Momenti angolari e rotazioni

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Momenti angolari e rotazioni"

Transcript

1 Moeti agoari e rotazioi Defiizioe di rotazioe coe traforazioe di 3 Ua rotazioe i può defiire coe ua traforazioe R deo pazio fiico tridieioae i e, co e egueti proprietà : a) acia ivariate e ditaze b) o pota origie c) o cabia orietazioe degi ai Per quato tudiato a propoito dee traforazioi u pazi fiitodieioai (reai), ua traforazioe che coerva e ditaze è ortogoae, ed è rappreetata da ua atrice ortogoae (trapota = ivera): RR T = Iotre, eedo preervata orietazioe degi ai, i deteriate è 1 Quidi cocudiao che i gruppo dee rotazioi è ioorfo a gruppo peciae dee atrici ortogoai di ordie 3, SO(3) (e ho capito bee, Oofri diotra che a atrice rappreetativa è ortogoae No ho capito co quai argoeti, e vorrei ache eere icuro che reaete queo che fa è ua diotrazioe) Daa proprietà a) dicede che dx' dx' = M x ' M x M x ' M x d x d x = d x d x ovvero che a atrice rappreetativa di ua rotazioe è R / M x ' M x (io o ho capito da dove viee ta roba : i che eo «daa proprietà a) dicede che» Che ta crivedo? è teoria dea iura? ta uado o pazio duae? bah?)

2 Rotazioi ed operatori uitari - oeti agoari e rotazioi - Se i effettua ua traforazioe uo pazio tridieiae 3, queta iduce ua traforazioe ache uo pazio di Hibert dee fuzioi (a quadrato oabie) defiite u 3 (fuzioi d oda) Per defiire gi operatori aociati ae rotazioi poiao utiizzare a defiizioe di gradezza caare Ifatti per defiizioe ua gradezza caare è ivariate per traforazioi ui vettori ((?)rigorizzare) Ora, i eccaica quatitica poiao coiderare caare i oduo quadro dea fuzioe d oda, che coe appiao rappreeta a probabiità di preeza U puto ateriae o ha eua truttura itera, e duque u iiee copeto di oervabii copatibii per eo è cottuito dae tre copoeti dea poizioe Aora diciao che a traforazioe x' = Rx iduce operatore UR y' = URy defiito i odo che URy(x') 2 = y(x) 2 cioè i odo che i oduo quadro dea fuzioe d oda i coporti coe uo caare Queto però o defiice copetaete operatore, perché i queto odo a fuzioe d oda è defiita a eo di ua fae Co u pò di avoro (teorea di Wiger) i diotra che a fae può eere ceta uguae per tutte e fuzioi d oda e per quauque rotazioe Duque daa defiizioe di UR dicede che per ogi fuzioe d oda y i ha

3 - oeti agoari e rotazioi - ã U y ë á Rxé = y á x é o, che è o teo ã U y ë á x é = y á R - 1 x é (a frae che egue ho copiata pari pari da ibro) I fatto che e fuzioi d oda i traforao ecodo ua egge uiverae, uguae per tutte, garatice che operatore UR ia u operatore ieare uo pazio di Hibert, che iotre coerva i prodotto caare, oia : y f = U R y U R f Duque UR è u operatore uitario Defiizioe aterativa di U R Potreo adottare coe defiizioe di UR direttaete a reazioe tra e fuzioi d oda, azicché quea ui odui quadri, evitado appareteete i probei co a fae I atre paroe direo che ache a fuzioe d oda, e o oo i uo oduo quadro, i coporta coe uo caare ripetto ae rotazioi Aora potreo defiire operatore UR aociato aa rotazioe R pecificado a ua azioe ui vettori di bae deo pazio di Hibert (rappreetazioe dee poizioi) : U R x = Rx (atra frae copiata quai itegraete) U fattore di fae davati a ebro di iitra, i iea di pricipio epre poibie, o potrebbe couque dipedere da x, i bae aa richieta che operatore p i trafori coe u vettore Ptrebbe duque dipedere oo da R ed eere perciò eiiabie da ua ridefiizioe di UR Otteiao coì :

4 - oeti agoari e rotazioi - ã U y ë á x é / x U R y = R - 1 x y = y á R - 1 x é che è a tea defiizioe otteuta co atra trada I queto cao però, queta defiizioe o garatice che UR ia u operatore ieare uo pazio di Hibert, e dobbiao quidi richiedero epicitaete, poedo : U R y / I y á x é U R x d 3 x Duque ache queta trada ha i probea de fattore di fae arbitrario Ache queta vota i teorea di Wiger ci viee i aiuto diotrado che i può fiare a fae coteporaeaete per tutte e fuzioi d oda e per tute e rotazioi (?) riguardo a queta ecoda trada ho tre dubbi : 1) coe i fa a diotrare che UR è uitario? 2) perché a poizioe U R y / I y á x é U R x d 3 x garatice che UR ia u operatore ieare uo pazio di Hibert? 3) o capico dove ubetra a fae arbitraria Riguardo a prio dubbio, fore uitarietà i diotra crivedo i prodotti caari, e utiizzado a defiizioe di URy : y f = I y á x é f á x é d 3 x = qui utiizziao a defiizioe á U R y é á R x é = y á x é = I ã U R y ë í á Rx é ã U R f ë í á Rx é d 3 x = e qui utiizziao i fatto che ua rotazioe è ua riparaetrizzazioe di 3, e quidi itegrazioe o cabia = U R y U R f

5 - oeti agoari e rotazioi - Coeioe tra rotazioi e oeto agoare - Rotazioi ifiiteie Ua rotazioe ifiiteia, i quato traforazioe piccoiia, differice di poco da idetità Aora a poiao crivere coe idetità più o peudoteore eucideo aociato ad u certo vettore, co davati u coefficiete ifiiteio da : (per o peudoteore vedi Roao, Meccaica Razioae, prio voue pag 107) R + d a M dove M è a atrice rappreetativa deo peudoteore eucideo aociato a, quidi è ua atrice atiietrica i cui eeeti oo M = e ; oia, epicitaete : å ë ì M = ã í (?)dubbio : Vorrei ua diotrazioe più rigoroa de fatto che ua rotazioe ifiiteia i può approiare co idetità più queta atrice atiietrica Sebrerebbe ua orta di viuppo i erie trocato a pri ordie Mi oo dato ua piegazioe ituitiva coiderado che appicare o peudoteore eucideo aociato a ad u vettore poizioe x igifica fare i prodotto vettoriae x v (vedi Roao, Meccaica Razioae, prio voue pag 107), e aora e peiao a vettore coe ad u vettore aociato ad ua certa rotazioe, diretto ugo ae dea rotazioe (direzioe tae da vedere a rotazioe i eo atiorario) e co oduo pari a agoo dea rotazioe, queta poizioe ha ituitivaete eo Aora poiao crivere ã U y ë á x é = y á R x é

6 - oeti agoari e rotazioi - y á x + d a Mx é adeo poiao fare uo viuppo i erie dea y : y á x é + d a M x M y á x é M x = + d a M x M M x y á x é e ricordado epreioe dee copoeti di M M = e abbiao ã U y M ë á x é = + d a e x M x y á x é Rappreetazioe de oeto agoare La defiizioe caica di oeto agoare, prededo i poo e origie, è L = x v p cioè i oeto agoare di u puto ateriae è i prodotto vettoriae dea poizioe per i oeto ieare (quatità di oto) I prodotto vettoriae è epreo da uo peudoteore eucideo, e duque i ua bae ortoorae e ue copoeti oo L i = á x v p é i = e ijk x j p k Facedo ua quatizzazioe caoica, cioè prouovedo e coordiate caoiche xi e pi ad operatori heritiai i ha che operatore che

7 rappreeta a copoete i de oeto agoare è L i = - i e ijk x j M M x k - oeti agoari e rotazioi - (per epicità cegiao uità di iura i cui S=1) L operatore U R i fuzioe de operatore L Siao adeo i grado di forire a reazoie tra operatore uitario UR aociato aa rotazioe R e operatore heritiao L che rappreeta i oeto agoare Ifatti ettedo iiee epreioe (approiata) de operatore UR aociato aa rotazioe ifiiteia R trovata pria : ã U y M ë á x é = + d a e x M x y á x é co epreioe de oeto agoare appea trovata L i = - i e ijk x j M M x k poiao crivere = - i d a L y á x é (o i trovo : i dovrebbe adare a deoiatore, e quidi, razioaizzado, ci dovrebbe eere u + e o u - La coa i può riovere dicedo che a rotazioe ifiiteia è idetità eo ua atrice heritiaa ifiiteia Tuttavia, ache e i acia queto ego, i ha epiceete u riutato fiae co u ego cabiato ( argoeto de epoeziae viee co ego + e o co ego eo, vedi otre)) = - i d a A L y á x é Poiché queta reazioe è vera per ogi fuzioe d oda y poiao cocudere che

8 U R = = - i d a A L - oeti agoari e rotazioi - Rotazioi fiite e fora epoeziae Partiao da epreioe dea rotazioe ifiiteia (quea che o ho capito coe giutificare, e che ebra uo viuppo i erie) : R + d a M = R ï d + d a e dove ricordiao che è i vettore che è diretto ugo ae dea rotazioe, e vero da cui i vede a rotazioe atioraria, e che ha coe oduo agoo di rotazioe A queto puto poiao itrodurre a tera di atrici heritiae defiita e odo eguete ã ë í = - i e (queta è epreioe de eeeto di atrice di ua dee tre atrici) i odo da poter crivere : R ï d - i d a (tea quetioe de ego) = d - i d a A Ricordiao che fi ora abbiao coiderato rotazioi ifiiteie Adeo, ia per e rotazioi u 3 che per i corripodeti operatori uitari, poiao paare dae rotazioi ifiiteie ae rotazioi fiite Poiao dire che ua rotazioe fiita è a oa di u uero ifiito di rotazioi ifiiteie Aora poiao crivere ua rotazioe fiita coe : R = i i d a A

9 - oeti agoari e rotazioi - Poiché 6, poiao rappreetare i coefficiete ifiiteio coe 1/ Aora i ha R = i 6 - i A = e i A dove abbiao utiizzato i iite otevoe i 6 å 1 - a ã ë ì = e a í Aaogaete, per gi operatori uitari aociati ae rotazioi fiite poiao crivere : U R = i 6 + i A L = e i A Per redere più chiaro i eo co e rotazioi poiao crivere i vettore coe u verore per u uero a che rappreetao ripettivaete ae e agoo dea rotazioe I queto odo a atrice che rappreeta Coiderazioi fiai «I eccaica caica, e foraio Haitoiao (agebra ieare), già poiao dire che i oeto agoare di u puto ateriae coicide co a fuzioe geeratrice dee traforazioi caoiche corripodeti ae rotazioi deo pazio (fiico) 3» (Oofri Detri, pag 269) I teorea di Stoe perette di iportare, da foraio Haitoiao caico (agebra ieare) a foraio quatitico, a defiizioe di geeratore ifiiteiae di gruppo di traforazioi ad u paraetro (vedi ache derivata di Lie) Ne foraio quatitico i gruppo di traforazioi ad u paraetro è rappreetato dagi operatori uitari(ifatti queti hao a truttura di gruppo), etre i geeratore è rappreetato da u operatore

10 - oeti agoari e rotazioi - heritiao I fatto che u operatore uitario ia rappreetabie i fora epoeziae, co a epoete uità iagiaria per u operatore heritiao riuta ogico e i ricorda aaogia operatori ieari - ueri copei ecodo a quae u operatore uitario i ette i aaogia co u uero copeo a oduo uitario ed u operatore heritiao i ette i aaogia co u uero reae (queo che egue ho preo dagi apputi di Nicodei) Poiao ifie dire che Haitoiao è i geeratore ifiiteiae dee traazioi teporai, e i oeto ieare è i geeratore ifiiteiae dee traazioi paziai Ua variabie diaica è ivariate otto ua traforazioe caoica geerata da ua certa fuzioe geeratrice e operatore che rappreeta a variabie, e operatore che riuta daa quatizzazioe caoica dea fuzioe geeratrice coutao

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

3.4 Tecniche per valutare uno stimatore

3.4 Tecniche per valutare uno stimatore 3.4 Teciche per valutare uo stimatore 3.4. Il liguaggio delle decisioi statistiche, stimatori corretti e stimatori cosisteti La teoria delle decisioi forisce u liguaggio appropriato per discutere sulla

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli

4. Metodo semiprobabilistico agli stati limite

4. Metodo semiprobabilistico agli stati limite 4. Metodo seiprobabilistico agli stati liite Tale etodo cosiste el verificare che le gradezze che ifluiscoo i seso positivo sulla, valutate i odo da avere ua piccolissia probabilità di o essere superate,

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

Capitolo Decimo SERIE DI FUNZIONI

Capitolo Decimo SERIE DI FUNZIONI Capitolo Decimo SERIE DI FUNZIONI SUCCESSIONI DI FUNZIONI I cocetti di successioe e di serie possoo essere estesi i modo molto aturale al caso delle fuzioi DEFINIZIONE Sia E u sottoisieme di  e, per ogi

Dettagli

Esame di Matematica 2 Mod.A (laurea in Matematica) prova di accertamento del 4 novembre 2005

Esame di Matematica 2 Mod.A (laurea in Matematica) prova di accertamento del 4 novembre 2005 Esame di Matematica 2 ModA (laurea i Matematica prova di accertameto del 4 ovembre 25 ESERCIZIO Si poga a 3 5 + 9 e b 2 4 6 + 6 ( (a Si determii d MCD(a, b e gli iteri m, Z tali che d ma + b co m < b ed

Dettagli

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa I umeri complessi Pagie tratte da Elemeti della teoria delle fuzioi olomorfe di ua variabile complessa di G. Vergara Caffarelli, P. Loreti, L. Giacomelli Dipartimeto di Metodi e Modelli Matematici per

Dettagli

8. Quale pesa di più?

8. Quale pesa di più? 8. Quale pesa di più? Negli ultimi ai hao suscitato particolare iteresse alcui problemi sulla pesatura di moete o di pallie. Il primo problema di questo tipo sembra proposto da Tartaglia el 1556. Da allora

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

FONDAMENTI DI MECCANICA APPLICATA ALLE MACCHINE

FONDAMENTI DI MECCANICA APPLICATA ALLE MACCHINE DISPENSE DI: FONDAMENTI DI MECCANICA APPLICATA ALLE MACCHINE Testo di riferieto E. Fuaioli ed altri Meccaica applicata alle acchie vol. e - Ed. Patro BOZZA Idice. INTRODUZIONE ALLA MECCANICA APPLICATA

Dettagli

Appunti di Statistica Matematica Inferenza Statistica Multivariata Anno Accademico 2014/15

Appunti di Statistica Matematica Inferenza Statistica Multivariata Anno Accademico 2014/15 Apputi di Statistica Matematica Ifereza Statistica Multivariata Ao Accademico 014/15 November 19, 014 1 Campioi e modelli statistici Siao Ω, A, P uo spazio di probabilità e X = X 1,..., X u vettore aleatorio

Dettagli

SERIE NUMERICHE. (Cosimo De Mitri) 1. Definizione, esempi e primi risultati... pag. 1. 2. Criteri per serie a termini positivi... pag.

SERIE NUMERICHE. (Cosimo De Mitri) 1. Definizione, esempi e primi risultati... pag. 1. 2. Criteri per serie a termini positivi... pag. SERIE NUMERICHE (Cosimo De Mitri. Defiizioe, esempi e primi risultati... pag.. Criteri per serie a termii positivi... pag. 4 3. Covergeza assoluta e criteri per serie a termii di sego qualsiasi... pag.

Dettagli

1. MODELLO DINAMICO AD UN GRADO DI LIBERTÀ. 1 Alcune definizioni preliminari

1. MODELLO DINAMICO AD UN GRADO DI LIBERTÀ. 1 Alcune definizioni preliminari . MODELLO DINAMICO AD UN GRADO DI LIBERTÀ Alcue defiizioi prelimiari I sistemi vibrati possoo essere lieari o o lieari: el primo caso vale il pricipio di sovrapposizioe degli effetti el secodo o. I geerale

Dettagli

Capitolo 8 Le funzioni e le successioni

Capitolo 8 Le funzioni e le successioni Capitolo 8 Le fuzioi e le successioi Prof. A. Fasao Fuzioe, domiio e codomiio Defiizioe Si chiama fuzioe o applicazioe dall isieme A all isieme B ua relazioe che fa corrispodere ad ogi elemeto di A u solo

Dettagli

1 Metodo della massima verosimiglianza

1 Metodo della massima verosimiglianza Metodo della massima verosimigliaza Estraedo u campioe costituito da variabili casuali X i i.i.d. da ua popolazioe X co fuzioe di probabilità/desità f(x, θ), si costruisce la fuzioe di verosimigliaza che

Dettagli

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

EQUAZIONI ALLE RICORRENZE

EQUAZIONI ALLE RICORRENZE Esercizi di Fodameti di Iformatica 1 EQUAZIONI ALLE RICORRENZE 1.1. Metodo di ufoldig 1.1.1. Richiami di teoria Il metodo detto di ufoldig utilizza lo sviluppo dell equazioe alle ricorreze fio ad u certo

Dettagli

Errori di misura. è ragionevole assumere che una buona stima del valore vero sia la media

Errori di misura. è ragionevole assumere che una buona stima del valore vero sia la media Errori di miura Se lo trumento di miura è abbatanza enibile, la miura rietuta della tea grandezza fiica darà riultati diveri fra loro e fluttuanti in modo caratteritico. E l effetto di errori cauali, o

Dettagli

( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0

( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0 CAPITOLO VII DERIVATE. GENERALITÀ Defiizioe.) La derivata è u operatore che ad ua fuzioe f associa u altra fuzioe e che obbedisce alle segueti regole: () D a a a 0 0 0 derivata di u moomio D 6 D 0 D ()

Dettagli

Sommario lezioni di Probabilità versione abbreviata

Sommario lezioni di Probabilità versione abbreviata Sommario lezioi di Probabilità versioe abbreviata C. Frachetti April 28, 2006 1 Lo spazio di probabilità. 1.1 Prime defiizioi I possibili risultati di u esperimeto costituiscoo lo spazio dei campioi o

Dettagli

ESERCIZI DI ANALISI I. Prof. Nicola Fusco 1. Determinare l insieme in cui sono definite le seguenti funzioni:

ESERCIZI DI ANALISI I. Prof. Nicola Fusco 1. Determinare l insieme in cui sono definite le seguenti funzioni: N. Fusco ESERCIZI DI ANALISI I Prof. Nicola Fusco Determiare l isieme i cui soo defiite le segueti fuzioi: ) log/ arctg π ) 4 ) log π 6 arcse ) ) tg log π + ) 4) 4 se se se tg 5) se cos tg 6) [ 6 + 8 π

Dettagli

Sistemi LTI descrivibile mediante SDE (Equazioni alle Differenze Standard)

Sistemi LTI descrivibile mediante SDE (Equazioni alle Differenze Standard) Sistemi LTI descrivibile mediate SDE (Equazioi alle Differeze Stadard) Nella classe dei sistemi LTI ua sottoclasse è quella dei sistemi defiiti da Equazioi Stadard alle Differeze Fiite (SDE), dette così

Dettagli

Soluzione La media aritmetica dei due numeri positivi a e b è data da M

Soluzione La media aritmetica dei due numeri positivi a e b è data da M Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è

Dettagli

5. Limiti di funzione.

5. Limiti di funzione. Istituzioni di Matematiche - Appunti per e ezioni - Anno Accademico / 6 5. Limiti di funzione. 5.. Funzioni imitate. Una funzione y = f(x) definita in un intervao [ a b] imitata superiormente in tae intervao

Dettagli

LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE

LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI Dipartimeto di Sieze Eoomihe Uiversità di Veroa VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE Lezioi di Matematia per

Dettagli

aleatoria; se è nota la sua densità di probabilità ad essa si può associare una valore medio statistico. La grandezza così definita: (III.1.

aleatoria; se è nota la sua densità di probabilità ad essa si può associare una valore medio statistico. La grandezza così definita: (III.1. Caitolo III VALORI MEDI. SAZIONARIEÀ ED ERGODICIÀ III. - Mdi tatitich dl rimo ordi. Sia f( ) ua fuzio cotiua i aoci al gal alatorio (, t ζ ) la uatità dfiita dalla y f[(, t ζ )]. Ea idividua, a ua volta,

Dettagli

ONDE ESERCIZI SVOLTI DAL PROF. TRIVIA GIANLUIGI

ONDE ESERCIZI SVOLTI DAL PROF. TRIVIA GIANLUIGI ONDE ESERCIZI SVOLTI DAL PROF. TRIVIA GIANLUIGI 1. Tipi di Onde Exercie 1. Un onda viaggia lungo una corda tea. La ditanza verticale dalla creta al ventre è di 13 c e la ditanza orizzontale dalla creta

Dettagli

Le operazioni fondamentali in N Basic Arithmetic Operations in N

Le operazioni fondamentali in N Basic Arithmetic Operations in N Operzioi fodetli i - 1 Le operzioi fodetli i Bsic Arithetic Opertios i I geerle u operzioe è u procedieto che due o più ueri, dti i u certo ordie e detti terii dell'operzioe, e ssoci u ltro, detto risultto

Dettagli

Test non parametrici. sono uguali a quelle teoriche. (probabilità attesa), si calcola la. , cioè che le frequenze empiriche

Test non parametrici. sono uguali a quelle teoriche. (probabilità attesa), si calcola la. , cioè che le frequenze empiriche est o parametrici Il test di Studet per uo o per due campioi, il test F di Fisher per l'aalisi della variaza, la correlazioe, la regressioe, isieme ad altri test di statistica multivariata soo parte dei

Dettagli

Motori maxon DC e maxon EC Le cose più importanti

Motori maxon DC e maxon EC Le cose più importanti Motori maxo DC e maxo EC Il motore come trasformatore di eergia Il motore elettrico trasforma la poteza elettrica P el (tesioe U e correte I) i poteza meccaica P mech (velocità e coppia M). Le perdite

Dettagli

Le pensioni dal 1 gennaio 2014

Le pensioni dal 1 gennaio 2014 Argomento A cura deo Spi-Cgi de Emiia-Romagna n. 1 gennaio 2014 Le pensioni da 1 gennaio 2014 Perequazione automatica 2014 pensioni, assegni e indennità civii assistenziai importo aggiuntivo per anno 2013

Dettagli

CHAPTER 1 CINEMATICA. 1.1. Moto Rettilineo

CHAPTER 1 CINEMATICA. 1.1. Moto Rettilineo ESERCIZI DI FISICA CHAPTER 1 CINEMATICA 1.1. Moto Rettilineo Velocità media: vettoriale e calare. Exercie 1. Carl Lewi ha coro i 100m piani in circa 10, e Bill Rodger ha vinto la maratona (circa 4km)

Dettagli

PRINCIPIO DI INDUZIONE. k =. 2. k 2 n(n + 1)(2n + 1) 6

PRINCIPIO DI INDUZIONE. k =. 2. k 2 n(n + 1)(2n + 1) 6 PRINCIPIO DI INDUZIONE LORENZO BRASCO Esercizio. Diostrare che per ogni n si ha nn. 2 Esercizio 2. Diostrare che per ogni n si ha 2 2 nn 2n. Soluzione Procediao per induzione: la 2 è ovviaente vera per

Dettagli

Problema 1: Una collisione tra meteoriti

Problema 1: Una collisione tra meteoriti Problema : Una colliione ra meeorii Problemi di imulazione della econda prova di maemaica Eami di ao liceo cienifico 5 febbraio 05 Lo udene deve volgere un olo problema a ua cela Tempo maimo aegnao alla

Dettagli

Supponiamo, ad esempio, di voler risolvere il seguente problema: in quanti modi quattro persone possono sedersi l una accanto all altra?

Supponiamo, ad esempio, di voler risolvere il seguente problema: in quanti modi quattro persone possono sedersi l una accanto all altra? CALCOLO COMBINATORIO 1.1 Necessità del calcolo combiatorio Accade spesso di dover risolvere problemi dall'appareza molto semplice, ma che richiedoo calcoli lughi e oiosi per riuscire a trovare delle coclusioi

Dettagli

BLOCCO TEMATICO DI ESTIMO. Standard Internazionali di Valutazione (IVS) Market Comparison Approach (MCA) calcolo dei prezzi marginali

BLOCCO TEMATICO DI ESTIMO. Standard Internazionali di Valutazione (IVS) Market Comparison Approach (MCA) calcolo dei prezzi marginali BLOCCO TEMATICO DI ESTIMO Standard Internazionai di Vautazione (IVS) Market Comparison Approach (MCA) cacoo dei prezzi marginai Docente: geom. Antonio Eero CORSO PRATICANTI 205 I PREZZI MARGINALI I prezzo

Dettagli

8) Sia Dato un mazzo di 40 carte. Supponiamo che esso sia mescolato in modo

8) Sia Dato un mazzo di 40 carte. Supponiamo che esso sia mescolato in modo ESERCIZI DI CALCOLO DELLE PROBABILITÁ ) Qual e la probabilita che laciado dadi a facce o esca essu? Studiare il comportameto asitotico di tale probabilita per grade. ) I u sacchetto vi soo 0 pallie biache;

Dettagli

Messa a punto avanzata più semplice utilizzando Funzione Load Observer

Messa a punto avanzata più semplice utilizzando Funzione Load Observer Mea a punto avanzata più emplice utilizzando Funzione Load Oberver EMEA Speed & Poition CE Team AUL 34 Copyright 0 Rockwell Automation, Inc. All right reerved. Co è l inerzia? Tutti comprendiamo il concetto

Dettagli

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it) I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA

Dettagli

Il confronto tra DUE campioni indipendenti

Il confronto tra DUE campioni indipendenti Il cofroto tra DUE camioi idiedeti Il cofroto tra DUE camioi idiedeti Cofroto tra due medie I questi casi siamo iteressati a cofrotare il valore medio di due camioi i cui i le osservazioi i u camioe soo

Dettagli

unoperatore@nellospaziodihilberth e sia z un numero complesso tale che z1-a,da==)rr_néh - 0 impli-chi l:= -1 (21-A) : R- n ==) Dn L- \

unoperatore@nellospaziodihilberth e sia z un numero complesso tale che z1-a,da==)rr_néh - 0 impli-chi l:= -1 (21-A) : R- n ==) Dn L- \ 3,6 56 3,6 TEOR I A SPETTRALE La teoria spettrale degli operatori lieari- eo spazio di Hilbert é f odata, coe per gi spazi f i-ito-dimes ioal j-, sula defiizioe di- risolvete di u operatole' Sia (A,DA)

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA Capializzazioe semplice e composa MATEMATICA FINANZIARIA Immagiiamo di impiegare 4500 per ai i ua operazioe fiaziaria che frua u asso del, % auo. Quao avremo realizzao alla fie dell operazioe? I u coeso

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

J yy > Jxx. l o H A R A R B

J yy > Jxx. l o H A R A R B oitecnico di Torino I cedimento di una struttura soggetta a carichi statici può avvenire in acuni casi con un meccanismo diverso da queo di superamento dei imiti di resistena de materiae. Tae meccanismo

Dettagli

Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine

Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine Lezione 4 Ripoe canoniche dei iemi del primo e del econdo ordine Parameri caraeriici della ripoa allo calino Per ripoe canoniche i inendono le ripoe dei iemi dinamici ai egnali coiddei canonici (impulo,

Dettagli

Liste di specie e misure di diversità

Liste di specie e misure di diversità Lte d pece e mure d dvertà Carattertche delle lte d pece I dat ono par, coè hanno molt valor null (a volte la maggoranza!) La gran parte delle pece preent è rara. I fattor ambental che nfluenzano la dtrbuzone

Dettagli

L OFFERTA DI LAVORO 1

L OFFERTA DI LAVORO 1 L OFFERTA DI LAVORO 1 La famiglia come foritrice di risorse OFFERTA DI LAVORO Notazioe utile: T : dotazioe di tempo (ore totali) : ore dedicate al tempo libero l=t- : ore dedicate al lavoro : cosumo di

Dettagli

BOZZA. Lezione n. 20. Stati limite nel cemento armato Stato limite ultimo per tensioni normali

BOZZA. Lezione n. 20. Stati limite nel cemento armato Stato limite ultimo per tensioni normali Lezione n. Stati limite nel cemento armato Stato limite ultimo per tenioni normali Determinazione elle configurazioni i rottura per la ezione Una volta introotti i legami cotitutivi, è poibile eterminare

Dettagli

Il costo della vita al Nord e al Sud d Italia, dal dopoguerra a oggi. Stime di prima generazione

Il costo della vita al Nord e al Sud d Italia, dal dopoguerra a oggi. Stime di prima generazione INVITED POLICY PAPER Il coto della vita al Nord e al Sud d Italia, dal dooguerra a oggi. Stime di rima geerazioe Nicola Amedola - Giovai Vecchi - Bilal Al Kiwai* Uiverità di Roma Tor Vergata A ditaza di

Dettagli

BANDO DI GARA D'APPALTO. 1.1) Denominazione, indirizzi e punti di contatto: Roma Capitale Dipartimento

BANDO DI GARA D'APPALTO. 1.1) Denominazione, indirizzi e punti di contatto: Roma Capitale Dipartimento Po) AA/AZ ft.'f ROMA CAPTALE BANDO D GARA D'APPALTO SEZONE ) AMMNSTRAZONE AGGUDCATRCE. 1.1) Denominazione, indirizzi e punti di contatto: Roma Capitae Dipartimento Sviuppo nfrastrutture e Manutenzione

Dettagli

CompitoTotale_21Feb_tutti_2011.nb 1

CompitoTotale_21Feb_tutti_2011.nb 1 CopitoTotale_2Feb_tutti_20.nb L Sia data una distribuzione di carica positiva, disposta su una seicirconferenza di raggio R con densità lineare di carica costante l. Deterinare : al l espressione del capo

Dettagli

VBA. Il Visual Basic for Application. Funz ioni

VBA. Il Visual Basic for Application. Funz ioni VBA Il Visual Basic for Application Le funz ioni Le procedure Funz ioni µ E pos s ibile (e cons igliato) s comporre un problema i n sotto- problemi e combinar e poi assieme le s oluz i oni per ottenere

Dettagli

l = 0, 1, 2, 3,,, n-1n m = 0, ±1,

l = 0, 1, 2, 3,,, n-1n m = 0, ±1, NUMERI QUANTICI Le autofuzioi soo caratterizzate da tre parametri chiamati NUMERI QUANTICI e soo completamete defiite dai loro valori: : umero quatico pricipale l : umero quatico secodario m : umero quatico

Dettagli

Metodi d integrazione di Montecarlo

Metodi d integrazione di Montecarlo Metodi d itegrzioe di Motecrlo Simulzioe l termie simulzioe ell su ccezioe scietific h u sigificto diverso dll ccezioe correte. Nell uso ordirio è sioimo si fizioe; ell uso scietifico è sioimo di imitzioe,

Dettagli

BANDO DI GARA D' APPALTO. 1.1) Denominazione, indirizzi e punti di contatto: Roma Capitale Dipartimento

BANDO DI GARA D' APPALTO. 1.1) Denominazione, indirizzi e punti di contatto: Roma Capitale Dipartimento , ROMA CAPTALE '21M~ BANDO D GARA D' APPALTO SEZONE ) AMMNSTRAZONE AGGUDCATRCE. N PUBBLCAZONE DAL~...1:Jj~jM.~ A L _.2 /~L-MZ: = 1.1) Denominazione, indirizzi e punti di contatto: Roma Capitae Dipartimento

Dettagli

Dall atomo di Bohr alla costante di struttura fine

Dall atomo di Bohr alla costante di struttura fine Dall atomo di Bohr alla ostate di struttura fie. INFORMAZIONI SPETTROSCOPICHE SUGLI ATOMI E be oto he ogi sostaza opportuamete eitata emette radiazioi elettromagetihe. Co uo spettrosopio, o strumeti aaloghi,

Dettagli

Metodi statistici per l'analisi dei dati

Metodi statistici per l'analisi dei dati Metodi statistici per l aalisi dei dati due Motivazioi Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ) per cui soo stati codotti gli esperimeti. Metodi tatistici per l Aalisi dei Dati due Esempio

Dettagli

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i NA. Operatore nabla Consideriamo una funzione scalare: f : A R, A R 3 differenziabile, di classe C (2) almeno. Il valore di questa funzione dipende dalle tre variabili: Il suo differenziale si scrive allora:

Dettagli

Roma, 18 settembre 2014. Claai

Roma, 18 settembre 2014. Claai .:.ontratto Coettivo Nazionae di Lavoro per i dipendenti dae imprese artigiane esercenti Servizi di puizia, Disinfezione, Disinfestazione, Derattizzazione e Sanificazione Roma, 18 settembre 2014 Caai Si

Dettagli

La sicurezza sul lavoro: obblighi e responsabilità

La sicurezza sul lavoro: obblighi e responsabilità La sicurezza sul lavoro: obblighi e resposabilità Il Testo uico sulla sicurezza, Dlgs 81/08 è il pilastro della ormativa sulla sicurezza sul lavoro. I sostaza il Dlgs disciplia tutte le attività di tutti

Dettagli

Introduzione (1) Introduzione (2) Prodotti e servizi sono realizzati per mezzo di processi produttivi.

Introduzione (1) Introduzione (2) Prodotti e servizi sono realizzati per mezzo di processi produttivi. Iroduzioe () Ua defiizioe (geerale) del ermie qualià: qualià è l isieme delle caraerisiche di u eià (bee o servizio) che e deermiao la capacià di soddisfare le esigeze espresse ed implicie di chi la uilizza.

Dettagli

Comportamento delle strutture in C.A. in Zona Sismica

Comportamento delle strutture in C.A. in Zona Sismica Comportameto delle strutture i c.a. i zoa sismica Pagia i/161 Comportameto delle strutture i C.A. i Zoa Sismica Prof. Paolo Riva Dipartimeto di Progettazioe e ecologie Facoltà di Igegeria Uiversità di

Dettagli

Verifica d Ipotesi. Se invece che chiederci quale è il valore di una media in una popolazione (stima. o falsa? o falsa?

Verifica d Ipotesi. Se invece che chiederci quale è il valore di una media in una popolazione (stima. o falsa? o falsa? Verifica d Iotesi Se ivece che chiederci quale è il valore ua mea i ua oolazioe (stima utuale Se ivece e itervallo che chiederci cofideza) quale è il avessimo valore u idea ua mea su quello i ua che oolazioe

Dettagli

ESERCITAZIONE L adsorbimento su carbone attivo

ESERCITAZIONE L adsorbimento su carbone attivo ESERCITAZIONE adsorbimeto su carboe attivo ezioi di riferimeto: Processi basati sul trasferimeto di materia Adsorbimeto su carboi attivi Testi di riferimeto: Water treatmet priciples ad desi, WH Pricipi

Dettagli

Indagini sui coregoni del Lago Maggiore: Analisi sui pesci catturati nel 2010

Indagini sui coregoni del Lago Maggiore: Analisi sui pesci catturati nel 2010 Idagii sui coregoi del Lago Maggiore: Aalisi sui pesci catturati el 1 Rapporto commissioato dal Dipartimeto del territorio, Ufficio della caccia e della pesca, Via Stefao Frascii 17 51 Bellizoa Aprile

Dettagli

APPROFONDIMENTI SUI NUMERI

APPROFONDIMENTI SUI NUMERI APPROFONDIMENTI SUI NUMERI. Il sistem di umerzioe deimle Be presto, ll operzioe turle del otre, si è ggiut l esigez di «rppresetre» i umeri. I sistemi di umerzioe possiili soo molti; per or i limitimo

Dettagli

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO.

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO. elazoe d laboratoro d Fsca corso M-Z Laboratoro d Fsca del Dpartmeto d Fsca e Astrooma dell Uverstà degl Stud d Cataa. Scala Stefaa. AGOMENTO: MSUA DELLA ESSTENZA ELETTCA CON L METODO OLT-AMPEOMETCO. NTODUZONE:

Dettagli

( D) =,,,,, (11.1) = (11.3)

( D) =,,,,, (11.1) = (11.3) G. Ptrucci Lzioni di Cotruzion di Macchin. CRITERI DI RESISTENZA La vrifica di ritnza ha o copo di tabiir o tato tniona d mnto truttura anaizzato è ta da provocarn i cdimnto into com rottura o nrvamnto.

Dettagli

INTRODUZIONE ALLE SUCCESSIONI E SERIE: ALCUNI ESEMPI NOTEVOLI

INTRODUZIONE ALLE SUCCESSIONI E SERIE: ALCUNI ESEMPI NOTEVOLI INTRODUZIONE ALLE SUCCESSIONI E SERIE: ALCUNI ESEMPI NOTEVOLI Mirta Debbia LS A. F. Formiggii di Sassuolo (MO) - debbia.m@libero.it Maria Cecilia Zoboli - LS A. F. Formiggii di Sassuolo (MO) - cherubii8@libero.it

Dettagli

1. Integrazione di funzioni razionali fratte

1. Integrazione di funzioni razionali fratte . Integazone d fnzon azonal fatte P S songa d vole calcolae n ntegale del to: d Q ove P e Q sono olno nell ndetenata d gado assegnato. Sonao ce: P a n n a n n a a Q b b b b oleent s etod d ntegazone I

Dettagli

Curve caratteristiche meccaniche di motori elettrici C.C.

Curve caratteristiche meccaniche di motori elettrici C.C. Motoi 1 Idie ue aatteistihe meaihe di motoi elettii.. osideazioi geeali Motoi ad eitazioe idipedete 1 Opeazioi o oete d eitazioe ostate Opeazioi o oete d eitazioe aiabile e tesioe d amatua ostate Motoi

Dettagli

PENSIONI INPDAP COME SI CALCOLANO

PENSIONI INPDAP COME SI CALCOLANO Mii biblioteca de Il Giorale Ipdap per rederci coto e sapere di piu Mii biblioteca de Il Giorale Ipdap per rederci coto e sapere di piu PENSIONI INPDAP COME SI CALCOLANO I tre sistemi I cique pilastri

Dettagli

DOMINI DI CURVATURA DI SEZIONI IN C.A. IN PRESSOFLESSIONE DEVIATA. PARTE II: VALUTAZIONE SEMPLIFICATA

DOMINI DI CURVATURA DI SEZIONI IN C.A. IN PRESSOFLESSIONE DEVIATA. PARTE II: VALUTAZIONE SEMPLIFICATA Valutazioe e riduzioe della vulerailità sismia di ediii esisteti i.a. Roma, 9-0 maggio 00 DOMINI DI CURVATURA DI SEZIONI IN C.A. IN PRESSOFLESSIONE DEVIATA. PARTE II: VALUTAZIONE SEMPLIFICATA Di Ludovio

Dettagli

tramite della Segreteria della scuola), trasmissione dei verbali e degli atti al

tramite della Segreteria della scuola), trasmissione dei verbali e degli atti al L verbae n"..8j... Ogg, se marzo duemaqundc, ae ore 13.00, s è runta nea sede d questa sttuzone Scoastca a commssone Eettorae così composta RBEZZO ASSUNTA Presdente; VAL SABNA Segretaro, FATORELLO GAMPETRO

Dettagli

ALU STAFFE IN ALLUMINIO SENZA FORI

ALU STAFFE IN ALLUMINIO SENZA FORI ALU STAFFE IN ALLUMINIO SENZA FORI Giunzione a compara in lega di alluminio per utilizzo in ambienti interni ed eterni (cl. di erv. 2) Preforata con ditanze ottimizzate per giunzioni ia u legno (chiodi

Dettagli

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

Impianti VAV di ultima generazione

Impianti VAV di ultima generazione PANORAMICA Impianti VAV di ultima generazione Prodotti all'avanguardia per la ventilazione regolabile u richieta! www.wegon.com La ventilazione regolabile u richieta garantice grande comfort e coti di

Dettagli

Dai numeri naturali ai numeri reali

Dai numeri naturali ai numeri reali .1 Introduzione Dai nueri naturali ai nueri reali In questa unità didattica vogliao riprendere rapidaente le nostre conoscenze sugli insiei nuerici (N, Z e Q), e successivaente apliarle a coprendere i

Dettagli

RICERCA SULLE NUOVE AZIENDE SIDERURGICHE

RICERCA SULLE NUOVE AZIENDE SIDERURGICHE COMMISSIONE DELLE. COMUNITÀ EUROPEE COMUNITÀ EUROPEA DEL CARBONE E DELL'ACCIAIO RICERCA SULLE NUOVE AZIENDE SIDERURGICHE Le maestranze deo stabiimento tasider di Taranto Atteggiamenti operai e avoro siderurgico

Dettagli

STUDIO SULL' EVOLUZIONE DELLA CONCENTRAZIONE NELL' INDUSTRIA DELLA COSTRUZIONE DI MACCHINE NON ELETTRICHE IN ITALIA

STUDIO SULL' EVOLUZIONE DELLA CONCENTRAZIONE NELL' INDUSTRIA DELLA COSTRUZIONE DI MACCHINE NON ELETTRICHE IN ITALIA C0MMISSIOHE DELLE COMUNITÀ EUROPEE DIRE!ZIONE GENERALE DELLA CONCORRENZA IV/A._3 STUDIO SULL' EVOLUZIONE DELLA CONCENTRAZIONE NELL' INDUSTRIA DELLA COSTRUZIONE DI MACCHINE NON ELETTRICHE IN ITALIA - Costruzione

Dettagli

COMPORTAMENTO SISMICO DELLE STRUTTURE

COMPORTAMENTO SISMICO DELLE STRUTTURE COMPORTAMENTO SISMICO DELLE STRUTTURE Durane un erreoo, le oscillazioni del erreno di fondazione provocano nelle sovrasani sruure delle oscillazioni forzae. Quando il erreoo si arresa, i ovieni della sruura

Dettagli

Stefano Falorsi. di seconda e quinta elementare rispettivamente di numerosità e N. I test somministrati alle

Stefano Falorsi. di seconda e quinta elementare rispettivamente di numerosità e N. I test somministrati alle Nota metooogica sua strategia i campionamento e sistema nazionae i vautazione ee competenze per e cassi secona e quinta e primo cico ea scuoa primaria Stefano Faorsi. Obiettivi I Sistema Nazionae i Vautazione

Dettagli

\ l o n g a r e \ RE5 INDICE - TITOLO PRIMO - NORME GENERALI

\ l o n g a r e \ RE5 INDICE - TITOLO PRIMO - NORME GENERALI \ l o n g a r e \ RE5 INDICE - TITOLO PRIMO - NORME GENERALI ART. 1 - OGGETTO DEL REGOL AMENTO EDI L I ZI O E RI CHI AMO AL L E DI SPOSI ZI ONI DI L EGGE E REGOL AMENTI - TITOLO SECONDO - DISCIPLINA DEGLI

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Punte a cannone. Hartner 2007. Made in Germany SEF MECCANOTECNICA. E mail: sef@sefmecc.it Web : www.sefmeccanotecnica.it

Punte a cannone. Hartner 2007. Made in Germany SEF MECCANOTECNICA. E mail: sef@sefmecc.it Web : www.sefmeccanotecnica.it Made in Germany Hartner 2007 Punte a cannone SEF MECCANOTECNICA SEE Via degi Orefici - Bocco 26 40050 FUNO (BO) ITALIA Te. 051 66.48811 Fax 051 86.30.59 FILIALE I MILANO Piazzae Martesana, 6 20128 Miano

Dettagli

Interpolazione. Davide Manca Calcoli di Processo dell Ingegneria Chimica Politecnico di Milano

Interpolazione. Davide Manca Calcoli di Processo dell Ingegneria Chimica Politecnico di Milano L4 Iterpolazioe L4 Prologo Co iterpolazioe si itede il processo di idividuare ua fuzioe, spesso u poliomio, che passi per u isieme dato di puti: (x,y). y x L4 2 Fii dell iterpolazioe 1. Sostituire u isieme

Dettagli

Esercizi Le leggi dei gas. Lo stato gassoso

Esercizi Le leggi dei gas. Lo stato gassoso Esercizi Le lei dei as Lo stato assoso Ua certa quatità di as cloro, alla pressioe di,5 atm, occupa il volume di 0,58 litri. Calcola il volume occupato dal as se la pressioe viee portata a,0 atm e se la

Dettagli

AcidSoft. Le nostre soluzioni. Innovazione

AcidSoft. Le nostre soluzioni. Innovazione AiSoft AiSoft ase alla passioe per l'iformatio teology e si oretizza i ua realtà impreitoriale, ua perfetta reazioe imia tra ooseza teia e reatività per realizzare progetti i grae iovazioe. Le ostre soluzioi

Dettagli

Valutazione delle prestazioni termiche di sistemi con solai termoattivi in regime non stazionario

Valutazione delle prestazioni termiche di sistemi con solai termoattivi in regime non stazionario Valutazioe delle prestazioi termiche di sistemi co solai termoattivi i regime o stazioario MICHELE DE CARLI, Ph.D., Ricercatore, Dipartimeto di Fisica Tecica, Uiversità degli Studi di Padova, Padova, Italia.

Dettagli

Una voce poco fa / Barbiere di Siviglia

Una voce poco fa / Barbiere di Siviglia Una voce oco a / Barbiere di Siviglia Andante 4 3 RÔ tr tr tr 4 3 RÔ & K r # Gioachino Rossini # n 6 # R R n # n R R R R # n 8 # R R n # R R n R R & & 12 r r r # # # R Una voce oco a qui nel cor mi ri

Dettagli

Analisi dei segnali nel dominio del tempo

Analisi dei segnali nel dominio del tempo Appui di Teoria dei Segali a.a. / Aalisi dei segali el domiio del empo L.Verdoliva I quesa prima pare del corso sudieremo come rappreseare i segali empo coiuo e discreo el domiio del empo e defiiremo le

Dettagli

Leica Lino L360, L2P5, L2+, L2, P5, P3

Leica Lino L360, L2P5, L2+, L2, P5, P3 Leica Lino L360, L25, L2+, L2, 5, 3 Manuale d'uso Versione 757665g Italiano Congratulazioni per aver acquistato Leica Lino. Le ore di sicurezza sono allegate al Manuale d'uso. Leggere attentaente le ore

Dettagli

ALCUNI ELEMENTI DI TEORIA DELLA STIMA

ALCUNI ELEMENTI DI TEORIA DELLA STIMA ALCUNI ELEMENTI DI TEORIA DELLA STIMA Quado s vuole valutare u parametro θ ad esempo: meda, varaza, proporzoe, oeffete d regressoe leare, oeffete d orrelazoe leare, e) d ua popolazoe medate u ampoe asuale,

Dettagli

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno Idc d Poszoe Gl dc s poszoe soo msure stetche ( valor caratterstc ) che descrvoo la tedeza cetrale d u feomeo La tedeza cetrale è, prma approssmazoe, la modaltà della varable verso la quale cas tedoo a

Dettagli

IL PROBLEMA DELLO SHORTEST SPANNING TREE

IL PROBLEMA DELLO SHORTEST SPANNING TREE IL PROBLEMA DELLO SHORTEST SPANNING TREE n. 1 - Formulazione del problema Consideriamo il seguente problema: Abbiamo un certo numero di città a cui deve essere fornito un servizio, quale può essere l energia

Dettagli

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine

Dettagli

La probabilità di avere non più di un maschio, significa la probabilità di averne 0 o 1: ( 0) P( 1)

La probabilità di avere non più di un maschio, significa la probabilità di averne 0 o 1: ( 0) P( 1) Esercizi sulle distribuzioni binoiale e poissoniana Esercizio n. Una coppia ha tre figli. Calcolare la probabilità che abbia non più di un aschio se la probabilità di avere un aschio od una feina è sepre

Dettagli