Il pendolo di torsione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Il pendolo di torsione"

Transcript

1 Unverstà degl Stud d Catana Facoltà d Scenze MM.FF.NN. Corso d aurea n FISICA esna d ABORAORIO DI FISICA I Il pendolo d torsone (sezone costante) Moreno Bonaventura Anno Accademco 005/06

2 Introduzone. I corp sottopost a forze subscono delle deformazon. Se al cessare della forza accade che l corpo rprende la forma orgnara, la sostanza d cu è costtuto vene defnta elastca. Un notevole contrbuto nello studo dell elastctà c è stato fornto da Robert Hook, e dalla sua famosa relazone: x kf dove x è la deformazone, F la forza e K una costante dpendente dal tpo d sollectazone, dalla forma geometrca del corpo e dalla sostanza d cu esso è costtuto. In realtà s nota spermentalmente che la legge d Hook non è sempre valda. Anche per le sostanze perfettamente elastche esste un lmte d valdtà della legge detto lmte d elastctà oltre l quale le deformazon permangono o non rspettano la legge d Hook, ed l corpo presenta propretà plastche. Un ulterore scostamento dalla legge s verfca ne fenomen d steres elastca. Quest comportament s possono spegare tenendo conto della struttura mcroscopca de corp. e propretà elastche o plastche, nonché l fenomeno della rottura, sono totalmente determnate dalle nterazon ( repulsone ed attrazone ) tra le molecole e gl atom che costtuscono corp. Uno de pendol d torsone pù famos della stora è la così detta blanca d Cavendsh, utlzzata per msurare la costante d gravtazone unversale. Descrzone dell espermento. Il pendolo d torsone è costtuto da un flo del materale d cu voglamo studare le propretà elastche, a cu è fssato un dsco o, come nel nostro caso, un clndro sospeso per l suo centro. Ruotando l clndro d un angolo θ ntorno all asse vertcale, l flo s torce sotto l azone d un momento M. Corrspondentemente l flo reagsce con un momento elastco M. Rlascando l corpo, esso nza ad oscllare con rotazon sul pano orzzontale sotto l azone del momento elastco -M. Sono stat sottopost allo studo pendol d torsone con lunghezza del flo varable, ma dello stesso materale e con sezone costante.

3 Presuppost eorc. Per rotazon tal da non superare l lmte d deformazone, l momento torcente M rsulta proporzonale allo spostamento angolare θ, coè: M cθ (1) Questa è la legge d Hook n forma rotazonale, e c vene chamata costante d torsone del flo. Per un flo d sezone r e lunghezza s vede spermentalmente che: θ 1 K M r () Dalla (1) e () abbamo che: c K r Coè la costante c (dpendente dalla forma e dalle propretà del corpo n esame) può essere espressa n funzone d un altra costante K, detta modulo d torsone e dpendente solo dalla sostanza d cu è costtuto l flo. Applcando l teorema del momento della quanttà d moto al clndro sospeso che ruota sotto l azone del momento M abbamo che: J d dt θ M Dove J è l momento d nerza del clndro. Introducendo n questa equazone l valore d M rcavato dalla () abbamo: d θ dt Kr J θ S tratta d una equazone dfferenzale del secondo ordne del tpo && x ω x con ω c J e dove x è funzone del tempo. Questo tpo d equazon sono caratterstche del moto armonco, e ω rappresenta la pulsazone del moto. 3

4 Indcando con l perodo, s ha che: J c π J r π K (3) Nella presa dat è stato msurato l tempo d 10 oscllazon coè: t 10 Introducendo l valore d nella (3) e sosttuendo r d/ abbamo: K 600 π J d t (3 ) che utlzzeremo per l calcolo d K. Rcordamo noltre che, per l clndro da no utlzzato, l momento d nerza è dato da: J l m 1 + D 16 dove l è la lunghezza del clndro, D l suo dametro e m la massa. Obettv dell espermento. esperenza ha lo scopo d calcolare l valore del modulo d torsone K de fl utlzzat (che dovrebbe essere lo stessa per tutt e quattro) e d verfcare la relazone lneare tra l quadrato del perodo d oscllazone t e la lunghezza del flo. Apparato spermentale. Il nostro apparato spermentale è costtuto da un supporto d metallo su cu sono fssat con de morsett pendol d torsone. Sul lato destro della struttura d sostegno, è stato aggunto uno spessore d nastro solante per rprstnare l orentamento orzzontale dell asse a cu sono appes pendol. A causa del cattvo poszonamento del sostegno orzzontale, fl subscono una torsone per prm cm crca dal morsetto. Questo elemento non è scuramente trascurable, anz ntroduce un errore sstematco d cu dovremo tener conto durante l anals de rsultat.

5 Caratterstche degl strument utlzzat. Per msurare la lunghezza del flo è stato utlzzato un metro estensble con sensbltà d msura d 1 mm, per cu le msure d lunghezza saranno affette da un errore massmo a pror d tale enttà. Per temp s è fatto uso d un cronometro automatco dgtale, collegato ad un contatore d oscllazon, con sensbltà d lettura e d msura d 0,01 s. Il dametro de fl è stato msurato con l palmer ( sensbltà d msura 0,01 mm ), mentre quello de clndr con l calbro ( sensbltà d msura 0,005 cm). E stato anche necessaro l uso d una lvella. Organzzazone dell espermento. Dopo aver rprstnato l sostegno destro ed aver controllato con la lvella la corretta poszone dell asse orzzontale, è stata eseguta la msurazone della lunghezza del prmo flo. ale dstanza è stata presa dalle estremtà de morsett, poché è solo n questa zona che avvene la torsone. Successvamente s è passato alla msurazone del dametro del flo, de clndr, e de temp d 10 oscllazon. S è rpetuto l procedmento anche per gl altr fl. S è scelto d ruotare clndr d angol d crca 90 per essere scur d non oltrepassare l lmte d deformazone elastca de fl stess, e per evtare error del contatore d oscllazone dovut ad ulteror passagg del clndro davant alla fotocellula. Inoltre, sebbene l perodo sa ndpendente dall ampezza delle oscllazon, è stato usato sempre lo stesso angolo per cercare d rendere equvalente l fenomeno osservato. Durante l esecuzone dell espermento s è prestata attenzone al fatto che l nastro solante non scvolasse gù lungo la sbarra d sostegno. Dat raccolt. unghezza clndr 19,9 cm + 0,1 cm Dametro clndr,00 cm + 0,005 cm Massa clndr 0,55 kg Valore ndcato sul clndro Dametro fl 0,69 mm + 0,01 mm 5

6 emp d 10 oscllazon (rgorosamente n ordne temporale): Flo 1 31, cm Flo 38,0 cm Flo 3 5,5 cm Flo 67,8 cm perodo (s) perodo (s) perodo (s) perodo (s) 37,66 1,68 8,98 55,0 37,69 1,71 8,99 55,5 37,76 1,71 8,97 55,6 37,78 1,67 9,00 55,58 37,8 1,71 9,01 55,63 37,81 1,75 8,83 55,58 37,88 1,69 9,01 55,8 37,83 1,70 9,05 55,51 37,88 1,75 9,0 55,5 37,88 1,7 9,05 55,8 37,88 1,73 9,0 55,1 37,90 1,75 9,0 55,59 37,9 1,7 9,05 55,8 37,9 1,7 9,05 55,51 37,98 1,73 9,03 55,3 37,98 1,78 9,07 55,6 37,97 1,76 9,03 55,7 37,98 1,77 9,06 55,6 37,96 1,75 9,0 55,37 38,00 1,77 9,05 55,56 temp 38,1 38,0 37,9 37,8 37,7 37,6 37,5 37, Flo #1 numero d msura y 0,0159x + 37,709 Guardando l grafco temporale del prmo flo (così come per gl altr tre) è evdente un aumento del perodo d oscllazone con l sussegurs delle msurazon. Inoltre dal grafco 3 (ved allegato) s può potzzare una rduzone d tale fenomeno con l'aumentare della lunghezza del flo. 6

7 Questo fenomeno è naspettato e merta la nostra attenzone. Innanztutto ndvduamo le possbl cause: - Malfunzonamento del cronometro. - a rotazone del clndro non è sempre la stessa. - Alterazone dell ambente esterno. - Alterazone dell apparato spermentale. Il motvo che personalmente consdero pù probable è propro quest ultmo. aumento del perodo d rotazone potrebbe essere dovuta ad un cedmento de morsett, o pù probablmente ad un cedmento del flo stesso, provocato dalla sua non perfetta elastctà. e rpetute torson, col passare del tempo, possono aver ammorbdto l materale rducendo l suo modulo d torsone. Inoltre, trattandos d un metodo d msurazone dnamco, l flo è anche soggetto ad un aumento d temperatura, non stmato, ma che rtenamo comunque trascurable. Vedamo gl effett d questo fenomeno sull anals de dat raccolt. Anals de dat. Calcolamo la meda e la devazone standard del perodo d oscllazone per ogn gruppo d msure. Meda Flo 1 37,8 s Flo 1,73 s Flo 3 9,0 s Flo 55, s Devazone standard 0,1 s 0,03 s 0,05 s 0,1 s Applcando l crtero d Chovenet possamo elmnare l 8,83 preso sul terzo flo, nonché l 55,0 e l 55,6 pres sul quarto flo. 7

8 Rcalcolamo qund la meda e la devazone standard, ed effettuamo un ulterore controllo con l crtero d Chovenet. In defntva otterremo seguent valor: Meda Flo 1 37,8 s Flo 1,73 s Flo 3 9,03 s Flo 55,50 s Devazone standard 0,1 s 0,03 s 0,03 s 0,08 s Gl stogramm allegat, relatv a set d msure, mostrano che la dstrbuzone non può essere sempre rcondotta a quella gaussana. Una somglanza con la dstrbuzone normale è rscontrable nell ultmo set d msure. Dal quarto al prmo campone la dstrbuzone tende nvece a dventare pù unforme e cò può dpendere dall aumento del perodo d rotazone, che appunto tende a rdurs dal prmo al quarto campone. Dlatazone de temp d rotazone e conseguente dstrbuzone non gaussana, sono due fattor che non c permettono d svolgere una corretta anals statstca de dat e che lmtano la valdtà de rsultat. Contnuamo comunque lo studo de dat verfcando la relazone lneare tra e e passando po al calcolo del modulo d torsone. Nelle concluson terremo presente due mportant fattor sopra ctat, ed eventualmente valuteremo come ess abbano nfluenzato l espermento. Rappresentazone grafca delle grandezze e coeffcente d Bravas-Pearson Rappresentazone de dat ,5 (empo) (s) ,8 171,39 03, unghezze (cm) 8

9 Il grafco mostra un approssmatvo allneamento de punt e possamo qund potzzare una relazone lneare tra le lunghezze de fl ed quadrat de temp d oscllazone. Verfchamo la lneartà calcolando l coeffcente d Bravas-Pearson. ( m ) ( m ) 1 r m 0,999. ( m ) ( m ) 1 1 Dove m e m sono rspettvamente valor med delle lunghezze e de quadrat de perod. Il valore d r, nonostante l esguo numero d punt, è ndce d una buona correlazone tra le grandezze prese n esame. Stma del modulo d torsone. Abbamo precedentemente osservato che: K 600π J d t (3 ) coè una relazone lneare del tpo: uttava l calcolo d a, e qund del relatvo modulo d torsone k, non può essere eseguto con l metodo del best-ft. potes d tale metodo è nfatt che gl error relatv delle grandezze n ascssa sano molto mnor Δ degl stess rfert alla corrspondente grandezza n ordnata, ovvero: a seguente tabella mostra che tale potes non è soddsfatta. a flo Δ << Δ 100 Δ 100 Flo 1 Flo Flo 3 Flo 0,3 0,6 0,19 0,1 0,5 0,1 0,1 0,8 Δ < Δ Δ > Δ Δ > Δ Δ < Δ 9

10 Non potendo utlzzare l metodo del best-ft, calcoleremo k drettamente dalla formula (3 ): 600π J K (3 ) d t e otterremo la sensbltà d msura del modulo d torsone dfferenzando logartmcamente la (3 ). Avremo qund che: ΔK K Δ ΔJ + J Δr + r Δt ΔJ + dove t J Δm m Δl + l ΔD + D Con gl opportun calcol rsulta: K flo 1 1,10*10 11 [ N m - ] K flo 1,10*10 11 [ N m - ] K flo 3 1,10*10 11 [ N m - ] K flo 1,11*10 11 [ N m - ] errore % su K 1 8,7 % errore % su K 8,30 % errore % su K 3 8,0 % errore % su K 8,33 % Osservamo, con l auto del seguente grafco, che le quattro costant rsultano ugual entro gl error spermental. modulo d torsone 1,5E+11 1,0E+11 1,15E+11 K 1,10E+11 1,05E+11 1,00E+11 9,50E Flo 10

11 Confronto con la teora e consderazon fnal. Il valore noto d K per l accao ( crca 1,*10 11 ) non è n accordo con quell calcolat con la (3 ). Questo può dpendere da molteplc fattor. Innanztutto, pur trattandos sempre d accao, esstono dverse leghe o metod d lavorazone che modfcano le propretà del materale. accao da no studato potrebbe essere dverso da quello utlzzato per l calcolo del 1,* usura, le vstose deformazon del flo e la torsone causata dal cattvo poszonamento dell asse orzzontale, sono ulteror fattor che ntervengono nell espermento ma che non sono valutat nello studo teorco del fenomeno. Nota postva è l accordo mostrato tra le costant de var fl. A lmtare la valdtà d tale rsultato v è però la mancata dstrbuzone gaussana de temp d oscllazone. In tal condzon, nfatt, la meda e la devazone standard perdono l loro sgnfcato statstcofsco e restano semplcemente una sere d calcol matematc. Per l futuro è qund essenzale concentrare l attenzone verso lo studo della dlatazone de temp d rotazone. A questo proposto potrebbe rsultare utle raccoglere un numero maggore d temp sul sngolo flo, o varare l angolo d torsone. Un semplce, nonché economco, mgloramento da apportare all apparato spermentale potrebbe essere l rprstno del corretto poszonamento dell asse orzzontale. Bonaventura Moreno matrcola: 665/ Emal: Bblografa. A.Fot, C.Ganno Element d anals de dat spermental. R. Rcamo Guda alle espermentazon d Fsca I. 11

12 7 Istogramma Frequenza ,66 37,7 37,78 37,8 Classe 37,90 37,96 38,0 Istogramma 6 5 Frequenza ,67 1,69 1,71 1,73 1,75 1,77 1,79 Classe 1

13 Istogramma 3 Frequenza ,97 8,99 9,00 9,0 Classe 9,03 9,05 9,06 Frequenza Istogramma 55,3 55,38 55,3 55,7 55,51 55,56 55,60 55,6 Classe temp 1,80 1,78 1,76 1,7 1,7 1,70 1,68 1,66 1,6 1,6 1,60 Flo andamento temporale y 0,001x + 1,686 numero d msura 13

14 9,10 Flo 3 andamento temporale 9,05 temp 9,00 8,95 y 0,0038x + 8,989 8,90 8,85 numero d msura 55,75 Flo andamento temporale 55,65 55,55 temp 55,5 55,35 55,5 y 0,00x + 55,3 55,15 numero d msura m 0,018 0,016 0,01 0,01 0,010 0,008 0,006 0,00 0,00 0,000 Grafco 3: Effetto dlatazone de temp 1 3 numero del flo dove m è coeffcente angolare della lnea d tendenza de grafc temporal. 1

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

Strutture deformabili torsionalmente: analisi in FaTA-E

Strutture deformabili torsionalmente: analisi in FaTA-E Strutture deformabl torsonalmente: anals n FaTA-E Il comportamento dsspatvo deale è negatvamente nfluenzato nel caso d strutture deformabl torsonalmente. Nelle Norme Tecnche cò vene consderato rducendo

Dettagli

Misura della distanza focale. di una lente convergente. Metodo di Bessel

Misura della distanza focale. di una lente convergente. Metodo di Bessel Zuccarello Francesco Laboratoro d Fsca II Msura della dstanza focale d una lente convergente Metodo d Bessel A.A. 003-004 Indce Introduzone..pag. 3 Presuppost Teorc.pag. 4 Anals de dat.pag. 8. Modo d operare...pag.

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE UNA RASSEGNA SUI METODI DI STIMA DEL VALUE at RISK (VaR) Chara Pederzol - Costanza Torrcell Dpartmento d Economa Poltca - Unverstà degl Stud d Modena e Reggo Emla Marzo 999 INDICE Introduzone. Il concetto

Dettagli

Leggere i dati da file

Leggere i dati da file Esempo %soluzon d una equazone d secondo grado dsp('soluzon d a^+b+c') anput('damm l coeffcente a '); bnput('damm l coeffcente b '); cnput('damm l coeffcente c '); deltab^-4*a*c; f delta0 dsp('soluzon

Dettagli

5. Il lavoro di un gas perfetto

5. Il lavoro di un gas perfetto 5. Il lavoro d un gas perfetto ome s esprme l energa nterna d un gas perfetto? Un gas perfetto è l sstema pù semplce che possamo mmagnare: le nterazon a dstanza fra le molecole sono così debol da essere

Dettagli

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO.

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO. elazoe d laboratoro d Fsca corso M-Z Laboratoro d Fsca del Dpartmeto d Fsca e Astrooma dell Uverstà degl Stud d Cataa. Scala Stefaa. AGOMENTO: MSUA DELLA ESSTENZA ELETTCA CON L METODO OLT-AMPEOMETCO. NTODUZONE:

Dettagli

Argomenti. Misure di corrente elettrica continua, di differenza di potenziale e di resistenza elettrica.

Argomenti. Misure di corrente elettrica continua, di differenza di potenziale e di resistenza elettrica. ppunt per l corso d Laboratoro d Fsca per le Scuole Superor rgoent Msure d corrente elettrca contnua, d dfferenza d potenzale e d resstenza elettrca. Struent d sura: prncp d funzonaento. Coe s effettuano

Dettagli

Corrente elettrica e circuiti

Corrente elettrica e circuiti Corrente elettrca e crcut Generator d forza elettromotrce Intenstà d corrente Legg d Ohm esstenza e resstvtà esstenze n sere e n parallelo Effetto termco della corrente Legg d Krchhoff Corrente elettrca

Dettagli

Unità Didattica N 25. La corrente elettrica

Unità Didattica N 25. La corrente elettrica Untà Ddattca N 5 : La corrente elettrca 1 Untà Ddattca N 5 La corrente elettrca 01) Il problema dell elettrocnetca 0) La corrente elettrca ne conduttor metallc 03) Crcuto elettrco elementare 04) La prma

Dettagli

Progetto Lauree Scientifiche. La corrente elettrica

Progetto Lauree Scientifiche. La corrente elettrica Progetto Lauree Scentfche La corrente elettrca Conoscenze d base Forza elettromotrce Corrente Elettrca esstenza e resstvtà Legge d Ohm Crcut 2 Una spra d rame n equlbro elettrostatco In un crcuto semplce

Dettagli

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri Artmetca de calcolator Rappresentazone de numer natural e relatv Addzone e sommator: : a propagazone d rporto, veloce, con segno Moltplcazone e moltplcator: senza segno, con segno e algortmo d Booth Rappresentazone

Dettagli

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso. I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess

Dettagli

ELABORAZIONE DI SEGNALI E IMMAGINI

ELABORAZIONE DI SEGNALI E IMMAGINI Fltraggo d un segnale EABORAZIOE DI SEGAI E IAGII. Bertero P. Boccacc bertero@ds.unge.t boccacc@ds.unge.t Al ne d glorare la qualtà d un segnale dgtale una tecnca d prara portanza è l ltraggo. Con l quale

Dettagli

PROCESSI CASUALI. Segnali deterministici e casuali

PROCESSI CASUALI. Segnali deterministici e casuali POCESSI CASUALI POCESSI CASUALI Segnal deermnsc e casual Un segnale () s dce DEEMIISICO se è una funzone noa d, coè se, fssao un qualunque sane d empo o, l valore ( o ) assuno dal segnale è noo con esaezza

Dettagli

Lorenzo Pistocchini RICERCA DI SISTEMA ELETTRICO. Agenzia Nazionale per le Nuove Tecnologie, l Energia e lo Sviluppo Economico Sostenibile

Lorenzo Pistocchini RICERCA DI SISTEMA ELETTRICO. Agenzia Nazionale per le Nuove Tecnologie, l Energia e lo Sviluppo Economico Sostenibile Agenza Nazonale per le Nuove Tecnologe, l Energa e lo Svluppo Economco Sostenble RICERCA DI SISTEMA ELETTRICO Ottmzzazone termofludodnamca e dmensonamento d uno scambatore d calore n controcorrente con

Dettagli

COMUNICAZIONE AI GRUPPI DI LAVORO SIDEA (13/09/02) LE CONDIZIONI DI OTTIMALITÀ PER LA DETERMINAZIONE DELLE CATTURE DI PESCE

COMUNICAZIONE AI GRUPPI DI LAVORO SIDEA (13/09/02) LE CONDIZIONI DI OTTIMALITÀ PER LA DETERMINAZIONE DELLE CATTURE DI PESCE COMUNICAZIONE AI GRUPPI DI LAVORO SIDEA (13/9/2) ECONOMIA E POLITICA DEL SETTORE ITTICO 1.INTRODUZIONE. LE CONDIZIONI DI OTTIMALITÀ PER LA DETERMINAZIONE DELLE CATTURE DI PESCE (una applcazone ad un contesto

Dettagli

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

Liste di specie e misure di diversità

Liste di specie e misure di diversità Lte d pece e mure d dvertà Carattertche delle lte d pece I dat ono par, coè hanno molt valor null (a volte la maggoranza!) La gran parte delle pece preent è rara. I fattor ambental che nfluenzano la dtrbuzone

Dettagli

Metodologia di controllo. AUTORIMESSE (III edizione) Codice attività: 63.21.0. Indice

Metodologia di controllo. AUTORIMESSE (III edizione) Codice attività: 63.21.0. Indice Metodologa d controllo AUTORIMESSE (III edzone) Codce attvtà: 63.21.0 Indce 1. PREMESSA... 2 2. ATTIVITÀ PREPARATORIA AL CONTROLLO... 3 2.1 Interrogazon dell Anagrafe Trbutara... 3 2.2 Altre nterrogazon

Dettagli

CINEMATICA DEL CORPO RIGIDO

CINEMATICA DEL CORPO RIGIDO INEMTI DE ORPO RIGIDO o tudo della geometra degl potament de punt d un tema materale potzzato come rgdo rentra n quella parte della Meccanca laca che è la nematca. a cnematca tuda pobl movment d un corpo

Dettagli

CIRCUITI DI IMPIEGO DEI DIODI

CIRCUITI DI IMPIEGO DEI DIODI UT D MPEGO DE DOD addrzzare ad na seonda. l crcto pù seplce, che pega l dodo coe raddrzzatore d na tensone alternata, è rappresentato n Fg.. n esso n generatore deale d tensone alternata l c valore stantaneo

Dettagli

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno Idc d Poszoe Gl dc s poszoe soo msure stetche ( valor caratterstc ) che descrvoo la tedeza cetrale d u feomeo La tedeza cetrale è, prma approssmazoe, la modaltà della varable verso la quale cas tedoo a

Dettagli

Nadia Garbellini. L A TEX facile. Guida all uso

Nadia Garbellini. L A TEX facile. Guida all uso Nada Garbelln L A TEX facle Guda all uso 2010 Nada Garbelln L A TEX facle Guda all uso seconda edzone rveduta e corretta 2010 PRESENTAZIONE L amca e brava Nada Garbelln, autrce d questa bella e semplce

Dettagli

ALCUNI ELEMENTI DI TEORIA DELLA STIMA

ALCUNI ELEMENTI DI TEORIA DELLA STIMA ALCUNI ELEMENTI DI TEORIA DELLA STIMA Quado s vuole valutare u parametro θ ad esempo: meda, varaza, proporzoe, oeffete d regressoe leare, oeffete d orrelazoe leare, e) d ua popolazoe medate u ampoe asuale,

Dettagli

PREFAZIONE. di Giuseppe Berto

PREFAZIONE. di Giuseppe Berto , PREFAZIONE d Guseppe Berto RICORDO DEL TERRAGLIO Quand'ero govane, e la vogla d grare l mondo m spngeva n terre lontane, a ch m chedeva notze del mo paese, rspondevo: l mo paese è una strada. In effett,

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI

6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI 6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI Consdeao un sstea d n unt ateal con n > nteagent ta loo e con l esto dell unveso. Nello studo d un tale sstea sulta convenente scooe la foza agente ( et) sull

Dettagli

come si tiene conto della limitazione d ampiezza e di velocità come si tiene conto della limitazione di frequenza come si tiene conto degli offset

come si tiene conto della limitazione d ampiezza e di velocità come si tiene conto della limitazione di frequenza come si tiene conto degli offset 8a resentazone della lezone 8 /6 Obettv come s tene conto della lmtazone d ampezza e d veloctà come s tene conto della lmtazone d reqenza come s tene conto degl oset 8a saper preved. col calcolo l nlenza

Dettagli

CONTO CONSUNTIVO PER L'ESERCIZIO FINANZIARIO 2012 RELAZIONE ILLUSTRATIVA DEL DIRIGENTE SCOLASTICO

CONTO CONSUNTIVO PER L'ESERCIZIO FINANZIARIO 2012 RELAZIONE ILLUSTRATIVA DEL DIRIGENTE SCOLASTICO DIREZIONE DIDATTICA DEL 4 CIRCOLO DI FORLI' Va Gorgna Saff, n.12 Tel 0543/33345 fax 0543/458861 C.F. 80004560407 CM FOEE00400B e-mal foee00400b@struzone.t - posta cert.: foee00400b@pec.struzone.t sto web:

Dettagli

STATISTICA Lezioni ed esercizi

STATISTICA Lezioni ed esercizi Uverstà d Toro QUADERNI DIDATTICI del Dpartmeto d Matematca MARIA GARETTO STATISTICA Lezo ed esercz Corso d Laurea Botecologe A.A. / Quadero # Novembre M. Garetto - Statstca Prefazoe I questo quadero

Dettagli

ISTITUTO COMPRENSIVO UGO FOSCOLO VESCOVATO SCUOLA SECONDARIA DI 1 GRADO PIANO ANNUALE DELLE ATTIVITA' A.S. 2013/14

ISTITUTO COMPRENSIVO UGO FOSCOLO VESCOVATO SCUOLA SECONDARIA DI 1 GRADO PIANO ANNUALE DELLE ATTIVITA' A.S. 2013/14 STTUTO COMPRENSVO UGO FOSCOLO SCUOLA SECONDARA D 1 GRADO PANO ANNUALE DELLE ATTVTA' A.S. 2013/14 PROT. N. 5991 /A-19 Vescovato, 19/09/2013 Data Giorno Sedi scolastiche Classi Orario Durata ATTVTA' COLLEGO

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

ISOTOPI LA SICUREZZA NON VA VISTA COME UN IMPEDIMENTO A SVOLGERE LA PROPRIA ATTIVITA, MA DIVENTA PARTE INTEGRANTE DELL ATTIVITA STESSA

ISOTOPI LA SICUREZZA NON VA VISTA COME UN IMPEDIMENTO A SVOLGERE LA PROPRIA ATTIVITA, MA DIVENTA PARTE INTEGRANTE DELL ATTIVITA STESSA LA SCUREZZA NON VA VSTA COME UN MPEDMENTO A SVOLGERE LA PROPRA ATTVTA, MA DVENTA PARTE NTEGRANTE DELL ATTVTA STESSA Dott.ssa Benedetta Persechino - SPESL - DML 1895 SCOPERTA DE RAGG X RADOATTVTA PROPRETA

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

w w w. a x i o s i t a l i a. c o m

w w w. a x i o s i t a l i a. c o m w w w. a x o t a l a. c o m SISSIWEB AXIOS SIDI INVIO SMS INVIO EMAIL ACQUISIZIONE ASSENZE - DA SCANNER - DA PALMARE C/C POSTALE E BANCARIO DICHIARAZIONE DEI SERVIZI GESTIONE ORARIA DEL PERSONALE PRIVACY

Dettagli

Il luogo delle radici (ver. 1.0)

Il luogo delle radici (ver. 1.0) Il luogo delle radici (ver. 1.0) 1 Sia dato il sistema in retroazione riportato in Fig. 1.1. Il luogo delle radici è uno strumento mediante il quale è possibile valutare la posizione dei poli della funzione

Dettagli

Il MINISTRO DELLA GIUSTIZIA di concerto con IL MINISTRO DEI LAVORI PUBBLICI

Il MINISTRO DELLA GIUSTIZIA di concerto con IL MINISTRO DEI LAVORI PUBBLICI Corrispettivi delle attività di progettazione e delle altre attività ai sensi dell articolo 17, comma 14 bis, della legge 11 febbraio 1994 n.109 e successive modifiche. l MNSTRO DELLA GUSTZA di concerto

Dettagli

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico 1.1 Lo schema di misurazione Le principali grandezze elettriche che caratterizzano un bipolo in corrente continua, quali per esempio

Dettagli

I Grafici. La creazione di un grafico

I Grafici. La creazione di un grafico I Grafici I grafici servono per illustrare meglio un concetto o per visualizzare una situazione di fatto e pertanto la scelta del tipo di grafico assume notevole importanza. Creare grafici con Excel è

Dettagli

LA LEGGE DI OHM La verifica sperimentale della legge di Ohm

LA LEGGE DI OHM La verifica sperimentale della legge di Ohm Laboratorio di.... Scheda n. 2 Livello: Base A.S.... Classe. NOME..... DATA... Prof.... LA LEGGE D OHM La verifica sperimentale della legge di Ohm Conoscenze - Conoscere la legge di Ohm - Conoscere lo

Dettagli

1. Integrazione di funzioni razionali fratte

1. Integrazione di funzioni razionali fratte . Integazone d fnzon azonal fatte P S songa d vole calcolae n ntegale del to: d Q ove P e Q sono olno nell ndetenata d gado assegnato. Sonao ce: P a n n a n n a a Q b b b b oleent s etod d ntegazone I

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

DIODO E RADDRIZZATORI DI PRECISIONE

DIODO E RADDRIZZATORI DI PRECISIONE OO E AZZATO PECSONE raddrzzar ( refcar) sn crcu mpega per la rasfrmazne d segnal bdreznal n segnal undreznal. Usand, però, dd per raddrzzare segnal, s avrà l svanagg d nn per raddrzzare segnal la cu ampezza

Dettagli

2. FONDAMENTI DELLA TECNOLOGIA

2. FONDAMENTI DELLA TECNOLOGIA 2. FONDAMENTI DELLA TECNOLOGIA 2.1 Principio del processo La saldatura a resistenza a pressione si fonda sulla produzione di una giunzione intima, per effetto dell energia termica e meccanica. L energia

Dettagli

A. 5 m / s 2. B. 3 m / s 2. C. 9 m / s 2. D. 2 m / s 2. E. 1 m / s 2. Soluzione: equazione oraria: s = s0 + v0

A. 5 m / s 2. B. 3 m / s 2. C. 9 m / s 2. D. 2 m / s 2. E. 1 m / s 2. Soluzione: equazione oraria: s = s0 + v0 1 ) Un veicolo che viaggia inizialmente alla velocità di 1 Km / h frena con decelerazione costante sino a fermarsi nello spazio di m. La sua decelerazione è di circa: A. 5 m / s. B. 3 m / s. C. 9 m / s.

Dettagli

CAPITOLO 18 STABILITÀ DEI PENDII

CAPITOLO 18 STABILITÀ DEI PENDII Captolo 8 CAPITOLO 8 8. Frae 8.. Fattor e cause de movmet fraos Per fraa s tede u rapdo spostameto d ua massa d rocca o d terra l cu cetro d gravtà s muove verso l basso e verso l estero. I prcpal fattor

Dettagli

CAPITOLO I CORRENTE ELETTRICA. Copyright ISHTAR - Ottobre 2003 1

CAPITOLO I CORRENTE ELETTRICA. Copyright ISHTAR - Ottobre 2003 1 CAPITOLO I CORRENTE ELETTRICA Copyright ISHTAR - Ottobre 2003 1 INDICE CORRENTE ELETTRICA...3 INTENSITÀ DI CORRENTE...4 Carica elettrica...4 LE CORRENTI CONTINUE O STAZIONARIE...5 CARICA ELETTRICA ELEMENTARE...6

Dettagli

Misure elettriche circuiti a corrente continua

Misure elettriche circuiti a corrente continua Misure elettriche circuiti a corrente continua Legge di oh Dato un conduttore che connette i terinali di una sorgente di forza elettrootrice si osserva nel conduttore stesso un passaggio di corrente elettrica

Dettagli

LA CARTOGRAFIA E LA SCALA

LA CARTOGRAFIA E LA SCALA Corso di laurea in Urbanistica e Sistemi Informativi Territoriali Laboratorio di ingresso Prof. Salvemini Arch. Valeria Mercadante A.A. 2009/2010 LA CARTOGRAFIA E LA SCALA La scala numerica La scala numerica

Dettagli

Teoria quantistica della conduzione nei solidi e modello a bande

Teoria quantistica della conduzione nei solidi e modello a bande Teoria quantistica della conduzione nei solidi e modello a bande Obiettivi - Descrivere il comportamento quantistico di un elettrone in un cristallo unidimensionale - Spiegare l origine delle bande di

Dettagli

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO Capitolo 14 EORIA PERURBAIVA DIPENDENE DAL EMPO Nel Cap.11 abbiamo trattato metodi di risoluzione dell equazione di Schrödinger in presenza di perturbazioni indipendenti dal tempo; in questo capitolo trattiamo

Dettagli

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE a cura di G. SIMONELLI Nel motore a corrente continua si distinguono un sistema di eccitazione o sistema induttore che è fisicamente

Dettagli

La dinamica delle collisioni

La dinamica delle collisioni La dinamica delle collisioni Un video: clic Un altro video: clic Analisi di un crash test (I) I filmati delle prove d impatto distruttive degli autoveicoli, dato l elevato numero dei fotogrammi al secondo,

Dettagli

Unità 2 Inviluppo di volo secondo le norme F.A.R. 23

Unità 2 Inviluppo di volo secondo le norme F.A.R. 23 Untà Invlupp d vl secnd le nrme F.A.R. 3.1 Il dgrmm d mnvr Cn rferment qunt rprtt nel prgrf 1.4 dell precedente Untà s può scrvere: n f z L 1 ρscl 1 ρs CL v ( cs t) C v L uest sgnfc che per un dt qut (ρ)

Dettagli

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t;

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t; CAPITOLO CIRCUITI IN CORRENTE CONTINUA Definizioni Dato un conduttore filiforme ed una sua sezione normale S si definisce: Corrente elettrica i Q = (1) t dove Q è la carica che attraversa la sezione S

Dettagli

175 CAPITOLO 14: ANALISI DEI PROBLEMI GEOTECNICI IN CONDIZIONI LIMITE

175 CAPITOLO 14: ANALISI DEI PROBLEMI GEOTECNICI IN CONDIZIONI LIMITE 175 ntroduzione all analisi dei problemi di collasso. L analisi del comportamento del terreno potrebbe essere fatta attraverso dei modelli di comportamento elasto plastici, ma questo tipo di analisi richiede

Dettagli

Catalogo isoweld Il sistema di fissaggio ad induzione. Nuovo

Catalogo isoweld Il sistema di fissaggio ad induzione. Nuovo Catalogo isowel Il sistema i fissaggio a inuzione Nuovo isowel l innovativo sistema i fissaggio a inuzione i SFS intec Il nuovo sistema isowel TM i SFS intec è un sistema i fissaggio a inuzione innovativo

Dettagli

LAVORO, ENERGIA E POTENZA

LAVORO, ENERGIA E POTENZA LAVORO, ENERGIA E POTENZA Nel linguaggio comune, la parola lavoro è applicata a qualsiasi forma di attività, fisica o mentale, che sia in grado di produrre un risultato. In fisica la parola lavoro ha un

Dettagli

tramite della Segreteria della scuola), trasmissione dei verbali e degli atti al

tramite della Segreteria della scuola), trasmissione dei verbali e degli atti al L verbae n"..8j... Ogg, se marzo duemaqundc, ae ore 13.00, s è runta nea sede d questa sttuzone Scoastca a commssone Eettorae così composta RBEZZO ASSUNTA Presdente; VAL SABNA Segretaro, FATORELLO GAMPETRO

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Corrente elettrica (regime stazionario)

Corrente elettrica (regime stazionario) Corrente elettrica (regime stazionario) Metalli Corrente elettrica Legge di Ohm Resistori Collegamento di resistori Generatori di forza elettromotrice Metalli Struttura cristallina: ripetizione di unita`

Dettagli

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione 1. L elettrone ha una massa di 9.1 10-31 kg ed una carica elettrica di -1.6 10-19 C. Ricordando che la forza gravitazionale

Dettagli

Istruzioni rapide per l esercizio di pompe idrauliche tipo LP azionate con aria compressa secondo D 7280 e D 7280 H

Istruzioni rapide per l esercizio di pompe idrauliche tipo LP azionate con aria compressa secondo D 7280 e D 7280 H Istruzioni rapide per l esercizio di pompe idrauliche tipo LP azionate con aria compressa secondo D 7280 e D 7280 H 1. Aria compressa e attacco idraulico Fluido in pressione Azionamento Aria compressa,

Dettagli

Studio sperimentale della propagazione di un onda meccanica in una corda

Studio sperimentale della propagazione di un onda meccanica in una corda Studio sperimentale della propagazione di un onda meccanica in una corda Figura 1: Foto dell apparato sperimentale. 1 Premessa 1.1 Velocità delle onde trasversali in una corda E esperienza comune che quando

Dettagli

AUTOLIVELLI (orizzontalità ottenuta in maniera automatica); LIVELLI DIGITALI (orizzontalità e lettura alla stadia ottenute in maniera automatica).

AUTOLIVELLI (orizzontalità ottenuta in maniera automatica); LIVELLI DIGITALI (orizzontalità e lettura alla stadia ottenute in maniera automatica). 3.4. I LIVELLI I livelli sono strumenti a cannocchiale orizzontale, con i quali si realizza una linea di mira orizzontale. Vengono utilizzati per misurare dislivelli con la tecnica di livellazione geometrica

Dettagli

FORM. superiori a 80 cm. 1,1 4,2 L-2,2 L

FORM. superiori a 80 cm. 1,1 4,2 L-2,2 L FORM FORM è un calorifero estremamente versatile ed elegante grazie alla forma particolare dei collettori e alle dimensioni dei tubi radianti, decisamente ridotte (ø1 mm). Form è prodotto in due modelli:

Dettagli

ESERCIZI DI ELETTROTECNICA

ESERCIZI DI ELETTROTECNICA 1 esercizi in corrente continua completamente svolti ESERCIZI DI ELETTROTECNICA IN CORRENTE CONTINUA ( completamente svolti ) a cura del Prof. Michele ZIMOTTI 1 2 esercizi in corrente continua completamente

Dettagli

La f(x) dovrà rimanere all interno di questo intorno quando la x è all interno di un intorno di x 0, cioè I(x 0 ), cioè:

La f(x) dovrà rimanere all interno di questo intorno quando la x è all interno di un intorno di x 0, cioè I(x 0 ), cioè: 1 Limiti Roberto Petroni, 2011 Possiamo introdurre intuitivamente il concetto di limite dicendo che quanto più la x si avvicina ad un dato valore x 0 tanto più la f(x) si avvicina ad un valore l detto

Dettagli

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.

Dettagli

Seconda Legge DINAMICA: F = ma

Seconda Legge DINAMICA: F = ma Seconda Legge DINAMICA: F = ma (Le grandezze vettoriali sono indicate in grassetto e anche in arancione) Fisica con Elementi di Matematica 1 Unità di misura: Massa m si misura in kg, Accelerazione a si

Dettagli

Costruzioni in legno: nuove prospettive

Costruzioni in legno: nuove prospettive Costruzioni in legno: nuove prospettive STRUZION Il legno come materiale da costruzione: origini e declino Il legno, grazie alla sua diffusione e alle sue proprietà, ha rappresentato per millenni il materiale

Dettagli

f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire.

f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire. Consideriamo l insieme P dei punti del piano e una f funzione biiettiva da P in P: f : { P P A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che

Dettagli

QUALITÀ E TRATTAMENTO DELL ACQUA DEL CIRCUITO CHIUSO

QUALITÀ E TRATTAMENTO DELL ACQUA DEL CIRCUITO CHIUSO QUALITÀ E TRATTAMENTO DELL ACQUA DEL CIRCUITO CHIUSO (PARTE 1) FOCUS TECNICO Gli impianti di riscaldamento sono spesso soggetti a inconvenienti quali depositi e incrostazioni, perdita di efficienza nello

Dettagli

Livellazione Geometrica Strumenti per la misura dei dislivelli

Livellazione Geometrica Strumenti per la misura dei dislivelli Università degli studi di Brescia Facoltà di Ingegneria Corso di Topografia A Nuovo Ordinamento Livellazione Geometrica Strumenti per la misura dei dislivelli Nota bene: Questo documento rappresenta unicamente

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

Elettronica I Grandezze elettriche e unità di misura

Elettronica I Grandezze elettriche e unità di misura Elettronica I Grandezze elettriche e unità di misura Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Come evidenziare l informazione contenuta nei dati S. Marsili-Libelli: Calibrazione di Modelli Dinamici pag. Perche PCA? E un semplice metodo non-parametrico per estrarre

Dettagli

Teoria del campo cristallino (CFT)

Teoria del campo cristallino (CFT) Teoria del campo cristallino (CFT) Interazione elettrostatica (non covalente) tra: - leganti anionici cariche elettriche puntiformi - leganti neutri dipoli elettrici con la parte negativa verso il centro

Dettagli

Università degli Studi di Firenze Facoltà di Scienze Mat., Fis. e Nat. Corso di Laurea in Fisica. Corso di Esperimentazioni I

Università degli Studi di Firenze Facoltà di Scienze Mat., Fis. e Nat. Corso di Laurea in Fisica. Corso di Esperimentazioni I Università deli Studi di Firenze Facoltà di Scienze Mat., Fis. e Nat. Corso di Laurea in Fisica Corso di Esperimentazioni I Prof. R. Falciani Prof. A. Stefanini Appunti su: PROPAGAZIONE DEGLI ERRORI NELLE

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100

Dettagli

/ * " 6 7 -" 1< " *,Ê ½, /, "6, /, Ê, 9Ê -" 1/ " - ÜÜÜ Ìi «V Ì

/ *  6 7 - 1<  *,Ê ½, /, 6, /, Ê, 9Ê - 1/  - ÜÜÜ Ìi «V Ì LA TRASMISSIONE DEL CALORE GENERALITÀ 16a Allorché si abbiano due corpi a differenti temperature, la temperatura del corpo più caldo diminuisce, mentre la temperatura di quello più freddo aumenta. La progressiva

Dettagli

La Termodinamica ed I principi della Termodinamica

La Termodinamica ed I principi della Termodinamica La Termodinamica ed I principi della Termodinamica La termodinamica è quella branca della fisica che descrive le trasformazioni subite da un sistema (sia esso naturale o costruito dall uomo), in seguito

Dettagli

PROGRAMMAZIONE LINEARE IN DUE VARIABILI

PROGRAMMAZIONE LINEARE IN DUE VARIABILI 1 PROGRAMMAZIONE LINEARE IN DUE VARIABILI La ricerca operativa nata durante la seconda guerra mondiale ed utilizzata in ambito militare, oggi viene applicata all industria, nel settore pubblico e nell

Dettagli

Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015

Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015 Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015 Piano di lavoro annuale Materia : Fisica Classi Quinte Blocchi tematici Competenze Traguardi formativi

Dettagli

ESEDRA ENERGIA. S o c i e t à C o o p. S o c. SISTEMI DI FISSAGGIO PER PANNELLI SOLARI C A T A L O G O 2 0 1 1

ESEDRA ENERGIA. S o c i e t à C o o p. S o c. SISTEMI DI FISSAGGIO PER PANNELLI SOLARI C A T A L O G O 2 0 1 1 ESEDRA ENERGIA S o c i e t à C o o p. S o c. SISTEMI DI FISSAGGIO PER PANNELLI SOLARI C A T A L O G O 2 0 1 1 La decennale esperienza di Esedra nel mondo delle energie rinnovabili ha dato vita alla linea

Dettagli

Originali Bosch! La prima livella laser

Originali Bosch! La prima livella laser Originali Bosch! La prima livella laser per superfici al mondo NOVITÀ! La livella laser per superfici GSL 2 Professional Finalmente è possibile rilevare con grande facilità le irregolarità su fondi in

Dettagli

PT-27. Torcia per il taglio con arco al plasma. Manuale di istruzioni (IT)

PT-27. Torcia per il taglio con arco al plasma. Manuale di istruzioni (IT) PT-27 Torcia per il taglio con arco al plasma Manuale di istruzioni (IT) 0558005270 186 INDICE Sezione/Titolo Pagina 1.0 Precauzioni per la sicurezza........................................................................

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

Nel cemento armato si valorizzano le qualità dei due materiali: calcestruzzo e acciaio, che presentano le seguenti caratteristiche

Nel cemento armato si valorizzano le qualità dei due materiali: calcestruzzo e acciaio, che presentano le seguenti caratteristiche CEMENTO ARMATO METODO AGLI STATI LIMITE Il calcestruzzo cementizio, o cemento armato come normalmente viene definito in modo improprio, è un materiale artificiale eterogeneo costituito da conglomerato

Dettagli

1. Generalità. 2. Applicazione 2.1 GOLD RX/PX/CX/SD versione E/GOLD LP/ COMPACT Sensore della temperatura ambiente IT.TBLZ242.

1. Generalità. 2. Applicazione 2.1 GOLD RX/PX/CX/SD versione E/GOLD LP/ COMPACT Sensore della temperatura ambiente IT.TBLZ242. IT.TLZ242.140328 Istruzioni di installazione Sensore di temp. amb. TLZ1242, per inst., IP20/ Sensore di temp. esterna TLZ1243, per inst. esterna, IP54 GOLD/OMPT 1. Generalità Il sensore della temperatura

Dettagli

LOGISTICA APPUNTI DI STATISTICA

LOGISTICA APPUNTI DI STATISTICA Cos'é la Statistica LOGISTICA APPUNTI DI STATISTICA La statistica è la disciplina che applica metodi scientifici alla raccolta di dati e informazioni per una loro classificazione, elaborazione e rappresentazione

Dettagli

percorso fatto sul tratto orizzontale). Determinare il lavoro (minimo) e la potenza minima del motore per percorrere un tratto.

percorso fatto sul tratto orizzontale). Determinare il lavoro (minimo) e la potenza minima del motore per percorrere un tratto. Esercizio 1 Una pietra viene lanciata con una velocità iniziale di 20.0 m/s contro una pigna all'altezza di 5.0 m rispetto al punto di lancio. Trascurando ogni resistenza, calcolare la velocità della pietra

Dettagli

Le prossime 6 domande fanno riferimento alla seguente tavola di orario ferroviario

Le prossime 6 domande fanno riferimento alla seguente tavola di orario ferroviario Esercizi lezioni 00_05 Pag.1 Esercizi relativi alle lezioni dalla 0 alla 5. 1. Qual è il fattore di conversione da miglia a chilometri? 2. Un tempo si correva in Italia una famosa gara automobilistica:

Dettagli

I modelli atomici da Dalton a Bohr

I modelli atomici da Dalton a Bohr 1 Espansione 2.1 I modelli atomici da Dalton a Bohr Modello atomico di Dalton: l atomo è una particella indivisibile. Modello atomico di Dalton Nel 1808 John Dalton (Eaglesfield, 1766 Manchester, 1844)

Dettagli