Miscele di aria e vapore d acqua

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Miscele di aria e vapore d acqua"

Transcript

1 Brbr Gherri mtr Lezione del 20/2/02 or 8:0-0:0 iscele di ri e ore d cqu L esigenz di studire le miscele ri ore deri dll grnde imortnz che esse riestono er il benessere termoigrometrico dell uomo e er l rogettzione di iminti di condizionmento. Si consideri l comosizione medi dell ri secc, ossi ri di ore d cqu, costituit d circ il 78% di zoto, dl 2% di ossigeno e d % di gs rri e nidride crbonic. Inoltre si consideri er l ri secc un T c = 2,8 K e un c =,77 : d ciò deri che, nche er temerture inferiori 0 C l ri secc è considert un gs erfetto urchè l ressione non si discosti eccessimente dl lore di 0, (ressione tmosferic). Si consideri il ore d cqu sturo crtterizzto d un T c =647, K e un c = 22, ; inoltre se l temertur rggiunge lori inferiori i 00 C er i quli le ressioni di sturzione sono inferiori 0,, è lecito ssimilre il comortmento del ore d cqu quello di un gs erfetto. Di seguito è riortto il digrmm V dell cqu: liquido Liquido+ore ore surriscldto isoterm qui non si comort come un gs erfetto Occorre inoltre notre come il comortmento termodinmico del liquido si ben dierso dl comortmento termodinmico del ore sturo, su olt differente dl comortmento termodinmico del ore surriscldto (che considerimo come un gs erfetto). Per qunto rigurd l comosizione dell miscel d ri- ore d cqu, l bbondnz relti dei comonenti uò essere esress medinte il titolo, o trmite il grdo idrometrico o umidità relti ϕ, oure trmite l sturzione ψ. Definizione : Il TITOLO rresent l frzione le tr l mss del ore d cqu e l mss le. x = () doe = +. L - -

2 Nelle miscele ri - ore d cqu si definisce l comosizione er mezzo del TITOLO x come rorto tr l mss del ore e l mss d ri resenti in un olume V di miscel, e si indic: x = (2) Nel cso di ori surriscldti ci si riferisce ll mss d ri secc, di conseguenz: x = Si noti che l denomintore non comre l mss di ore, inftti trttndosi di ri secc l su mss non ri mentre l uò rire erché l cqu su olt uò condensre. Si noti che è solitmente iù iccolo di : ne consegue che <<; nel cso in cui inece l miscel si costituit d un lt ercentule di ore ed in resenz di oc ri, il rorto uò ssumere lori iù eleti. Si osseri inoltre come nelle miscele di ri- ore il titolo non si sueriormente definito (ri d 0 + ): x = è comreso tr 0 e. ESEPIO: Come si comort un miscel di ri e ore d cqu? S immgini di orre in un stnz con ri secc (ossigeno e zoto ) un contenitore con cqu liquid. Prte di quest eorerà crendo in tl modo un mbiente sturto di ore e ottenendo ore sturo secco. Nel cso inece in cui si ong oc cqu ess eorerà intermente in qunto il ore h un ressione rzile inferiore quell di sturzione. < SAT () Inftti normlmente nell mbiente esterno non si h mi <. SAT Ari secc : Contenitore con cqu Il ore d cqu è resente in ntur, fino l 4% in olume; è iù leggero dell ri ed è distribuito qusi lmente nell troosfer. Proiene dlle ttiità dell uomo e dll eorzione dell cqu dei mri e di ltri deositi d cqu. Al - 2 -

3 cmbimento di fse di grndi msse d cqu nell troosfer è ssocito un noteole scmbio di clore con mnifestzioni ben eidenti quli l ioggi, l nee, l nebbi e l formzione di nubi. Ad esemio l quntità di ore d cqu che si tro nell ri uò rire molto, m l su ressione uò suerre l ressione del ore sturo secco ll temertur dell cqu. Qundo ciò ccde il ore si condens in goccioline e si form l nebbi. Inftti il ore surriscldto tende scendere ll temertur rggiunt dl or sturo secco: in tl modo si cre l nebbi oiché il ore è in equilibrio con il suo liquido. Si form inece l ioggi qundo il ore surriscldto dient ore secco. Nell uomo, d esemio, il ore è qusi sturo 7 C, m l mbiente esterno h ressione rzile minore, di conseguenz l ri si esnde e dll bocc esce l nuolett che di norm emettimo nelle giornte fredde. Definizione: GADO IGOETICO L comosizione di un miscel uò essere ssegnt nche ttrerso il GADO IGOETICO, che si definisce come il rorto tr l mss di ore che si tro nel olume dell miscel considert e l mss grdo di sturre quel olume di miscel ll medesim temertur T. ϕ si chim GADO IGOETICO ϕ = st (4) s di ore in e nche ϕ = = = (5) V s S st V Doe è l ressione di ore e st è l ressione di sturzione del ore d cqu ll temertur T ed è deducibile di lori sotto riortti: t( C) (mm Hg ) S S (kp) x ( S g kg -25 0,47 0,06 0,8-20 0,77 0,0 0,6-5,24 0,6,0-0,94 0,26,6-5,0 0,40 2,5 0 4,58 0,6,8 5 6,5 0,87 5,4 0 9,2,2 7,6 5 2,8,70 0,6 20 7,5 2,4 4,7 25 2,8,7 20,0 0,8 4,24 27,2 5 42,2 5,62 6, , 7,7 48,8 45 7,9 9,58 65, ,5 2, 86,2 ) - -

4 Tbell : lori ssunti d lcuni rmetri termodinmici dell miscel ri ore d'cqu erϕ = e =0, kp. Si noti inoltre che 0 < ϕ < in rticolre ϕ = se il ore è sturo e ϕ = 0 se non c è ore. Il grdo igrometrico iene sesso indicto in ercentule come UIDITA ELATIVA : U.. = 00 (6) st In tl cso U.. risult comreso tr 0 e 00%. Considerimo il ore d cqu come un GAS PEFETTO e di conseguenz utilizzimo: V = T (7) V= T (8) Dette risetimente e le ressioni rzili dell ri secc e del ore d cqu l ressione le si esrime come somm delle ressioni rzili : = + BA (9) doe l (9) è l LEGGE DI DALTON, meglio esress come: i = = (0) i i i doe i = i e i = ressione rzile. L somm delle ressioni rzili è ugule ll ressione le dell miscel. Dll (7)e (8) ricimo il titolo x: T = T m x = x = V V () e er l legge di Dlton x = = m = ϕ st dll (4) quindi x = o E noto che = µ ϕ st ϕ st (2) () con µ = mss molre kg µ = 29, mss molre dell ri kmol - 4 -

5 = 8 µ Dunque kg, mss molre del ore. kmol è il rorto inerso tr le msse molri e Infine sostituimo nell (2) che così risult: ϕ st x = 0,622 ϕ st = (4) µ 8 = = 0,622 µ 29 Occorre inoltre conoscere il grdo igrometrico e l temertur in qunto l st diende dll temertur er cui dll (4) si ric: ( - ϕ st ) x = 0,622 ϕ st x = ϕ (0,622+ x) d cui ricimo ϕ : st ϕ = st x ( 0,622 + x) (5) che costituisce l relzione iners er troreϕ. Nei sistemi erti L termodinmic dei sistemi ri- ore d cqu si lic i sistemi erti. Per un sistem chiuso l equzione di bilncio dell energi intern è l seguente: U 2 - U= Q L rizione dell energi intern Per un sistem chiuso inece l equzione di bilncio dell energi intern risult essere: H 2 H = Q- L rizione di entli doe H = U + V. Prorio grzie ll entli si uò tenere conto si del loro di esulsione, si del loro di introduzione.l entli risult così essere un grndezz ssi rilente er le miscele di ri e ore. h = H (6) doe : mss dell ri secc H: Entli le E su olt l entli le H = h + h (7) Si definisce ENTALPIA SPECIFICA J J = h + h J = h +x h (8) L (8) si dice ENTALPIA SPECIFICA ISCELA AIA- VAPOE D ACQUA

6 Si ong ttenzione non confondere l entli secific J dell miscel riore con l entli di ore sturo h x = h l + x h d doe x h d = r (9) r: clore ltente di orizzzione dell cqu. h x = h l + x h d T=0 C, entli =0 Per definire l entli è necessrio definire il lore che l entli ssume in un determinto stto; erciò si è soliti ssegnre il lore zero ll entli dell ri secc 0 C (come nel grfico) isto che è ossibile trlscire l ressione trttndosi di un gs erfetto. L entli secific del ore d cqu ll generic temertur t è ri l clore che è necessrio fornire d un kg di cqu er orizzrlo 0 C e quindi riscldre il ore d 0 C t C. Considerimo x = l + x d j x = j l +xd quindi se J = h +x h (8) J = c t + x ( r + c t) (9) kj Doe c è l ccità termic secific del ore e c =, r = 2500 kgk kj kj, c =,9. kgk kgk Di conseguenz J = t + x (2500+,9 t ) o meglio, è iù oortuno usre: J = c t + x( r + c t) (20) Grficzione degli stti fisici su di un oortuno grfico. Nonostnte lo stto fisico dell miscel ri- ore d cqu si definit d rmetri e conseguentemente risulterebbe iù oortuno un grfico tre - 6 -

7 dimensioni, oiché l mggior rte delle trsformzioni iene un ressione che oco si discost d quell tmosferic, si us solitmente un grfico ino. Lrgmente imiegto nel cmo scientifico è il digrmm di ollier, mentre il digrmm sicrometrico di origine nglosssone è doerto er clcoli tecnici. Il digrmm di ollier utilizz coordinte oblique e riferisce in sciss il titolo x e in ordint l entli secific J dell miscel riferit l kg di ri secc. A su olt d questo digrmm si ottiene ttrerso un oortuno ribltmento degli ssi coordinti ttorno ll digonle er l origine (ossi ruotndo il digrmm in senso ntiorrio di 90 ) il digrmm sicrometrico. Il grfico riort in ordint il titolo e in sciss le temerture. Inoltre llo scoo di geolrne l lettur, i lori del titolo, esresso in grmmi di ore er kg di ri secc, sono riortti destr, isto che l zon utile del grfico non interess l sse delle ordinte. Sull sse delle scisse si leggono i lori delle temerture nziché dell entli. Quest ultim si legge su un rett trsersle situt l di sor di un cur rticolre dett cur di sturzione, un cur crescente che non h erò un relzione secific che leg il titolo lle temerture T. Gli stti fisici irrelizzbili sono quelli che si trono sotto l cur di sturzione, mentre le ltre cure del grfico sono cure grdo idrometrico costnte che costituiscono un fscio che segue l cur limite di sturzione, m con lori di titolo x iù bssi. Noto dunque il digrmm sicrometrico i clcoli riortti in recedenz ossono essere sostituiti con un lettur dirett del grfico

8 Figur :digrmm di ollier er le miscele di ri ore, ressione tmosferic Figur 2:digrmm sicrometrico ressione tmosferic - 8 -

9 Temertur di rugid Si suong lo stto fisico ; nel cso in cui si sottrgg clore l ri si rffredd fino che il unto rresenttio del suo stto iene trorsi sull cur di sturzione. Se si continu sottrrre clore (l temertur scende m il suo titolo rimne costnte) rte del ore resente condens e quindi si ssiste ll comrs di goccioline d cqu sull suerficie stess che rffredd l ri. Definizione: L temertur minim ll qule un miscel d ri e ore uò essere rffreddt titolo costnte è l TEPEATUA DI UGIADA t r, riconoscibile er i grfic o ttrerso l risoluzione dell equzione: s ( trugid ) x = 0,622. (2) ( t s rugid) Temertur di bulbo bgnto Si consideri un coro bgnto; se esso non ricee clore si ort condizioni termodinmiche d equilibrio in irtù del ftto di essere bgnto T < T doe T è l temertur dell ri e T è l temertur del tubo. B B A A T < T con ϕ <. B A Q eorzione Un coro bgnto inftti tende ortrsi d un temertur iù bss di quell dell ri ffinché l ri stess gli ced clore er fenomeni di scmbio termico (questo iene indiendentemente dll form del coro). Si trtt di un trsformzione energi costnte. E un rocesso di sturzione dibtic isoentlic, ossi di un fenomeno che consiste nell eorzione di - 9 -

10 cqu sese del clore sensibile dell ri, inteso come scmbio di energi termic che è ccomgnto d un rizione di temertur. Dl grfico l temertur di bulbo bgnto si ottiene connettendo il coro A con B sull cur di sturzione ttrerso un line J costnte. Esercizio Dt un mss di ri umid =0kg, con ϕ =0,70 e T =0 C, ess iene rffreddt fino T =0 C BA.Qunto clore occorre sottrrre er fr enire tle trsformzione? ( Q?). H -H = Q l entli in questo cso si clcol solo risetto ll mss d ri secc: - 0 -

11 Q = ( ) J J quindi occorre conoscere J ej. Troimo i lori del titolo e 2 usndo l (4) x = 0,622 ϕ ϕ st st 0,70 0,0042 0,00424 kg = 0,622 =0,09.,0 0,7 0,0424 kg x =0,622 ϕ ϕ st st 0,0277 kg =0,622 =0,0079.,0 0,0277 kg Or er clcolre J ej ho bisogno l mss d ri secc ricbile dll =0kg. = + = + x = + x ) ( 0kg = = = 9, 8kg di ri secc. + x + 0,09 Posso nche clcolre cond cond = ( ) x x = 9,8 (0,09 0,0079) = 0, 09 kg si è rodotto circ un etto di ri. Or è ossibile clcolre J ej usndo l (9) kj J = t + x ( ,9t ) = 0 + 0,09 (2500 +,9 0) = 78, 58 kg J = t + x ,9 t ) = 0 + 0,0079 (2500 +,9 0) 42, 7 ( = ico Q = -9,8 (78,58-42,7). E corretto che Q risulti negtio erché ho utilizzto l formul Q = ( J ) J l osto di Q = ( ) J J Q=57,24 kj kj Q= c ( t t ) = 0 (0 0) = 200. kg kj. kg - -

Il dimensionamento dei carichi termici delle celle frigorifere

Il dimensionamento dei carichi termici delle celle frigorifere Il dimensionmento dei crichi termici delle celle frigorifere Andre Verondini Scoo rincile di un iminto di refrigerzione è quello di mntenere in un cell le condizioni che consentno l conserzione delle derrte

Dettagli

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore L scelt di equilirio del consumtore ntegrzione del C. 21 del testo di Mnkiw 1 Prte 1 l vincolo di ilncio Suonimo che il reddito di un consumtore

Dettagli

2. PROPRIETÀ E TRASFORMAZIONI DELL ARIA

2. PROPRIETÀ E TRASFORMAZIONI DELL ARIA 2. PROPRIETÀ E TRASFORMAZIONI DELL ARIA UMIDA 2.1. Ari Atmosferic L'ri tmosferic é costituit d un insieme di componenti gssosi (N 2, O 2, Ar, CO 2, Ne, He, ) e d ltre sostnze che possono presentrsi in

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

P O M P E. Per un impianto generico, il cui schema è rappresentato in figura, si adotta la seguente terminologia: H g è la PREVALENZA GEODETICA

P O M P E. Per un impianto generico, il cui schema è rappresentato in figura, si adotta la seguente terminologia: H g è la PREVALENZA GEODETICA O M E Sono cchine IDRULIE OERTRII. Loro coito è quello di trferire l eneri eccnic di cui dionono in eneri idrulic. Quete cchine cedono l fluido incoriiile che le ttrer eneri di reione e/o eneri cinetic.

Dettagli

CONDIZIONAMENTO DELL ARIA

CONDIZIONAMENTO DELL ARIA Corso di Impinti Tecnici.. 009/00 Docente: Prof. C. Isetti CAPITOLO 7 7. Generlità Come si ricorderà, per condizionmento dell ri si intende un intervento volto relizzre il controllo dell tempertur e del

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

Corso di Fisica tecnica ambientale e Impianti tecnici a.a. 2008/2009

Corso di Fisica tecnica ambientale e Impianti tecnici a.a. 2008/2009 Corso di Fisic tecnic mbientle e Impinti tecnici.. 008/009 CAPITOLO. Generlità Come si ricorderà, per condizionmento dell ri si intende un intervento volto relizzre il controllo dell tempertur e del contenuto

Dettagli

Elementi di calcolo degli impianti oleodinamici

Elementi di calcolo degli impianti oleodinamici Frnco Qurnt, Crmine Sbtino Elementi di clcolo degli iminti oleodinmici F. Qurnt, C. Sbtino Elementi di clcolo degli iminti oleodinmici 1 di 15 Not introduttiv Lo scoo di qunto esosto nelle gine seguenti

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003 Liceo Scientifico Sperimentle nno - Problem Bernrdo Pedone ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI nno - PROBLEMA Nel pino sono dti: il cerchio γ di dimetro OA =, l rett t tngente γ

Dettagli

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante Prof.. Di Muro Moto rettilineo uniformemente ccelerto ( m.r.u.. ) Il moto rettilineo uniformemente ccelerto è un moto che iene su un rett con ccelerzione costnte. Dll definizione di ccelerzione t t t t

Dettagli

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x)

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x) Nome.Cognome Clsse D 7 Aprile 0 Verific di mtemtic Problem (punti ) Sono dte le funzioni: f ( ) =, g ( ) = ( ) ) determinre il dominio di f() e di g() b) determinre, senz l uso dell clcoltrice f ( ) c)

Dettagli

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici.

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici. Il Primo Principio dell Termodinmic non fornisce lcun indiczione rigurdo d lcuni spetti prtici. l evoluzione spontne delle trsformzioni; non individu cioè il verso in cui esse possono vvenire. Pistr cld

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia COME SOPRAVVIVERE ALLA MATEMATICA di Giuli Cnzin e Dominique Cppelletti Come potrete notre inoltrndovi nel corso di Introduzione ll economi, l interpretzione dell teori economic non presuppone conoscenze

Dettagli

Legge del gas perfetto e termodinamica

Legge del gas perfetto e termodinamica Scheda riassuntia 5 caitoli 9-0 Legge del gas erfetto e termodinamica Gas erfetto Lo stato gassoso è quello di una sostanza che si troa oltre la sua temeratura critica. La temeratura critica è quella oltre

Dettagli

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli:

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli: Acidi Deboli Si definisce cido debole un cido con < 1 che risult perciò solo przilmente dissocito in soluzione. Esempi di cidi deboli: Acido cetico (H OOH) 1.75 1-5 Acido scorbico (vitmin ) 1 6.76 1-5.5

Dettagli

Modello Dinamico della Microturbina Turbec T100. Giuseppe Messina. Report RdS/2013/221 MINISTERO DELLO SVILUPPO ECONOMICO

Modello Dinamico della Microturbina Turbec T100. Giuseppe Messina. Report RdS/2013/221 MINISTERO DELLO SVILUPPO ECONOMICO Agenzi nzionle er le nuove tecnologie l energi e lo sviluo economico sostenibile MIISERO EO SVIUPPO ECOOMICO Modello inmico dell Microturbin urbec 00 Giusee Messin Reort RdS/0/ MOEO IAMICO EA MICROURBIA

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è:

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è: Titolzione Acido Debole Bse Forte L rezione che vviene nell titolzione di un cido debole HA con un bse forte NOH è: HA(q) NOH(q) N (q) A (q) HO Per quest rezione l costnte di equilibrio è: 1 = = >>1 w

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

6. I GAS IDEALI. 6.1 Il Gas perfetto

6. I GAS IDEALI. 6.1 Il Gas perfetto 6. I GAS IDEALI 6. Il Gas erfetto Il gas erfetto o ideale costituisce un modello astratto del comortamento dei gas cui tendono molti gas reali a ressioni rossime a quella atmosferica. Questo modello di

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

a con base a maggiore di 1 Dominio Codominio Crescenza/decrescenza Funz Crescente in Concavità/convessità Strettamente convessa in

a con base a maggiore di 1 Dominio Codominio Crescenza/decrescenza Funz Crescente in Concavità/convessità Strettamente convessa in Funzione esponenzile Dto un numero rele >0, l funzione si chim funzione esponenzile di bse e f prte dell fmigli delle funzioni elementri. Il suo ndmento (crescenz o decrescenz) è strettmente legto l vlore

Dettagli

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche. Cap. 10. Elementi di psicrometria, condizionamento dell aria e benessere ambientale

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche. Cap. 10. Elementi di psicrometria, condizionamento dell aria e benessere ambientale Aunti ed Esercizi di Fisica Tecnica e Macchine Termiche Ca. 0. Elementi di sicrometria, condizionamento dell aria e benessere ambientale Nicola Forgione Paolo Di Marco Versione 0.0.04.0. La resente disensa

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per Funzioni di utilità (finlmente un po di geroglifici, dopo i grffiti) NB: non fte leggere queste pgine un mtemtico, ltrimenti mi msscr!. Definizione e proprietà Considerimo due eni e di interesse per un

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

TERMODINAMICA E TERMOFLUIDODINAMICA. Cap. 3 TERMODINAMICA E LAVORO MECCANICO

TERMODINAMICA E TERMOFLUIDODINAMICA. Cap. 3 TERMODINAMICA E LAVORO MECCANICO TERMODINMIC E TERMOFLUIDODINMIC Ca. 3 TERMODINMIC E LVORO MECCNICO d 0 stato finae 0 stato iniziae F V m 0 / 0 G. Cesini Termodinamica e termofuidodinamica - Ca. 3_TD e aoro meccanico Ca. 3 TERMODINMIC

Dettagli

I costi dell impresa. Litri di benzene per unità di tempo. Linea di isocosto

I costi dell impresa. Litri di benzene per unità di tempo. Linea di isocosto 7 I costi dell impres 7.1. Per l combinzione di equilibrio dei due input, si ved il grfico successivo. L pendenz dell line di isocosto e` pri ll opposto del rpporto tr i prezzi dei fttori: -10 = 2 = -5.

Dettagli

Facoltà di Ingegneria

Facoltà di Ingegneria UNIVERSITA DEGLI STUDI DI CAGLIARI Fcoltà di Ingegneri Corso di Lure Specilistic in Ingegneri per l Ambiente e il Territorio TESINA DI CALCOLO NUMERICO Anlisi dell errore nei metodi di risoluzione dei

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

UNIVERSITA DEGLI STUDI MEDITERRANEA DI REGGIO CALABRIA FACOLTA DI INGEGNERIA Dipartimento di Informatica Matematica Elettronica e Trasporti

UNIVERSITA DEGLI STUDI MEDITERRANEA DI REGGIO CALABRIA FACOLTA DI INGEGNERIA Dipartimento di Informatica Matematica Elettronica e Trasporti UNIVRSITA DGLI STUDI MDITRRANA DI RGGIO CALABRIA FACOLTA DI INGGNRIA Dirtimento di Informtic Mtemtic lettronic e Trsorti QD-SD 03/02 L vlutzione delle condizioni termiche negli mbienti severi Antonino

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo:

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo: FUNZIONI MATEMATICHE Le relzioni mtemtihe utilizzte per desrivere fenomeni nturli, in iologi ome in ltre sienze, possono ovvimente essere le più svrite. Per lo più si trtt di equzioni lineri, qudrtihe,

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

Salvatore Loris Pelella. Corso di. Matematica RCS LIBRI EDUCATION SPA

Salvatore Loris Pelella. Corso di. Matematica RCS LIBRI EDUCATION SPA Slvtore Loris Pelell Corso di Mtemtic RCS LIBRI EDUCATION SPA ISBN 88-45-084-3 004 RCS Libri S.p.A.- Milno Prim edizione: gennio 004 Ristmpe 004 005 006 3 4 5 Stmp: V. Bon, Torino Coordinmento editorile

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

Introduzione all algebra

Introduzione all algebra Introduzione ll lgebr E. Modic ersmo@glois.it Liceo Scientifico Sttle S. Cnnizzro Corso P.O.N. Modelli mtemtici e reltà A.S. 2010/2011 Premess Codificre e Decodificre Nell vit quotidin ci cpit spesso di

Dettagli

Dilatazione termica. Δl=α l o Δt. ΔA = 2 α A o Δt. ( ) Δl=α l o Δt. α = coefficiente di dilatazione termica lineare

Dilatazione termica. Δl=α l o Δt. ΔA = 2 α A o Δt. ( ) Δl=α l o Δt. α = coefficiente di dilatazione termica lineare Acroolis Atene Eretteo: sostituzione di armature in acciaio con strutture in itanio. Esemi di restauro negativo acciaio contro ferro sigillato in iombo. Recuero di restauri inoortuni con sostituzione mediante

Dettagli

-STRUTTURE DI LEWIS SIMBOLI DI LEWIS

-STRUTTURE DI LEWIS SIMBOLI DI LEWIS STRUTTURE DI LEWIS SIMBLI DI LEWIS ELETTRI DI VALEZA: sono gli elettroni del guscio esterno, i responsbili principli delle proprietà chimiche di un tomo e quindi dell ntur dei legmi chimici che vengono

Dettagli

Figura 47: i ponti termici possono essere causati da discontinuità dei materiali o da discontinuità geometriche.

Figura 47: i ponti termici possono essere causati da discontinuità dei materiali o da discontinuità geometriche. Prestzioni PONTI TERMICI Normlmente il clcolo delle dispersioni termiche di un edificio viene svolto considerndo che le temperture interne ed esterne sino costnti (Regime Termico tzionrio). Questo signific

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stbilità dei sistemi di controllo in retrozione Criterio di Nyquist Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 Criterio di Nyquist Stbilità

Dettagli

Introduzione allo studio delle Macchine termiche. (parte quarta)

Introduzione allo studio delle Macchine termiche. (parte quarta) ITI OMAR Diprtimento di Meccnic Introduzione llo studio delle Mcchine termiche (prte qurt) Yunus A. Çengel, Michel A. Boles Thermodynmics: n engineering pproch 4th Edition McGrw-Hill Ari secc e ri tmosferic

Dettagli

GEOTECNICA LEZIONE 11 PROBLEMI DI STABILITA ANALISI LIMITE SPINTA DELLE TERRE. Ing. Alessandra Nocilla

GEOTECNICA LEZIONE 11 PROBLEMI DI STABILITA ANALISI LIMITE SPINTA DELLE TERRE. Ing. Alessandra Nocilla GEOTECNICA LEZIONE 11 POBLEMI DI STABILITA ANALISI LIMITE SPINTA DELLE TEE Ing. Alessndr Nocill 1 POBLEMI DI STABILITA OPEE DI SOSTEGNO OPEE DI SOSTEGNO IGIDE FLESSIBILI L stbilità è legt l eso W dell

Dettagli

Definizioni fondamentali

Definizioni fondamentali Definizioni fondmentli Sistem scisse su un rett 1 Un rett si ce orientt qundo su ess è fissto un verso percorrenz Dti due punti qulsisi A e B un rett orientt r, il segmento AB che può essere percorso d

Dettagli

METODO VOLTAMPEROMETRICO

METODO VOLTAMPEROMETRICO METODO OLTAMPEOMETCO Tle etodo consente di isrre indirettente n resistenz elettric ed ipieg l definizione stess di resistenz : doe rppresent l tensione i cpi dell resistenz e l corrente che l ttrers coe

Dettagli

Capitolo 2 - Sostanze pure e gas

Capitolo 2 - Sostanze pure e gas Aunti di FISICA ECNICA Caitolo 2 - Sostanze ure e gas Sostanze ure... 2 Generalità e definizioni... 2 Fasi di un sistema... 3 arianza e regola delle fasi... 4 Equilibrio liquido-aore: la tensione di aore...

Dettagli

DEBITI VERSO BANCHE 1 PREMESSA 2 CONTENUTO DELLA VOCE. Passivo SP D.4. Prassi Documento OIC n. 12; Documento OIC n. 19 2.

DEBITI VERSO BANCHE 1 PREMESSA 2 CONTENUTO DELLA VOCE. Passivo SP D.4. Prassi Documento OIC n. 12; Documento OIC n. 19 2. Cp. 49 - Debiti verso bnche 49 DEBITI VERSO BANCHE Pssivo SP D.4 Prssi Documento OIC n. 12; Documento OIC n. 19 1 PREMESSA I debiti verso bnche ricomprendono tutti quei debiti in cui l controprte è un

Dettagli

Portata Q - è il volume di liquido mosso dalla pompa nell'unità di tempo; l'unità di misura della portata è m 3 /sec (l/s; m 3 /h).

Portata Q - è il volume di liquido mosso dalla pompa nell'unità di tempo; l'unità di misura della portata è m 3 /sec (l/s; m 3 /h). OME ER FLUIDI ALIMENARI Definizione Sono macchine oeratrici oeranti su fluidi incomrimibili in grado di trasformare l energia meccanica disonibile all albero di un motore in energia meccanica del fluido

Dettagli

Ripasso di microeconomia ECONOMIA E FINANZA PUBBLICA. Teoria del consumatore. Lezione n. 1. Teoria del consumatore. Le preferenze.

Ripasso di microeconomia ECONOMIA E FINANZA PUBBLICA. Teoria del consumatore. Lezione n. 1. Teoria del consumatore. Le preferenze. Università degli Studi di erugia Corso di Laurea Magistrale in Scienze della olitica e dell'mministrazione Lezione n. Riasso di microeconomia CONOMI FINNZ ULIC nza Caruso Le referenze Come i consumatori

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI RICHIAMI DI TEORIA dom f Im f grfico Funzioni esponenzili y=^ con > Funzioni esponenzili y=^ con

Dettagli

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i DISTRIBUZIONE di PROBABILITA Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che uò assumere i valori: ; ;, n al verificarsi degli eventi incomatibili e comlementari: E ; E ;..;

Dettagli

Febbraio 2014. PROGETTO: Studio di Architettura e Urbanistica Dott. Arch. Guido Leoni Via Affò, 4 - Parma - tel. 0521.233423

Febbraio 2014. PROGETTO: Studio di Architettura e Urbanistica Dott. Arch. Guido Leoni Via Affò, 4 - Parma - tel. 0521.233423 Comune di Poviglio Provinci di Reggio Emili Relzione illustrtiv dell Delierzione Consilire di pprovzione, dei coefficienti e prmetri di conversione che ssicurno l equivlenz tr le definizioni e le modlità

Dettagli

CAPITOLO 14 OPERE DI SOSTEGNO

CAPITOLO 14 OPERE DI SOSTEGNO Citolo 14 OPEE DI SOSTEGNO CAPITOLO 14 OPEE DI SOSTEGNO 14.1 Introduzione Esiste un grnde vrietà di strutture utilizzte er sostenere il terreno e/o l cqu si er lvori temornei che er oere definitive. In

Dettagli

Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO

Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO Ai gentili Clienti Loro sedi Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO Al termine di ciscun periodo d impost, dopo ver effettuto le scritture di ssestmento e rettific,

Dettagli

Elementi grafici per Matematica

Elementi grafici per Matematica Elementi grfici per Mtemtic Sommrio: Sistemi di coordinte crtesine... Grfici di funzioni... 4. Definizione... 4. Esempi... 5.3 Verificre iniettività e suriettività dl grfico... 8.4 L rett... 9.5 Esempi

Dettagli

Equazioni parametriche di primo grado

Equazioni parametriche di primo grado Polo Sivigli Equzioni prmetriche di primo grdo Premess Come si s dll lgebr elementre, si chim equzione un uguglinz fr due espressioni letterli che si verific soltnto ttribuendo prticolri vlori lle lettere,

Dettagli

ELEMENTI DI DINAMICA DEI FLUIDI

ELEMENTI DI DINAMICA DEI FLUIDI Corso di Fisic tecnic e mbientle.. 011/01 - Docente: Prof. Crlo Isetti ELEMENTI DI DINAMICA DEI FLUIDI 6.1 GENERALITÀ Il moto più semplice cui si f riferimento è in genere il moto stzionrio, che è crtterizzto

Dettagli

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S Sessione ordinri 996 Liceo di ordinmento Soluzione di De Ros Nicol ) In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le prbole di equzione:, dove è un numero rele positivo.

Dettagli

Manuale Generale Sintel Guida alle formule di aggiudicazione

Manuale Generale Sintel Guida alle formule di aggiudicazione MANUALE DI SUPPOTO ALL UTILIZZO DELLA PIATTAFOMA SINTEL GUIDA ALLE FOMULE DI AGGIUDICAZIONE Pgin 1 di 21 AGENZIA EGIONALE CENTALE ACQUISTI Indice 1 INTODUZIONE... 3 1.1 Cso di studio... 4 2 FOMULE DI CUI

Dettagli

10. Completare la seguente tabella, in cui sono riportate le produzioni assolute e relative di tre colture altamente diffuse in Italia.

10. Completare la seguente tabella, in cui sono riportate le produzioni assolute e relative di tre colture altamente diffuse in Italia. ESERCIZI DI BASE 1. I soci proprietri di un piccol compgni gricol sono tre: i signori A, B, C. Mentre i signori A e C hnno l stess quot di prtecipzione ll ziend, il signor B h solo il 50% dell quot degli

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 005 Sessione suppletiv Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PROBLEMA Sono dti un pirmide

Dettagli

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna verso LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI secondo GRADO PROVA DI Mtemtic 30 quesiti Febbrio 0 Scuol... Clsse... Alunno... e b sono numeri reli che verificno quest uguglinz: Qunto vle il loro prodotto?

Dettagli

Appunti di Termodinamica

Appunti di Termodinamica ullio Paa unti di ermodinamica Per arofondire consultare il testo: Paa; Lezioni di Fisica-ermodinamica, edizioni Kaa, Roma 1 Sistemi e variabili termodinamiche Equazioni di stato 1 Introduzione La termodinamica

Dettagli

Conversione A/D e D/A. Quantizzazione

Conversione A/D e D/A. Quantizzazione Conversione A/D e D/A Per il trttmento dei segnli sempre più vengono preferite soluzioni di tipo digitle. È quindi necessrio, in fse di cquisizione, impiegre dispositivi che convertno i segnli nlogici

Dettagli

CLASSI PRIME 2013/14

CLASSI PRIME 2013/14 LICEO SCIENTIFICO STATALE G.B. GRASSI CLASSI PRIME 2013/14 INDICAZIONI DI LAVORO PER LA SOSPENSIONE DEL GIUDIZIO IN FISICA Liceo scientifico e liceo delle scienze pplicte In relzione lle esigenze del secondo

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI 1 se 0, per ogni R ; Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >0: Sono definite: se >0: Non sono definite: Csi prticolri: Le proprietà delle

Dettagli

Lavorazioni delle materie plastiche

Lavorazioni delle materie plastiche Lvorzioni delle mterie plstiche CONTENUTI Lvorzione delle mterie plstiche con prticolre rigurdo llo stmpggio iniezione PREREQUISITI Conoscenz delle proprietà dei mterili Conoscenz degli elementi costituenti

Dettagli

Produzione di entropia e Lavoro perduto in un semplice processo irreversibile.

Produzione di entropia e Lavoro perduto in un semplice processo irreversibile. Produzione di entropi e Loro perduto in un semplice processo irreersiile Frnco di Lierto Diprtimento di Scienze Fisiche niersità di Npoli Federico II INFN- Sezione di Npoli, nism-nr-infm, nità di Npoli

Dettagli

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI Elis Gonizzi N mtricol: 3886 Lezione del -- :3-:3 IRRAGGIAMENO: APPLICAZIONI ED EERCIZI E utile l fine di comprendere meglio le ppliczioni e gli esercizi ricordre cos si intend con i termini CORPI NERI

Dettagli

COMUNICAZIONE PER VARIAZIONE BIVACCHI FISSI (Legge regionale 18 febbraio 2010, n. 8)

COMUNICAZIONE PER VARIAZIONE BIVACCHI FISSI (Legge regionale 18 febbraio 2010, n. 8) COMUNICAZIONE PER VARIAZIONE BIVACCHI FISSI (Legge regionle 18 febbrio 2010, n. 8) N Prot. VARIAZIONE...del (d compilrsi cur dell ufficio competente) Al Comune di.. Il/L sottoscritto/: Cognome Nome Dt

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI

9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI 9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI 9. Introduzione I rocessi termodinamici che vengono realizzati nella ratica devono consentire la realizzazione di uno scambio di energia termica o di energia

Dettagli

L Q = 1. e nel ciclo di Carnot questo rendimento assume valore massimo pari a : η =

L Q = 1. e nel ciclo di Carnot questo rendimento assume valore massimo pari a : η = CICLI ERMODINAMICI DIREI: Maccine termice Le maccine ce anno come scoo uello di trasformare ciclicamente in lavoro il calore disonibile da una sorgente termica sono dette maccine termice o motrici e il

Dettagli

4. Reti correttrici e regolatori industriali. 4.1 Regolatori industriali. 4.1.1 Regolatore ad azione proporzionale P

4. Reti correttrici e regolatori industriali. 4.1 Regolatori industriali. 4.1.1 Regolatore ad azione proporzionale P 4. Reti correttrici e regolatori industriali Un sistema di controllo ad anello chiuso deve soddisfare le secifiche assegnate nel dominio della frequenza e quelle assegnate nel dominio del temo. Queste

Dettagli

ESPONENZIALI LOGARITMI

ESPONENZIALI LOGARITMI ESPONENZIALI LOGARITMI Prerequisiti: Conoscere e sper operre con potenze con esponente nturle e rzionle. Conoscere e sper pplicre le proprietà delle potenze. Sper risolvere equzioni e disequzioni. Sper

Dettagli

Da 9.500,01 a 15.000,00 > 15.000,01 9.500,00 COSTO PASTO 1,15 2,30 3,45 4,60

Da 9.500,01 a 15.000,00 > 15.000,01 9.500,00 COSTO PASTO 1,15 2,30 3,45 4,60 Per l Anno Scolstico 2015/2016 l Deliber di Giunt Comunle n.25 del 16.04.2015 d oggetto: Determinzione dei criteri e ppliczione delle triffe dei servizi comunli introitti dl Comune nno 2015. Ricognizione

Dettagli

STRUMENTI DI MISURA TERMOIGROMETRICI. Esercizio sul dimensionamento termico di un condizionatore d'aria

STRUMENTI DI MISURA TERMOIGROMETRICI. Esercizio sul dimensionamento termico di un condizionatore d'aria Nome: MRCHESI GLORI N mtricol: 465 Dt: 0//00 Ore: 0.0 /.0 STRUMENTI DI MISUR TERMOIGROMETRICI Sommrio: ) Esercizio sul dimensionmento termico di un iziontore d'ri ) Comfort termoigrometrico ) Strumenti

Dettagli

Imparare: cosa, come, perché.

Imparare: cosa, come, perché. GIOCO n. 1 Imprre: cos, come, perché. L pprendimento scolstico non è solo questione di metodo di studio, m di numerose situzioni di tipo personle e di gruppo, oppure legte l contesto in cui pprendimo.

Dettagli

Sessione live #2 Settimana dal 24 al 30 marzo. Statistica Descrittiva (II): Analisi congiunta, Regressione lineare Quantili.

Sessione live #2 Settimana dal 24 al 30 marzo. Statistica Descrittiva (II): Analisi congiunta, Regressione lineare Quantili. Sessione lie # Settimana dal 4 al 30 marzo Statistica Descrittia (II): Analisi congiunta, Regressione lineare Quantili Lezioni CD: 3 4-5 Analisi congiunta Da un camione di 40 studenti sono stati rileati

Dettagli

LS-DYNA3D ABAQUS-explicit PAMCRASH RADIOSS. Vediamo come si sviluppa la soluzione esplicita del problema

LS-DYNA3D ABAQUS-explicit PAMCRASH RADIOSS. Vediamo come si sviluppa la soluzione esplicita del problema Anlisi rnsiori L'nlisi dinmic rnsiori (de nche nlisi emporle) è un ecnic che consene di deerminre l rispos dinmic di un sruur sogge d un generic eccizione emporle Gli eei emporli sono li d rendere imporni

Dettagli

Problemi di collegamento delle strutture in acciaio

Problemi di collegamento delle strutture in acciaio 1 Problemi di collegmento delle strutture in cciio Unioni con bulloni soggette tglio Le unioni tglio vengono generlmente utilizzte negli elementi compressi, quli esempio le unioni colonn-colonn soggette

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

SOLUZIONE PROBLEMI Insegnamento di Fisica dell Atmosfera Seconda prova in itinere

SOLUZIONE PROBLEMI Insegnamento di Fisica dell Atmosfera Seconda prova in itinere Doente: rof Dino Zri serittore: in lessio Bertò OLUZION PROBLMI Insenento i Fisi ell tosfer eon rov in itinere /3 Vlori elle ostnti Rio terrestre eio: 637 Rio solre eio: 7 5 Distnz ei terr-sole : 9 6 Vlore

Dettagli

Convenzione sull'unificazione di taluni elementi del diritto dei brevetti d'invenzione

Convenzione sull'unificazione di taluni elementi del diritto dei brevetti d'invenzione Serie dei Trttti Europei - n 47 Convenzione sull'unificzione di tluni elementi del diritto dei revetti d'invenzione Strsurgo, 27 novemre 1963 Trduzione ufficile dell Cncelleri federle dell Svizzer Gli

Dettagli

ELEMENTI DI STABILITA

ELEMENTI DI STABILITA tbilità Per stbilità di un nve si intende, in generle, l fcoltà di conservre l su posizione di equilibrio, cioè l su ttitudine resistere lle forze che tendono inclinrl e l cpcità di rddrizzrsi spontnemente

Dettagli

ASSENZE PER ASSISTENZA PORTATORI DI HANDICAP

ASSENZE PER ASSISTENZA PORTATORI DI HANDICAP NORMATIVA ASSENZE PER ASSISTENZA PORTATORI DI HANDICAP A cur di Libero Tssell d Scuol&Scuol del 21/10/2003 Riferimenti normtivi: rt. 21 e 33 5.2.1992 n. 104 e successive modifiche ed integrzioni, Dlgs.

Dettagli

NUMERI RAZIONALI E REALI

NUMERI RAZIONALI E REALI NUMERI RAZIONALI E REALI CARLANGELO LIVERANI. Numeri Razionali Tutti sanno che i numeri razionali sono numeri del tio q con N e q N. Purtuttavia molte frazioni ossono corrisondere allo stesso numero, er

Dettagli

Successioni di funzioni

Successioni di funzioni Successioni di funzioni 3.1 Introduzione Considerimo l successione (x n ) n0,icuiterminisono 1, x,x 2,x 3,..., x n,... Si trtt dell progressione geometric di termine inizile 1 e rgione x, che bbimo già

Dettagli

FISICA-TECNICA Diagrammi psicrometrico

FISICA-TECNICA Diagrammi psicrometrico Diagramma psicrometrici FISICA-ECNICA Diagrammi psicrometrico Katia Gallucci Si dice diagramma psicrometrico la rappresentazione grafica della proprietà termodinamiche dell aria umida. Su tali diagrammi

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

Temi speciali di bilancio

Temi speciali di bilancio Università degli Studi di Prm Temi specili di bilncio Le imposte (3) Il consolidto fiscle nzionle RIFERIMENTI Normtiv Artt. 117 129 del TUIR Art. 96 del TUIR Prssi contbile Documento OIC n. 25 Documento

Dettagli