOMORFISMO se risulta, per

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

Algebre di Lie semisemplici, sistemi di radici e loro classificazione

Algebre di Lie semisemplici, sistemi di radici e loro classificazione UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA MAGISTRALE IN MATEMATICA Algebre di Lie semisemplici, sistemi di radici e loro classificazione Relatore

Dettagli

Analisi 2. Argomenti. Raffaele D. Facendola

Analisi 2. Argomenti. Raffaele D. Facendola Analisi 2 Argomenti Successioni di funzioni Definizione Convergenza puntuale Proprietà della convergenza puntuale Convergenza uniforme Continuità e limitatezza Teorema della continuità del limite Teorema

Dettagli

PARTE TERZA. STATISTICA DESCRITTIVA MULTIDIMENSIONALE (Analisi delle Relazioni)

PARTE TERZA. STATISTICA DESCRITTIVA MULTIDIMENSIONALE (Analisi delle Relazioni) PARTE TERZA STATISTICA DESCRITTIVA MULTIDIMESIOALE (Analisi delle Relazioni) La notazione matriciale 3 III.. LA OTAZIOE MATRICIALE III... L analisi statistica dei fenomeni multivariati L intrinseca complessità

Dettagli

Documentazione esterna al software matematico sviluppato con MatLab

Documentazione esterna al software matematico sviluppato con MatLab Documentazione esterna al software matematico sviluppato con MatLab Algoritmi Metodo di Gauss-Seidel con sovrarilassamento Metodo delle Secanti Metodo di Newton Studente Amelio Francesco 556/00699 Anno

Dettagli

Elaborazione delle Immagini Digitali

Elaborazione delle Immagini Digitali Elaborazione delle Immagini Digitali Parte I Prof. Edoardo Ardizzone A.A. 2-22 La trasformata di Hotelling o di Karhunen-Loeve KLT discreta Questa trasformata detta anche analisi delle componenti principali

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b :

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b : Forme bilineari e prodotti scalari Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione b : { V V K ( v, w) b( v, w), si dice forma bilineare su V se per ogni u, v, w V e per ogni k K:

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Corrado Zanella. Modelli Geometrici. applicabili in Meccanica dei Solidi, Robotica, Visione Computazionale

Corrado Zanella. Modelli Geometrici. applicabili in Meccanica dei Solidi, Robotica, Visione Computazionale Corrado Zanella Modelli Geometrici applicabili in Meccanica dei Solidi, Robotica, Visione Computazionale ii Versione del 23 settembre 2010 www.corradozanella.it Questo lavoro è diffuso sotto licenza Creative

Dettagli

UNIVERSITÀ CATTOLICA DEL SACRO CUORE. Facoltà di Scienze Matematiche, Fisiche e Naturali ALGEBRA II UNITÀ. M. Chiara Tamburini

UNIVERSITÀ CATTOLICA DEL SACRO CUORE. Facoltà di Scienze Matematiche, Fisiche e Naturali ALGEBRA II UNITÀ. M. Chiara Tamburini UNIVERSITÀ CATTOLICA DEL SACRO CUORE Facoltà di Scienze Matematiche, Fisiche e Naturali ALGEBRA II UNITÀ M Chiara Tamburini Anno Accademico 2009/2010 Indice I Omomorfismi fra anelli 1 1 Ideali 1 2 Anelli

Dettagli

Determinante e inversa di una matrice

Determinante e inversa di una matrice CPITOLO 6 Determinante e inversa di una matrice Esercizio 6.. Calcolare il determinante delle seguenti matrici: 3 3 = B = 0 3 7 C = 0 D = 0 F = 0 0 3 4 0 3 4 3 Esercizio 6.. Calcolare il determinante delle

Dettagli

I polinomi 1; x;x 2 ;x 3 sono linearmente indipendenti; infatti. 0= 1 1+ 2 x+ 3 x 2 + 4 x 3 =) 1 = 2 == 4 =0

I polinomi 1; x;x 2 ;x 3 sono linearmente indipendenti; infatti. 0= 1 1+ 2 x+ 3 x 2 + 4 x 3 =) 1 = 2 == 4 =0 ASPETTI TEORICI Spazio vettoriale Un insieme qualunque di inniti elementi V = fv i g si dice uno spazio vettoriale sull'insieme dei numeri reali R se: { E possibile denire un'operazione binaria fra gli

Dettagli

Corso introduttivo pluridisciplinare Strutture algebriche

Corso introduttivo pluridisciplinare Strutture algebriche Corso introduttivo pluridisciplinare Strutture algebriche anno acc. 2013/2014 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Corso introduttivo pluridisciplinare 1 / 17 index

Dettagli

2. Differenze Finite. ( ) si

2. Differenze Finite. ( ) si . Differenze Finite In questa Nota tratteremo della soluzione numerica di equazioni a derivate parziali scalari attraverso il metodo delle differenze finite. In particolare, affronteremo il problema della

Dettagli

Lezioni di Ottimizzazione

Lezioni di Ottimizzazione Lezioni di Ottimizzazione Italo Capuzzo Dolcetta Flavia Lanzara Dipartimento di Matematica Guido Castelnuovo Sapienza Università di Roma A.A. 2007-2008 Ultimo aggiornamento: October 5, 2007 1 Indice 1

Dettagli

DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI

DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI Lezione 1. lunedí 17 settembre 2011 (1 ora) Presentazione del corso. Esercizio: cosa succede a moltiplicare per 2, 3, 4,... il numero 052631578947368421,

Dettagli

Geometria I A. Algebra lineare

Geometria I A. Algebra lineare UNIVERSITÀ CATTOLICA DEL SACRO CUORE Facoltà di Scienze Matematiche, Fisiche e Naturali Geometria I A. Algebra lineare Prof.ssa Silvia Pianta Anno Accademico 22/23 Indice Spazi vettoriali 7 Definizione

Dettagli

UNIVERSITÀ CATTOLICA DEL SACRO CUORE. Facoltà di Scienze Matematiche, Fisiche e Naturali

UNIVERSITÀ CATTOLICA DEL SACRO CUORE. Facoltà di Scienze Matematiche, Fisiche e Naturali UNIVERSITÀ CATTOLICA DEL SACRO CUORE Facoltà di Scienze Matematiche, Fisiche e Naturali APPROFONDIMENTI DI ALGEBRA M. Chiara Tamburini Anno Accademico 2013/2014 Indice Prefazione iii I Moduli su un anello

Dettagli

Equazione del calore e funzioni trigonometriche.

Equazione del calore e funzioni trigonometriche. CAPITOLO 1 Equazione del calore e funzioni trigonometriche. 1.1. Spazi vettoriali trigonometrici Il concetto di spazio vettoriale euclideo dovrebbe essere familiare al lettore di queste note. Per comodità

Dettagli

Esercizi su Autovalori e Autovettori

Esercizi su Autovalori e Autovettori Esercizi su Autovalori e Autovettori Esercizio n.1 5 A = 5, 5 5 5 Esercizio n.6 A =, Esercizio n.2 4 2 9 A = 2 1 8, 4 2 9 Esercizio n.7 6 3 3 A = 6 3 6, 3 3 6 Esercizio n.3 A = 4 6 6 2 2, 6 6 2 Esercizio

Dettagli

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i NA. Operatore nabla Consideriamo una funzione scalare: f : A R, A R 3 differenziabile, di classe C (2) almeno. Il valore di questa funzione dipende dalle tre variabili: Il suo differenziale si scrive allora:

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Capitolo 4 Equazioni e sistemi non lineari 4.1 Introduzione Sia f(x):ir IR una funzione continua almeno su un certo intervallo I e si supponga che f(x) non sia della forma f(x) = a 1 x + a 0 con a 1 e

Dettagli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli I numeri complessi Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli 1 Introduzione Studiare i numeri complessi può sembrare inutile ed avulso dalla realtà;

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

UNIVERSITÀ DEGLI STUDI DI FERRARA

UNIVERSITÀ DEGLI STUDI DI FERRARA UNIVERSITÀ DEGLI STUDI DI FERRARA Anno Accademico 2012/2013 REGISTRO DELL ATTIVITÀ DIDATTICA Docente: ANDREOTTI MIRCO Titolo del corso: MATEMATICA ED ELEMENTI DI STATISTICA Corso: CORSO UFFICIALE Corso

Dettagli

Ricerca Operativa Dualità e programmazione lineare

Ricerca Operativa Dualità e programmazione lineare Ricerca Operativa Dualità e programmazione lineare L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi alle spiegazioni del

Dettagli

Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: e x. per x 1 f(x) = α x + e 1 per 1 < x

Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: e x. per x 1 f(x) = α x + e 1 per 1 < x FUNZIONI Esercizio 1 Studiare la funzione f(x) = ln ( ) x e disegnarne il grafico. x 1 Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: { e x per x 1 f(x) = α x + e 1 per 1

Dettagli

Rette e piani con le matrici e i determinanti

Rette e piani con le matrici e i determinanti CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

GRUPPI E LORO AZIONI

GRUPPI E LORO AZIONI GRUPPI E LORO AZIONI 1. Azioni e rappresentazioni Siano G un gruppo e S un insieme. Si dice che G agisce a sinistra su S se vi è una applicazione σ : G S S dove, per semplicità si scriverà sempre σ((g,

Dettagli

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L. Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli

Teoremi di struttura dei moduli finitamente generati su un dominio euclideo

Teoremi di struttura dei moduli finitamente generati su un dominio euclideo Teoremi di struttura dei moduli finitamente generati su un dominio euclideo Appunti al corso di Algebra Anno accademico 23-24 1 Prodotti diretti. Siano M e N due moduli sullo stesso anello A, non necessariamente

Dettagli

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati.

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati. PROGRAMMA di Fondamenti di Analisi Matematica 2 (DEFINITIVO) A.A. 2010-2011, Paola Mannucci, Canale 2 Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.

Dettagli

Vettori Teoria ed Esercizi

Vettori Teoria ed Esercizi Vettori Teoria ed Esercizi Edizioni H ALPHA Lorenzo Roi c Edizioni H ALPHA Marzo 1999 (formato PDF) La figura di facciata costituisce un particolare dell insieme di Mandelbrot ingrandito 44 10 8 volte

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 203-4 I sistemi lineari Generalità sui sistemi lineari Molti problemi dell ingegneria, della fisica, della chimica, dell informatica e dell economia, si modellizzano

Dettagli

LEZIONE 17. B : kn k m.

LEZIONE 17. B : kn k m. LEZIONE 17 17.1. Isomorfismi tra spazi vettoriali finitamente generati. Applichiamo quanto visto nella lezione precedente ad isomorfismi fra spazi vettoriali di dimensione finita. Proposizione 17.1.1.

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Approssimazione polinomiale di funzioni e dati

Approssimazione polinomiale di funzioni e dati Approssimazione polinomiale di funzioni e dati Approssimare una funzione f significa trovare una funzione f di forma più semplice che possa essere usata al posto di f. Questa strategia è utilizzata nell

Dettagli

Parte 6. Applicazioni lineari

Parte 6. Applicazioni lineari Parte 6 Applicazioni lineari A Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Applicazioni fra insiemi, 2 Applicazioni lineari tra spazi vettoriali, 2 3 Applicazioni lineari da R n a R

Dettagli