2. Zeri, singolarità e residui

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "2. Zeri, singolarità e residui"

Transcript

1 2. Zeri, singolarità e residui Bernhard Riemann ( ) Se solo conoscessi il vero enunciato del teorema! Allora sarebbe facile per me darne la dimostrazione... Lo scopo principale di questo capitolo è quello di studiare le singolarità di una funzione olomorfa. L esempio tipico che studieremo in dettaglio è fornito dal quoziente f = g/h di due funzioni olomorfe nell intorno di un punto z nel caso in cui il denominatore h si annulli proprio in z. Come primo passo studiamo quindi il comportamento di una funzione olomorfa vicino ad un proprio zero. 2-1

2 2. ZERI, SINGOLARITÀ E RESIDUI 2-2 Zeri di funzioni olomorfe Gli zeri di una funzione olomorfa f sono quei punti z dove la funzione si annulla, f(z ) =. Corollario 2.1 (Zeri di una funzione olomorfa) Ad ogni zero z di una funzione olomorfa non identicamente nulla f : D(f) C C si può associare un numero intero positivo m (ordine di zero di f) caratterizzato dalle seguenti (equivalenti) proprietà: f è asintoticamente equivalente a (z z ) m per z z : f(z) (z z ) m f(z) per z z, cioè lim = c. (2.1) z z (z z ) m Esiste una funzione olomorfa g tale che (z z ) m g(z) z D(f), con g(z ). (2.2) Tutte le derivate successive di f fino all ordine m 1 si annullano in z, mentre f (m) (z ), cioè f(z ) = f (z ) = = f (m 1) (z ) =, f (m) (z ). (2.3) La prima potenza che compare nello sviluppo in serie di f è quella di ordine m e si ha k=m + a k (z z ) k = (z z ) m a h+m (z z ) h. (2.4) h= Dimostrazione Sappiamo che se B r(z ) D(f) allora f ammette lo sviluppo in serie di potenze in B r(z ) + a k (z z ) k, z B r(z ). (2.5) k= Sono ovviamente possibili solo due eventualità: i coefficienti {a k } k N sono tutti nulli; in tal caso f è identicamente nulla in B r(z ). a,a 1,...,a m 1 sono nulli ma a m ; in tal caso si ha a m(z z ) m +a m+1 (z z ) m a m+h (z z ) m+h +... = (z z ) m[ ] a m +a m+1 (z z ) a m+h (z z ) h = (z z ) m a m+h (z z ) h h= Ponendo g(z) := + n= a m+h(z z ) h, si ottiene la rappresentazione di f come prodotto e si verificano tutte le proprietà elencate. (2.6) (z z ) m g(z), g(z ), (2.7) Una conseguenza sorprendente è che basta un insieme ridotto di punti (per esempio una curva) per determinare univocamente una funzione olomorfa in un aperto connesso D(f) C: è il principio del prolungamento analitico, cui si arriva studiando gli zeri di una funzione olomorfa. Corollario 2.2 (Principio del prolungamento analitico) Se due funzioni olomorfe f, g sono olomorfe nell aperto connesso Ω coincidono in un insieme che ha almeno un punto di accumulazione interno a Ω, allora coincidono in tutto Ω. Esempio Il principio del prolungamento analitico è piuttosto utile per estendere al campo complesso identità algebriche che si sono già dimostrate in campo reale. Ad esempio, sappiamo che cos 2 x+sin 2 x = 1 per x R. Siccome

3 2. ZERI, SINGOLARITÀ E RESIDUI 2-3 la funzione f(z) := cos 2 z + sin 2 z è olomorfa e coincide con la funzione 1 su R, essa deve coincidere con 1 anche in tutto C; si conclude quindi cos 2 z +sin 2 z = 1 z C. (2.8) Attenzione, però: questo principio vale solo per le identità che fanno intervenire solo funzioni olomorfe e certamente non si può applicare alle disuguaglianze. Ad esempio, in campo reale si sa che cosx 1, sinx 1 ma queste due proprietà sono false in campo complesso (perché?...). Quoziente di funzioni olomorfe Abbiamo visto che la derivabilità in senso complesso nell intorno di un punto z fornisce un informazione assai dettagliata sulla struttura di una funzione f vicino a z : essa si può sviluppare in serie di potenze. Vogliamo cercare di ottenere informazioni altrettanto precise quando la funzione è derivabile solo in un intorno B ρ (z )\{z } ma a priori non in z. È il caso, cioè, di una singolarità isolata, caso che si presenta assai di frequente. Per convincersene, consideriamo ad esempio il quoziente f(z) := g(z)/h(z) due funzioni olomorfe, delle quali h non sia ovviamente identicamente nulla. Grazie al teorema degli zeri di una funzione olomorfa e alla formula (1.83), sappiamo che tale quoziente definisce una funzione olomorfa eccetto che in un insieme di punti isolati, precisamente gli zeri di h: questi saranno proprio le singolarità, isolate appunto, della funzione f. Nel caso di un quoziente, naturalmente, è facile stabilire il comportamento nell intorno di una singolarità, grazie al corollario precedente: infatti se h(z ) =, sappiamo che h(z) = (z z ) q h (z) con h olomorfa e h (z ), così come g(z) = (z z ) p g (z) con g (z ). Posto f := g /h, f risulta olomorfa almeno in un intorno di z e f (z ) ; si ottiene così 1 1 (z z ) mf (z) = (z z ) m b h (z z ) h, m := q p (2.9) h= dove abbiamo sviluppato in serie di Taylor la funzione f. Se l ordine di annullamento q del denominatore è maggiore dell ordine di annullamento p del numeratore, allora m > e quindi il 1 termine (z z ) determina una singolarità del quoziente in z m. Viceversa, se p q, siamo nel caso in cui la singolarità è eliminabile, poiché esiste il limite lim z z f(z). Supponiamo che sia m > : posto k := h m, a k := b k+m, deduciamo che la funzione di partenza f ha uno sviluppo del tipo b h (z z ) h m = h= k= m a k (z z ) k = = a m (z z ) m +a m+1 (z z ) m a 1 (z z ) 1 +a +a 1 (z z )+...+a k (z z ) k +... (2.1) dove i primi m termini s(z) := a m (z z ) m +a m+1 (z z ) m a 1 (z z ) 1 (2.11) formano la cosiddetta parte singolare, definita in C\{z }, e gli altri r(z) := a +a 1 (z z )+...+a k (z z ) k +... (2.12) formano la parte regolare, convergente in un intorno circolare di centro z. La singolarità z si chiama polo di ordine m, lo sviluppo (2.1) prende il nome di sviluppo di Laurent di f, il coefficiente a 1 di fronte alla potenza di grado 1 si chiama residuo di f in z. Riassumiamo quanto trovato fino ad ora.

4 2. ZERI, SINGOLARITÀ E RESIDUI 2-4 Teorema 2.3 (Sviluppo in serie di Laurent del quoziente di due funzioni olomorfe) Se f = g/h è il quoziente di due funzioni olomorfe in un disco B ρ (z ) dove z è uno zero isolato di h di ordine p (ed eventualmente uno zero di g di ordine q), f ammette lo sviluppo in serie k= m dove m := p q è l ordine di singolarità della funzione f. a k (z z ) k z B ρ (z )\{z }, (2.13) Quando p q la singolarità viene detta eliminabile, f è olomorfa in B ρ (z ) e la serie (2.13) è la sua serie di Taylor. Quando p > q, z viene chiamato polo di ordine m. Il coefficiente a 1 della potenza z 1 (che risulta nullo quando la singolarità è eliminabile e il primo termine della serie è una potenza di esponente non negativo) svolge un ruolo particolarmente importante e viene chiamato residuo di f in z. I coefficienti a k ammettono la formula di rappresentazione integrale a k = 1 f(z)(z z ) k dz < r < ρ. (2.14) 2πi z z C r(z ) Corone circolari e sviluppo in serie di Laurent La situazione descritta per il quoziente di due funzioni è in realtà di carattere più generale e dipende solo dal fatto che z sia una singolarità isolata di f. Addirittura, è possibile ottenere uno sviluppo in serie molto utile di ogni funzione olomorfa in una corona circolare. Consideriamo quindi il caso più generale in cui f è olomorfa in una { } corona circolare K r,r (z ) := z C : r < z z < R, r < R +. Si può dimostrare che vale la rappresentazione di Laurent: Teorema 2.4 (Sviluppo in serie di Laurent) Se f è olomorfa nella corona circolare K r,r (z ) allora f ammette lo sviluppo in serie k= C ρ(z ) a k (z z ) k z K r,r (z ) (2.15) dove i coefficienti a k sono dati dalla formula a k = 1 f(z)(z z ) k dz 2πi z z r < ρ < R. (2.16) Precisazione Raggi di convergenza. La serie (2.15) va intesa come la somma di due serie di potenze, la prima (parte regolare) + r(z) = a k (z z ) k ha raggio di convergenza almeno R (2.17) k=

5 2. ZERI, SINGOLARITÀ E RESIDUI 2-5 mentre la seconda (parte singolare) è una serie di potenze nella variabile w := 1 z z s(z) : = 1 k= + a k (z z ) k = a h (z z ) h (2.18) h=1 + = a h w h ha raggio di convergenza almeno 1/r (2.19) h=1 In particolare, quando la funzione f è olomorfa in B R (z )\{z } = K,R (z ), la parte singolare ha raggio di convergenza 1/ = + ed è pertanto convergente in tutto C\{z }. Il caso di una corona circolare qualunque sarà particolarmente utile per studiare la cosiddetta trasformata Z. Singolarità isolate e residui Ora concentriamo la nostra attenzione sul caso delle singolarità isolate (che corrispondono a corone circolari il cui raggio interno è nullo): possiamo completare il quadro già descritto nel caso del quoziente di due funzioni. Teorema 2.5 (Classificazione delle singolarità) Supponiamo che f abbia una singolarità isolata in z, sia cioè olomorfa in B R (z ) \ {z }. Allora si possono presentare solo le seguenti tre situazioni: (singolarità eliminabile) f è limitato in un intorno di z : in questo caso esiste il limite l := lim z z f(z) e, definita f(z ) := l, la funzione così estesa risulta olomorfa in tutto B R (z ). (polo) lim z z f(z) = + : in questo caso esiste un intero m > (detto ordine di polo di u in z ) ed una funzione olomorfa f : B R (z ) C tale che 1 (z z ) mf (z), z B R (z )\{z }. (2.2) Di conseguenza f ammette la (univoca) decomposizione s(z) + r(z), con s, r date da (2.11,2.12) rispettivamente e a m. La parte singolare dello sviluppo di Laurent contiene termini non nulli fino all ordine m, mentre i coefficienti dei termini di ordine < m sono tutti nulli. (singolarità essenziale) f ha un comportamento caotico in ogni intorno di z : più precisamente, w C, ε > z B R (z ) : f(z) w ε. (2.21) Ancora una volta, f può essere decomposta in modo unico nella somma di parte regolare r, data dallo sviluppo (2.12) e olomorfa in B R (z ), e di una parte singolare s olomorfa in C \ {z }: quest ultima però si può scrivere solo come serie di infiniti termini, potenze di (z z ) 1 : s(z) = k=1 a k (z z ) k =...+a k (z z ) k +a k+1 (z z ) k a 1 (z z ) 1. (2.22) Questa ultima serie converge per ogni z C\{z }.

6 2. ZERI, SINGOLARITÀ E RESIDUI 2-6 Abbiamo così la possibilità di rappresentare in unico modo tutti i casi che si possono presentare quando una funzione u è olomorfa attorno ad un punto z : essa ammette sempre uno sviluppo della forma s(z)+r(z) = a k (z z ) k + a k (z z ) k (2.23) n=1 dove la parte singolare s è identicamente nulla se f è olomorfa anche in z (e i coefficienti a k sono nulli fino all indice k = p se u ha uno zero di ordine p in z ), è una somma finita di m termini se f ha un polo di ordine m (e in tal caso i coefficienti a k sono tutti nulli per k < m), è una serie di infiniti termini se z è una singolarità essenziale; la rappresentazione (2.23) si chiama sviluppo in serie di Laurent di f in z. k= La formula (5.32) (per k = 1) suggerisce la seguente definizione Definizione 2.6 (Residuo) Sia z una singolarità isolata per la funzione olomorfa f; si chiama residuo di f in z l integrale Res(f;z ) = 1 f(z) dz. (2.24) 2πi C ρ(z ) dove C ρ (z ) è una circonferenza sufficientemente piccola da non contenere altre singolarità di f eccetto z. Il residuo si può equivalentemente definire attraverso lo sviluppo in serie di Laurent di f in z dato dalla (2.23): si trova infatti che Res(f;z ) := a 1 (cioè il coefficiente della potenza (z z ) 1 dello sviluppo di Laurent di f). Combinando il Teorema di Cauchy con la definizione precedente si arriva alla seguente formula fondamentale: Teorema 2.7 (Formula dei residui) Sia f olomorfa nell aperto D(f) = Ω \ Λ, dove Λ è un insieme di singolarità isolate, e sia Γ un circuito semplice, percorso in senso antiorario e non passante per alcuna delle singolarità di Λ, con A Γ Ω. Se z 1,z 2,...,z n sono le singolarità di Λ contenute in A Γ, allora n f(z)dz = 2πi Res(f;z j ). (2.25) Γ

7 2. ZERI, SINGOLARITÀ E RESIDUI 2-7 Formule per il calcolo dei residui Se f è il quoziente di due funzioni g,h olomorfe in un intorno di z f(z) := g(z) h(z), h(z ) =, h (z ) Res(f;z ) = g(z ) h (z ). (2.26) La formula precedente è un caso particolare di polo semplice: in generale se z è un polo semplice per f (cioè l ordine di polo di z è 1 si ha Res(f;z ) = lim z z (z z )f(z). (2.27) Più in generale, se f ha un polo di ordine al più m in z, vale la [ ] 1 d m 1 Res(f;z ) = lim (m 1)! z z dz m 1 ((z z ) m f(z)). (2.28) Il residuo all Sia f una funzione olomorfa il cui dominio D(f) contenga almeno l esterno di un disco (tipicamente D(f) = C\Λ, Λ essendo costituito da un numero finito di singolarità isolate di f). Il cambiamento di variabile z = 1 w trasforma f nella funzione f(w) := f(1/w), che ha una singolarità isolata in. Si costruisce quindi la funzione g(w) := 1 w f( 1 2 w ) e si definisce Definizione 2.8 (Residuo all ) Nelle condizioni precedenti, si chiama residuo di f all il numero complesso ( ) Res(f; ) := Res g(w);w =, dove g(w) := 1 w 2f(1 ). (2.29) w Si può pensare che oltre alle singolarità in C una funzione complessa f abbia sempre una potenziale singolarità (eventualmente eliminabile) anche nel punto. L interesse di questo punto di vista sta nel seguente teorema, che rende possibile il calcolo dell integrale di f lungo un circuito Γ sommando i contributi delle singolarità di f che cadono al di fuori di Γ: tra queste deve sempre essere incluso. Teorema 2.9 (Variante della formula dei residui) Sia f olomorfa in C salvo un insieme Λ di punti isolati e sia Γ un circuito semplice, percorso in senso antiorario e non passante per alcuna delle singolarità di Λ. Se ẑ 1,ẑ 2,...,ẑ n sono le singolarità di Λ che cadono al di fuori di A Γ, allora Γ ( f(z)dz = 2πi Res(f; )+ n ) Res(f;ẑ j ) (2.3) Corollario 2.1 (La somma di tutti i residui è nulla) Sia f olomorfa in C salvo un insieme di singolarità isolate Λ = {z 1,z 2,,z n }. Allora la somma di tutti i residui contando anche quello all è nulla Res(f, )+ n Res(f;z k ) =. (2.31) k=1 Osservazione Come si può tentare di prevedere se il residuo all è nullo? Supponiamo che f sia asintotica ad una potenza 1 z m per z : ad esempio, se f = P/Q è una funzione razionale avremo m = grado(q) grado(p). Se m 2 (quindi il grado di Q prevale su quello di P di almeno due unità, in particolare f tende a per z ) possiamo dire immediatamente che Res(f; ) =. Infatti, cambiando variabile f(1/w)w 2 w m 2 per w e w m 2 è una singolarità eliminabile se l esponente m 2 è nonnegativo.

8 2. ZERI, SINGOLARITÀ E RESIDUI 2-8 Il calcolo degli integrali su R Concludiamo con alcune formule utili per il calcolo degli integrali su R. Supporremo che f sia olomorfa in C salvo un insieme finito di singolarità isolate Λ disgiunto da R: porremo Λ + := { z Λ : Imz > } = { z + 1,,z+ n + }, Λ := { z Λ : Imz < } = { z 1,,z n }, (2.32) Teorema 2.11 Sia f come sopra tale che f(z) = O( z 2 ) per z. Allora f(x)dx = 2πi n + n Res(f;z + j ) = 2πi Res(f;z j ). (2.33) Si osservi come, grazie all ipotesi sull andamento asintotico di f per z, nel caso considerato dal Teorema 2.11 il residuo di f all è nullo. Teorema 2.12 (Lemma di Jordan) Sia f come sopra tale che lim z. Allora 2πi f(x)e iαx dx = 2πi n + n Res(f(z)e iαz ;z = z + j ) se α > ; (2.34) Res(f(z)e iαz ;z j ) se α <. Cosa succede se qualche singolarità case sull asse reale R? In tal caso gli integrali (2.33) e (2.34) non esistono. Si può però parlare di valor principale dell integrale, se almeno la singolarità è un polo semplice. Diamo la definizione Definizione 2.13 (Integrale nel senso del valor principale) Sia f : R \ Λ R R una funzione continua, con un numero finito di singolarità isolate che costituiscono l insieme Λ R = {x 1,x 2,...,x m }. Si dice che f è integrabile nel senso del valor principale se esiste il limite v.p. f(x) dx := lim f(x)dx, (2.35) R R,ε R ε,r dove m R ε,r := ( R,R)\ (x k ε,x k +ε). (2.36) k=1 Si può così dimostrare la seguente estensione del Lemma di Jordan:

9 2. ZERI, SINGOLARITÀ E RESIDUI 2-9 Teorema 2.14 (Lemma di Jordan) Sia f olomorfa in C tranne che in un insieme finito di singolarità isolate Λ con Λ + := { z Λ : Imz > } = { z + 1,,z+ n + }, Λ := { z Λ : Imz < } = { z1, },z n, Λ R :=Λ R = { (2.37) } x 1,x 2,,x m. Supponiamo che lim z e che le singolarità di Λ R siano poli semplici. Allora v.p. 2πi f(x)e iαx dx = 2πi n + n m Res(f(z)e iαz ;z = z + j )+πi Res(f(z)e iαz ;z = x k ) (α > ); k=1 m Res(f(z)e iαz ;z j ) πi Res(f(z)e iαz ;x k ) (α < ). k=1 (2.38) Approfondimenti In questa sezione conclusiva, riprendiamo con maggior profondità alcuni aspetti cui in precedenza abbiamo solo accennato. La formula di Cauchy e l analiticità delle funzioni olomorfe Il primo passo consiste nel dimostrare la formula di Cauchy a partire dal teorema di Cauchy. Teorema 2.15 (Formula di Cauchy) Sia f : D(f) C una funzione olomorfa nell aperto regolare D(f), sia Γ un circuito contenuto in D(f) e z A Γ. Allora il valore di f in z dipende dai valori di f su Γ tramite la seguente formula di Cauchy f(z ) = 1 2πi Γ f(z) z z dz. (2.39) Dimostrazione Grazie al teorema di Cauchy abbiamo che f(z) f(z) dz = dz, (2.4) Γ z z C ρ(z ) z z per ogni ρ > tale che C ρ(z ) A Γ. A questo punto scriviamo f(z) f(z) f(z ) dz = dz + C ρ(z ) z z C ρ(z ) z z = C ρ(z ) C ρ(z ) f(z) f(z ) z z dz +f(z ) f(z ) z z dz C ρ(z ) 1 z z dz (2.41) e l ultimo integrale vale esattamente 2πi (vedi l ultimo esercizio della precedente lezione). Ci siamo ricondotti a mostrare che f(z) f(z ) dz = (2.42) C ρ(z ) z z Poiché u è derivabile in z, il rapporto incrementale di u in z è sicuramente limitato in modulo da una costante M, se z è abbastanza vicino a z. Di conseguenza, applicando la (1.97) abbiamo f(z) f(z ) dz C ρ(z ) z z 2πρM, e questa disuguaglianza conclude la dimostrazione, essendo l integrale in (2.42) indipendente da ρ e potendosi scegliere ρ arbitrariamente piccolo. Vediamo subito qualche conseguenza di questa formula; la prima non ne è che la riscrittura nel caso in cui Γ è un cerchio e z il suo centro.

10 2. ZERI, SINGOLARITÀ E RESIDUI 2-1 Corollario 2.16 (Teorema della media) Sia f olomorfa in D(f) e B R (z ) D(f). Allora f(z ) = 1 2π f(z +Re it )dt. (2.43) 2π La seconda conseguenza, ancor più importante, è che se f è olomorfa nell aperto D(f), allora essa è derivabile un numero arbitrario di volte, le sue derivate si possono calcolare con un formula analoga alla (2.39) e la serie di Taylor associata alle sue derivate in un punto z converge a f in ogni disco B ρ(z ) contenuto in D(f). Corollario 2.17 (Analiticità delle funzioni olomorfe) Se f è olomorfa in D(f) allora f è di classe C in D(f) e per ogni disco B ρ(z ) contenuto in D(f) valgono le formule f (k) (z ) = 1 f(z) dz (2.44) k! 2πi C ρ(z ) (z z ) k+1 + k= f (k) (z ) (z z ) k z B ρ(z ). (2.45) k! Dimostrazione Non è limitativo supporre che z = (basta una traslazione). Dalla formula di Cauchy, si ottiene 1 f(ξ) 2πi C ρ() ξ z dξ. Se ora sviluppiamo la funzione z 1 ξ z in serie di potenze rispetto a z, tenendo fisso ξ, otteniamo 1 + ξ z = z k ξ k+1 k= rappresentazione che certo vale per tutti gli z interni al cerchio B ρ(), in quanto ξ sta sulla circonferenza. Otteniamo quindi 1 ( + f(ξ) zk ) 2πi C ρ() ξ k+1 dξ. k= Si tratta ora di verificare che si può scambiare l ordine tra l integrale e la serie: questo si può sicuramente fare se la serie converge uniformemente rispetto a ξ sulla circonferenza di integrazione. Per verificarlo, fissiamo z e applichiamo il criterio di Weierstrass, osservando che la funzione zk ξ C ρ() f(ξ) ξ k+1 è sicuramente limitata da z k max ρk+1 u. C ρ() Poichè la serie + z k max u = max ρk+1 u 1 C ρ() C ρ() ρ z k= converge, la convergenza è dunque uniforme rispetto a ξ, e si ottiene che è la tesi. + k= z k( 1 2πi C ρ() f(ξ) ) ξ k+1 dξ Dunque, dalla semplice richiesta di derivabilità in D(f) siamo passati alla analiticità, che fornisce informazioni preziosissime sulla struttura locale di u, che svilupperemo nella prossima lezione; inoltre dalla (2.45) seguono alcune importanti maggiorazioni delle derivate di u nel punto z, se sappiamo che u è olomorfa in un disco di centro z : Corollario 2.18 (Stime di Cauchy) Supponiamo che il disco chiuso B R (z ) sia contenuto nel dominio D(f) della funzione olomorfa f e sia M := max f(z) ; si ha allora z z =R u (k) (z ) k! M Rk. (2.46)

11 2. ZERI, SINGOLARITÀ E RESIDUI 2-11 Corollario 2.19 (Teorema di Liouville) Se una funzione f è olomorfa in tutto il piano complesso, essa è limitata se e solo se è costante. Dim.Bastaosservarechef èsviluppabileinseriedipotenzeattornoaelosviluppoharaggiodiconvergenzainfinito. La (2.46) mostra allora che tutti coefficienti a partire dal primo sono nulli, potendosi scegliere R arbitrariamente grande. A titolo di curiosità scientifica, come ultima conseguenza vediamo la dimostrazione del cosiddetto Teorema fondamentale dell algebra, il quale non è in realtà un teorema di algebra ma di analisi. La semplicità della dimostrazione può nascondere la profondità del risultato: naturalmente noi abbiamo ormai alle spalle un consistente bagaglio teorico, che finisce per rendere banali le conclusioni, ma queste vanno contemplate alla luce di tutto quanto si è costruito finora. Corollario 2.2 (Teorema fondamentale dell algebra) Ogni polinomio a coefficienti complessi non costante, ha almeno una radice in campo complesso. Dim. Supponiamo per assurdo che il polinomio P non abbia alcuna radice e sia di grado almeno uno; ne segue che la funzione z 1/P(z) è definita e olomorfa in tutto il piano complesso. D altra parte, avendo P grado almeno uno, ci si convince facilmente che lim P(z) = +, e quindi lim 1 z + z + P(z) =. Essendo continua in C ed infinitesima all infinito, la funzione 1/P è sicuramente limitata: per il precedente Teorema di Liouville, deduciamo che 1/P è costante, giungendo così ad una contraddizione. La funzione Γ di Eulero A titolo di esercizio, proviamo ad applicare alcuni dei risultati ottenuti allo studio della funzione Gamma di Eulero. Fissato il numero complesso z := x+iy C consideriamo l integrale Γ(z) := e t t z 1 dt (2.47) che, quando è convergente, definisce una funzione di z, chiamata appunto funzione Gamma. Osserviamo innanzitutto che, essendo t ],+ [ t z 1 = e (z 1)logt = e (x 1)logt e iylogt = t x 1 e iylogt per cui il modulo dell integrando è { e t t z 1 = e t t x 1 t x 1 per < t 1 e t t x 1 per t > 1. (2.48) Scomponiamo l integrale in due parti 1 Γ (z) := e t t z 1 dt, Γ (z) := e t t z 1 dt, Γ = Γ +Γ (2.49) 1 Γ risulta sempre ben definita, poiché il modulo dell integrando si annulla esponenzialmente all infinito, mentre Γ è convergente se x 1 > 1, cioè se la parte reale di z è maggiore di. Concludiamo quindi che l integrale (2.47) è ben definito per ogni z C con parte reale strettamente positiva. Passiamo a studiarne la regolarità: derivando formalmente rispetto al parametro z, si ottiene per Γ 1 Γ (z) = e t t z 1 logtdt (2.5) e, se x α > si ottiene per il modulo dell integrando la stima uniforme e t t z 1 logt t α 1 che è integrabile in (,1); poiché la stima non dipende da z, concludiamo per il teorema di derivazione sotto il segno di integrale (che vale anche per la derivazione complessa!) che la funzione Γ è derivabile in senso complesso in ogni semipiano x α, con α > ; essendo α arbitrario, Γ è olomorfa nel semipiano Rez >. Con analoghi ragionamenti, considerando stavolta i semipiani x β, concludiamo che Γ è derivabile in senso complesso in ciascuno di tali semipiani, e quindi in tutto C. Concludiamo quindi che Γ definisce una funzione olomorfa nel semipiano dei numeri complessi con parte reale strettamente positiva.

12 2. ZERI, SINGOLARITÀ E RESIDUI 2-12 Esercizio Ripetere i medesimi ragionamenti, applicando però un teorema reale di derivazione sotto il segno di integrale (cioè per le derivate parziali rispetto ad x ed y); concludere comunque che Γ è olomorfa, verificando le condizioni di Cauchy-Riemann. Le derivate successive di Γ si calcolano allo stesso modo: ogni volta un ulteriore logaritmo nell integrale, che però non ne altera la sommabilità; in particolare Γ (z) = e t t z 1 logtdt, Γ (z) = e t t z 1 (logt) 2 dt. (2.51) Per comprendere l importanza di questa funzione, proviamo a calcolarla in z +1, integrando poi per parti; si ottiene: Γ(z +1) = e t t z dt = [ e t t z] t=+ + ( e t )zt z 1 dt t= = z e t t z 1 dt, poiché la parte finita è nulla. Deduciamo la fondamentale relazione funzionale Γ(z +1) = zγ(z) (2.52) e di conseguenza Γ(z +n) = (z +n 1)Γ(z +n 1) = (z +n 1)(z +n 2)Γ(z +n 2) =... = (z +n 1)(z +n 2)...(z +1)zΓ(z). Poiché Γ(1) = e t dt = 1 si conclude che, per ogni intero n N (2.53) Γ(n+1) = n(n 1)...1Γ(1) = n! (2.54) Osserviamo che si ritrova anche la formula (guardata sempre con un po di sospetto)! = Γ(1) = 1. La relazione (2.52) permette di estendere di estendere γ anche ai valori di z con parte reale negativa; difatti si può porre Γ(z +n) Γ(z) := (2.55) (z +n 1)(z +n 2)...(z +1)z purchè z non sia un intero negativo ed n sia sufficientemente grande per cui z + n abbia parte reale positiva. Osserviamo che, a priori, la definizione potrebbe dipendere da n, ma ciascuna delle funzioni così definite è olomorfa e coincide con l iniziale Γ(z) se Rez > ; per il principio del prolungamento analitico, esse devono coincidere dappertutto, e quindi non vi è alcuna ambiguità. Adesso non si può resistere alla tentazione di calcolare Γ(1/2). Cominciamo a riscrivere l integrale (2.47) con la sostituzione t := s 2 ; si ottiene Γ(z) = 2 e s2 s 2z 1 ds (2.56) per cui Γ(1/2) = 2 e s2 ds. (2.57) Vediamo come dall espressione (2.56) seguono varie relazioni interessanti. Partiamo dal prodotto Γ(z)Γ(w): posto Γ(z) = 2 e u2 u 2z 1 du, Γ(w) = 2 e v2 v 2w 1 dv, si ha per il teorema di Fubini Γ(z)Γ(w) = 4 e (u2 +v 2) u 2z 1 v 2w 1 dudv (2.58) da cui, passando in coordinate polari, u = ρcosθ,v = ρsinθ π/2 Γ(z)Γ(w) = 4 dρ 2(z+w) 1 e ρ2 (cosθ) 2z 1 (sinθ) 2w 1 dθ π/2 = Γ(z +w)2 (cosθ) 2z 1 (sinθ) 2w 1 dθ. (2.59)

13 2. ZERI, SINGOLARITÀ E RESIDUI 2-13 Ricapitolando Γ(z)Γ(w) π/2 Γ(z +w) = 2 (cosθ) 2z 1 (sinθ) 2w 1 dθ. (2.6) In particolare scegliendo z = w = 1/2 si trova la notevole formula Γ(1/2) = e s2 ds = π. (2.61) Calcoliamo ora Γ(z)Γ(1 z), < x < 1; dalla (2.6) si ha π/2 Γ(z)Γ(1 z) = 2 (cosθ) 2z 1 (sinθ) 2(1 z) 1 dθ π/2 = 2 (cosθ) 2z 1 (sinθ) 1 2z dθ π/2 = 2 (tanθ) 1 2z dθ (tanθ = ξ) ξ 1 2z = 2 1+ξ 2 dξ (ξ2 = η) η z = 1+η dη. che ora calcoliamo con metodo complesso. A z fissato, scegliamo ovviamente la branca della funzione (2.62) η η z come e z logη (2.63) con l argomento del logaritmo in ],2π[ e taglio lungo il semiasse dei reali positivi. Con ragionamenti usuali otteniamo (1 e 2πzi η z ( η z ) ) dη = 2πiRes ;η = 1 = 2πie iπ(z 1) (2.64) 1+η 1+η Finalmente Γ(z)Γ(1 z) = π sinπz. (2.65) Benché i calcoli appena svolti valgano solo se la parte reale di z è strettamente compresa tra e 1, ancora una volta il principio della continuazione analitica ci dice che la (2.65) vale non appena entrambi i membri siano definiti, cioè quando z non è intero (reale). Inoltre, la relazione precedente ci dice che Γ(z) non si annulla mai e ci permette anche di classificare le singolarità di γ nei punti z := n, n = 1,2,... Sostituendo z con z, otteniamo infatti la relazione π Γ( z) = Γ(1+z)sinπz. (2.66) Quando z tende ad un intero n, Γ(1 + z) tende a n!, mentre sinπz ha uno zero semplice, essendo la derivata uguale a πcos(πn) = π( 1) n. Di conseguenza, il secondo membro della (2.66) ha un polo semplice, il cui residuo è Res(Γ; n) = ( 1)n. (2.67) n! Passiamo finalmente a studiare il comportamento della funzione Γ per z = x reale positivo. Osserviamo innanzitutto che, grazie alla (2.51), Γ è una funzione convessa; essendo analitica e poiché Γ(1) = Γ(2) = 1, essa avrà un unico minimo nell intervallo ]1,2[, e già sappiamo che lim x +Γ(x) = +, Γ(x) 1, quando x tende a. (2.68) x La formula di Stirling Indirizziamo ora la nostra attenzione per caratterizzare l andamento di Γ quando x + ; come conseguenza otterremo la preziosissima formula di Stirling per il fattoriale n! e n n n ( n ) n 2πn = 2πn. (2.69) e Ovviamente la difficoltà sta nel rinormalizzare l integrale (2.47), per poi passare al limite grazie ai teoremi di Beppo Levi e di Lebesgue. Ci viene in aiuto lo studio della funzione integranda (consideriamo subito Γ(x + 1) anziché Γ(x)) t e t t x (2.7) la cui derivata rispetto a t è e t t x +xe t t x 1 = e t t x 1 (x t); (2.71)

14 2. ZERI, SINGOLARITÀ E RESIDUI 2-14 deduciamo che la funzione (2.7) ha un massimo assoluto per t = x, dove vale e x x x, che quindi scivola all infinito quando x +. Una buona idea è allora quella di ricentrare la funzione, con la traslazione t := x+s, che fornisce ( ) x+s x Γ(x+1) = e (x+s) (x+s) x ds = e x x x e s ds x x x (2.72) = e x x x e s+xlog(1+s/x) ds. x A questo punto quardiamo come si comporta asintoticamente l esponente di e per x + s+xlog(1+s/x) = s+x(s/x) x(s 2 /2x 2 )+o(1/x 2 ) = s 2 /2x+o(1/x 2 ); ci si può quindi aspettare che l integrale si comporti come e s2 /2x ds x che ancora diverge; per rinormalizzarlo, basa allora fare la sostituzione s := xt, ottenendo per la (2.72) e s+xlog(1+s/x) ds = x x e xt+xlog(1+t/ x) dt. x Ritornando allo sviluppo dell esponente, si trova ora t x+xlog(1+t/ x) = t 2 /2+o(1/ x), da cui congetturiamo che lim x + e xt+xlog(1+t/ x) dt = e t2 /2 dt = 2π. (2.73) x Se quest ultima formula è vera, la (2.69) risulta dimostrata; si tratta cioè di giustificare il passaggio al limite sotto il segno di integrale della (2.73). Spezzando in due l integrale, come e xt+xlog(1+t/ x) dt + e xt+xlog(1+t/ x) χ[ x,] (t)dt si vede con un po di pazienza, che il primo integrando decresce con x, ed è perciò maggiorato uniformemente (scegliendo x = 1) da e t+log(1+t) = (1 + t)e t che è integrabile su [, + [. Applicando il teorema della convergenza dominata di Lebesgue, possiamo così giustificare il primo passaggio al limite. Per quanto riguarda il secondo integrando sull intervallo ],], si può controllare che esso cresce con x, e si può così applicare il teorema di convergenza monotona, trattandosi di funzioni non negative. Concludiamo che Γ(x + 1) (x/e) x 2πx. (2.74)

Sulla teoria delle funzioni di una variabile complessa

Sulla teoria delle funzioni di una variabile complessa Capitolo Sulla teoria delle funzioni di una variabile complessa Funzioni olomorfe e Teorema di Cauchy Consideriamo il piano complesso C, con coordinata complessa z Vogliamo studiare le funzioni f : U C,

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento:

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento: Capitolo 3 Serie 3. Definizione Sia { } una successione di numeri reali. Ci proponiamo di dare significato, quando possibile, alla somma a + a 2 +... + +... di tutti i termini della successione. Questa

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

Note integrative ed Esercizi consigliati

Note integrative ed Esercizi consigliati - a.a. 2006-07 Corso di Laurea Specialistica in Ingegneria Civile (CIS) Note integrative ed consigliati Laura Poggiolini e Gianna Stefani Indice 0 1 Convergenza uniforme 1 2 Convergenza totale 5 1 Numeri

Dettagli

L. Pandolfi. Lezioni di Analisi Matematica 2

L. Pandolfi. Lezioni di Analisi Matematica 2 L. Pandolfi Lezioni di Analisi Matematica 2 i Il testo presenta tre blocchi principali di argomenti: A Successioni e serie numeriche e di funzioni: Cap., e 2. B Questa parte consta di due, da studiarsi

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Dipendenza dai dati iniziali

Dipendenza dai dati iniziali Dipendenza dai dati iniziali Dopo aver studiato il problema dell esistenza e unicità delle soluzioni dei problemi di Cauchy, il passo successivo è vedere come le traiettorie di queste ultime dipendono

Dettagli

LA FUNZIONE INTEGRALE

LA FUNZIONE INTEGRALE LA FUNZIONE INTEGRALE MAGLIOCURIOSO & CAMILLO magliocurioso@hotmail.it Sommario. In questa breve dispensa ho semplicementrascritto in L A TEX il contenuto di questa discussione: http://www.matematicamente.it/forum/

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i

NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i NUMERI COMPLESSI Esercizi svolti 1. Calcolare le seguenti potenze di i: a) i, b) i, c) i 4, d) 1 i, e) i 4, f) i 7. Semplificare le seguenti espressioni: a) ( i) i(1 ( 1 i), b) ( + i)( i) 5 + 1 ) 10 i,

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

1. Intorni di un punto. Punti di accumulazione.

1. Intorni di un punto. Punti di accumulazione. 1. Intorni di un punto. Punti di accumulazione. 1.1. Intorni circolari. Assumiamo come distanza di due numeri reali x e y il numero non negativo x y (che, come sappiamo, esprime la distanza tra i punti

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

0. Funzioni di variabile complessa

0. Funzioni di variabile complessa . Funzioni di variabile complessa In questo capitolo esporremo le linee essenziali della teoria delle funzioni di variabile complessa. Questa teoria è una tra le più compiutamente sviluppate da un puntodivista

Dettagli

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc.

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. Classi Numeriche 1 1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. In questo breve capitolo richiamiamo le definizioni delle classi numeriche fondamentali, già note al lettore,

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

Studio grafico-analitico delle funzioni reali a variabile reale

Studio grafico-analitico delle funzioni reali a variabile reale Studio grafico-analitico delle funzioni reali a variabile reale Sequenza dei passi Classificazione In pratica Classifica il tipo di funzione: Funzione razionale: intera / fratta Funzione irrazionale: intera

Dettagli

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA DEFINIZIONE: Dato un numero reale a che sia a > 0 e a si definisce funzione esponenziale f(x) = a x la relazione che ad ogni valore di x associa uno e un solo

Dettagli

Analisi Complessa. Prof. Sebastiano Seatzu. Università degli Studi di Cagliari Dipartimento di Matematica. 29 settembre 2010

Analisi Complessa. Prof. Sebastiano Seatzu. Università degli Studi di Cagliari Dipartimento di Matematica. 29 settembre 2010 Università degli Studi di agliari Dipartimento di Matematica Prof. Sebastiano Seatzu Analisi omplessa 9 settembre Facoltà di Ingegneria orso di laurea in Ingegneria Elettronica 3 Indice ANALISI OMPLESSA

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Capitolo 2 Equazioni differenziali ordinarie 2.1 Formulazione del problema In questa sezione formuleremo matematicamente il problema delle equazioni differenziali ordinarie e faremo alcune osservazioni

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

Appunti sulle disequazioni

Appunti sulle disequazioni Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire

Dettagli

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0)

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0) Numeri Complessi Un numero complesso z può essere definito come una coppia ordinata (x,y) di numeri reali x e y. L insieme dei numeri complessi è denotato con C e può essere identificato con il piano cartesiano

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio.

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio. Appunti di Analisi Matematica Docente:Fabio Camilli SAPIENZA, Università di Roma A.A. 4/5 http://www.dmmm.uniroma.it/~fabio.camilli/ (Versione del 9 luglio 5) Note scritte in collaborazione con il prof.

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

Limiti e forme indeterminate

Limiti e forme indeterminate Limiti e forme indeterminate Edizioni H ALPHA LORENZO ROI c Edizioni H ALPHA. Ottobre 04. H L immagine frattale di copertina rappresenta un particolare dell insieme di Mandelbrot centrato nel punto.5378303507,

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Esistenza di funzioni continue non differenziabili in alcun punto

Esistenza di funzioni continue non differenziabili in alcun punto UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA Esistenza di funzioni continue non differenziabili in alcun punto Relatore Prof. Andrea

Dettagli

Sulla monotonia delle funzioni reali di una variabile reale

Sulla monotonia delle funzioni reali di una variabile reale Liceo G. B. Vico - Napoli Sulla monotonia delle funzioni reali di una variabile reale Prof. Giuseppe Caputo Premetto due teoremi come prerequisiti necessari per la comprensione di quanto verrà esposto

Dettagli

Sviluppi di Taylor Esercizi risolti

Sviluppi di Taylor Esercizi risolti Esercizio 1 Sviluppi di Taylor Esercizi risolti Utilizzando gli sviluppi fondamentali, calcolare gli sviluppi di McLaurin con resto di Peano delle funzioni seguenti fino all ordine n indicato: 1. fx ln1

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

Equazioni non lineari

Equazioni non lineari Dipartimento di Matematica tel. 011 0907503 stefano.berrone@polito.it http://calvino.polito.it/~sberrone Laboratorio di modellazione e progettazione materiali Trovare il valore x R tale che f (x) = 0,

Dettagli

1 Alcuni criteri di convergenza per serie a termini non negativi

1 Alcuni criteri di convergenza per serie a termini non negativi Alcuni criteri di convergenza per serie a termini non negativi (Criterio del rapporto.) Consideriamo la serie a (.) a termini positivi (ossia a > 0, =, 2,...). Supponiamo che esista il seguente ite a +

Dettagli

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f

Dettagli

Nota su Crescita e Convergenza

Nota su Crescita e Convergenza Nota su Crescita e Convergenza S. Modica 28 Ottobre 2007 Nella prima sezione si considerano crescita lineare ed esponenziale e le loro proprietà elementari. Nella seconda sezione si spiega la misura di

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

5 Radici primitive dell unità e congruenze del tipo

5 Radici primitive dell unità e congruenze del tipo 5 Radici primitive dell unità e congruenze del tipo X m a (mod n ) Oggetto di questo paragrafo è lo studio della risolubilità di congruenze del tipo: X m a (mod n) con m, n, a Z ed m, n > 0. Per l effettiva

Dettagli

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine

Dettagli

STUDIO DEL SEGNO DI UNA FUNZIONE

STUDIO DEL SEGNO DI UNA FUNZIONE STUDIO DEL SEGNO DI UNA FUNZIONE Quando si studia una funzione! " #$%&' (funzione reale di variabile reale) è fondamentale conoscere il segno, in altre parole sapere per quali valori di &( #$%&'$è positiva,

Dettagli

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas.8.6.. - -.5.5 -. In questa dispensa ricordiamo la classificazione delle funzioni elementari e il dominio di esistenza delle stesse. Inoltre

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali. www.vincenzoscudero.it novembre 2009

ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali. www.vincenzoscudero.it novembre 2009 ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali v.scudero www.vincenzoscudero.it novembre 009 1 1 Funzioni algebriche fratte 1.1 Esercizio svolto y = x 1 x 11x + 10 (generalizzazione)

Dettagli

Approssimazione polinomiale di funzioni e dati

Approssimazione polinomiale di funzioni e dati Approssimazione polinomiale di funzioni e dati Approssimare una funzione f significa trovare una funzione f di forma più semplice che possa essere usata al posto di f. Questa strategia è utilizzata nell

Dettagli

La curva grafico della funzione, partendo dal punto A(a,f(a)), si snoda con continuità, senza interruzioni, fino ad approdare nel punto B(b,f(b)).

La curva grafico della funzione, partendo dal punto A(a,f(a)), si snoda con continuità, senza interruzioni, fino ad approdare nel punto B(b,f(b)). Calcolo differenziale Il teorema di Rolle TEOREMA DI ROLLE Ipotesi f continua su [a, b] f derivabile per lo meno su (a,b) f(a) = f(b) Tesi Esiste almeno un punto c in (a, b) tale che Giustificazione con

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f.

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f. FUNZIONI CONTINUE - ALCUNI ESERCIZI SVOLTI SIMONE ALGHISI 1. Continuità di una funzione Dati un insieme D R, una funzione f : D R e x 0 R, si è detto che f è continua in x 0 se sono soddisfatte le seguenti

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

B9. Equazioni di grado superiore al secondo

B9. Equazioni di grado superiore al secondo B9. Equazioni di grado superiore al secondo Le equazioni di terzo grado hanno una, due o tre soluzioni, risolvibili algebricamente con formule molto più complesse di quelle dell equazione di secondo grado.

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

Numeri complessi e polinomi

Numeri complessi e polinomi Numeri complessi e polinomi 1 Numeri complessi L insieme dei numeri reali si identifica con la retta della geometria: in altri termini la retta si può dotare delle operazioni + e e divenire un insieme

Dettagli

Limiti e continuità di funzioni reali di una variabile

Limiti e continuità di funzioni reali di una variabile di funzioni reali di una variabile Corso di Analisi Matematica - capitolo VI Facoltà di Economia, UER Maria Caterina Bramati Université Libre de Bruxelles ECARES 22 Novembre 2006 Intuizione di ite di funzione

Dettagli

Il luogo delle radici (ver. 1.0)

Il luogo delle radici (ver. 1.0) Il luogo delle radici (ver. 1.0) 1 Sia dato il sistema in retroazione riportato in Fig. 1.1. Il luogo delle radici è uno strumento mediante il quale è possibile valutare la posizione dei poli della funzione

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

IL TEOREMA DI LIOUVILLE OVVERO PERCHÉ NON ESISTE LA PRIMITIVA DI e x2

IL TEOREMA DI LIOUVILLE OVVERO PERCHÉ NON ESISTE LA PRIMITIVA DI e x2 IL TEOREMA DI LIOUVILLE OVVERO PERCHÉ NON ESISTE LA PRIMITIVA DI e x2 CAMILLO DE LELLIS Il seguente lavoro è l elaborazione di un contributo alla conferenza tenuta dall autore il 29 settembre 2012 presso

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

ED. Equazioni cardinali della dinamica

ED. Equazioni cardinali della dinamica ED. Equazioni cardinali della dinamica Dinamica dei sistemi La dinamica dei sistemi di punti materiali si può trattare, rispetto ad un osservatore inerziale, scrivendo l equazione fondamentale della dinamica

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

Appunti e generalità sulle funzioni reali di variabili reali.

Appunti e generalità sulle funzioni reali di variabili reali. Appunti e generalità sulle funzioni reali di variabili reali. Premessa Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire solamente i concetti

Dettagli

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI Indice 1 Le funzioni nel discreto 3 1.1 Le funzioni nel discreto.................................. 3 1.1.1 La rappresentazione grafica............................

Dettagli

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE - Matematica - Griglie di valutazione Materia: Matematica Obiettivi disciplinari Gli obiettivi indicati si riferiscono all intero percorso della classe quarta

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli I numeri complessi Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli 1 Introduzione Studiare i numeri complessi può sembrare inutile ed avulso dalla realtà;

Dettagli

Integrali di superficie: esercizi svolti

Integrali di superficie: esercizi svolti Integrali di superficie: esercizi svolti Gli esercizi contrassegnati con il simbolo * presentano un grado di difficoltà maggiore. Esercizio. Calcolare i seguenti integrali superficiali sulle superfici

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

1 LA CORRENTE ELETTRICA CONTINUA

1 LA CORRENTE ELETTRICA CONTINUA 1 LA CORRENTE ELETTRICA CONTINUA Un conduttore ideale all equilibrio elettrostatico ha un campo elettrico nullo al suo interno. Cosa succede se viene generato un campo elettrico diverso da zero al suo

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come

e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come Numeri complessi 9 Da questi esempi si può osservare che, facendo le successive potene di un numero complesso, i punti corrispondenti girano attorno all origine. Se inoltre > allora i punti si allontanano

Dettagli

Verica di Matematica su dominio e segno di una funzione [COMPITO 1]

Verica di Matematica su dominio e segno di una funzione [COMPITO 1] Verica di Matematica su dominio e segno di una funzione [COMPITO 1] Esercizio 1. Determinare il dominio delle seguenti funzioni: 1. y = 16 x ;. y = e 1 x +4 + x + x + 1; 3. y = 10 x x 3 4x +3x; 4. y =

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli