LUCIO GUERRA. dove, indica l accoppiamento covettori-vettori. L omomorfismo P è antisimmetrico

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LUCIO GUERRA. dove, indica l accoppiamento covettori-vettori. L omomorfismo P è antisimmetrico"

Transcript

1 VARIETÀ OMOGENEE CON STRUTTURA DI POISSON LUCIO GUERRA Abstract. Presentazione delle ricerche in collaborazione con N.Ciccoli Varietà di Poisson. 1. Varietà di Poisson Su una varietà differenziabile M consideriamo un bivettore P Γ(M,T T) dove T denota il fibrato tangente della varietà. In ogni punto il bivettore P x T x T x determina un omomorfismo P x : T x T x e si ha quindi un omomorfismo di fibrati P : T T che soddisfa η,p (ξ) = ξ η,p dove, indica l accoppiamento covettori-vettori. L omomorfismo P è antisimmetrico nel senso che η,p (ξ) + ξ,p (η) = Il bivettore viene usato per definire la parentesi di Poisson di funzioni. A ogni funzione f è associato il campo hamiltoniano X f := P (df) Data una coppia di funzioni si definisce {f,g} := df dg,p = X f g dove il simbolo a destra indica una derivata di Lie. La parentesi soddisfa la regola di Leibniz {f, gh} = {f, g}h + g{f, h}. Nel caso in cui sia soddisfatta l identità di Jacobi {f, {g,h}} + {g, {h,f}} + {h, {f,g}} = 0 si dice che il bivettore P è una struttura di Poisson sulla varietà M. Una condizione equivalente è che sia soddisfatta l identità X {g,h} = [X g,x h ] Esempio. Nello spazio R 2n si indicano le coordinate come (q i,p i ). La struttura di Poisson canonica è data dal bivettore e le parentesi sono 1.2. Varietà simplettiche. P = p i q i {f,g} = ( f p i g q i f q i g p i ) 1

2 Su una varietà differenziabile M consideriamo una 2-forma ω Γ(M,T T ) dove T denota il fibrato cotangente. La forma è non degenere se l omomorfismo associato ω : T T è un isomorfismo. Una 2-forma chiusa e non degenere si dice una forma simplettica sulla varietà. Se ω è una forma simplettica l isomorfismo ω ha un inverso P : T T che è associato a un bivettore non degenere P Γ(M,T T). Notare che la parentesi associata soddisfa {f,g} = ω(x f,x g ) dove come prima si definisce X f := P (df). Il bivettore P è una struttura di Poisson (v. dim.). La struttura di Poisson associata a una struttura simplettica è non degenere, in quanto l omomorfismo P : T T è un isomorfismo. Viceversa ogni struttura di Poisson non degenere è associata a una struttura simplettica Dim. Data una funzione Φ(a 1,a 2,a 3 ) introduciamo il simbolo σφ per indicare la funzione Φ(a 1,a 2,a 3 ) + Φ(a 2,a 3,a 1 ) + Φ(a 3,a 1,a 2 ). Con questa notazione si può scrivere che dω(x 1,X 2,X 3 ) = σ(x 1 ω(x 2,X 3 ) ω([x 1,X 2 ],X 3 )) Se X 1,X 2,X 3 sono campi hamiltoniani di funzioni f 1,f 2,f 3 allora X 1 ω(x 2,X 3 ) + X 2 ω(x 3,X 1 ) = X 1 X 2 f 3 X 2 X 1 f 3 = [X 1,X 2 ]f 3 = ω([x 1,X 2 ],X 3 ) Segue che 2σ X 1 ω(x 2,X 3 ) = σ ω([x 1,X 2 ],X 3 ) e quindi dω(x 1,X 2,X 3 ) = σ X 1 ω(x 2,X 3 ) = σ {f 1 {f 2,f 3 }} Esempio. Nello spazio C n la metrica hermitiana dz i d z i ha come parte immaginaria la forma simplettica dx i dy i. La struttura di Poisson associata è quella descritta nell esempio precedente. Più in generale ogni varietà complessa kahleriana è simplettica. Per esempio in CP n la metrica di Fubini-Study Il fibrato cotangente Se M è una varietà il fibrato cotangente T M è una varietà e il fibrato tangente di questa varietà è descritto mediante il diagramma f T(T (M)) T(M) T (M) f in cui f è la proiezione strutturale di cui f è la derivata. Questo è un diagramma pull-back, si vede localmente. 2 M

3 A un vettore ξ in T(T (M)) sono associati una forma λ T x (M) e un vettore v T x (M) sopra un punto x M. L applicazione ξ λ(v) definisce una 1-forma γ sul fibrato cotangente. Il differenziale dγ è una 2-forma simplettica. Se q i sono coordinate locali in M e se p i sono le coordinate delle 1-forme nella regione coordinata allora γ = p i dq i e dγ = dp i dq i 2.1. Gruppi di Lie Poisson. 2. Varietà di Poisson omogenee Su un gruppo di Lie G un bivettore P si dice moltiplicativo se P gh = g P h + P g h dove un elemento g agisce a sinistra sul bivettore P tramite la derivata dell automorfismo x gx, e analogo significato ha l azione a destra di un elemento h. Un gruppo di Lie Poisson è un gruppo di Lie con una struttura di Poisson moltiplicativa. Notare che necessariamente P e = 0 nel punto unità, e non si ha mai una struttura simplettica Sia g l algebra di Lie del gruppo, identificata allo spazio tangente T e (G). Trasportando ogni bivettore P g nell origine e mediante azione a destra, si definisce una applicazione π : G g g tale che π(g) = P g g 1 Questa applicazione è un 1-cociclo di G a valori in g g rispetto alla rappresentazione aggiunta π(gh) = Ad g (π(h)) + π(g) La derivata d e π : g g g è un 1-cociclo di g a valori in g g, rispetto alla rappresentazione aggiunta ad Un bivettore moltiplicativo P si dice esatto quando il cociclo π è ottenuto come cobordo di un elemento p g g. Allora necessariamente P g = g p p g corrisponde al cociclo π(g) = Ad g (p) p Bialgebre di Lie. 3

4 Se g è un algebra di Lie e δ : g g g è un applicazione lineare che soddisfa: δ : g g g è un prodotto di Lie, δ Z 1 (g,g g) è un 1-cociclo, la coppia (g,δ) si dice una bialgebra di Lie, e la coppia (g,δ ) è una seconda algebra di Lie. Se G è un gruppo di Lie Poisson l applicazione d e π è una struttura di bialgebra per l algebra di Lie g La bialgebra si dice esatta se δ B 1 (g,g g) è un 1-cobordo. Dato ω g g la condizione necessaria e sufficiente affinchè il cobordo δ = ω determini un prodotto di Lie δ è la cosiddetta equazione di Yang-Baxter classica Il doppio di Drinfeld Ricordiamo che sullo spazio g g si ha il prodotto scalare x + ξ,y + η = η(x) + ξ(y) indotto dalla dualità. Sia (g,δ) una bialgebra di Lie. Esiste un unico prodotto di Lie su g g per cui g e g sono sottoalgebre e per cui il prodotto scalare è invariante. È dato da [x,η] = ad x(η) + ad η(x) dove ad indica l azione duale. Si ottiene quindi un algebra di Lie d sullo spazio somma, che si dice il doppio di (g,δ) Sia G un gruppo di Lie Poisson, e sia d il doppio di Drinfeld della bialgebra di Lie associata al gruppo. Si ha una azione di G su d tale che g(x + ξ) = Ad g (x) + Ad g 1 (ξ) + Ad g 1 (ξ) π(g) dove Ad indica l azione duale e dove indica contrazione di tensori Varietà di Poisson omogenee Sia (M,P) una varietà di Poisson, e sia (G,P ) un gruppo di Lie Poisson. Una azione di G su M è compatibile con le strutture di Poisson se soddisfa P gx = g P x + x P g dove x indica la derivata dell applicazione G M che descrive l orbita di x. Se l azione è transitiva si ha una varietà di Poisson omogenea. 4

5 Sia d il doppio di Drinfeld della bialgebra associata a (G,P ). Per ogni punto x M, detta g x l algebra di Lie dello stabilizzatore G x, si ha in d un sottospazio L x = {v + ξ : ξ g x, ξ P x = v in g/g x } che è una sottoalgebra e un sottospazio Lagrangiano (isotropo massimale per il prodotto scalare) Il gruppo G agisce su d e di conseguenza agisce sull insieme delle sottoalgebre Lagrangiane. Si ha L gx = g(l x ), in altre parole l applicazione x L x è equivariante. Si ha L x g = g x, l algebra di Lie dello stabilizzatore G x. Inoltre il sottogruppo stab L x, che contiene G x, ha la stessa algebra di Lie = L x g Lo spazio classificante Sia G un gruppo di Lie Poisson, e sia d il doppio di Drinfeld della bialgebra associata. Sia Λ la varietà di Grassmann Lagrange, che parametrizza i sottospazi Lagrangiani di d. Sia Λ a Λ la sottovarietà che parametrizza le sottoalgebre Lagrangiane di d Teorema di Drinfeld [3]. Si ha una corrispondenza biunivoca tra l insieme delle applicazioni M Λ a, dove M è una varietà di Poisson omogenea per G, che sono G-equivarianti e soddisfano la proprietà n. 2 sopra, a meno di isomorfismi M M l insieme delle coppie (L, H), dove L è una sottoalgebra Lagrangiana di d e dove H stab(l) è un sottogruppo con Lie(H) = L g, modulo l equivalenza indotta da G 3. alcuni risultati 3.1. La varietà Λ a nel caso G = SL(2, R) In questo caso g = sl(2, R), con una struttura di bialgebra di Lie esatta. Ogni cociclo δ è un cobordo (l algebra è semplice) e ogni cobordo definisce una bialgebra di Lie (l equazione di Yang-Baxter è banale) La varietà di Grassmann Lagrange Λ = Γ Γ ha due componenti, ciascuna = P 3. Ha una stratificazione in base alle dimensioni d = diml g d = dim L g (1,0) (0,1) ւ ց ւ ց (3,0) (1,2) (2,1) (0,3) g g Γ Γ 5

6 Descrizione della varietà Λ a delle sottoalgebre Lagrangiane del d, ottenuta in [4]. Γ è una componente di Λ a g è un punto fisso Λ(1, ) Pr(g) è una fibrazione equivariante: sopra + ammette una trivializzazione equivariante sopra 0 ha una sezione equivariante che separa due orbite Λ a Γ è una superficie quadrica Λ a (2,1) è una orbita Λ a (0, ) è una orbita, tolto event. un punto fisso 3.2. Deformazioni di bialgebre di Lie Una bialgebra di Lie è un dato D = (V,µ,δ) per cui g = (V,µ) e g = (V, t δ) sono algebre di Lie, e inoltre δ Z 1 (g,g g). Sia V uno spazio vettoriale fissato, di dimensione n. L insieme delle coppie (µ, δ) che definiscono una bialgebra di Lie su V è una varietà algebrica affine, che indichiamo con D n. Si ha una azione naturale di GL n su D n, le cui orbite corrispondono alle classi di isomorfismo di bialgebre di Lie di dimensione n. Lo studio infinitesimale della varietà e della struttura delle orbite è di natura coomologica. La seguente costruzione è proposta in [5] Sia D una bialgebra di Lie. Definiamo C p,q = Hom( p V, q V ) e consideriamo l operatore cobordo p,q : C p,q C p+1,q per la coomologia di g con coefficienti in q g. Si ha un isomorfismo Hom( p V, q V ) = Hom( q V, p V ). Sia p,q : C p,q C p,q+1 il duale del cobordo per la coomologia di g con coefficienti in p g. Si ottiene così un complesso doppio, da cui un complesso totale C n = C p,q (somma su p + q = n + 1) per cui il cobordo è definito come d n = d p,q dove d p,q = p,q + ( 1) n p,q. Indichiamo con H n (D) i gruppi di coomologia del complesso. (Notare che H 0 = 0.) Proprietà di questa costruzione. Lo spazio dei due-cocicli Z 2 (D) coincide con lo spazio tangente alla varietà D n nel punto (µ,δ). Se H 2 (D) = 0 la bialgebra D è formalmente rigida. References [1] Y. Kosmann-Schwarzbach: Lie bialgebras, Poisson Lie groups and dressing transformations. In: Integrability on nonlinear systems, Lecture Notes in Physics 495, , Springer-Verlag (1997). [2] V. I. Arnold: Mathematical Methods of Classical Mechanics. [3] V. G. Drinfeld: On Poisson homogeneous spaces of Poisson-Lie groups. Teor. Math. Phys. 95, (1993). [4] N. Ciccoli, L. Guerra: Orbits of Lagrangian subalgebras of the double sl(2,r). Geometriae Dedicata 88, (2001). [5] N. Ciccoli, L. Guerra: The variety of Lie bialgebras. J. Lie Theory 13, (2003). 6

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2))

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2)) Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Applicazioni Lineari 1. Sia f : R 3 R 3 l applicazione lineare definita da f(x, y, z) = (x + ky + z, x y + 2z, x + y z) per ogni (x,

Dettagli

Anello commutativo. Un anello è commutativo se il prodotto è commutativo.

Anello commutativo. Un anello è commutativo se il prodotto è commutativo. Anello. Un anello (A, +, ) è un insieme A con due operazioni + e, dette somma e prodotto, tali che (A, +) è un gruppo abeliano, (A, ) è un monoide, e valgono le proprietà di distributività (a destra e

Dettagli

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b :

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b : Forme bilineari e prodotti scalari Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione b : { V V K ( v, w) b( v, w), si dice forma bilineare su V se per ogni u, v, w V e per ogni k K:

Dettagli

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i NA. Operatore nabla Consideriamo una funzione scalare: f : A R, A R 3 differenziabile, di classe C (2) almeno. Il valore di questa funzione dipende dalle tre variabili: Il suo differenziale si scrive allora:

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Esistenza di funzioni continue non differenziabili in alcun punto

Esistenza di funzioni continue non differenziabili in alcun punto UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA Esistenza di funzioni continue non differenziabili in alcun punto Relatore Prof. Andrea

Dettagli

GRUPPI TOPOLOGICI. 1 Gruppi Un gruppo è un insieme G, che contiene un elemento distinto e e su cui è definita un operazione binaria

GRUPPI TOPOLOGICI. 1 Gruppi Un gruppo è un insieme G, che contiene un elemento distinto e e su cui è definita un operazione binaria CAPITOLO I GRUPPI TOPOLOGICI 1 Gruppi Un gruppo è un insieme G, che contiene un elemento distinto e e su cui è definita un operazione binaria (1.1) G G (a, b) a b G con le proprietà: (i) a e = e a = a

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

Lo Spettro primo di un anello. Carmelo Antonio Finocchiaro

Lo Spettro primo di un anello. Carmelo Antonio Finocchiaro Lo Spettro primo di un anello Carmelo Antonio Finocchiaro 2 Indice 1 Lo spettro primo di un anello: introduzione 5 1.1 Le regole del gioco................................ 5 1.2 Prime definizioni e risultati

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Particelle identiche : schema (per uno studio più dettagliato vedi lezione 2) φ 1

Particelle identiche : schema (per uno studio più dettagliato vedi lezione 2) φ 1 Particelle identiche : schema (per uno studio più dettagliato vedi lezione ) Funzioni d onda di un sistema composto Sistema costituito da due particelle (eventualmente identiche) H φ q H φ H ψ φ φ stato

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

FORME DIFFERENZIALI IN R 3 E INTEGRALI

FORME DIFFERENZIALI IN R 3 E INTEGRALI FORME DIFFERENZIALI IN R 3 E INTEGRALI CLADIO BONANNO Contents 1. Spazio duale di uno spazio vettoriale 1 1.1. Esercizi 3 2. Spazi tangente e cotangente 4 2.1. Esercizi 6 3. Le forme differenziali e i

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc.

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. Classi Numeriche 1 1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. In questo breve capitolo richiamiamo le definizioni delle classi numeriche fondamentali, già note al lettore,

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Capitolo 2 Equazioni differenziali ordinarie 2.1 Formulazione del problema In questa sezione formuleremo matematicamente il problema delle equazioni differenziali ordinarie e faremo alcune osservazioni

Dettagli

Integrali di superficie: esercizi svolti

Integrali di superficie: esercizi svolti Integrali di superficie: esercizi svolti Gli esercizi contrassegnati con il simbolo * presentano un grado di difficoltà maggiore. Esercizio. Calcolare i seguenti integrali superficiali sulle superfici

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

ED. Equazioni cardinali della dinamica

ED. Equazioni cardinali della dinamica ED. Equazioni cardinali della dinamica Dinamica dei sistemi La dinamica dei sistemi di punti materiali si può trattare, rispetto ad un osservatore inerziale, scrivendo l equazione fondamentale della dinamica

Dettagli

LEZIONE 17. B : kn k m.

LEZIONE 17. B : kn k m. LEZIONE 17 17.1. Isomorfismi tra spazi vettoriali finitamente generati. Applichiamo quanto visto nella lezione precedente ad isomorfismi fra spazi vettoriali di dimensione finita. Proposizione 17.1.1.

Dettagli

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE 2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 INTRODUZIONE Il problema agli autovalori di un operatore La trattazione del problema agli autovalori di un operatore fatta negli spazi finitodimensionali

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

Appunti ed esercizi. di Meccanica Razionale

Appunti ed esercizi. di Meccanica Razionale Appunti ed esercizi di Meccanica Razionale Università degli Studi di Trieste - Sede di Pordenone Facoltà di Ingegneria Appunti ed esercizi di Meccanica Razionale Luciano Battaia Versione del 29 dicembre

Dettagli

Teoria dei Fibrati. Filippo Bracci

Teoria dei Fibrati. Filippo Bracci Teoria dei Fibrati Filippo Bracci DIPARTIMENTO DI MATEMATICA UNIVERSITÀ DI ROMA TOR VERGATA VIA DELLA RICERCA SCIENTIFICA 1, 00133 ROMA, ITALY. E-mail address: fbracci@mat.uniroma2.it Indice Capitolo

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

Numeri complessi e polinomi

Numeri complessi e polinomi Numeri complessi e polinomi 1 Numeri complessi L insieme dei numeri reali si identifica con la retta della geometria: in altri termini la retta si può dotare delle operazioni + e e divenire un insieme

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

La curva grafico della funzione, partendo dal punto A(a,f(a)), si snoda con continuità, senza interruzioni, fino ad approdare nel punto B(b,f(b)).

La curva grafico della funzione, partendo dal punto A(a,f(a)), si snoda con continuità, senza interruzioni, fino ad approdare nel punto B(b,f(b)). Calcolo differenziale Il teorema di Rolle TEOREMA DI ROLLE Ipotesi f continua su [a, b] f derivabile per lo meno su (a,b) f(a) = f(b) Tesi Esiste almeno un punto c in (a, b) tale che Giustificazione con

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

FONDAMENTI DI MECCANICA QUANTISTICA

FONDAMENTI DI MECCANICA QUANTISTICA FONDAMENTI DI MECCANICA QUANTISTICA Appunti raccolti nel Dipartimento di Fisica dell Università La Sapienza di Roma a cura di Stefano Patrì. Indirizzo e-mail dell autore: seriegeo@yahoo.it 5 ottobre 008

Dettagli

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine

Dettagli

Calcolo tensoriale: introduzione elementare ed applicazione alla relatività speciale

Calcolo tensoriale: introduzione elementare ed applicazione alla relatività speciale Capitolo 6 Calcolo tensoriale: introduzione elementare ed applicazione alla relatività speciale Il calcolo tensoriale costituisce un capitolo della geometria differenziale, e potrebbe essere discusso in

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

4. Strutture algebriche. Relazioni

4. Strutture algebriche. Relazioni Relazioni Sia R una relazione definita su un insieme A (cioè R A A). R si dice riflessiva se a A : ara R si dice simmetrica se a, b A : arb = bra R si dice antisimmetrica se a, b A : arb bra = a = b R

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

OGNI SPAZIO VETTORIALE HA BASE

OGNI SPAZIO VETTORIALE HA BASE 1 Mimmo Arezzo OGNI SPAZIO VETTORIALE HA BASE CONVERSAZIONE CON ALCUNI STUDENTI DI FISICA 19 DICEMBRE 2006 2 1 Preliminari Definizione 1.0.1 Un ordinamento parziale (o una relazione d ordine parziale)

Dettagli

Sulla teoria delle funzioni di una variabile complessa

Sulla teoria delle funzioni di una variabile complessa Capitolo Sulla teoria delle funzioni di una variabile complessa Funzioni olomorfe e Teorema di Cauchy Consideriamo il piano complesso C, con coordinata complessa z Vogliamo studiare le funzioni f : U C,

Dettagli

Appunti dalle Lezioni di MECCANICA RAZIONALE

Appunti dalle Lezioni di MECCANICA RAZIONALE Università degli Studi de L Aquila Appunti dalle Lezioni di MECCANICA RAZIONALE tenute dal prof. Raffaele ESPOSITO i INDICE Indice.......................................................................

Dettagli

I. Introduzione alla teoria ergodica

I. Introduzione alla teoria ergodica G. Benettin I. Introduzione alla teoria ergodica (2001/2002) 1. Prologo: il problema ergodico in Boltzmann e Gibbs 1.1. Motivazioni La teoria ergodica è un ramo della matematica, oggi molto sviluppato

Dettagli

Analisi funzionale. Riccarda Rossi Lezione 9

Analisi funzionale. Riccarda Rossi Lezione 9 Riarda Rossi Lezione 9 Caratterizzazione della onvergenza debole in L p (Ω) Siano 1 < p < e {f n}, f L p (Ω): allora f n f in L p (Ω) Teorema di ompattezza debole in L p (Ω) Teorema Siano 1 < p < e {f

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

Derivazione elementare dell espressione della quantità di moto e dell energia in relativività ristretta

Derivazione elementare dell espressione della quantità di moto e dell energia in relativività ristretta Derivazione elementare dell espressione della quantità di moto e dell energia in relativività ristretta L. P. 22 Aprile 2015 Sommario L espressione della quantità di moto e dell energia in relatività ristretta

Dettagli

Programmazione Non Lineare Ottimizzazione vincolata

Programmazione Non Lineare Ottimizzazione vincolata DINFO-Università di Palermo Programmazione Non Lineare Ottimizzazione vincolata D. Bauso, R. Pesenti Dipartimento di Ingegneria Informatica Università di Palermo DINFO-Università di Palermo 1 Sommario

Dettagli

Richiami di algebra lineare e geometria di R n

Richiami di algebra lineare e geometria di R n Richiami di algebra lineare e geometria di R n combinazione lineare, conica e convessa spazi lineari insiemi convessi, funzioni convesse rif. BT.5 Combinazione lineare, conica, affine, convessa Un vettore

Dettagli

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f.

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f. FUNZIONI CONTINUE - ALCUNI ESERCIZI SVOLTI SIMONE ALGHISI 1. Continuità di una funzione Dati un insieme D R, una funzione f : D R e x 0 R, si è detto che f è continua in x 0 se sono soddisfatte le seguenti

Dettagli

L. Pandolfi. Lezioni di Analisi Matematica 2

L. Pandolfi. Lezioni di Analisi Matematica 2 L. Pandolfi Lezioni di Analisi Matematica 2 i Il testo presenta tre blocchi principali di argomenti: A Successioni e serie numeriche e di funzioni: Cap., e 2. B Questa parte consta di due, da studiarsi

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

SULLE VARIETÀ ALGEBRICHE A TRE DIMENSIONI AVENTI TUTTI I GENERI NULLI

SULLE VARIETÀ ALGEBRICHE A TRE DIMENSIONI AVENTI TUTTI I GENERI NULLI G. FANO (Torino - Italia) SULLE VARIETÀ ALGEBRICHE A TRE DIMENSIONI AVENTI TUTTI I GENERI NULLI 1. - La distinzione, che pareva tradizionale, tra scienze di ragionamento e scienze sperimentali è ormai

Dettagli

Soluzioni classiche dell'equazione di Laplace e di Poisson

Soluzioni classiche dell'equazione di Laplace e di Poisson Soluzioni classiche dell'equazione di Laplace e di Poisson Antonio Paradies Dipartimento di Matematica e Applicazioni Renato Caccioppoli Università degli studi di Napoli Federico II Napoli, 25 Febbraio

Dettagli

Equazioni alle differenze finite (cenni).

Equazioni alle differenze finite (cenni). AL 011. Equazioni alle differenze finite (cenni). Sia a n } n IN una successione di numeri reali. (Qui usiamo la convenzione IN = 0, 1,,...}). Diremo che è una successione ricorsiva o definita per ricorrenza

Dettagli

Le funzioni reali di variabile reale

Le funzioni reali di variabile reale Prof. Michele Giugliano (Gennaio 2002) Le funzioni reali di variabile reale ) Complementi di teoria degli insiemi. A) Estremi di un insieme numerico X. Dato un insieme X R, si chiama maggiorante di X un

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

VC-dimension: Esempio

VC-dimension: Esempio VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

Lezione 4: Principi di Conservazione Conservazione della quantità di moto e del momento della quantità di moto

Lezione 4: Principi di Conservazione Conservazione della quantità di moto e del momento della quantità di moto Lezione 4: Principi di Conservazione Conservazione della quantità di moto e del momento della quantità di moto Claudio Tamagnini Dipartimento di Ingegneria Civile e Ambientale Università degli Studi di

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

Teoremi di struttura dei moduli finitamente generati su un dominio euclideo

Teoremi di struttura dei moduli finitamente generati su un dominio euclideo Teoremi di struttura dei moduli finitamente generati su un dominio euclideo Appunti al corso di Algebra Anno accademico 23-24 1 Prodotti diretti. Siano M e N due moduli sullo stesso anello A, non necessariamente

Dettagli

Dinamica dei corpi deformabili. Conservazione della quantità di moto

Dinamica dei corpi deformabili. Conservazione della quantità di moto Capitolo 2 Dinamica dei corpi deformabili. Conservazione della quantità di moto 2.1 Forze Le forze che agiscono su un elemento B n del corpo B sono essenzialmente di due tipi: a) forze di massa che agiscono

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

I numeri reali. Note per il corso di Analisi Matematica 1. G. Mauceri. a.a. 2003-04

I numeri reali. Note per il corso di Analisi Matematica 1. G. Mauceri. a.a. 2003-04 I numeri reali Note per il corso di Analisi Matematica 1 G. Mauceri a.a. 2003-04 2 I numeri reali Contents 1 Introduzione 3 2 Gli assiomi di campo 3 3 Gli assiomi dell ordine 4 4 Valore assoluto 5 5 I

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

Studio grafico-analitico delle funzioni reali a variabile reale

Studio grafico-analitico delle funzioni reali a variabile reale Studio grafico-analitico delle funzioni reali a variabile reale Sequenza dei passi Classificazione In pratica Classifica il tipo di funzione: Funzione razionale: intera / fratta Funzione irrazionale: intera

Dettagli

Note integrative ed Esercizi consigliati

Note integrative ed Esercizi consigliati - a.a. 2006-07 Corso di Laurea Specialistica in Ingegneria Civile (CIS) Note integrative ed consigliati Laura Poggiolini e Gianna Stefani Indice 0 1 Convergenza uniforme 1 2 Convergenza totale 5 1 Numeri

Dettagli

Lezioni di Teoria dei Gruppi. Andrea Mori Dipartimento di Matematica Università di Torino

Lezioni di Teoria dei Gruppi. Andrea Mori Dipartimento di Matematica Università di Torino Lezioni di Teoria dei Gruppi Andrea Mori Dipartimento di Matematica Università di Torino Maggio 2005 Questo lavoro è dedicato alla memoria di Lia Venanzangeli (1959 2004) amica e compagna. Gigni de nihilo

Dettagli

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas.8.6.. - -.5.5 -. In questa dispensa ricordiamo la classificazione delle funzioni elementari e il dominio di esistenza delle stesse. Inoltre

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli I numeri complessi Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli 1 Introduzione Studiare i numeri complessi può sembrare inutile ed avulso dalla realtà;

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

Universitá di Firenze. Che cosa é realmente successo ai colloqui di pace di Parigi fra Henry Kissinger e Le Duc Tho

Universitá di Firenze. Che cosa é realmente successo ai colloqui di pace di Parigi fra Henry Kissinger e Le Duc Tho Universitá di Firenze FACOLTÁ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Matematica Che cosa é realmente successo ai colloqui di pace di Parigi fra Henry Kissinger e Le Duc Tho What

Dettagli

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f).

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f). Due Matrici A,B. Ker f = ker g. 1- Ridurre a scala A e B e faccio il sistema. 2 Se Vengono gli stessi valori allora, i ker sono uguali. Cauchy 1 autovalore, 1- Metto a matrice x1(0),x2(0),x3(0) e la chiamo

Dettagli