LUCIO GUERRA. dove, indica l accoppiamento covettori-vettori. L omomorfismo P è antisimmetrico

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LUCIO GUERRA. dove, indica l accoppiamento covettori-vettori. L omomorfismo P è antisimmetrico"

Transcript

1 VARIETÀ OMOGENEE CON STRUTTURA DI POISSON LUCIO GUERRA Abstract. Presentazione delle ricerche in collaborazione con N.Ciccoli Varietà di Poisson. 1. Varietà di Poisson Su una varietà differenziabile M consideriamo un bivettore P Γ(M,T T) dove T denota il fibrato tangente della varietà. In ogni punto il bivettore P x T x T x determina un omomorfismo P x : T x T x e si ha quindi un omomorfismo di fibrati P : T T che soddisfa η,p (ξ) = ξ η,p dove, indica l accoppiamento covettori-vettori. L omomorfismo P è antisimmetrico nel senso che η,p (ξ) + ξ,p (η) = Il bivettore viene usato per definire la parentesi di Poisson di funzioni. A ogni funzione f è associato il campo hamiltoniano X f := P (df) Data una coppia di funzioni si definisce {f,g} := df dg,p = X f g dove il simbolo a destra indica una derivata di Lie. La parentesi soddisfa la regola di Leibniz {f, gh} = {f, g}h + g{f, h}. Nel caso in cui sia soddisfatta l identità di Jacobi {f, {g,h}} + {g, {h,f}} + {h, {f,g}} = 0 si dice che il bivettore P è una struttura di Poisson sulla varietà M. Una condizione equivalente è che sia soddisfatta l identità X {g,h} = [X g,x h ] Esempio. Nello spazio R 2n si indicano le coordinate come (q i,p i ). La struttura di Poisson canonica è data dal bivettore e le parentesi sono 1.2. Varietà simplettiche. P = p i q i {f,g} = ( f p i g q i f q i g p i ) 1

2 Su una varietà differenziabile M consideriamo una 2-forma ω Γ(M,T T ) dove T denota il fibrato cotangente. La forma è non degenere se l omomorfismo associato ω : T T è un isomorfismo. Una 2-forma chiusa e non degenere si dice una forma simplettica sulla varietà. Se ω è una forma simplettica l isomorfismo ω ha un inverso P : T T che è associato a un bivettore non degenere P Γ(M,T T). Notare che la parentesi associata soddisfa {f,g} = ω(x f,x g ) dove come prima si definisce X f := P (df). Il bivettore P è una struttura di Poisson (v. dim.). La struttura di Poisson associata a una struttura simplettica è non degenere, in quanto l omomorfismo P : T T è un isomorfismo. Viceversa ogni struttura di Poisson non degenere è associata a una struttura simplettica Dim. Data una funzione Φ(a 1,a 2,a 3 ) introduciamo il simbolo σφ per indicare la funzione Φ(a 1,a 2,a 3 ) + Φ(a 2,a 3,a 1 ) + Φ(a 3,a 1,a 2 ). Con questa notazione si può scrivere che dω(x 1,X 2,X 3 ) = σ(x 1 ω(x 2,X 3 ) ω([x 1,X 2 ],X 3 )) Se X 1,X 2,X 3 sono campi hamiltoniani di funzioni f 1,f 2,f 3 allora X 1 ω(x 2,X 3 ) + X 2 ω(x 3,X 1 ) = X 1 X 2 f 3 X 2 X 1 f 3 = [X 1,X 2 ]f 3 = ω([x 1,X 2 ],X 3 ) Segue che 2σ X 1 ω(x 2,X 3 ) = σ ω([x 1,X 2 ],X 3 ) e quindi dω(x 1,X 2,X 3 ) = σ X 1 ω(x 2,X 3 ) = σ {f 1 {f 2,f 3 }} Esempio. Nello spazio C n la metrica hermitiana dz i d z i ha come parte immaginaria la forma simplettica dx i dy i. La struttura di Poisson associata è quella descritta nell esempio precedente. Più in generale ogni varietà complessa kahleriana è simplettica. Per esempio in CP n la metrica di Fubini-Study Il fibrato cotangente Se M è una varietà il fibrato cotangente T M è una varietà e il fibrato tangente di questa varietà è descritto mediante il diagramma f T(T (M)) T(M) T (M) f in cui f è la proiezione strutturale di cui f è la derivata. Questo è un diagramma pull-back, si vede localmente. 2 M

3 A un vettore ξ in T(T (M)) sono associati una forma λ T x (M) e un vettore v T x (M) sopra un punto x M. L applicazione ξ λ(v) definisce una 1-forma γ sul fibrato cotangente. Il differenziale dγ è una 2-forma simplettica. Se q i sono coordinate locali in M e se p i sono le coordinate delle 1-forme nella regione coordinata allora γ = p i dq i e dγ = dp i dq i 2.1. Gruppi di Lie Poisson. 2. Varietà di Poisson omogenee Su un gruppo di Lie G un bivettore P si dice moltiplicativo se P gh = g P h + P g h dove un elemento g agisce a sinistra sul bivettore P tramite la derivata dell automorfismo x gx, e analogo significato ha l azione a destra di un elemento h. Un gruppo di Lie Poisson è un gruppo di Lie con una struttura di Poisson moltiplicativa. Notare che necessariamente P e = 0 nel punto unità, e non si ha mai una struttura simplettica Sia g l algebra di Lie del gruppo, identificata allo spazio tangente T e (G). Trasportando ogni bivettore P g nell origine e mediante azione a destra, si definisce una applicazione π : G g g tale che π(g) = P g g 1 Questa applicazione è un 1-cociclo di G a valori in g g rispetto alla rappresentazione aggiunta π(gh) = Ad g (π(h)) + π(g) La derivata d e π : g g g è un 1-cociclo di g a valori in g g, rispetto alla rappresentazione aggiunta ad Un bivettore moltiplicativo P si dice esatto quando il cociclo π è ottenuto come cobordo di un elemento p g g. Allora necessariamente P g = g p p g corrisponde al cociclo π(g) = Ad g (p) p Bialgebre di Lie. 3

4 Se g è un algebra di Lie e δ : g g g è un applicazione lineare che soddisfa: δ : g g g è un prodotto di Lie, δ Z 1 (g,g g) è un 1-cociclo, la coppia (g,δ) si dice una bialgebra di Lie, e la coppia (g,δ ) è una seconda algebra di Lie. Se G è un gruppo di Lie Poisson l applicazione d e π è una struttura di bialgebra per l algebra di Lie g La bialgebra si dice esatta se δ B 1 (g,g g) è un 1-cobordo. Dato ω g g la condizione necessaria e sufficiente affinchè il cobordo δ = ω determini un prodotto di Lie δ è la cosiddetta equazione di Yang-Baxter classica Il doppio di Drinfeld Ricordiamo che sullo spazio g g si ha il prodotto scalare x + ξ,y + η = η(x) + ξ(y) indotto dalla dualità. Sia (g,δ) una bialgebra di Lie. Esiste un unico prodotto di Lie su g g per cui g e g sono sottoalgebre e per cui il prodotto scalare è invariante. È dato da [x,η] = ad x(η) + ad η(x) dove ad indica l azione duale. Si ottiene quindi un algebra di Lie d sullo spazio somma, che si dice il doppio di (g,δ) Sia G un gruppo di Lie Poisson, e sia d il doppio di Drinfeld della bialgebra di Lie associata al gruppo. Si ha una azione di G su d tale che g(x + ξ) = Ad g (x) + Ad g 1 (ξ) + Ad g 1 (ξ) π(g) dove Ad indica l azione duale e dove indica contrazione di tensori Varietà di Poisson omogenee Sia (M,P) una varietà di Poisson, e sia (G,P ) un gruppo di Lie Poisson. Una azione di G su M è compatibile con le strutture di Poisson se soddisfa P gx = g P x + x P g dove x indica la derivata dell applicazione G M che descrive l orbita di x. Se l azione è transitiva si ha una varietà di Poisson omogenea. 4

5 Sia d il doppio di Drinfeld della bialgebra associata a (G,P ). Per ogni punto x M, detta g x l algebra di Lie dello stabilizzatore G x, si ha in d un sottospazio L x = {v + ξ : ξ g x, ξ P x = v in g/g x } che è una sottoalgebra e un sottospazio Lagrangiano (isotropo massimale per il prodotto scalare) Il gruppo G agisce su d e di conseguenza agisce sull insieme delle sottoalgebre Lagrangiane. Si ha L gx = g(l x ), in altre parole l applicazione x L x è equivariante. Si ha L x g = g x, l algebra di Lie dello stabilizzatore G x. Inoltre il sottogruppo stab L x, che contiene G x, ha la stessa algebra di Lie = L x g Lo spazio classificante Sia G un gruppo di Lie Poisson, e sia d il doppio di Drinfeld della bialgebra associata. Sia Λ la varietà di Grassmann Lagrange, che parametrizza i sottospazi Lagrangiani di d. Sia Λ a Λ la sottovarietà che parametrizza le sottoalgebre Lagrangiane di d Teorema di Drinfeld [3]. Si ha una corrispondenza biunivoca tra l insieme delle applicazioni M Λ a, dove M è una varietà di Poisson omogenea per G, che sono G-equivarianti e soddisfano la proprietà n. 2 sopra, a meno di isomorfismi M M l insieme delle coppie (L, H), dove L è una sottoalgebra Lagrangiana di d e dove H stab(l) è un sottogruppo con Lie(H) = L g, modulo l equivalenza indotta da G 3. alcuni risultati 3.1. La varietà Λ a nel caso G = SL(2, R) In questo caso g = sl(2, R), con una struttura di bialgebra di Lie esatta. Ogni cociclo δ è un cobordo (l algebra è semplice) e ogni cobordo definisce una bialgebra di Lie (l equazione di Yang-Baxter è banale) La varietà di Grassmann Lagrange Λ = Γ Γ ha due componenti, ciascuna = P 3. Ha una stratificazione in base alle dimensioni d = diml g d = dim L g (1,0) (0,1) ւ ց ւ ց (3,0) (1,2) (2,1) (0,3) g g Γ Γ 5

6 Descrizione della varietà Λ a delle sottoalgebre Lagrangiane del d, ottenuta in [4]. Γ è una componente di Λ a g è un punto fisso Λ(1, ) Pr(g) è una fibrazione equivariante: sopra + ammette una trivializzazione equivariante sopra 0 ha una sezione equivariante che separa due orbite Λ a Γ è una superficie quadrica Λ a (2,1) è una orbita Λ a (0, ) è una orbita, tolto event. un punto fisso 3.2. Deformazioni di bialgebre di Lie Una bialgebra di Lie è un dato D = (V,µ,δ) per cui g = (V,µ) e g = (V, t δ) sono algebre di Lie, e inoltre δ Z 1 (g,g g). Sia V uno spazio vettoriale fissato, di dimensione n. L insieme delle coppie (µ, δ) che definiscono una bialgebra di Lie su V è una varietà algebrica affine, che indichiamo con D n. Si ha una azione naturale di GL n su D n, le cui orbite corrispondono alle classi di isomorfismo di bialgebre di Lie di dimensione n. Lo studio infinitesimale della varietà e della struttura delle orbite è di natura coomologica. La seguente costruzione è proposta in [5] Sia D una bialgebra di Lie. Definiamo C p,q = Hom( p V, q V ) e consideriamo l operatore cobordo p,q : C p,q C p+1,q per la coomologia di g con coefficienti in q g. Si ha un isomorfismo Hom( p V, q V ) = Hom( q V, p V ). Sia p,q : C p,q C p,q+1 il duale del cobordo per la coomologia di g con coefficienti in p g. Si ottiene così un complesso doppio, da cui un complesso totale C n = C p,q (somma su p + q = n + 1) per cui il cobordo è definito come d n = d p,q dove d p,q = p,q + ( 1) n p,q. Indichiamo con H n (D) i gruppi di coomologia del complesso. (Notare che H 0 = 0.) Proprietà di questa costruzione. Lo spazio dei due-cocicli Z 2 (D) coincide con lo spazio tangente alla varietà D n nel punto (µ,δ). Se H 2 (D) = 0 la bialgebra D è formalmente rigida. References [1] Y. Kosmann-Schwarzbach: Lie bialgebras, Poisson Lie groups and dressing transformations. In: Integrability on nonlinear systems, Lecture Notes in Physics 495, , Springer-Verlag (1997). [2] V. I. Arnold: Mathematical Methods of Classical Mechanics. [3] V. G. Drinfeld: On Poisson homogeneous spaces of Poisson-Lie groups. Teor. Math. Phys. 95, (1993). [4] N. Ciccoli, L. Guerra: Orbits of Lagrangian subalgebras of the double sl(2,r). Geometriae Dedicata 88, (2001). [5] N. Ciccoli, L. Guerra: The variety of Lie bialgebras. J. Lie Theory 13, (2003). 6

La Forma dello Spazio

La Forma dello Spazio Maurizio Cornalba La Forma dello Spazio Collegio Ghislieri, 15 maggio 2000 1. L algebrizzazione della geometria la geometria analitica (sec.xvii... ) dà (1) metodo generale (insieme al calcolo infinitesimale)

Dettagli

Sollevamenti di azioni di gruppi e applicazioni fisiche

Sollevamenti di azioni di gruppi e applicazioni fisiche Sollevamenti di azioni di gruppi e applicazioni fisiche Roberto Catenacci Dipartimento di Scienze Matematiche Università di Trieste - 34127 TRIESTE Cesare Reina S.I.S.S.A. - Trieste in memoria di C. Cattaneo

Dettagli

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Esame di Geometria (Prof. F. Tovena) Argomenti: Proprietà di nucleo e immagine di una applicazione lineare. dim V = dim

Dettagli

STRUTTURE ALGEBRICHE

STRUTTURE ALGEBRICHE STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente operazione), oppure legge di composizione interna. Per definizione

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI In matematica, per semplificare la stesura di un testo, si fa ricorso ad un linguaggio specifico. In questo capitolo vengono fornite in maniera sintetica le nozioni

Dettagli

Parte 6. Applicazioni lineari

Parte 6. Applicazioni lineari Parte 6 Applicazioni lineari A Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Applicazioni fra insiemi, 2 Applicazioni lineari tra spazi vettoriali, 2 3 Applicazioni lineari da R n a R

Dettagli

Prodotto elemento per elemento, NON righe per colonne Unione: M R S

Prodotto elemento per elemento, NON righe per colonne Unione: M R S Relazioni binarie Una relazione binaria può essere rappresentata con un grafo o con una matrice di incidenza. Date due relazioni R, S A 1 A 2, la matrice di incidenza a seguito di varie operazioni si può

Dettagli

GRUPPI E LORO AZIONI

GRUPPI E LORO AZIONI GRUPPI E LORO AZIONI 1. Azioni e rappresentazioni Siano G un gruppo e S un insieme. Si dice che G agisce a sinistra su S se vi è una applicazione σ : G S S dove, per semplicità si scriverà sempre σ((g,

Dettagli

Le equazioni di Hamilton e lo spazio delle fasi

Le equazioni di Hamilton e lo spazio delle fasi Capitolo 2 Le equazioni di Hamilton e lo spazio delle fasi 2.1 Introduzione Con il passaggio dalle equazioni di Newton (1687) a quelle di Lagrange (1787), abbiamo già ottenuto un progresso considerevole,

Dettagli

Lezioni del corso di Geometria e Algebra. prof. Michele Mulazzani dott. Alessia Cattabriga

Lezioni del corso di Geometria e Algebra. prof. Michele Mulazzani dott. Alessia Cattabriga Lezioni del corso di Geometria e Algebra prof Michele Mulazzani dott Alessia Cattabriga AA 20001/2002 Indice 1 Equazioni e sistemi lineari 4 11 Alcune strutture algebriche 4 12 Operazioni standard su K

Dettagli

La Meccanica. Lagrange. S. Benenti a.a. 2005/06

La Meccanica. Lagrange. S. Benenti a.a. 2005/06 La Meccanica di Lagrange S. Benenti a.a. 2005/06 La Meccanica di Lagrange La meccanica lagrangiana trasferisce l analisi dei sistemi meccanici dallo spazio affine tridimensionale euclideo, modello dello

Dettagli

APPLICAZIONI LINEARI. B si definisce surriettiva. 9 quando ogni elemento di. B risulta IMMAGINE di. almeno un elemento di A.

APPLICAZIONI LINEARI. B si definisce surriettiva. 9 quando ogni elemento di. B risulta IMMAGINE di. almeno un elemento di A. APPLICAZIONI LINEARI Siano V e W due spazi vettoriali, di dimensione m ed n sullo stesso campo di scalari R. Una APPLICAZIONE ƒ : V W viene definita APPLICAZIONE LINEARE od OMOMORFISMO se risulta, per

Dettagli

FONDAMENTI MATEMATICI DELLA FISICA

FONDAMENTI MATEMATICI DELLA FISICA FONDAMENTI MATEMATICI DELLA FISICA MACROSCOPICA: UN PERCORSO GEOMETRICO C. LO SURDO 2 INDICE 0.0 PRESENTAZIONE 0.0.1 CONSIDERAZIONI GENERALI E PIANO DI LAVORO 0.0.2 I CONTENUTI CAPITOLO PER CAPITOLO: SINTESI

Dettagli

LP. Lavoro e potenziale

LP. Lavoro e potenziale Lavoro e potenziale LP. Lavoro e potenziale Forza In questa sezione dobbiamo introdurre un nuovo concetto che assumiamo come primitivo dalla fisica: è il concetto di forza. Ci occuperemo anzitutto di una

Dettagli

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2))

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2)) Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Applicazioni Lineari 1. Sia f : R 3 R 3 l applicazione lineare definita da f(x, y, z) = (x + ky + z, x y + 2z, x + y z) per ogni (x,

Dettagli

Geometria Superiore. A.A. 2014/2015 CdL in Matematica Università degli Studi di Salerno. March 2, 2015

Geometria Superiore. A.A. 2014/2015 CdL in Matematica Università degli Studi di Salerno. March 2, 2015 Geometria Superiore A.A. 2014/2015 CdL in Matematica Università degli Studi di Salerno Luca Vitagliano March 2, 2015 Programma Prerequisiti. Spazi affini. Anelli commutativi con unità. Ideali. Anelli quoziente.

Dettagli

Claudio Bartocci FIBRATI VETTORIALI, CONNESSIONI FORME DIFFERENZIALI

Claudio Bartocci FIBRATI VETTORIALI, CONNESSIONI FORME DIFFERENZIALI Claudio Bartocci FIBRATI VETTORIALI, CONNESSIONI E FORME DIFFERENZIALI Appunti preliminari per i corsi di Istituzioni di Fisica Matematica c Claudio bartocci 1998 Typeset by AMS-TEX 1 2 Assumeremo che

Dettagli

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1 SPAZI METRICI Nel piano R 2 o nello spazio R 3 la distanza fra due punti è la lunghezza, o norma euclidea, del vettore differenza di questi due punti. Se p = (x, y, z) è un vettore in coordinate ortonormali,

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2 Chiusura lineare Def. Sia A V (K) con A. Si dice copertura lineare (o chiusura lineare) di A, e si indica con L(A), l insieme dei vettori di V che risultano combinazioni lineari di un numero finito di

Dettagli

Algebra Lineare e Geometria

Algebra Lineare e Geometria Algebra Lineare e Geometria Corso di Laurea in Ingegneria Elettronica A.A. 2013-2014 Prova d esame del 16/06/2014. 1) a) Determinare la matrice associata all applicazione lineare T : R 3 R 4 definita da

Dettagli

Prova parziale di Geometria e Topologia I - 5 mag 2008 (U1-03, 13:30 16:30) 1/8. Cognome:... Nome:... Matricola:...

Prova parziale di Geometria e Topologia I - 5 mag 2008 (U1-03, 13:30 16:30) 1/8. Cognome:... Nome:... Matricola:... Prova parziale di Geometria e Topologia I - 5 mag 2008 (U1-03, 13:30 16:30) 1/8 Cognome:................ Nome:................ Matricola:................ (Dare una dimostrazione esauriente di tutte le

Dettagli

Prova scritta di Geometria 2 Prof. M. Boratynski

Prova scritta di Geometria 2 Prof. M. Boratynski 10/9/2008 Es. 1: Si consideri la forma bilineare simmetrica b su R 3 associata, rispetto alla base canonica {e 1, e 2, e 3 } alla matrice 3 2 1 A = 2 3 0. 1 0 1 1) Provare che (R 3, b) è uno spazio vettoriale

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Terzo Appello del corso di Geometria e Algebra II Parte - Docente F. Flamini, Roma, 7/09/2007 SVOLGIMENTO COMPITO III APPELLO

Dettagli

R X X. RELAZIONE TOTALE Definizione: Si definisce relazione totale tra x e y se dati X,Y diversi dall'insieme vuoto

R X X. RELAZIONE TOTALE Definizione: Si definisce relazione totale tra x e y se dati X,Y diversi dall'insieme vuoto PRODOTTO CARTESIANO Dati due insiemi non vuoti X e Y si definisce prodotto cartesiano: X Y ={ x, y x X, y Y } attenzione che (x,y) è diverso da (y,x) perchè (x,y)={x,{y}} e (y,x)={y,{x}} invece sono uguali

Dettagli

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Versione ottobre novembre 2008 Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Contenuto 1. Applicazioni lineari 2. L insieme delle

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

ALGEBRA I: ARITMETICA MODULARE E QUOZIENTI DI ANELLI

ALGEBRA I: ARITMETICA MODULARE E QUOZIENTI DI ANELLI ALGEBRA I: ARITMETICA MODULARE E QUOZIENTI DI ANELLI 1. CLASSI DI RESTO E DIVISIBILITÀ In questa parte sarò asciuttissimo, e scriverò solo le cose essenziali. I commenti avete potuto ascoltarli a lezione.

Dettagli

Prodotto libero di gruppi

Prodotto libero di gruppi Prodotto libero di gruppi 24 aprile 2014 Siano (A 1, +) e (A 2, +) gruppi abeliani. Sul prodotto cartesiano A 1 A 2 definiamo l operazione (x 1, y 1 ) + (x 2, y 2 ) := (x 1 + x 2, y 1 + y 2 ). Provvisto

Dettagli

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b :

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b : Forme bilineari e prodotti scalari Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione b : { V V K ( v, w) b( v, w), si dice forma bilineare su V se per ogni u, v, w V e per ogni k K:

Dettagli

Appunti del corso: Elementi di algebra superiore 2 Prof. Giovanni Gaiffi

Appunti del corso: Elementi di algebra superiore 2 Prof. Giovanni Gaiffi Appunti del corso: Elementi di algebra superiore 2 Prof. Giovanni Gaiffi Stefano Maggiolo http://poisson.phc.unipi.it/~maggiolo/ maggiolo@mail.dm.unipi.it 27 28 Indice 1 Moduli 3 1.1 Il gruppo degli omomorfismi.....................

Dettagli

G. Pareschi ALGEBRE DI BOOLE. 1. Algebre di Boole

G. Pareschi ALGEBRE DI BOOLE. 1. Algebre di Boole G. Pareschi ALGEBRE DI BOOLE 1. Algebre di Boole Nel file precedente abbiamo incontrato la definizione di algebra di Boole come reticolo: un algebra di Boole e un reticolo limitato, complementato e distributivo.

Dettagli

Cenni di teoria dei campi finiti

Cenni di teoria dei campi finiti Cenni di teoria dei campi finiti Luca Giuzzi 31 ottobre 2011 In queste note vengono richiamati alcuni risultati di algebra relativi la teoria dei campi finiti. 1 Anelli Definizione 1. Un anello (R, +,

Dettagli

Insiemi con un operazione

Insiemi con un operazione Capitolo 3 Insiemi con un operazione 3.1 Gruppoidi, semigruppi, monoidi Definizione 309 Un operazione binaria su un insieme G è una funzione: f : G G G Quindi, un operazione binaria f su un insieme G è

Dettagli

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE. A. A. 2014-2015 L. Doretti

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE. A. A. 2014-2015 L. Doretti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE A. A. 2014-2015 L. Doretti 1 Il concetto di derivata di una funzione è uno dei più importanti e fecondi di tutta la matematica sia per

Dettagli

Anello commutativo. Un anello è commutativo se il prodotto è commutativo.

Anello commutativo. Un anello è commutativo se il prodotto è commutativo. Anello. Un anello (A, +, ) è un insieme A con due operazioni + e, dette somma e prodotto, tali che (A, +) è un gruppo abeliano, (A, ) è un monoide, e valgono le proprietà di distributività (a destra e

Dettagli

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2)

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Algebra e Geometria Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Traccia delle lezioni che saranno svolte nell anno accademico 2012/13 I seguenti appunti

Dettagli

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i NA. Operatore nabla Consideriamo una funzione scalare: f : A R, A R 3 differenziabile, di classe C (2) almeno. Il valore di questa funzione dipende dalle tre variabili: Il suo differenziale si scrive allora:

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

Corso di Analisi Matematica. Funzioni reali di variabile reale

Corso di Analisi Matematica. Funzioni reali di variabile reale a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni reali di variabile reale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

Esercizi di Geometria 1 Foglio 3 (12 novembre 2015)

Esercizi di Geometria 1 Foglio 3 (12 novembre 2015) Esercizi di Geometria 1 Foglio 3 (12 novembre 2015) (esercizi analoghi potranno essere chiesti all esame scritto o orale) 4. Azioni di gruppi e spazi classificanti Esercizio 4.1 (Azioni lineari) Verificare

Dettagli

Parte 2. Metodi Matematici per la Meccanica Quantistica. Spazi di pre-hilbert e spazi di Hilbert. Gianpiero CATTANEO

Parte 2. Metodi Matematici per la Meccanica Quantistica. Spazi di pre-hilbert e spazi di Hilbert. Gianpiero CATTANEO Parte Metodi Matematici per la Meccanica Quantistica Spazi di pre-hilbert e spazi di Hilbert Gianpiero CATTANEO 10 giugno 008 Indice I - Spazi con Prodotto Interno e Spazi di Hilbert 5 1 Spazi con Prodotto

Dettagli

AL. Algebra vettoriale e matriciale

AL. Algebra vettoriale e matriciale PPENDICI L. lgebra vettoriale e matriciale Vettori Somma di vettori: struttura di gruppo Come abbiamo richiamato nell introduzione vi sono delle grandezze fisiche caratterizzabili come vettori, cioè tali

Dettagli

3 Applicazioni lineari e matrici

3 Applicazioni lineari e matrici 3 Applicazioni lineari e matrici 3.1 Applicazioni lineari Definizione 3.1 Siano V e W dei K spazi vettoriali. Una funzione f : V W è detta applicazione lineare se: i u, v V, si ha f(u + v = f(u + f(v;

Dettagli

Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. L : V W

Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. L : V W Matematica B - a.a 2006/07 p. 1 Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. Definizione 1. La funzione L : V W si dice una applicazione

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

Ottimizazione vincolata

Ottimizazione vincolata Ottimizazione vincolata Ricordiamo alcuni risultati provati nella scheda sulla Teoria di Dini per una funzione F : R N+M R M di classe C 1 con (x 0, y 0 ) F 1 (a), a = (a 1,, a M ), punto in cui vale l

Dettagli

3 GRAFICI DI FUNZIONI

3 GRAFICI DI FUNZIONI 3 GRAFICI DI FUNZIONI Particolari sottoinsiemi di R che noi studieremo sono i grafici di funzioni. Il grafico di una funzione f (se non è specificato il dominio di definizione) è dato da {(x, y) : x dom

Dettagli

1 Regole generali per l esame. 2 Libro di Testo

1 Regole generali per l esame. 2 Libro di Testo FACOLTÀ DI INGEGNERIA Corso di GEOMETRIA E ALGEBRA (mn). (Ing. per l Ambiente e il Territorio, Ing. Informatica - Sede di Mantova) A.A. 2008/2009. Docente: F. BISI. 1 Regole generali per l esame L esame

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

(Pre)Quantizzazione Geometrica

(Pre)Quantizzazione Geometrica Universitá degli studi di Padova Facoltá di Scienze MM.FF.NN. Dipartimento di Matematica Pura e Applicata Tesi di laurea triennale in Matematica (Pre)Quantizzazione Geometrica Laureando: Alessandro Tessari

Dettagli

Richiami sulle derivate parziali e definizione di gradiente di una funzione, sulle derivate direzionali. Regola della catena per funzioni composte.

Richiami sulle derivate parziali e definizione di gradiente di una funzione, sulle derivate direzionali. Regola della catena per funzioni composte. PROGRAMMA di Fondamenti di Analisi Matematica 2 (che sarà svolto fino al 7 gennaio 2013) A.A. 2012-2013, Paola Mannucci e Claudio Marchi, Canali 1 e 2 Ingegneria Gestionale, Meccanica-Meccatronica, Vicenza

Dettagli

1 Applicazioni Lineari tra Spazi Vettoriali

1 Applicazioni Lineari tra Spazi Vettoriali 1 Applicazioni Lineari tra Spazi Vettoriali Definizione 1 (Applicazioni lineari) Si chiama applicazione lineare una applicazione tra uno spazio vettoriale ed uno spazio vettoriale sul campo tale che "!$%!

Dettagli

d 2 dx ψ + 2 m E V x ψ = 0 V x = V x + a. ψ(x+a) = Q ψ(x). ψ x = e " i k x u k ψ x + a = e " i k x + a u k x + a = e " i k a e " i k x u k

d 2 dx ψ + 2 m E V x ψ = 0 V x = V x + a. ψ(x+a) = Q ψ(x). ψ x = e  i k x u k ψ x + a = e  i k x + a u k x + a = e  i k a e  i k x u k Teorema di Bloch Introduzione (vedi anche Ascroft, dove c è un approccio alternativo) Cominciamo col considerare un solido unidimensionale. Il modello è quello di una particella (l elettrone) in un potenziale

Dettagli

1.1. Spazi metrici completi

1.1. Spazi metrici completi SPAZI METRICI: COMPLETEZZA E COMPATTEZZA Note informali dalle lezioni 1.1. Spazi metrici completi La nozione di convergenza di successioni è centrale nello studio degli spazi metrici. In particolare è

Dettagli

Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) Algebre di Boole. 1. Definizione e proprietá

Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) Algebre di Boole. 1. Definizione e proprietá Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) [# Aii [10 pagine]] Algebre di Boole Un algebra di Boole è una struttura 1. Definizione e proprietá B =< B,,, ν, 0, 1 > in cui B è un insieme non

Dettagli

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L. Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli

Grazie ai Colleghi di Geometria del Dipartimento di Matematica dell Università degli Studi di Torino per il loro prezioso contributo. Grazie al Prof.

Grazie ai Colleghi di Geometria del Dipartimento di Matematica dell Università degli Studi di Torino per il loro prezioso contributo. Grazie al Prof. A01 178 Grazie ai Colleghi di Geometria del Dipartimento di Matematica dell Università degli Studi di Torino per il loro prezioso contributo. Grazie al Prof. S.M. Salamon per tanti utili suggerimenti e

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

Corso di Laurea in Matematica. Dispense del corso di ALGEBRA II

Corso di Laurea in Matematica. Dispense del corso di ALGEBRA II Corso di Laurea in Matematica Dispense del corso di ALGEBRA II a.a. 2012 2013 2 Indice I GRUPPI 5 1 Operazioni 7 1.1 Operazioni associative............................ 7 1.2 Matrici.....................................

Dettagli

NOTAZIONI DIFFERENZIALI IN FISICA

NOTAZIONI DIFFERENZIALI IN FISICA NOTAZIONI IFFERENZIALI IN FISICA Elio Proietti Abstract (Versione agosto 2012) Il tumultuoso sviluppo ed i successi del calcolo differenziale nel Settecento indussero il matematico Jean-Baptiste d Alambert

Dettagli

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.

Dettagli

Luigi Piroddi piroddi@elet.polimi.it

Luigi Piroddi piroddi@elet.polimi.it Automazione industriale dispense del corso 10. Reti di Petri: analisi strutturale Luigi Piroddi piroddi@elet.polimi.it Analisi strutturale Un alternativa all analisi esaustiva basata sul grafo di raggiungibilità,

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati.

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati. PROGRAMMA di Fondamenti di Analisi Matematica 2 (DEFINITIVO) A.A. 2010-2011, Paola Mannucci, Canale 2 Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

Lezioni di Geometria e Algebra. Fulvio Bisi, Francesco Bonsante, Sonia Brivio

Lezioni di Geometria e Algebra. Fulvio Bisi, Francesco Bonsante, Sonia Brivio Lezioni di Geometria e Algebra Fulvio Bisi, Francesco Bonsante, Sonia Brivio CAPITOLO 4 Applicazioni lineari 1. Definizioni ed esempi. In questo capitolo ci proponiamo di studiare le funzioni tra spazi

Dettagli

Fibrati e Connessioni

Fibrati e Connessioni Fibrati e Connessioni Guy Le Baube, Rue Bois Le Vent (1971) 1 Generalità sui Fibrati Vettoriali. Nel seguito B è uno spazio topologico connesso e paracompatto (vuol dire che B è di Hausdorff e ogni ricoprimento

Dettagli

Applicazioni lineari

Applicazioni lineari Applicazioni lineari Esempi di applicazioni lineari Definizione. Se V e W sono spazi vettoriali, una applicazione lineare è una funzione f: V W tale che, per ogni v, w V e per ogni a, b R si abbia f(av

Dettagli

Registro di Analisi Matematica II c.l. IIn a.a. 2006/2007 M. Furi

Registro di Analisi Matematica II c.l. IIn a.a. 2006/2007 M. Furi Registro delle lezioni di Analisi Matematica II (6 CFU) Università di Firenze - Facoltà di Ingegneria Corso di Laurea in Ingegneria Informatica A.A. 2006/2007 - Prof. Massimo Furi Testo di riferimento:

Dettagli

Teoria di Hodge e di Dolbeault

Teoria di Hodge e di Dolbeault Seminari di Geometria Seperiore a.a. 2012/2013 - Prof. P. Piccinni Teoria di Hodge e di Dolbeault a cura di Valeria Bertini, Francesco Meazzini, Salvatore Dolce e Giovanni Zaccanelli Indice 1 Teoria di

Dettagli

APPENDICE NOZIONI BASE E VARIE

APPENDICE NOZIONI BASE E VARIE pag. 131 Appendice: Nozioni base e varie G. Gerla APPENDICE NOZIONI BASE E VARIE 1. Funzioni e relazioni di equivalenza Questi appunti sono rivolti a persone che abbiano già una conoscenza elementare della

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Lezioni di geometria combinatoria

Lezioni di geometria combinatoria Quaderni dell'unione Matematica Italiana 48 Giuseppe Tallirli Lezioni di geometria combinatoria Pitagora Editrice Bologna 2005 Indice Prefazione v 1 Campi di Galois 1 1.1 Introduzione 1 1.2 Automorfismi

Dettagli

CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12. Disciplina : MATEMATICA. Docente Prof.ssa Paola Perego

CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12. Disciplina : MATEMATICA. Docente Prof.ssa Paola Perego CONVITTO NAZIONALE MARIA LUIGIA di Parma CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12 Disciplina : MATEMATICA Docente Prof.ssa Paola Perego COMPETENZE CONOSCENZE Funzione esponenziale e logaritmica

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24 Contenuto Endomorfismi auto-aggiunti. Matrici simmetriche. Il teorema spettrale Gli autovalori di una matrice simmetrica sono tutti reali. (Dimostrazione fatta usando i numeri complessi). Dimostrazione

Dettagli

STRUTTURE ALGEBRICHE

STRUTTURE ALGEBRICHE STRUTTURE ALGEBRICHE 1. Operazioni algebriche binarie Dato un insieme M, chiamiamo operazione algebrica binaria definita su M una qualunque applicazione f che associa ad ogni coppia ordinata (a, b) di

Dettagli

DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI

DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI Lezione 1. lunedí 17 settembre 2011 (1 ora) Presentazione del corso. Esercizio: cosa succede a moltiplicare per 2, 3, 4,... il numero 052631578947368421,

Dettagli

Il gruppo dei vettori

Il gruppo dei vettori Capitolo Terzo Il gruppo dei vettori 3.1. Le strutture di gruppo e di corpo Un operazione binaria (1) definita in un insieme è un applicazione fra il quadrato cartesiano dell insieme e l insieme stesso,

Dettagli

Esistenza di funzioni continue non differenziabili in alcun punto

Esistenza di funzioni continue non differenziabili in alcun punto UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA Esistenza di funzioni continue non differenziabili in alcun punto Relatore Prof. Andrea

Dettagli

Appunti di. Algebra Superiore. Rosario Strano

Appunti di. Algebra Superiore. Rosario Strano Appunti di Algebra Superiore Rosario Strano A cura di Giuseppe Bilotta. Dattiloscritti con AMS-L A TEX. Indice Parte I. Teoria di Galois 5 Capitolo I. Estensioni di campi 7 1. Richiami 7 2. Estensioni

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

II Spazi vettoriali ed applicazioni lineari

II Spazi vettoriali ed applicazioni lineari II Spazi vettoriali ed applicazioni lineari Nel capitolo precedente abbiamo visto come assumano un ruolo importante nello studio dello Spazio Euclideo la sua struttura di spazio affine e quindi di spazio

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

FISICA NUCLEARE E SUBNUCLEARE II

FISICA NUCLEARE E SUBNUCLEARE II FISICA NUCLEARE E SUBNUCLEARE II Libri di Testo: NUCLEAR AND PARTICLE PHYSICS (BURCHAM AND JOBES) INTRODUCTION TO HIGH ENERGY PHYSICS (PERKINS) Università degli studi di Roma La Sapienza Laurea Specialistica

Dettagli

TOPOLOGIE. Capitolo 2. 2.1 Spazi topologici

TOPOLOGIE. Capitolo 2. 2.1 Spazi topologici Capitolo 2 TOPOLOGIE Ogni spazio che si considera in gran parte della matematica e delle sue applicazioni è uno spazio topologico di qualche tipo: qui introduciamo in generale le nozioni di base della

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Dispense di Algebra 1 - Gruppi

Dispense di Algebra 1 - Gruppi Dispense di Algebra 1 - Gruppi Dikran Dikranjan e Maria Silvia Lucido Dipartimento di Matematica e Informatica Università di Udine via delle Scienze 200, I-33100 Udine gennaio 2005 L algébre est généreuse,

Dettagli

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012 Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 211/212 Ricordare: una funzione lipschitziana tra spazi metrici manda insiemi limitati in insiemi limitati; se il dominio di una funzione

Dettagli

MODULI INIETTIVI. Definizione: Un inclusione di A-moduli ι : M N si dice estensione essenziale di M se per ogni sottomodulo non nullo P N, P ι(m) 0.

MODULI INIETTIVI. Definizione: Un inclusione di A-moduli ι : M N si dice estensione essenziale di M se per ogni sottomodulo non nullo P N, P ι(m) 0. MODULI INIETTIVI Definizione: Un inclusione di A-moduli ι : M N si dice estensione essenziale di M se per ogni sottomodulo non nullo P N, P ι(m) 0. Esempio: Supponiamo che A sia un dominio e chiamiamo

Dettagli

Università degli Studi di Roma La Sapienza Laurea in Ingegneria Energetica A.A. 2014-2015 Programma del corso di Geometria Prof.

Università degli Studi di Roma La Sapienza Laurea in Ingegneria Energetica A.A. 2014-2015 Programma del corso di Geometria Prof. Università degli Studi di Roma La Sapienza Laurea in Ingegneria Energetica A.A. 2014-2015 Programma del corso di Geometria Prof. Antonio Cigliola Prerequisiti Logica elementare. Principio di Induzione.

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

LEZIONE 16. Proposizione 16.1.2. Siano V e W spazi vettoriali su k = R, C. Se f: V W

LEZIONE 16. Proposizione 16.1.2. Siano V e W spazi vettoriali su k = R, C. Se f: V W LEZIONE 16 16.1. Applicazioni lineari iniettive e suriettive. Ricordo le seguenti due definizioni valide per applicazioni di qualsiasi tipo ϕ: X Y fra due insiemi. L applicazione ϕ si dice iniettiva se

Dettagli