Momenti angolari e rotazioni

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Momenti angolari e rotazioni"

Transcript

1 Moeti agoari e rotazioi Defiizioe di rotazioe coe traforazioe di 3 Ua rotazioe i può defiire coe ua traforazioe R deo pazio fiico tridieioae i e, co e egueti proprietà : a) acia ivariate e ditaze b) o pota origie c) o cabia orietazioe degi ai Per quato tudiato a propoito dee traforazioi u pazi fiitodieioai (reai), ua traforazioe che coerva e ditaze è ortogoae, ed è rappreetata da ua atrice ortogoae (trapota = ivera): RR T = Iotre, eedo preervata orietazioe degi ai, i deteriate è 1 Quidi cocudiao che i gruppo dee rotazioi è ioorfo a gruppo peciae dee atrici ortogoai di ordie 3, SO(3) (e ho capito bee, Oofri diotra che a atrice rappreetativa è ortogoae No ho capito co quai argoeti, e vorrei ache eere icuro che reaete queo che fa è ua diotrazioe) Daa proprietà a) dicede che dx' dx' = M x ' M x M x ' M x d x d x = d x d x ovvero che a atrice rappreetativa di ua rotazioe è R / M x ' M x (io o ho capito da dove viee ta roba : i che eo «daa proprietà a) dicede che» Che ta crivedo? è teoria dea iura? ta uado o pazio duae? bah?)

2 Rotazioi ed operatori uitari - oeti agoari e rotazioi - Se i effettua ua traforazioe uo pazio tridieiae 3, queta iduce ua traforazioe ache uo pazio di Hibert dee fuzioi (a quadrato oabie) defiite u 3 (fuzioi d oda) Per defiire gi operatori aociati ae rotazioi poiao utiizzare a defiizioe di gradezza caare Ifatti per defiizioe ua gradezza caare è ivariate per traforazioi ui vettori ((?)rigorizzare) Ora, i eccaica quatitica poiao coiderare caare i oduo quadro dea fuzioe d oda, che coe appiao rappreeta a probabiità di preeza U puto ateriae o ha eua truttura itera, e duque u iiee copeto di oervabii copatibii per eo è cottuito dae tre copoeti dea poizioe Aora diciao che a traforazioe x' = Rx iduce operatore UR y' = URy defiito i odo che URy(x') 2 = y(x) 2 cioè i odo che i oduo quadro dea fuzioe d oda i coporti coe uo caare Queto però o defiice copetaete operatore, perché i queto odo a fuzioe d oda è defiita a eo di ua fae Co u pò di avoro (teorea di Wiger) i diotra che a fae può eere ceta uguae per tutte e fuzioi d oda e per quauque rotazioe Duque daa defiizioe di UR dicede che per ogi fuzioe d oda y i ha

3 - oeti agoari e rotazioi - ã U y ë á Rxé = y á x é o, che è o teo ã U y ë á x é = y á R - 1 x é (a frae che egue ho copiata pari pari da ibro) I fatto che e fuzioi d oda i traforao ecodo ua egge uiverae, uguae per tutte, garatice che operatore UR ia u operatore ieare uo pazio di Hibert, che iotre coerva i prodotto caare, oia : y f = U R y U R f Duque UR è u operatore uitario Defiizioe aterativa di U R Potreo adottare coe defiizioe di UR direttaete a reazioe tra e fuzioi d oda, azicché quea ui odui quadri, evitado appareteete i probei co a fae I atre paroe direo che ache a fuzioe d oda, e o oo i uo oduo quadro, i coporta coe uo caare ripetto ae rotazioi Aora potreo defiire operatore UR aociato aa rotazioe R pecificado a ua azioe ui vettori di bae deo pazio di Hibert (rappreetazioe dee poizioi) : U R x = Rx (atra frae copiata quai itegraete) U fattore di fae davati a ebro di iitra, i iea di pricipio epre poibie, o potrebbe couque dipedere da x, i bae aa richieta che operatore p i trafori coe u vettore Ptrebbe duque dipedere oo da R ed eere perciò eiiabie da ua ridefiizioe di UR Otteiao coì :

4 - oeti agoari e rotazioi - ã U y ë á x é / x U R y = R - 1 x y = y á R - 1 x é che è a tea defiizioe otteuta co atra trada I queto cao però, queta defiizioe o garatice che UR ia u operatore ieare uo pazio di Hibert, e dobbiao quidi richiedero epicitaete, poedo : U R y / I y á x é U R x d 3 x Duque ache queta trada ha i probea de fattore di fae arbitrario Ache queta vota i teorea di Wiger ci viee i aiuto diotrado che i può fiare a fae coteporaeaete per tutte e fuzioi d oda e per tute e rotazioi (?) riguardo a queta ecoda trada ho tre dubbi : 1) coe i fa a diotrare che UR è uitario? 2) perché a poizioe U R y / I y á x é U R x d 3 x garatice che UR ia u operatore ieare uo pazio di Hibert? 3) o capico dove ubetra a fae arbitraria Riguardo a prio dubbio, fore uitarietà i diotra crivedo i prodotti caari, e utiizzado a defiizioe di URy : y f = I y á x é f á x é d 3 x = qui utiizziao a defiizioe á U R y é á R x é = y á x é = I ã U R y ë í á Rx é ã U R f ë í á Rx é d 3 x = e qui utiizziao i fatto che ua rotazioe è ua riparaetrizzazioe di 3, e quidi itegrazioe o cabia = U R y U R f

5 - oeti agoari e rotazioi - Coeioe tra rotazioi e oeto agoare - Rotazioi ifiiteie Ua rotazioe ifiiteia, i quato traforazioe piccoiia, differice di poco da idetità Aora a poiao crivere coe idetità più o peudoteore eucideo aociato ad u certo vettore, co davati u coefficiete ifiiteio da : (per o peudoteore vedi Roao, Meccaica Razioae, prio voue pag 107) R + d a M dove M è a atrice rappreetativa deo peudoteore eucideo aociato a, quidi è ua atrice atiietrica i cui eeeti oo M = e ; oia, epicitaete : å ë ì M = ã í (?)dubbio : Vorrei ua diotrazioe più rigoroa de fatto che ua rotazioe ifiiteia i può approiare co idetità più queta atrice atiietrica Sebrerebbe ua orta di viuppo i erie trocato a pri ordie Mi oo dato ua piegazioe ituitiva coiderado che appicare o peudoteore eucideo aociato a ad u vettore poizioe x igifica fare i prodotto vettoriae x v (vedi Roao, Meccaica Razioae, prio voue pag 107), e aora e peiao a vettore coe ad u vettore aociato ad ua certa rotazioe, diretto ugo ae dea rotazioe (direzioe tae da vedere a rotazioe i eo atiorario) e co oduo pari a agoo dea rotazioe, queta poizioe ha ituitivaete eo Aora poiao crivere ã U y ë á x é = y á R x é

6 - oeti agoari e rotazioi - y á x + d a Mx é adeo poiao fare uo viuppo i erie dea y : y á x é + d a M x M y á x é M x = + d a M x M M x y á x é e ricordado epreioe dee copoeti di M M = e abbiao ã U y M ë á x é = + d a e x M x y á x é Rappreetazioe de oeto agoare La defiizioe caica di oeto agoare, prededo i poo e origie, è L = x v p cioè i oeto agoare di u puto ateriae è i prodotto vettoriae dea poizioe per i oeto ieare (quatità di oto) I prodotto vettoriae è epreo da uo peudoteore eucideo, e duque i ua bae ortoorae e ue copoeti oo L i = á x v p é i = e ijk x j p k Facedo ua quatizzazioe caoica, cioè prouovedo e coordiate caoiche xi e pi ad operatori heritiai i ha che operatore che

7 rappreeta a copoete i de oeto agoare è L i = - i e ijk x j M M x k - oeti agoari e rotazioi - (per epicità cegiao uità di iura i cui S=1) L operatore U R i fuzioe de operatore L Siao adeo i grado di forire a reazoie tra operatore uitario UR aociato aa rotazioe R e operatore heritiao L che rappreeta i oeto agoare Ifatti ettedo iiee epreioe (approiata) de operatore UR aociato aa rotazioe ifiiteia R trovata pria : ã U y M ë á x é = + d a e x M x y á x é co epreioe de oeto agoare appea trovata L i = - i e ijk x j M M x k poiao crivere = - i d a L y á x é (o i trovo : i dovrebbe adare a deoiatore, e quidi, razioaizzado, ci dovrebbe eere u + e o u - La coa i può riovere dicedo che a rotazioe ifiiteia è idetità eo ua atrice heritiaa ifiiteia Tuttavia, ache e i acia queto ego, i ha epiceete u riutato fiae co u ego cabiato ( argoeto de epoeziae viee co ego + e o co ego eo, vedi otre)) = - i d a A L y á x é Poiché queta reazioe è vera per ogi fuzioe d oda y poiao cocudere che

8 U R = = - i d a A L - oeti agoari e rotazioi - Rotazioi fiite e fora epoeziae Partiao da epreioe dea rotazioe ifiiteia (quea che o ho capito coe giutificare, e che ebra uo viuppo i erie) : R + d a M = R ï d + d a e dove ricordiao che è i vettore che è diretto ugo ae dea rotazioe, e vero da cui i vede a rotazioe atioraria, e che ha coe oduo agoo di rotazioe A queto puto poiao itrodurre a tera di atrici heritiae defiita e odo eguete ã ë í = - i e (queta è epreioe de eeeto di atrice di ua dee tre atrici) i odo da poter crivere : R ï d - i d a (tea quetioe de ego) = d - i d a A Ricordiao che fi ora abbiao coiderato rotazioi ifiiteie Adeo, ia per e rotazioi u 3 che per i corripodeti operatori uitari, poiao paare dae rotazioi ifiiteie ae rotazioi fiite Poiao dire che ua rotazioe fiita è a oa di u uero ifiito di rotazioi ifiiteie Aora poiao crivere ua rotazioe fiita coe : R = i i d a A

9 - oeti agoari e rotazioi - Poiché 6, poiao rappreetare i coefficiete ifiiteio coe 1/ Aora i ha R = i 6 - i A = e i A dove abbiao utiizzato i iite otevoe i 6 å 1 - a ã ë ì = e a í Aaogaete, per gi operatori uitari aociati ae rotazioi fiite poiao crivere : U R = i 6 + i A L = e i A Per redere più chiaro i eo co e rotazioi poiao crivere i vettore coe u verore per u uero a che rappreetao ripettivaete ae e agoo dea rotazioe I queto odo a atrice che rappreeta Coiderazioi fiai «I eccaica caica, e foraio Haitoiao (agebra ieare), già poiao dire che i oeto agoare di u puto ateriae coicide co a fuzioe geeratrice dee traforazioi caoiche corripodeti ae rotazioi deo pazio (fiico) 3» (Oofri Detri, pag 269) I teorea di Stoe perette di iportare, da foraio Haitoiao caico (agebra ieare) a foraio quatitico, a defiizioe di geeratore ifiiteiae di gruppo di traforazioi ad u paraetro (vedi ache derivata di Lie) Ne foraio quatitico i gruppo di traforazioi ad u paraetro è rappreetato dagi operatori uitari(ifatti queti hao a truttura di gruppo), etre i geeratore è rappreetato da u operatore

10 - oeti agoari e rotazioi - heritiao I fatto che u operatore uitario ia rappreetabie i fora epoeziae, co a epoete uità iagiaria per u operatore heritiao riuta ogico e i ricorda aaogia operatori ieari - ueri copei ecodo a quae u operatore uitario i ette i aaogia co u uero copeo a oduo uitario ed u operatore heritiao i ette i aaogia co u uero reae (queo che egue ho preo dagi apputi di Nicodei) Poiao ifie dire che Haitoiao è i geeratore ifiiteiae dee traazioi teporai, e i oeto ieare è i geeratore ifiiteiae dee traazioi paziai Ua variabie diaica è ivariate otto ua traforazioe caoica geerata da ua certa fuzioe geeratrice e operatore che rappreeta a variabie, e operatore che riuta daa quatizzazioe caoica dea fuzioe geeratrice coutao

Cenni di Teoria delle assicurazioni

Cenni di Teoria delle assicurazioni ei di Teoria dee assicurazioi Vautazioe di acue fore basiari di assicurazioi sua ita Probea di autazioe di ua redita di durata aeatoria Necessità di espriere a probabiità di sopraieza di u idiiduo: Fuzioi

Dettagli

Robotica industriale. Riduttori. Prof. Paolo Rocco (paolo.rocco@polimi.it)

Robotica industriale. Riduttori. Prof. Paolo Rocco (paolo.rocco@polimi.it) Robotica idustriae Riduttori Prof. Paoo Rocco (paoo.rocco@poii.it) Fuzioe de orgao di trasissioe La fuzioe di u orgao di trasissioe (riduttore) è di redere copatibii veocità e coppie dei otori e dei carichi

Dettagli

Capitolo 3 CARATTERIZZAZIONE MECCANICA DELLE FIBRE

Capitolo 3 CARATTERIZZAZIONE MECCANICA DELLE FIBRE Capitoo 3 CARATTERIZZAZIONE MECCANICA DELLE FIBRE 3.1 LA TEORIA DI WEIBULL I comportameto meccaico dee fibre di giestra e di juta è stato caratterizzato mediate o studio dea resisteza a trazioe dee fibre

Dettagli

I materiali. I materiali. Informatica Grafica per le arti. I materiali. I materiali. I materiali. I materiali

I materiali. I materiali. Informatica Grafica per le arti. I materiali. I materiali. I materiali. I materiali Iformatica Grafica per e arti L'esatto coore di u puto suo schermo viee determiato daa combiazioe dee proprieta' dee uci e degi oggetti iumiati. Le proprieta' di rifessioe dea uce da parte degi oggetti

Dettagli

Campi vettoriali conservativi e solenoidali

Campi vettoriali conservativi e solenoidali Campi vettoriali coservativi e soleoidali Sia (x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω. Sia r (u) ua parametrizzazioe di, fuzioe della variabile

Dettagli

1. Considerazioni generali

1. Considerazioni generali . osiderazioi geerali Il processaeto di ob su acchie parallele è iportate sia dal puto di vista teorico che pratico. Dal puto di vista teorico questo caso è ua geeralizzazioe dello schedulig su acchia

Dettagli

Parte III. Unità didattiche

Parte III. Unità didattiche Parte III Unità didattiche I Giochi per cantare Le attività qui propote decrivono acune odaità con e quai inegnare un canto per iitazione. La pria unità a chiaereo «gioco zero» (G0) poiché cotituice i

Dettagli

Capitolo. Il comportamento dei sistemi in regime transitorio. 5.8 Esercizi - Risposta al gradino dei sistemi del 2 ordine reazionati e non reazionati

Capitolo. Il comportamento dei sistemi in regime transitorio. 5.8 Esercizi - Risposta al gradino dei sistemi del 2 ordine reazionati e non reazionati Capitolo 5 Il comportameto dei itemi i regime traitorio 5.1 Geeralità ulla ripota dei itemi el domiio del tempo 5. Ripota al gradio di u itema del primo ordie. 5.3 Eercizi - Ripota al gradio dei itemi

Dettagli

Statica del corpo rigido: esercizi svolti dai compitini degli anni precedenti

Statica del corpo rigido: esercizi svolti dai compitini degli anni precedenti Statica de corpo riido: eercizi voti dai compitini dei anni precedenti II COMPITIO 00 003 Un ae di eno orizzontae omoenea, di maa M0 k e unhezza L m, è appoiata u due cavaetti. L ae pore di 60 cm otre

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Coro di : FISICA MEDICA A.A. 2015 /2016 Docente: Dott. Chiucchi Riccardo ail:rchiucchi@unite.it Medicina Veterinaria: CFU

Dettagli

ma non sono uguali fra loro

ma non sono uguali fra loro Defiizioe U fuzioe f defiit i D (doiio) si dice cotiu i u puto c D se esiste i tle puto (è cioè possiile clcolre f (c)); se esiste, fiito, il ite dell fuzioe per che tede c e se il vlore del ite coicide

Dettagli

RELAZIONE DI CALCOLO DEL SOLAIO

RELAZIONE DI CALCOLO DEL SOLAIO RELAZIONE DI CALCOLO DEL SOLAIO I soaio, da reaizzare ea tipoogia ista i profiati di acciaio e aterizi, è progettato per u carico accidetae pari a 600 kg/q essedo i ocae destiato ad archivio. Esso è costituito

Dettagli

PARTE QUARTA Teoria algebrica dei numeri

PARTE QUARTA Teoria algebrica dei numeri Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)

Dettagli

TURBINA PELTON. DESCRIZIONE E PRINCIPIO DI FUNZIONAMENTO Le turbine PELTON sfruttano salti elevati e portate d acqua anche piccole; orientativamente

TURBINA PELTON. DESCRIZIONE E PRINCIPIO DI FUNZIONAMENTO Le turbine PELTON sfruttano salti elevati e portate d acqua anche piccole; orientativamente 6 TURBINA PELTON DESCRIZIONE E PRINCIPIO DI FUNZIONAMENTO Le turbie PELTON sfruttao salti elevati e portate d acqua ache piccole; orietativaete ΣY c H g 00 000 Q < 0 5 3 /s Ua tipica disposizioe d ipiato

Dettagli

1. LA TRAVE CONTINUA E L EQUAZIONE DEI TRE MOMENTI

1. LA TRAVE CONTINUA E L EQUAZIONE DEI TRE MOMENTI . L TRVE ONTINU E L EQUZIONE DEI TRE OENTI Sistemi Piai i Travi Neo sazio ua trave ha 6 grai i ibertà (g...): rotazioi e trasazioi. Ne iao, ivece, i grai si riucoo a co rotazioe e 2 trasazioi. z z z w

Dettagli

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale Calcolo della risposta di u sistema lieare viscoso a più gradi di libertà co il metodo dell Aalisi Modale Lezioe 2/2 Prof. Adolfo Satii - Diamica delle Strutture 1 La risposta a carichi variabili co la

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1 SUCCESSIONI e LIMITI DI SUCCESSIONI c Paola Gervasio - Aalisi Matematica 1 - A.A. 15/16 Successioi cap3b.pdf 1 Successioi Def. Ua successioe è ua fuzioe reale (Y = R) a variabile aturale, ovvero X = N:

Dettagli

Calcolo Combinatorio (vers. 1/10/2014)

Calcolo Combinatorio (vers. 1/10/2014) Calcolo Combiatorio (vers. 1/10/2014 Daiela De Caditiis modulo CdP di teoria dei segali Igegeria dell Iformazioe - sede di Latia, CALCOLO COMBINATORIO Pricipio Fodametale del Calcolo Combiatorio: Si realizzio

Dettagli

AZIENDA USL N. 12 DI VIAREGGIO REGOLAMENTO PER L ACCETTAZIONE DI DONAZIONI DI BENI O DI CONTRIBUTI LIBERALI I N D I C E D E G L I A R T I C O L I

AZIENDA USL N. 12 DI VIAREGGIO REGOLAMENTO PER L ACCETTAZIONE DI DONAZIONI DI BENI O DI CONTRIBUTI LIBERALI I N D I C E D E G L I A R T I C O L I AZIENDA USL N. 12 DI VIAREGGIO REGOLAMENTO PER L ACCETTAZIONE DI DONAZIONI DI BENI O DI CONTRIBUTI LIBERALI I N D I C E D E G L I A R T I C O L I Art. 1 Premessa Art. 2 Oggetto del Regolamento Art. 3 Principi

Dettagli

APPROFONDIMENTI SULLA TEORIA DEL CONSUMO AGGREGATO

APPROFONDIMENTI SULLA TEORIA DEL CONSUMO AGGREGATO Moduo 8a 1 APPROFONDIMENTI SULLA TEORIA DEL CONSUMO AGGREGATO 1. Iroduzioe 2. La eoria de cosumo di Dueseberry 3. La eoria de cico viae di Modigiai 2 1. Iroduzioe Dae esperieze dei maggiori sisemi macroecoomici,

Dettagli

Foglio di esercizi N. 1 - Soluzioni

Foglio di esercizi N. 1 - Soluzioni Foglio di esercizi N. - Soluzioi. Determiare il domiio della fuzioe f) = log 3 + log 3 3)). Deve essere + log 3 3) > 0, ovvero log 3 3) >, ovvero prededo l espoeziale i base 3 di etrambi i membri) 3 >

Dettagli

Lezione n.11 Rischio demolizioni

Lezione n.11 Rischio demolizioni CORO DI PROGETTAZIONE ORGANIZZAZIONE E ICUREZZA NE CANTIERE corso A ezione n. Prof. Renato aganà Rischio demolizioni + 5. 6 7 0 0 a 5 0 b 6 0 7 + 7. 7 0 b 5 6 0 0 a 0 + 0.5 +. 7 7 5 0 6 0 0 a + 0. 0 6

Dettagli

Sommario. 1. Aspetti teorici di base... 3 2. Generalizzazione... 4 3. Esempio: il costo standard dei rilevati autostradali...7

Sommario. 1. Aspetti teorici di base... 3 2. Generalizzazione... 4 3. Esempio: il costo standard dei rilevati autostradali...7 Allegato La deteriazioe dei costi stadardizzati per i lavori pubblici: ua proposta etodologica basata sulle icideze percetuali delle copoeti di lavorazioi prevaleti La deteriazioe dei costi stadardizzati

Dettagli

Matematica Attuariale. Contratto di assicurazione

Matematica Attuariale. Contratto di assicurazione Matematica Attuariae La matematica attuariae studia a determiazioe dei premi assicurativi i fuzioe di determiati eveti che possoo verificarsi i reazioe a cotratti assicurativi. Cotratto di assicurazioe

Dettagli

0$&&+,1($6,1&521(75,)$6( Avvolgimento di statore. Avvolgimento di rotore. ω = p

0$&&+,1($6,1&521(75,)$6( Avvolgimento di statore. Avvolgimento di rotore. ω = p 35,1&,3,',)81=,1$0(17 0$&&+,1($6,1&51(75,)$6( Le macchie aicroe, utilizzate come motore, cotituicoo il tipo più diffuo di macchie elettriche a correte alterata, i quato preetao ua grade emplicità di cotruzioe

Dettagli

II-9 Successioni e serie

II-9 Successioni e serie SUCCESSIONI II-9 Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La

Dettagli

Successioni. Grafico di una successione

Successioni. Grafico di una successione Successioi Ua successioe di umeri reali è semplicemete ua sequeza di ifiiti umeri reali:, 2, 3,...,,... dove co idichiamo il termie geerale della successioe. Ad esempio, discutedo il sigificato fiaziario

Dettagli

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6 SUCCESSIONI Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La serie

Dettagli

Tecnica di isolamento dalle vibrazioni meccaniche Elementi introduttivi.

Tecnica di isolamento dalle vibrazioni meccaniche Elementi introduttivi. Corso di Orgaizzazioe e Gestioe della Sicurezza Aziedale Tecica di isolaeto dalle vibrazioi eccaiche Eleeti itroduttivi. Terii e defiizioi Vibrazioe eccaica: rappreseta il ovieto oscillatorio di u corpo

Dettagli

Metodi Numerici per la Bioinformatica

Metodi Numerici per la Bioinformatica Metodi Numerici per la Bioiformatica Approcci claici all aalii di dati A.A. 008/009 Fraceco Archetti Itroduzioe Vi oo criteri differeti per caratterizzare i problemi di tetig di ipotei. il umero di campioi

Dettagli

Unità Didattica 1. Le unità di misura

Unità Didattica 1. Le unità di misura Unità Didattica 1. Le unità di iura Pria di addentrarci nella ateria, è bene fare un rapido riaunto delle tecniche di converione e delle più iportanti unità di iura nel capo dell aeronautica, perché capiterà

Dettagli

DISTRIBUZIONI DOPPIE

DISTRIBUZIONI DOPPIE DISTRIBUZIONI DOPPIE Fio ad ora abbiamo visto teciche di aalisi dei dati per il solo caso i cui ci si occupi di u solo carattere rilevato su u collettivo (distribuzioi semplici). I termii formali fio ad

Dettagli

Studio dei transitori con il metodo delle trasformate di Laplace

Studio dei transitori con il metodo delle trasformate di Laplace Studio di traitori co il mtodo dll traformat di Laplac Apputi a cura dll Igg. Baoccu Gia Piro Marra Luca Tutor dl coro di ELETTROTECNICA pr mccaici chimici A. A 3/4 4/5 Facoltà di Iggria dll Uivrità dgli

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica I 13 Febbraio 2006 Compito A

Facoltà di Ingegneria Prova scritta di Fisica I 13 Febbraio 2006 Compito A Facoltà di Ingegneria Prova critta di Fiica I 13 Febbraio 6 Copito A Eercizio n.1 Un blocco, aiilabile ad un punto ateriale di aa, partendo da fero, civola da un altezza h lungo un piano inclinato cabro

Dettagli

3.4 Tecniche per valutare uno stimatore

3.4 Tecniche per valutare uno stimatore 3.4 Teciche per valutare uo stimatore 3.4. Il liguaggio delle decisioi statistiche, stimatori corretti e stimatori cosisteti La teoria delle decisioi forisce u liguaggio appropriato per discutere sulla

Dettagli

Generalità sulle macchine rotanti

Generalità sulle macchine rotanti Macchie elettiche ate Geealità ulle macchie otati Foza di Loetz U filo coduttoe immeo i u camo magetico B (i figua B ha diezioe ucete dal foglio) e ecoo da ua coete i iega i ua o ell alta diezioe a ecodo

Dettagli

Corso di Elementi di Impianti e macchine elettriche Anno Accademico 2014-2015

Corso di Elementi di Impianti e macchine elettriche Anno Accademico 2014-2015 Corso di Elemeti di Impiati e mahie elettriche Ao Aademico 014-015 Esercizio.1 U trasformatore moofase ha i segueti dati di targa: Poteza omiale A =10 kva Tesioe omiale V 1 :V =480:10 V Frequeza omiale

Dettagli

Esercizi di dinamica 2

Esercizi di dinamica 2 Esercizi di dinaica ) Un corpo di assa.0 kg si trova su un piano orizzontae scabro. I coefficiente di attrito statico tra corpo e piano è s 0.8. I corpo è sottoposto a azione di una forza orizzontae 7.0

Dettagli

5. Le serie numeriche

5. Le serie numeriche 5. Le serie umeriche Ricordiamo che ua successioe reale è ua fuzioe defiita da N, evetualmete privato di u umero fiito di elemeti, a R. Solitamete si idica ua successioe co la lista dei suoi valori: (a

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

Lezione 4: la velocità. Nella scorsa lezione abbiamo considerato la grandezza velocità media. Essa, come ricordate, è definita così:

Lezione 4: la velocità. Nella scorsa lezione abbiamo considerato la grandezza velocità media. Essa, come ricordate, è definita così: Lezione 4 - pag.1 Lezione 4: la velocità 4.1. Velocità edia e grafico tepo - poizione Nella cora lezione abbiao coniderato la grandezza velocità edia. Ea, coe ricordate, è definita coì: ditanza percora

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Ua fuzioe reale di ua variabile reale f di domiio A è ua legge che ad ogi x A associa u umero reale che deotiamo co f(x). Se A = N, la f è detta successioe di umeri reali. Se co si

Dettagli

Il lavoro meccanico Il lavoro di una forza costante

Il lavoro meccanico Il lavoro di una forza costante Il lavoro eccanico Il lavoro di una forza cotante Per potare oggetti, produrre deforazioni, e più in generale per odificare i itei fiici occorrono le forze. Se però conideriao, per eepio, un pezzo di legno

Dettagli

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia)

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia) Itroduzioe all assicurazioe. (Dispesa per il corso di Microecoomia) Massimo A. De Fracesco Uiversità di Siea December 18, 2013 1 ichiami su utilità attesa e avversioe al rischio Prima di cosiderare il

Dettagli

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli

STRUMENTI MATEMATICI PER LE SCELTE ECONOMICHE. [brevi appunti di testo in bozza] 1) Scelta tra progetti economico-finanziari (generalità)

STRUMENTI MATEMATICI PER LE SCELTE ECONOMICHE. [brevi appunti di testo in bozza] 1) Scelta tra progetti economico-finanziari (generalità) UNIVERSITA DEGLI STUDI DI PAVIA Dipartieto di Scieze Ecooiche e Aziedali Via S. Felice, 7-271 Pavia Tel. 382/986268 - Fax 382/22486 STRUMENTI MATEMATICI PER LE SCELTE ECONOMICHE. [brevi apputi di testo

Dettagli

Risoluzione di travature reticolari iperstatiche col metodo delle forze. Complemento alla lezione 43/50: Il metodo delle forze II

Risoluzione di travature reticolari iperstatiche col metodo delle forze. Complemento alla lezione 43/50: Il metodo delle forze II Risouzione di travature reticoari iperstatiche co metodo dee forze ompemento aa ezione 3/50: I metodo dee forze II sercizio. er a travatura reticoare sotto riportata, determinare gi sforzo nee aste che

Dettagli

Corso di Laurea in Ing. Edile Politecnico di Bari A.A. 2008-2009 Prof. ssa Letizia Brunetti DISPENSE DEL CORSO DI GEOMETRIA

Corso di Laurea in Ing. Edile Politecnico di Bari A.A. 2008-2009 Prof. ssa Letizia Brunetti DISPENSE DEL CORSO DI GEOMETRIA Corso di Laurea i Ig Edile Politecico di Bari AA 2008-2009 Prof ssa Letizia Bruetti DISPENSE DEL CORSO DI GEOMETRIA 2 Idice Spazi vettoriali Cei sulle strutture algebriche 4 2 Defiizioe di spazio vettoriale

Dettagli

EQUAZIONI ESPONENZIALI -- LOGARITMI

EQUAZIONI ESPONENZIALI -- LOGARITMI Equzioi espoezili e riti pg 1 Adolfo Sioe 1998 EQUAZIONI ESPONENZIALI -- LOGARITMI Fuzioe Espoezile Dto u uero rele positivo osiderio l fuzioe f : R R he d ogi eleeto R f orrispodere l'eleeto y =. Se =

Dettagli

Sistemi e Tecnologie della Comunicazione

Sistemi e Tecnologie della Comunicazione Sistemi e ecologie della Comuicazioe Lezioe 4: strato fisico: caratterizzazioe del segale i frequeza Lo strato fisico Le pricipali fuzioi dello strato fisico soo defiizioe delle iterfacce meccaiche (specifiche

Dettagli

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02%

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02% RISPOSTE MOTIVATE QUIZ D AMMISSIONE 2000-2001 MATEMATICA 51. L espressioe log( 2 ) equivale a : A) 2log B) log2 C) 2log D) log E) log 2 Dati 2 umeri positivi a e b (co a 1), si defiisce logaritmo i base

Dettagli

5 ln n + ln. 4 ln n + ln. 6 ln n + ln

5 ln n + ln. 4 ln n + ln. 6 ln n + ln DOMINIO FUNZIONE Determiare il domiio della fuzioe f = l e e + e + e Deve essere e e + e + e >, posto e = t si ha t e + t + e = per t = e e per t = / Il campo di esisteza è:, l, + Determiare il domiio

Dettagli

Costruzioni elettromeccaniche a.a. 2003-04. bozza 1

Costruzioni elettromeccaniche a.a. 2003-04. bozza 1 Cotruzioi elettromeccaiche a.a. 3-4 MACCHINE ASINCRONE bozza 1 Coteuti 1 - Morfologia e itemi di raffreddameto - Circuiti magetici 3 - Avvolgimeti 4 - Caratteritiche elettriche 5 - Diagramma circolare

Dettagli

Insiemi e funzioni CAPITOLO 1 1. GLI INSIEMI CON DERIVE. Come creare un insieme

Insiemi e funzioni CAPITOLO 1 1. GLI INSIEMI CON DERIVE. Come creare un insieme CAPITOLO 1 Insiemi e funzioni 1. GLI INSIEMI CON DERIVE Come creare un insieme I modo piuá sempice per creare un insieme con Derive eá queo di eencare i suoi eementi racchiudendoi a'interno di una coppia

Dettagli

I appello - 29 Giugno 2007

I appello - 29 Giugno 2007 Facoltà di Igegeria - Corso di Laurea i Ig. Iformatica e delle Telecom. A.A.6/7 I appello - 9 Giugo 7 ) Studiare la covergeza putuale e uiforme della seguete successioe di fuzioi: [ ( )] f (x) = cos (

Dettagli

4. Metodo semiprobabilistico agli stati limite

4. Metodo semiprobabilistico agli stati limite 4. Metodo seiprobabilistico agli stati liite Tale etodo cosiste el verificare che le gradezze che ifluiscoo i seso positivo sulla, valutate i odo da avere ua piccolissia probabilità di o essere superate,

Dettagli

Passo dopo passo verso l infinito La mosca oscillante Paderno Del Grappa, 29 Agosto 2012

Passo dopo passo verso l infinito La mosca oscillante Paderno Del Grappa, 29 Agosto 2012 Po dopo po ero l iiito L moc ocillte Pdero Del Grpp, 9 Agoto 0 Boetur Polillo Liceo Scietiico Frceco Seeri, Slero Uo gurdo d iieme Mtemtic Ricreti Didttic Ricerc Liee guid Il Queito come ote Alii e trtegi

Dettagli

che sono una l inversa dell altra; l insieme dei messaggi cifrati C i cui elementi sono indicati con la lettera c.

che sono una l inversa dell altra; l insieme dei messaggi cifrati C i cui elementi sono indicati con la lettera c. I LEZIONE Il ostro iteto è aalizzare i dettaglio i metodi di cifratura che si soo susseguiti el corso della storia prestado particolare attezioe all impiato matematico che e cosete la realizzazioe Iiziamo

Dettagli

Terzo appello del. primo modulo. di ANALISI 18.07.2006

Terzo appello del. primo modulo. di ANALISI 18.07.2006 Terzo appello del primo modulo di ANALISI 18.7.26 1. Si voglioo ifilare su u filo delle perle distiguibili tra loro solo i base alla dimesioe: si hao a disposizioe perle gradi di diametro di 2 cetimetri

Dettagli

CENTRALINE DI LUBRIFICAZIONE AD OLIO GE01 - GE02 - GE03 SISTEMA A LINEA SINGOLA DATI TECNICI POMPA A INGRANAGGI SERBATOIO LUBRIFICANTE

CENTRALINE DI LUBRIFICAZIONE AD OLIO GE01 - GE02 - GE03 SISTEMA A LINEA SINGOLA DATI TECNICI POMPA A INGRANAGGI SERBATOIO LUBRIFICANTE - CETRAIE DI UBRIFICAZIE AD OIO SISTEA A IEA SIGOA GE - GE - GE ROGETTATE ER 'AIETAZIE ITERITTETE DI ISTAAZII A IEA SIGOA. 'ESECUZIE BASE ICUDE U GRUO OTOOA AD IGRAAGGI E E VAVOE ECESSARIE ER I CTROO DEI

Dettagli

Verifica e progetto allo stato limite ultimo di pilastri in c.a. a sezione rettangolare: un metodo semplificato

Verifica e progetto allo stato limite ultimo di pilastri in c.a. a sezione rettangolare: un metodo semplificato Veriica e progetto allo tato limite ultimo di pilatri i c.a. a ezioe rettagolare: u metodo empliicato Aurelio Gheri, arco uratore Sommario L uo del metodo degli tati limite per la veriica ed il progetto

Dettagli

Anno 5 Successioni numeriche

Anno 5 Successioni numeriche Ao 5 Successioi umeriche Itroduzioe I questa lezioe impareremo a descrivere e calcolare il limite di ua successioe. Ma cos è ua successioe? Come si calcola il suo limite? Al termie di questa lezioe sarai

Dettagli

Corsi di Laurea in Ingegneria Edile e Architettura Prova scritta di Analisi Matematica 1 del 6/02/2010. sin( x) log((1 + x 2 ) 1/2 ) = 1 3.

Corsi di Laurea in Ingegneria Edile e Architettura Prova scritta di Analisi Matematica 1 del 6/02/2010. sin( x) log((1 + x 2 ) 1/2 ) = 1 3. Corsi di Laurea i Igegeria Edile e Architettura Prova scritta di Aalisi Matematica del 6// ) Mostrare che + si( ) cos () si( ) log(( + ) / ) = 3. Possibile soluzioe: Cosiderado dapprima il deomiatore otiamo

Dettagli

INVENTORY CONTROL. Ing. Lorenzo Tiacci

INVENTORY CONTROL. Ing. Lorenzo Tiacci INVENTORY CONTRO Ig. orezo Tiacci Testo di riferimeto: Ivetory Maagemet ad Productio Plaig ad Cotrol - Third Ed. E.A. Silver, D.F. Pyke, R. Peterso Wiley, 998 Idice. POITICA (s, ) (order poit, order quatity)

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docete: dott. F. Zucca Esercitazioe # 4 1 Distribuzioe Espoeziale Esercizio 1 Suppoiamo che la durata della vita di ogi membro di

Dettagli

Appunti sulla MATEMATICA FINANZIARIA

Appunti sulla MATEMATICA FINANZIARIA INTRODUZIONE Apputi sulla ATEATIA FINANZIARIA La matematica fiaziaria si occupa delle operazioi fiaziarie. Per operazioe fiaziaria si itede quella operazioe ella quale avviee uo scambio di capitali, itesi

Dettagli

Congelatori Orizzontali in Classe A+, A++ e A -60%

Congelatori Orizzontali in Classe A+, A++ e A -60% Cogelatori Orizzotali i Classe A+, A++ e A -60% Modello: GTP 6 Valvola StopFrost I cogelatori orizzotali Liebherr della serie GTP e GTS soo dotati del sistea StopFrost. Questa valvola riduce la forazioe

Dettagli

Modulo n.3 - I materiali nelle lavorazioni metalliche

Modulo n.3 - I materiali nelle lavorazioni metalliche oduo n. - I maeriai nee avorazioni meaiche PROPRIETÀ ISIHE, EANIHE, TENOOGIHE (Diiazione vericae) OBIETTIVI: A) onocenza dee proprieà dei maeriai finaizzaa a oro uiizzo; B) apacià di eeguire cacoi ue principai

Dettagli

Selezione avversa e razionamento del credito

Selezione avversa e razionamento del credito Selezioe avversa e razioameto del credito Massimo A. De Fracesco Dipartimeto di Ecoomia politica e statistica, Uiversità di Siea May 3, 013 1 Itroduzioe I questa lezioe presetiamo u semplice modello del

Dettagli

Esercizi riguardanti limiti di successioni

Esercizi riguardanti limiti di successioni Esercizi riguardati iti di successioi Davide Boscaii Queste soo le ote da cui ho tratto le esercitazioi del gioro 27 Ottobre 20. Come tali soo be lugi dall essere eseti da errori, ivito quidi chi e trovasse

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1)

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) I umeri aturali hao u ordie; ogi umero aturale ha u successivo (otteuto aggiugedo 1), e ogi umero aturale diverso da zero ha u precedete (otteuto sottraedo 1).

Dettagli

1. ANALISI DEI RESIDUI DELLO SPARO

1. ANALISI DEI RESIDUI DELLO SPARO Piao Lauree Scietifiche Chimica - Ciamicia. ANALISI DEI RESIDUI DELLO SPARO. Itroduzioe Nel cao di reati che comportio l uo di eploivi, gli operatori della Polizia Scietifica hao la eceità di rilevare

Dettagli

Analisi statistica dell Output

Analisi statistica dell Output Aalisi statistica dell Output IL Simulatore è u adeguata rappresetazioe della Realtà! E adesso? Come va iterpretato l Output? Quado le Osservazioi soo sigificative? Quati Ru del Simulatore è corretto effettuare?

Dettagli

8. Quale pesa di più?

8. Quale pesa di più? 8. Quale pesa di più? Negli ultimi ai hao suscitato particolare iteresse alcui problemi sulla pesatura di moete o di pallie. Il primo problema di questo tipo sembra proposto da Tartaglia el 1556. Da allora

Dettagli

CAPITOLO 5 TEORIA DELLA SIMILITUDINE

CAPITOLO 5 TEORIA DELLA SIMILITUDINE CAPITOLO 5 TEORIA DELLA SIMILITUDINE 5.. Itroduzioe La Teoria della Similitudie ha pricipalmete due utilizzi: Estedere i risultati otteuti testado ua sigola macchia ad altre codizioi operative o a ua famiglia

Dettagli

NUOVI INDICATORI DI SBILANCIAMENTO E PREVEDIBILITÀ NEI DISEGNI SEQUENZIALI RANDOMIZZATI: CONFRONTI FRA BIASED COIN DESIGNS DIVERSI

NUOVI INDICATORI DI SBILANCIAMENTO E PREVEDIBILITÀ NEI DISEGNI SEQUENZIALI RANDOMIZZATI: CONFRONTI FRA BIASED COIN DESIGNS DIVERSI STATISTICA, ao LXII,. 3, 00 NUOVI INDICATORI DI SBILANCIAMENTO E PREVEDIBILITÀ NEI DISEGNI SEQUENZIALI RANDOMIZZATI: CONFRONTI FRA BIASED COIN DESIGNS DIVERSI A. Baldi Atogii, A. Bodii, A. Giovagoli. PREMESSA

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie umeriche e serie di poteze Sommare u umero fiito di umeri reali è seza dubbio u operazioe che o può riservare molte sorprese Cosa succede però se e sommiamo u umero ifiito? Prima di dare delle defiizioi

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

SERIE NUMERICHE Con l introduzione delle serie vogliamo estendere l operazione algebrica di somma ad un numero infinito di addendi.

SERIE NUMERICHE Con l introduzione delle serie vogliamo estendere l operazione algebrica di somma ad un numero infinito di addendi. Serie SERIE NUMERICHE Co l itroduzioe delle serie vogliamo estedere l operazioe algebrica di somma ad u umero ifiito di addedi. Def. Data la successioe {a }, defiiamo la successioe {s } poedo s = a k.

Dettagli

1.1 Classificazione del rumore

1.1 Classificazione del rumore 1. Gli ocillatori ricoproo u ruolo odametale ell ambito dei itemi elettroici per le telecomuicazioi: ei itemi tramettitore-ricevitore a RF oricoo ai mixer il egale che permette la tralazioe i requeza,

Dettagli

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa I umeri complessi Pagie tratte da Elemeti della teoria delle fuzioi olomorfe di ua variabile complessa di G. Vergara Caffarelli, P. Loreti, L. Giacomelli Dipartimeto di Metodi e Modelli Matematici per

Dettagli

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere Eserciio 1 7 puti. Dato il campo vettoriale v, + 1,, i si determii ua fuioe f > i modo tale che il campo vettoriale f v sia irrotaioale, cioè abbia le derivate icrociate uguali; ii si spieghi se i risultati

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagia Giovaa Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secodaria di secodo grado UNITÀ CAMPIONE Edizioi del Quadrifoglio à t i U 2 Radicali I questa Uità affrotiamo

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE LORENZO BRASCO. Teoremi di Cesaro Teorema di Stolz-Cesaro. Siao {a } N e {b } N due successioi umeriche, co {b } N strettamete positiva, strettamete crescete e ilitata. Se esiste

Dettagli

Le onde elettromagnetiche. Origine e natura, spettro delle onde e.m., la polarizzazione

Le onde elettromagnetiche. Origine e natura, spettro delle onde e.m., la polarizzazione Le ode elettromagetiche Origie e atura, spettro delle ode e.m., la polarizzazioe Origie e atura delle ode elettromagetiche: Ua carica elettrica che oscilla geera u campo elettrico E che oscilla e a questo

Dettagli

SUCCESSIONI E SERIE NUMERICHE

SUCCESSIONI E SERIE NUMERICHE SUCCESSIONI E SERIE NUMERICHE. Successioi umeriche a. Defiizioi: successioi aritmetiche e geometriche Cosideriamo ua sequeza di umeri quale ad esempio:,5,8,,4,7,... Tale sequeza è costituita mediate ua

Dettagli

Equazioni e contrazioni: un punto fisso //

Equazioni e contrazioni: un punto fisso // * 010 Equazioi e cotrazioi: u puto fisso // Nicola Chiriao Docete al Liceo Scietifico L. Siciliai di Catazaro [Nicola Chiriao] Nicola Chiriao è docete di Matematica e Fisica al Liceo Scietifico Siciliai

Dettagli

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15 Corso di Laurea Magistrale i Igegeria Iformatica A.A. 014/15 Complemeti di Probabilità e Statistica Prova scritta del del 3-0-15 Puteggi: 1. 3+3+4;. +3 ; 3. 1.5 5 ; 4. 1 + 1 + 1 + 1 + 3.5. Totale = 30.

Dettagli

Serie numeriche: esercizi svolti

Serie numeriche: esercizi svolti Serie umeriche: esercizi svolti Gli esercizi cotrassegati co il simbolo * presetao u grado di difficoltà maggiore. Esercizio. Dopo aver verificato la covergeza, calcolare la somma delle segueti serie:

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA La statistica descrittiva serve per elaborare e sitetizzare dati. Tipicamete i dati si rappresetao i tabelle. Esempio. Suppoiamo di codurre u idagie per cooscere gli iscritti al

Dettagli

Appunti su rendite e ammortamenti

Appunti su rendite e ammortamenti Corso di Matematica I Facoltà di Ecoomia Dipartimeto di Matematica Applicata Uiversità Ca Foscari di Veezia Fuari Stefaia, fuari@uive.it Apputi su redite e ammortameti 1. Redite Per redita si itede u isieme

Dettagli

Successioni ricorsive di numeri

Successioni ricorsive di numeri Successioi ricorsive di umeri Getile Alessadro Laboratorio di matematica discreta A.A. 6/7 I queste pagie si voglioo predere i esame alcue tra le più famose successioi ricorsive, presetadoe alcue caratteristiche..

Dettagli

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia per manager. Prima versione, marzo 2013; versione aggiornata, marzo 2014)

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia per manager. Prima versione, marzo 2013; versione aggiornata, marzo 2014) Itroduzioe all assicurazioe. (Dispesa per il corso di Microecoomia per maager. Prima versioe, marzo 2013; versioe aggiorata, marzo 2014) Massimo A. De Fracesco Uiversità di Siea March 14, 2014 1 Prezzo

Dettagli

COMPLEMENTI ALLE SERIE

COMPLEMENTI ALLE SERIE COMPLEMENTI ALLE SERIE. Serie a termii i sego efiitivamete ostate Per ompletezza rihiamo il riterio el rapporto e ella raie, seza imostrarli... Teorema (Criterio el rapporto). Sia a ua suessioe a termii

Dettagli

Capitolo Decimo SERIE DI FUNZIONI

Capitolo Decimo SERIE DI FUNZIONI Capitolo Decimo SERIE DI FUNZIONI SUCCESSIONI DI FUNZIONI I cocetti di successioe e di serie possoo essere estesi i modo molto aturale al caso delle fuzioi DEFINIZIONE Sia E u sottoisieme di  e, per ogi

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioi di Statistica Il modello di Regressioe Prof. Livia De Giovai statistica@dis.uiroma.it Esercizio Solitamete è accertato che aumetado il umero di uità prodotte, u idustria possa ridurre i costi

Dettagli

COMUNE DI BANARI. Provincia di Sassari N. 49 DEL 14/09/2015 OGGETTO:

COMUNE DI BANARI. Provincia di Sassari N. 49 DEL 14/09/2015 OGGETTO: COPIA COMUNE DI BANARI Provincia di Sassari VERBALE DI DELIBERAZIONE DELLA GIUNTA COMUNALE N. 49 DEL 14/09/2015 OGGETTO: RICONOSCIMENTO DEL DIRITTO AL RIMBORSO DELLE SPESE LEGALI SOSTENUTE DAL SINDACO

Dettagli

Ottica. LEYBOLD Schede di fisica P5.6.2.1

Ottica. LEYBOLD Schede di fisica P5.6.2.1 Ottica LEYBOLD Schede di fiica Velocità della luce Miura eeguita ediante ipuli luinoi di breve durata LEYBOLD Schede di fiica Deterinazione della velocità della luce nell aria eeguita ediante il tepo di

Dettagli