Momenti angolari e rotazioni

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Momenti angolari e rotazioni"

Transcript

1 Moeti agoari e rotazioi Defiizioe di rotazioe coe traforazioe di 3 Ua rotazioe i può defiire coe ua traforazioe R deo pazio fiico tridieioae i e, co e egueti proprietà : a) acia ivariate e ditaze b) o pota origie c) o cabia orietazioe degi ai Per quato tudiato a propoito dee traforazioi u pazi fiitodieioai (reai), ua traforazioe che coerva e ditaze è ortogoae, ed è rappreetata da ua atrice ortogoae (trapota = ivera): RR T = Iotre, eedo preervata orietazioe degi ai, i deteriate è 1 Quidi cocudiao che i gruppo dee rotazioi è ioorfo a gruppo peciae dee atrici ortogoai di ordie 3, SO(3) (e ho capito bee, Oofri diotra che a atrice rappreetativa è ortogoae No ho capito co quai argoeti, e vorrei ache eere icuro che reaete queo che fa è ua diotrazioe) Daa proprietà a) dicede che dx' dx' = M x ' M x M x ' M x d x d x = d x d x ovvero che a atrice rappreetativa di ua rotazioe è R / M x ' M x (io o ho capito da dove viee ta roba : i che eo «daa proprietà a) dicede che» Che ta crivedo? è teoria dea iura? ta uado o pazio duae? bah?)

2 Rotazioi ed operatori uitari - oeti agoari e rotazioi - Se i effettua ua traforazioe uo pazio tridieiae 3, queta iduce ua traforazioe ache uo pazio di Hibert dee fuzioi (a quadrato oabie) defiite u 3 (fuzioi d oda) Per defiire gi operatori aociati ae rotazioi poiao utiizzare a defiizioe di gradezza caare Ifatti per defiizioe ua gradezza caare è ivariate per traforazioi ui vettori ((?)rigorizzare) Ora, i eccaica quatitica poiao coiderare caare i oduo quadro dea fuzioe d oda, che coe appiao rappreeta a probabiità di preeza U puto ateriae o ha eua truttura itera, e duque u iiee copeto di oervabii copatibii per eo è cottuito dae tre copoeti dea poizioe Aora diciao che a traforazioe x' = Rx iduce operatore UR y' = URy defiito i odo che URy(x') 2 = y(x) 2 cioè i odo che i oduo quadro dea fuzioe d oda i coporti coe uo caare Queto però o defiice copetaete operatore, perché i queto odo a fuzioe d oda è defiita a eo di ua fae Co u pò di avoro (teorea di Wiger) i diotra che a fae può eere ceta uguae per tutte e fuzioi d oda e per quauque rotazioe Duque daa defiizioe di UR dicede che per ogi fuzioe d oda y i ha

3 - oeti agoari e rotazioi - ã U y ë á Rxé = y á x é o, che è o teo ã U y ë á x é = y á R - 1 x é (a frae che egue ho copiata pari pari da ibro) I fatto che e fuzioi d oda i traforao ecodo ua egge uiverae, uguae per tutte, garatice che operatore UR ia u operatore ieare uo pazio di Hibert, che iotre coerva i prodotto caare, oia : y f = U R y U R f Duque UR è u operatore uitario Defiizioe aterativa di U R Potreo adottare coe defiizioe di UR direttaete a reazioe tra e fuzioi d oda, azicché quea ui odui quadri, evitado appareteete i probei co a fae I atre paroe direo che ache a fuzioe d oda, e o oo i uo oduo quadro, i coporta coe uo caare ripetto ae rotazioi Aora potreo defiire operatore UR aociato aa rotazioe R pecificado a ua azioe ui vettori di bae deo pazio di Hibert (rappreetazioe dee poizioi) : U R x = Rx (atra frae copiata quai itegraete) U fattore di fae davati a ebro di iitra, i iea di pricipio epre poibie, o potrebbe couque dipedere da x, i bae aa richieta che operatore p i trafori coe u vettore Ptrebbe duque dipedere oo da R ed eere perciò eiiabie da ua ridefiizioe di UR Otteiao coì :

4 - oeti agoari e rotazioi - ã U y ë á x é / x U R y = R - 1 x y = y á R - 1 x é che è a tea defiizioe otteuta co atra trada I queto cao però, queta defiizioe o garatice che UR ia u operatore ieare uo pazio di Hibert, e dobbiao quidi richiedero epicitaete, poedo : U R y / I y á x é U R x d 3 x Duque ache queta trada ha i probea de fattore di fae arbitrario Ache queta vota i teorea di Wiger ci viee i aiuto diotrado che i può fiare a fae coteporaeaete per tutte e fuzioi d oda e per tute e rotazioi (?) riguardo a queta ecoda trada ho tre dubbi : 1) coe i fa a diotrare che UR è uitario? 2) perché a poizioe U R y / I y á x é U R x d 3 x garatice che UR ia u operatore ieare uo pazio di Hibert? 3) o capico dove ubetra a fae arbitraria Riguardo a prio dubbio, fore uitarietà i diotra crivedo i prodotti caari, e utiizzado a defiizioe di URy : y f = I y á x é f á x é d 3 x = qui utiizziao a defiizioe á U R y é á R x é = y á x é = I ã U R y ë í á Rx é ã U R f ë í á Rx é d 3 x = e qui utiizziao i fatto che ua rotazioe è ua riparaetrizzazioe di 3, e quidi itegrazioe o cabia = U R y U R f

5 - oeti agoari e rotazioi - Coeioe tra rotazioi e oeto agoare - Rotazioi ifiiteie Ua rotazioe ifiiteia, i quato traforazioe piccoiia, differice di poco da idetità Aora a poiao crivere coe idetità più o peudoteore eucideo aociato ad u certo vettore, co davati u coefficiete ifiiteio da : (per o peudoteore vedi Roao, Meccaica Razioae, prio voue pag 107) R + d a M dove M è a atrice rappreetativa deo peudoteore eucideo aociato a, quidi è ua atrice atiietrica i cui eeeti oo M = e ; oia, epicitaete : å ë ì M = ã í (?)dubbio : Vorrei ua diotrazioe più rigoroa de fatto che ua rotazioe ifiiteia i può approiare co idetità più queta atrice atiietrica Sebrerebbe ua orta di viuppo i erie trocato a pri ordie Mi oo dato ua piegazioe ituitiva coiderado che appicare o peudoteore eucideo aociato a ad u vettore poizioe x igifica fare i prodotto vettoriae x v (vedi Roao, Meccaica Razioae, prio voue pag 107), e aora e peiao a vettore coe ad u vettore aociato ad ua certa rotazioe, diretto ugo ae dea rotazioe (direzioe tae da vedere a rotazioe i eo atiorario) e co oduo pari a agoo dea rotazioe, queta poizioe ha ituitivaete eo Aora poiao crivere ã U y ë á x é = y á R x é

6 - oeti agoari e rotazioi - y á x + d a Mx é adeo poiao fare uo viuppo i erie dea y : y á x é + d a M x M y á x é M x = + d a M x M M x y á x é e ricordado epreioe dee copoeti di M M = e abbiao ã U y M ë á x é = + d a e x M x y á x é Rappreetazioe de oeto agoare La defiizioe caica di oeto agoare, prededo i poo e origie, è L = x v p cioè i oeto agoare di u puto ateriae è i prodotto vettoriae dea poizioe per i oeto ieare (quatità di oto) I prodotto vettoriae è epreo da uo peudoteore eucideo, e duque i ua bae ortoorae e ue copoeti oo L i = á x v p é i = e ijk x j p k Facedo ua quatizzazioe caoica, cioè prouovedo e coordiate caoiche xi e pi ad operatori heritiai i ha che operatore che

7 rappreeta a copoete i de oeto agoare è L i = - i e ijk x j M M x k - oeti agoari e rotazioi - (per epicità cegiao uità di iura i cui S=1) L operatore U R i fuzioe de operatore L Siao adeo i grado di forire a reazoie tra operatore uitario UR aociato aa rotazioe R e operatore heritiao L che rappreeta i oeto agoare Ifatti ettedo iiee epreioe (approiata) de operatore UR aociato aa rotazioe ifiiteia R trovata pria : ã U y M ë á x é = + d a e x M x y á x é co epreioe de oeto agoare appea trovata L i = - i e ijk x j M M x k poiao crivere = - i d a L y á x é (o i trovo : i dovrebbe adare a deoiatore, e quidi, razioaizzado, ci dovrebbe eere u + e o u - La coa i può riovere dicedo che a rotazioe ifiiteia è idetità eo ua atrice heritiaa ifiiteia Tuttavia, ache e i acia queto ego, i ha epiceete u riutato fiae co u ego cabiato ( argoeto de epoeziae viee co ego + e o co ego eo, vedi otre)) = - i d a A L y á x é Poiché queta reazioe è vera per ogi fuzioe d oda y poiao cocudere che

8 U R = = - i d a A L - oeti agoari e rotazioi - Rotazioi fiite e fora epoeziae Partiao da epreioe dea rotazioe ifiiteia (quea che o ho capito coe giutificare, e che ebra uo viuppo i erie) : R + d a M = R ï d + d a e dove ricordiao che è i vettore che è diretto ugo ae dea rotazioe, e vero da cui i vede a rotazioe atioraria, e che ha coe oduo agoo di rotazioe A queto puto poiao itrodurre a tera di atrici heritiae defiita e odo eguete ã ë í = - i e (queta è epreioe de eeeto di atrice di ua dee tre atrici) i odo da poter crivere : R ï d - i d a (tea quetioe de ego) = d - i d a A Ricordiao che fi ora abbiao coiderato rotazioi ifiiteie Adeo, ia per e rotazioi u 3 che per i corripodeti operatori uitari, poiao paare dae rotazioi ifiiteie ae rotazioi fiite Poiao dire che ua rotazioe fiita è a oa di u uero ifiito di rotazioi ifiiteie Aora poiao crivere ua rotazioe fiita coe : R = i i d a A

9 - oeti agoari e rotazioi - Poiché 6, poiao rappreetare i coefficiete ifiiteio coe 1/ Aora i ha R = i 6 - i A = e i A dove abbiao utiizzato i iite otevoe i 6 å 1 - a ã ë ì = e a í Aaogaete, per gi operatori uitari aociati ae rotazioi fiite poiao crivere : U R = i 6 + i A L = e i A Per redere più chiaro i eo co e rotazioi poiao crivere i vettore coe u verore per u uero a che rappreetao ripettivaete ae e agoo dea rotazioe I queto odo a atrice che rappreeta Coiderazioi fiai «I eccaica caica, e foraio Haitoiao (agebra ieare), già poiao dire che i oeto agoare di u puto ateriae coicide co a fuzioe geeratrice dee traforazioi caoiche corripodeti ae rotazioi deo pazio (fiico) 3» (Oofri Detri, pag 269) I teorea di Stoe perette di iportare, da foraio Haitoiao caico (agebra ieare) a foraio quatitico, a defiizioe di geeratore ifiiteiae di gruppo di traforazioi ad u paraetro (vedi ache derivata di Lie) Ne foraio quatitico i gruppo di traforazioi ad u paraetro è rappreetato dagi operatori uitari(ifatti queti hao a truttura di gruppo), etre i geeratore è rappreetato da u operatore

10 - oeti agoari e rotazioi - heritiao I fatto che u operatore uitario ia rappreetabie i fora epoeziae, co a epoete uità iagiaria per u operatore heritiao riuta ogico e i ricorda aaogia operatori ieari - ueri copei ecodo a quae u operatore uitario i ette i aaogia co u uero copeo a oduo uitario ed u operatore heritiao i ette i aaogia co u uero reae (queo che egue ho preo dagi apputi di Nicodei) Poiao ifie dire che Haitoiao è i geeratore ifiiteiae dee traazioi teporai, e i oeto ieare è i geeratore ifiiteiae dee traazioi paziai Ua variabie diaica è ivariate otto ua traforazioe caoica geerata da ua certa fuzioe geeratrice e operatore che rappreeta a variabie, e operatore che riuta daa quatizzazioe caoica dea fuzioe geeratrice coutao

Cenni di Teoria delle assicurazioni

Cenni di Teoria delle assicurazioni ei di Teoria dee assicurazioi Vautazioe di acue fore basiari di assicurazioi sua ita Probea di autazioe di ua redita di durata aeatoria Necessità di espriere a probabiità di sopraieza di u idiiduo: Fuzioi

Dettagli

Capitolo 3 CARATTERIZZAZIONE MECCANICA DELLE FIBRE

Capitolo 3 CARATTERIZZAZIONE MECCANICA DELLE FIBRE Capitoo 3 CARATTERIZZAZIONE MECCANICA DELLE FIBRE 3.1 LA TEORIA DI WEIBULL I comportameto meccaico dee fibre di giestra e di juta è stato caratterizzato mediate o studio dea resisteza a trazioe dee fibre

Dettagli

1. Considerazioni generali

1. Considerazioni generali . osiderazioi geerali Il processaeto di ob su acchie parallele è iportate sia dal puto di vista teorico che pratico. Dal puto di vista teorico questo caso è ua geeralizzazioe dello schedulig su acchia

Dettagli

Campi vettoriali conservativi e solenoidali

Campi vettoriali conservativi e solenoidali Campi vettoriali coservativi e soleoidali Sia (x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω. Sia r (u) ua parametrizzazioe di, fuzioe della variabile

Dettagli

Capitolo. Il comportamento dei sistemi in regime transitorio. 5.8 Esercizi - Risposta al gradino dei sistemi del 2 ordine reazionati e non reazionati

Capitolo. Il comportamento dei sistemi in regime transitorio. 5.8 Esercizi - Risposta al gradino dei sistemi del 2 ordine reazionati e non reazionati Capitolo 5 Il comportameto dei itemi i regime traitorio 5.1 Geeralità ulla ripota dei itemi el domiio del tempo 5. Ripota al gradio di u itema del primo ordie. 5.3 Eercizi - Ripota al gradio dei itemi

Dettagli

Statica del corpo rigido: esercizi svolti dai compitini degli anni precedenti

Statica del corpo rigido: esercizi svolti dai compitini degli anni precedenti Statica de corpo riido: eercizi voti dai compitini dei anni precedenti II COMPITIO 00 003 Un ae di eno orizzontae omoenea, di maa M0 k e unhezza L m, è appoiata u due cavaetti. L ae pore di 60 cm otre

Dettagli

PARTE QUARTA Teoria algebrica dei numeri

PARTE QUARTA Teoria algebrica dei numeri Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)

Dettagli

TURBINA PELTON. DESCRIZIONE E PRINCIPIO DI FUNZIONAMENTO Le turbine PELTON sfruttano salti elevati e portate d acqua anche piccole; orientativamente

TURBINA PELTON. DESCRIZIONE E PRINCIPIO DI FUNZIONAMENTO Le turbine PELTON sfruttano salti elevati e portate d acqua anche piccole; orientativamente 6 TURBINA PELTON DESCRIZIONE E PRINCIPIO DI FUNZIONAMENTO Le turbie PELTON sfruttao salti elevati e portate d acqua ache piccole; orietativaete ΣY c H g 00 000 Q < 0 5 3 /s Ua tipica disposizioe d ipiato

Dettagli

Foglio di esercizi N. 1 - Soluzioni

Foglio di esercizi N. 1 - Soluzioni Foglio di esercizi N. - Soluzioi. Determiare il domiio della fuzioe f) = log 3 + log 3 3)). Deve essere + log 3 3) > 0, ovvero log 3 3) >, ovvero prededo l espoeziale i base 3 di etrambi i membri) 3 >

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1 SUCCESSIONI e LIMITI DI SUCCESSIONI c Paola Gervasio - Aalisi Matematica 1 - A.A. 15/16 Successioi cap3b.pdf 1 Successioi Def. Ua successioe è ua fuzioe reale (Y = R) a variabile aturale, ovvero X = N:

Dettagli

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6 SUCCESSIONI Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La serie

Dettagli

Studio dei transitori con il metodo delle trasformate di Laplace

Studio dei transitori con il metodo delle trasformate di Laplace Studio di traitori co il mtodo dll traformat di Laplac Apputi a cura dll Igg. Baoccu Gia Piro Marra Luca Tutor dl coro di ELETTROTECNICA pr mccaici chimici A. A 3/4 4/5 Facoltà di Iggria dll Uivrità dgli

Dettagli

3.4 Tecniche per valutare uno stimatore

3.4 Tecniche per valutare uno stimatore 3.4 Teciche per valutare uo stimatore 3.4. Il liguaggio delle decisioi statistiche, stimatori corretti e stimatori cosisteti La teoria delle decisioi forisce u liguaggio appropriato per discutere sulla

Dettagli

Tecnica di isolamento dalle vibrazioni meccaniche Elementi introduttivi.

Tecnica di isolamento dalle vibrazioni meccaniche Elementi introduttivi. Corso di Orgaizzazioe e Gestioe della Sicurezza Aziedale Tecica di isolaeto dalle vibrazioi eccaiche Eleeti itroduttivi. Terii e defiizioi Vibrazioe eccaica: rappreseta il ovieto oscillatorio di u corpo

Dettagli

Matematica Attuariale. Contratto di assicurazione

Matematica Attuariale. Contratto di assicurazione Matematica Attuariae La matematica attuariae studia a determiazioe dei premi assicurativi i fuzioe di determiati eveti che possoo verificarsi i reazioe a cotratti assicurativi. Cotratto di assicurazioe

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Ua fuzioe reale di ua variabile reale f di domiio A è ua legge che ad ogi x A associa u umero reale che deotiamo co f(x). Se A = N, la f è detta successioe di umeri reali. Se co si

Dettagli

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia)

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia) Itroduzioe all assicurazioe. (Dispesa per il corso di Microecoomia) Massimo A. De Fracesco Uiversità di Siea December 18, 2013 1 ichiami su utilità attesa e avversioe al rischio Prima di cosiderare il

Dettagli

STRUMENTI MATEMATICI PER LE SCELTE ECONOMICHE. [brevi appunti di testo in bozza] 1) Scelta tra progetti economico-finanziari (generalità)

STRUMENTI MATEMATICI PER LE SCELTE ECONOMICHE. [brevi appunti di testo in bozza] 1) Scelta tra progetti economico-finanziari (generalità) UNIVERSITA DEGLI STUDI DI PAVIA Dipartieto di Scieze Ecooiche e Aziedali Via S. Felice, 7-271 Pavia Tel. 382/986268 - Fax 382/22486 STRUMENTI MATEMATICI PER LE SCELTE ECONOMICHE. [brevi apputi di testo

Dettagli

5 ln n + ln. 4 ln n + ln. 6 ln n + ln

5 ln n + ln. 4 ln n + ln. 6 ln n + ln DOMINIO FUNZIONE Determiare il domiio della fuzioe f = l e e + e + e Deve essere e e + e + e >, posto e = t si ha t e + t + e = per t = e e per t = / Il campo di esisteza è:, l, + Determiare il domiio

Dettagli

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli

4. Metodo semiprobabilistico agli stati limite

4. Metodo semiprobabilistico agli stati limite 4. Metodo seiprobabilistico agli stati liite Tale etodo cosiste el verificare che le gradezze che ifluiscoo i seso positivo sulla, valutate i odo da avere ua piccolissia probabilità di o essere superate,

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1)

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) I umeri aturali hao u ordie; ogi umero aturale ha u successivo (otteuto aggiugedo 1), e ogi umero aturale diverso da zero ha u precedete (otteuto sottraedo 1).

Dettagli

NUOVI INDICATORI DI SBILANCIAMENTO E PREVEDIBILITÀ NEI DISEGNI SEQUENZIALI RANDOMIZZATI: CONFRONTI FRA BIASED COIN DESIGNS DIVERSI

NUOVI INDICATORI DI SBILANCIAMENTO E PREVEDIBILITÀ NEI DISEGNI SEQUENZIALI RANDOMIZZATI: CONFRONTI FRA BIASED COIN DESIGNS DIVERSI STATISTICA, ao LXII,. 3, 00 NUOVI INDICATORI DI SBILANCIAMENTO E PREVEDIBILITÀ NEI DISEGNI SEQUENZIALI RANDOMIZZATI: CONFRONTI FRA BIASED COIN DESIGNS DIVERSI A. Baldi Atogii, A. Bodii, A. Giovagoli. PREMESSA

Dettagli

Terzo appello del. primo modulo. di ANALISI 18.07.2006

Terzo appello del. primo modulo. di ANALISI 18.07.2006 Terzo appello del primo modulo di ANALISI 18.7.26 1. Si voglioo ifilare su u filo delle perle distiguibili tra loro solo i base alla dimesioe: si hao a disposizioe perle gradi di diametro di 2 cetimetri

Dettagli

Costruzioni elettromeccaniche a.a. 2003-04. bozza 1

Costruzioni elettromeccaniche a.a. 2003-04. bozza 1 Cotruzioi elettromeccaiche a.a. 3-4 MACCHINE ASINCRONE bozza 1 Coteuti 1 - Morfologia e itemi di raffreddameto - Circuiti magetici 3 - Avvolgimeti 4 - Caratteritiche elettriche 5 - Diagramma circolare

Dettagli

I appello - 29 Giugno 2007

I appello - 29 Giugno 2007 Facoltà di Igegeria - Corso di Laurea i Ig. Iformatica e delle Telecom. A.A.6/7 I appello - 9 Giugo 7 ) Studiare la covergeza putuale e uiforme della seguete successioe di fuzioi: [ ( )] f (x) = cos (

Dettagli

INVENTORY CONTROL. Ing. Lorenzo Tiacci

INVENTORY CONTROL. Ing. Lorenzo Tiacci INVENTORY CONTRO Ig. orezo Tiacci Testo di riferimeto: Ivetory Maagemet ad Productio Plaig ad Cotrol - Third Ed. E.A. Silver, D.F. Pyke, R. Peterso Wiley, 998 Idice. POITICA (s, ) (order poit, order quatity)

Dettagli

Analisi statistica dell Output

Analisi statistica dell Output Aalisi statistica dell Output IL Simulatore è u adeguata rappresetazioe della Realtà! E adesso? Come va iterpretato l Output? Quado le Osservazioi soo sigificative? Quati Ru del Simulatore è corretto effettuare?

Dettagli

Selezione avversa e razionamento del credito

Selezione avversa e razionamento del credito Selezioe avversa e razioameto del credito Massimo A. De Fracesco Dipartimeto di Ecoomia politica e statistica, Uiversità di Siea May 3, 013 1 Itroduzioe I questa lezioe presetiamo u semplice modello del

Dettagli

Verifica e progetto allo stato limite ultimo di pilastri in c.a. a sezione rettangolare: un metodo semplificato

Verifica e progetto allo stato limite ultimo di pilastri in c.a. a sezione rettangolare: un metodo semplificato Veriica e progetto allo tato limite ultimo di pilatri i c.a. a ezioe rettagolare: u metodo empliicato Aurelio Gheri, arco uratore Sommario L uo del metodo degli tati limite per la veriica ed il progetto

Dettagli

CAPITOLO 5 TEORIA DELLA SIMILITUDINE

CAPITOLO 5 TEORIA DELLA SIMILITUDINE CAPITOLO 5 TEORIA DELLA SIMILITUDINE 5.. Itroduzioe La Teoria della Similitudie ha pricipalmete due utilizzi: Estedere i risultati otteuti testado ua sigola macchia ad altre codizioi operative o a ua famiglia

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie umeriche e serie di poteze Sommare u umero fiito di umeri reali è seza dubbio u operazioe che o può riservare molte sorprese Cosa succede però se e sommiamo u umero ifiito? Prima di dare delle defiizioi

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docete: dott. F. Zucca Esercitazioe # 4 1 Distribuzioe Espoeziale Esercizio 1 Suppoiamo che la durata della vita di ogi membro di

Dettagli

Le onde elettromagnetiche. Origine e natura, spettro delle onde e.m., la polarizzazione

Le onde elettromagnetiche. Origine e natura, spettro delle onde e.m., la polarizzazione Le ode elettromagetiche Origie e atura, spettro delle ode e.m., la polarizzazioe Origie e atura delle ode elettromagetiche: Ua carica elettrica che oscilla geera u campo elettrico E che oscilla e a questo

Dettagli

Appunti su rendite e ammortamenti

Appunti su rendite e ammortamenti Corso di Matematica I Facoltà di Ecoomia Dipartimeto di Matematica Applicata Uiversità Ca Foscari di Veezia Fuari Stefaia, fuari@uive.it Apputi su redite e ammortameti 1. Redite Per redita si itede u isieme

Dettagli

Modulo n.3 - I materiali nelle lavorazioni metalliche

Modulo n.3 - I materiali nelle lavorazioni metalliche oduo n. - I maeriai nee avorazioni meaiche PROPRIETÀ ISIHE, EANIHE, TENOOGIHE (Diiazione vericae) OBIETTIVI: A) onocenza dee proprieà dei maeriai finaizzaa a oro uiizzo; B) apacià di eeguire cacoi ue principai

Dettagli

Appunti sulla MATEMATICA FINANZIARIA

Appunti sulla MATEMATICA FINANZIARIA INTRODUZIONE Apputi sulla ATEATIA FINANZIARIA La matematica fiaziaria si occupa delle operazioi fiaziarie. Per operazioe fiaziaria si itede quella operazioe ella quale avviee uo scambio di capitali, itesi

Dettagli

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15 Corso di Laurea Magistrale i Igegeria Iformatica A.A. 014/15 Complemeti di Probabilità e Statistica Prova scritta del del 3-0-15 Puteggi: 1. 3+3+4;. +3 ; 3. 1.5 5 ; 4. 1 + 1 + 1 + 1 + 3.5. Totale = 30.

Dettagli

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia per manager. Prima versione, marzo 2013; versione aggiornata, marzo 2014)

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia per manager. Prima versione, marzo 2013; versione aggiornata, marzo 2014) Itroduzioe all assicurazioe. (Dispesa per il corso di Microecoomia per maager. Prima versioe, marzo 2013; versioe aggiorata, marzo 2014) Massimo A. De Fracesco Uiversità di Siea March 14, 2014 1 Prezzo

Dettagli

Capitolo Decimo SERIE DI FUNZIONI

Capitolo Decimo SERIE DI FUNZIONI Capitolo Decimo SERIE DI FUNZIONI SUCCESSIONI DI FUNZIONI I cocetti di successioe e di serie possoo essere estesi i modo molto aturale al caso delle fuzioi DEFINIZIONE Sia E u sottoisieme di  e, per ogi

Dettagli

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere Eserciio 1 7 puti. Dato il campo vettoriale v, + 1,, i si determii ua fuioe f > i modo tale che il campo vettoriale f v sia irrotaioale, cioè abbia le derivate icrociate uguali; ii si spieghi se i risultati

Dettagli

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa I umeri complessi Pagie tratte da Elemeti della teoria delle fuzioi olomorfe di ua variabile complessa di G. Vergara Caffarelli, P. Loreti, L. Giacomelli Dipartimeto di Metodi e Modelli Matematici per

Dettagli

Analisi Fattoriale Discriminante

Analisi Fattoriale Discriminante Aalisi Fattoriale Discrimiate Bibliografia Lucidi (materiale reperibile via Iteret) Lauro C.N. Uiversità di Napoli Gherghi M. Uiversità di Napoli D Ambra L. Uiversità di Napoli Keeth M. Portier Uiversity

Dettagli

Statistica di base. Luca Mari, versione 31.12.13

Statistica di base. Luca Mari, versione 31.12.13 Statistica di base Luca Mari, versioe 31.12.13 Coteuti Moda...1 Distribuzioi cumulate...2 Mediaa, quartili, percetili...3 Sigificatività empirica degli idici ordiali...3 Media...4 Acora sulla media...4

Dettagli

A = 10 log. senϕ = n n (3)

A = 10 log. senϕ = n n (3) CORSO DI LABORATORIO DI FISICA A Misure co fibre ottiche Scopo dell esperieza è la misura dell atteuazioe e dell apertura umerica di fibre ottiche di tipo F-MLD-500. Teoria dell esperieza La fisica sulla

Dettagli

Capitolo Terzo. rappresenta la rata di ammortamento del debito di un capitale unitario. Si tratta di risolvere un equazione lineare nell incognita R.

Capitolo Terzo. rappresenta la rata di ammortamento del debito di un capitale unitario. Si tratta di risolvere un equazione lineare nell incognita R. 70 Capitolo Terzo i cui α i rappreseta la rata di ammortameto del debito di u capitale uitario. Si tratta di risolvere u equazioe lieare ell icogita R. SIANO NOTI IL MONTANTE IL TASSO E IL NUMERO DELLE

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

8. Quale pesa di più?

8. Quale pesa di più? 8. Quale pesa di più? Negli ultimi ai hao suscitato particolare iteresse alcui problemi sulla pesatura di moete o di pallie. Il primo problema di questo tipo sembra proposto da Tartaglia el 1556. Da allora

Dettagli

OTTAVIO SERRA. Consentirà anche di collegarci ai temi di informatica e di sperimentare sul campo questioni relative alla propagazione degli errori.

OTTAVIO SERRA. Consentirà anche di collegarci ai temi di informatica e di sperimentare sul campo questioni relative alla propagazione degli errori. OTTAVIO SERRA GEOMETRIA PROBABILITA INFORMATICA Reazione tenuta nea Saa consiiare de Comune di Diamante i 7 giugno 000 Ne ambito de Convegno su L insegnamento dea matematica:quae, Perché, Come Organizzato

Dettagli

Esame 2003. 1 - Generalità - Rapporto di riduzione

Esame 2003. 1 - Generalità - Rapporto di riduzione Esae 003 Si deve provvedere all accoppiaeto tra u otore asicroo trifase ed ua popa a vite, ediate u riduttore a ruote detate cilidriche a deti diritti. Cosiderado che: il otore asicroo ha ua sola coppia

Dettagli

Università degli Studi di Bologna. Appunti del corso di Analisi Matematica Anno Accademico 2013 2014. prof. Daniele Ritelli

Università degli Studi di Bologna. Appunti del corso di Analisi Matematica Anno Accademico 2013 2014. prof. Daniele Ritelli Uiversità degli Studi di Bologa Scuola di Ecoomia Maagemet e Statistica Corso di Laurea i Scieze Statistiche Apputi del corso di Aalisi Matematica Ao Accademico 03 04 f b y prof. Daiele Ritelli f a a b

Dettagli

Cap. 4 Mercati finanziari

Cap. 4 Mercati finanziari Cap. 4 ercati finanziari Tao interee (i): importante per invetimenti e celte i conumo intertemporali. Noi iamo intereati principalmente ai primi. Come i etermina i? Attori: Banca Centrale (BC), banche,

Dettagli

Esame di Matematica 2 Mod.A (laurea in Matematica) prova di accertamento del 4 novembre 2005

Esame di Matematica 2 Mod.A (laurea in Matematica) prova di accertamento del 4 novembre 2005 Esame di Matematica 2 ModA (laurea i Matematica prova di accertameto del 4 ovembre 25 ESERCIZIO Si poga a 3 5 + 9 e b 2 4 6 + 6 ( (a Si determii d MCD(a, b e gli iteri m, Z tali che d ma + b co m < b ed

Dettagli

Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE

Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE PROCEDIMENTI DI ANTITRASFORMAZIONE L'operazione di paaggio invero dal dominio della frequenza complea al dominio del tempo F() f(t) è detta antitraformata o traformazione invera di Laplace. Data una funzione

Dettagli

Si presentano qui alcune nozioni sugli anelli, sia come modello di. strutture con due operazioni binarie, sia per l importanza di queste strutture in

Si presentano qui alcune nozioni sugli anelli, sia come modello di. strutture con due operazioni binarie, sia per l importanza di queste strutture in NOZIONI ELEMENTARI SUGLI ANELLI Si presetao qui alcue ozioi sugli aelli, sia come modello di strutture co due operazioi biarie, sia per l importaza di queste strutture i tutte le sezioi della Matematica

Dettagli

Modelli multiperiodali discreti. Strategie di investimento

Modelli multiperiodali discreti. Strategie di investimento Modelli multiperiodali discreti Cosideriamo ora modelli discreti cioè co u umero fiito di stati del modo multiperiodali, cioè apputo co più periodi. Il prototipo di questa classe di modelli è il modello

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elemeti di matematica fiaziaria 18.X.2005 La matematica fiaziaria e l estimo Nell ambito di umerosi procedimeti di stima si rede ecessario operare co valori che presetao scadeze temporali differeziate

Dettagli

Statistica I, Laurea triennale in Ing. Gestionale, a.a. 2011/12 Registro delle lezioni

Statistica I, Laurea triennale in Ing. Gestionale, a.a. 2011/12 Registro delle lezioni Statistica I, Laurea trieale i Ig. Gestioale, a.a. 2011/12 Registro delle lezioi Lezioe 1 (28/9, ore 11:30). Vedere la registrazioe di Barsati, dispoibile alla pagia http://users.dma.uipi.it/barsati/statistica_2011/idex.html.

Dettagli

SERIE NUMERICHE. (Cosimo De Mitri) 1. Definizione, esempi e primi risultati... pag. 1. 2. Criteri per serie a termini positivi... pag.

SERIE NUMERICHE. (Cosimo De Mitri) 1. Definizione, esempi e primi risultati... pag. 1. 2. Criteri per serie a termini positivi... pag. SERIE NUMERICHE (Cosimo De Mitri. Defiizioe, esempi e primi risultati... pag.. Criteri per serie a termii positivi... pag. 4 3. Covergeza assoluta e criteri per serie a termii di sego qualsiasi... pag.

Dettagli

Economia Internazionale - Soluzioni alla IV Esercitazione

Economia Internazionale - Soluzioni alla IV Esercitazione Ecoomia Iterazioale - Soluzioi alla IV Esercitazioe 25/03/5 Esercizio a) Cosa soo le ecoomie di scala? Come cambia la curva di oerta i preseza di ecoomie di scala? Perchè queste oroo u icetivo al commercio

Dettagli

Random walk classico. Simulazione di un random walk

Random walk classico. Simulazione di un random walk Radom walk classico Il radom walk classico) è il processo stocastico defiito da co prob. S = S0 X k, co X k = k= co prob. e le X soo tra di loro idipedeti. k Si tratta di u processo a icremeti idipedeti

Dettagli

Complessità Computazionale

Complessità Computazionale Uiversità degli studi di Messia Facoltà di Igegeria Corso di Laurea i Igegeria Iformatica e delle Telecomuicazioi Fodameti di Iformatica II Prof. D. Brueo Complessità Computazioale La Nozioe di Algoritmo

Dettagli

La matematica finanziaria

La matematica finanziaria La matematica fiaziaria La matematica fiaziaria forisce gli strumeti ecessari per cofrotare fatti fiaziari che avvegoo i mometi diversi Esempio: Come posso cofrotare i ricavi e i costi legati all acquisto

Dettagli

CAPITOLO 1 PROPRIETÀ FISICHE DEI FLUIDI

CAPITOLO 1 PROPRIETÀ FISICHE DEI FLUIDI CAPITOLO POPIETÀ FISICHE DEI FLUIDI - ICHIAMI TEOICI - PAAMETI DI STATO - TASFOMAZIONI - COMPESSIBILITÀ 4- ISCOSITÀ Eecizi caitolo - ag i - ICHIAMI TEOICI Maa La aa di u coo, eea i [kg], aeeta ua ua caatteitica

Dettagli

Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni

Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni Problemi di Schedulig Defiizioi I problemi di schedulig soo caratterizzati da tre isiemi: Attività (Task) T {T,T 2, T } macchie (Machies) P {P,P 2, P m } Risorse R {R,R 2, R s } Schedulig: assegare m Macchie

Dettagli

Capitolo uno STATISTICA DESCRITTIVA BIVARIATA

Capitolo uno STATISTICA DESCRITTIVA BIVARIATA Capitolo uo STATISTICA DESCRITTIVA BIVARIATA La statistica bidimesioale o bivariata si occupa dello studio del grado di dipedeza di due caratteri distiti della stessa uità statistica. E possibile, ad esempio,

Dettagli

COMUNE DI BANARI. Provincia di Sassari N. 49 DEL 14/09/2015 OGGETTO:

COMUNE DI BANARI. Provincia di Sassari N. 49 DEL 14/09/2015 OGGETTO: COPIA COMUNE DI BANARI Provincia di Sassari VERBALE DI DELIBERAZIONE DELLA GIUNTA COMUNALE N. 49 DEL 14/09/2015 OGGETTO: RICONOSCIMENTO DEL DIRITTO AL RIMBORSO DELLE SPESE LEGALI SOSTENUTE DAL SINDACO

Dettagli

La conversione A/D. Segnali digitali A differenza del segnale analogico quello digitale è costituito da una funzione "tempo discreta" e "quantizzata :

La conversione A/D. Segnali digitali A differenza del segnale analogico quello digitale è costituito da una funzione tempo discreta e quantizzata : La overioe A/D Segali aalogii U egale aalogio può eere rappreetato mediate ua fuzioe del tempo he gode delle egueti aratteritihe: 1) la fuzioe è defiita per ogi valore del tempo (è ioè otiua el domiio)

Dettagli

Parte 2. Problemi con macchine parallele

Parte 2. Problemi con macchine parallele Parte 2 Problemi co macchie arallele Esemio job 1 2 3 4 5 j 2 3 5 1 4 2macchie Assegado{2,3,5}aM1e{1,4}aM2 M2 M1 4 1 1 3 3 2 5 5 8 12 Assegado{1,4,5}aM1e{2,3}aM2 M2 3 2 M1 4 1 5 1 3 5 7 8 R m //C Algoritmo

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2006

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2006 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 006 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PRBLEMA U filo metallico di lughezza l viee utilizzato

Dettagli

re ATEI Via Veeia 142 Schi (VI)

re ATEI Via Veeia 142 Schi (VI) F RAT EURPE PER I CURRICUU V I T AE IFRAII PERSAI e Idiri re ATEI Via Veeia 142 Schi (VI) Teef 347 2231368 Eai re%atei@iber%it aiait) Itaiaa Data di ascita 24% 06% 1967 ESPERIEA AVRATIVA 01052015 ad ggi

Dettagli

Distribuzioni di probabilità Unità 79

Distribuzioni di probabilità Unità 79 Prerequisiti: - Primi elemeti di probabilità e statistica. - Nozioi di calcolo combiatorio. - Rappresetazioe di puti e rette i u piao cartesiao. Questa uità iteressa tutte le scuole ad eccezioe del Liceo

Dettagli

Motore trifase a induzione

Motore trifase a induzione Motoe tifae a iduzioe Stuttua e iciio di fuzioaeto I otoi a iduzioe o aicoi tifae cotituicoo ua delle categoie di otoi i coete alteata fa le iù diffue elle alicazioi idutiali a velocità fia e vaiabile

Dettagli

FONDAMENTI DI MECCANICA APPLICATA ALLE MACCHINE

FONDAMENTI DI MECCANICA APPLICATA ALLE MACCHINE DISPENSE DI: FONDAMENTI DI MECCANICA APPLICATA ALLE MACCHINE Testo di riferieto E. Fuaioli ed altri Meccaica applicata alle acchie vol. e - Ed. Patro BOZZA Idice. INTRODUZIONE ALLA MECCANICA APPLICATA

Dettagli

CAPITOLATO D ONERI PER L ORGANISMO NOTIFICATO PARTE I

CAPITOLATO D ONERI PER L ORGANISMO NOTIFICATO PARTE I ALLEGATO A CAPITOLATO D ONERI PER L ORGANISMO NOTIFICATO PARTE I Idividuazioe degli Orgaimi Notificati per lo volgimeto delle Verifiche Periodiche e Verifiche Straordiarie degli impiati di aceore, patografi,

Dettagli

LA GESTIONE DELLA QUALITA : IL TOTAL QUALITY MANAGEMENT

LA GESTIONE DELLA QUALITA : IL TOTAL QUALITY MANAGEMENT LA GESTIONE DELLA QUALITA : IL TOTAL QUALITY MANAGEMENT La gestioe, il cotrollo ed il migliorameto della qualità di u prodotto/servizio soo temi di grade iteresse per l azieda. Il problema della qualità

Dettagli

Ministero delle Infrastrutture e dei Trasporti

Ministero delle Infrastrutture e dei Trasporti ALLEGATO 1 Ministero dee Infrastrutture e dei Trasporti Dipartimento per i Trasporti, a Navigazione ed i Sistemi Informativi e Statistii Direzione Generae per i Trasporto Stradae e per Intermodaità Pubbiazione

Dettagli

Tante opportunità, un solo protagonista: TU

Tante opportunità, un solo protagonista: TU idi I Fodo dea Regioe Pugia a sostego dee Nuove Iiziative d Impresa Tate opportuità, u soo protagoista: TU Regioe Pugia Area Poitiche per o Sviuppo Ecoomico, i Lavoro e Iovazioe idi è i Fodo creato daa

Dettagli

ESERCIZI SUI MOTORI ALTERNATIVI A COMBUSTIONE INTERNA

ESERCIZI SUI MOTORI ALTERNATIVI A COMBUSTIONE INTERNA ESERCIZI SUI MOTORI ALTERNATII A COMBUSTIONE INTERNA U oor alraivo co cilidri a ua cilidraa oal di 0,999 d, u rapporo cora diaro di 0,9 fuzioa a ri a 000 iri/i. riar la CORSA la ELOCITÀ MEIA EL PISTONE

Dettagli

, l'insieme dei numeri interi relativi: 0, 1, 1, 2, 2, infinito. m dove m e n sono elementi di. Le frazioni hanno tre

, l'insieme dei numeri interi relativi: 0, 1, 1, 2, 2, infinito. m dove m e n sono elementi di. Le frazioni hanno tre Uiversità Boccoi. Ao accademico 00 00 Corso di Matematica Geerale Prof. Fabrizio Iozzi email: fabrizio.iozzi@ui-boccoi.it Lezioi / Gli isiemi umerici Gli isiemi umerici co i quali lavoreremo soo:, l'isieme

Dettagli

3. Catene di Misura e Funzioni di Trasferimento

3. Catene di Misura e Funzioni di Trasferimento 3.. Generalità 3. Catene di Miura e Funzioni di Traferimento 3.. Generalità Il egnale che rappreenta la grandezza da miurare viene trattato in modo da poter eprimere quet ultima con uno o più valori numerici

Dettagli

Matematica Finanziaria

Matematica Finanziaria Corso di Matematica Fiaziaria a.a. 202/203 Testo a cura del Prof. Sergio Biachi Programma Operazioi fiaziarie i codizioi di certezza L operazioe fiaziaria elemetare Operazioi a proti e a termie Regimi

Dettagli

Capitolo 24. Elementi di calcolo finanziario

Capitolo 24. Elementi di calcolo finanziario Cpiolo 24 Elemei di clcolo fizirio 24. Le divere forme dell ieree Cpile (C, ock di moe dipoibile i u do momeo) Ieree (I, prezzo d uo del cpile) Sggio o o di ieree (r) (ieree muro dll uià di cpile,, ell

Dettagli

Approfondimenti di statistica e geostatistica

Approfondimenti di statistica e geostatistica Approfodimeti di statistica e geostatistica APAT Agezia per la Protezioe dell Ambiete e per i Servizi Tecici Cos è la geostatistica? Applicazioe dell aalisi di Rischio ai siti Cotamiati Geostatistica La

Dettagli

LAVORO ED ENERGIA Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006

LAVORO ED ENERGIA Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006 LAVORO ED ENERGIA INTRODUZIONE L introduzione dei concetto di lavoro, energia cinetica ed energia potenziale ci perettono di affrontare i problei della dinaica in un odo nuovo In particolare enuncereo

Dettagli

FISICA DELLE RADIAZIONI IONIZZANTI

FISICA DELLE RADIAZIONI IONIZZANTI UNIVERSITA DEGLI STUDI DI PAVIA DIPARTIMENTO DI FISICA NUCLEARE E TEORICA FISICA DELLE RADIAZIONI IONIZZANTI SAVERIO ALTIERI AA 2013-2014 Testi cosigliati F. H. Attix Itroductio to radiological Physics

Dettagli

Ministero delle Infrastrutture e dei Trasporti

Ministero delle Infrastrutture e dei Trasporti Ministero dee Infrastrutture e dei Trasporti Dipartimento per i Trasporti, a Navigazione ed i Sistemi Informativi e Statistii Direzione Generae per i Trasporto Stradae e per Intermodaità Pubbiazione periodia

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 003 Il candidato riolva uno dei due problemi e 5 dei 0 queiti in cui i articola il quetionario. PROLEMA Si conideri un tetraedro regolare T di vertici

Dettagli

Capitolo 6 Teoremi limite classici

Capitolo 6 Teoremi limite classici Capitolo 6 Teoremi limite classici Abstract I Teoremi limite classici, la legge dei gradi umeri e il teorema limite cetrale, costituiscoo il ucleo del Calcolo delle Probabilità, per la loro portata sia

Dettagli

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

Lezione 22. Fattorizzazione di ideali.

Lezione 22. Fattorizzazione di ideali. Lezioe Peequisiti: Lezioi 0, Fattoizzazioe di ideali Teoema Sia A u domiio di Dedekid, e sia I u suo ideale popio o ullo Alloa esistoo uici ideali pimi o ulli P,, P a due a due distiti ed uici umei itei

Dettagli

Principi base di Ingegneria della Sicurezza

Principi base di Ingegneria della Sicurezza Pricipi base di Igegeria della Sicurezza L aalisi delle codizioi di Affidabilità del sistema si articola i: (i) idetificazioe degli sceari icidetali di riferimeto (Eveti critici Iiziatori - EI) per il

Dettagli

STATISTICA ECONOMICA STATISTICA PER L ECONOMIA

STATISTICA ECONOMICA STATISTICA PER L ECONOMIA STATISTICA ECONOMICA STATISTICA PER L ECONOMIA aa 2009-2010 Operazioi statistiche elemetari Spesso ci si preseta il problema del cofroto tra dati Ad esempio, possiamo voler cofrotare feomei [ecoomici]

Dettagli

Appunti di Statistica Matematica Inferenza Statistica Multivariata Anno Accademico 2014/15

Appunti di Statistica Matematica Inferenza Statistica Multivariata Anno Accademico 2014/15 Apputi di Statistica Matematica Ifereza Statistica Multivariata Ao Accademico 014/15 November 19, 014 1 Campioi e modelli statistici Siao Ω, A, P uo spazio di probabilità e X = X 1,..., X u vettore aleatorio

Dettagli

Lezione 12. Regolatori PID

Lezione 12. Regolatori PID Lezione 1 Regolatori PD Legge di controllo PD Conideriamo un regolatore che eercita un azione di controllo dipendente dall errore attravero la eguente legge: t ut = K et K e d K de t P + τ τ+ D. dt La

Dettagli

Appunti sulle SERIE NUMERICHE

Appunti sulle SERIE NUMERICHE Apputi sulle SERIE NUMERICHE Michele Bricchi I queste ote iformali parleremo di serie umeriche, foredo i criteri stadard di covergeza che si è soliti itrodurre i ua trattazioe elemetare della materia.

Dettagli

9. MACCHINE CON COLLETTORE A LAMELLE (A CORRENTE CONTINUA).

9. MACCHINE CON COLLETTORE A LAMELLE (A CORRENTE CONTINUA). 9. MACCHINE CON COLLETTOE A LAMELLE (A COENTE CONTINUA). 1. Geeralità e caratteristiche costruttive. Itrisecamete più complesse delle macchie sicroe e asicroe, le macchie co collettore a lamelle soo ate

Dettagli