Esercizi sui gas perfetti

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi sui gas perfetti"

Transcript

1 Eserz su gas perett Eserzo In un repente d esertata dal gas è d delle oleole d elo. 0 d sono ontenute ol d He. La pressone 5.5 Trasorao l volue n untà SI: 0d 0 Pa. Deternare la velotà quadrata eda Ravao la Teperatura del gas dall equazone d stato P 5 P.5 Pa T 00 K nr 8. J/(ol K) nrt : Se ndhao la velotà quadrata eda delle oleole del gas on v, la sua energa neta eda s srve: E dove è la assa d una oleola d rava v : v E. v He. Invertendo questa orula s Qund per avere v devo alolare sa E he la assa d un atoo d elo. Dalla teora neta de gas perett s ha: E k T Mentre la assa d un atoo d He vale:.6 Kg 6.68 Inserendo nuer trovat s ha: Kg J v K /s 6.68 Eserzo Un gas peretto è osttuto da ato d assa olare M = 0g. La velotà eda delle sue oleole rsulta uguale a 50 /s. Deternare la sua teperatura. Dalla teora neta de gas sappao he l energa neta eda vale: E k T ed noltre per denzone:

2 E v. Conrontando queste due relazon s ottene la teperatura: k T v v T k L una quanttà non nota è la assa d una oleola, he però s rava alente dvdendo la assa olare (=assa d una ole) per l nuero d Avogadro: M 0 Kg.6 N 6.0 A 5 Kg Inserendo nuer nella orula preedente s ha: T 5 v.6 (50) 566 K k.8 Eserzo Un repente ontene neon rsaldato a volue ostante no alla teperatura d 0 Ne alla teperatura d K. Il repente vene eda delle oleole d neon pra e dopo l rsaldaento. K. Deternare la velotà Dalla teora neta de gas perett la velotà eda per un gas onoatoo vale: E k T v Oorre la assa d una oleola (he onde n questo aso on quella dell atoo) d 0 Ne. Abbao: Kg. Kg. Inserendo valor trovat s ha, pra del rsaldaento: k T.8 v 586 /s 6. e, dopo l rsaldaento: k T.8 v /s 6. Eserzo Due gas s trovano nello stesso repente alla stessa teperatura. Le oleole del pro gas hanno assa doppa d quelle del seondo gas. Deternare l rapporto ra la velotà eda delle oleole del pro e del seondo gas.

3 Indando on v la velotà quadrata eda delle oleole del pro gas e on v quella del seondo, da quanto srtto nell eserzo abbao, essendo la assa delle oleole del pro gas : v k T k T e v k T v k T Faendo l rapporto: 0.0 v k T Eserzo 5 D quanto aba l energa neta d una ole d elo ( He onoatoo) se la teperatura auenta d 50 K? Chaao T la teperatura nzale he non vene ornta dal testo, e haao T la teperatura nale, anh essa gnota. Dalla teora neta del gas peretto sappao he una oleola d gas peretto ha n eda un energa neta par a E k T, qund, dato he una ole ontene N oleole A all nzo l energa d una ole d elo sarà: E N k T A entre dopo l rsaldaento d 50 K sarà: E N k T A qund la varazone d energa neta d una ole d elo vene: E N k ( T T ) N.5k 50 A A J Eserzo 6 Un gas peretto rahuso n un ontentore on un pstone sorrevole oupa un volue d 500. Se la pressone auenta del 0% e la teperatura n kelvn dnuse del 5%, quale volue oupa l gas? Indhao on P, e T nuov valor, e on P, e T quell d partenza: P P 0.0P.0P T T 0.5T 0.65T Dato he l nuero n d ol non aba nel proesso abbao:

4 nrt P nrt P P nrt.0 P nr(0.65 T ) Rsolvendo: nr(0.65 T ) 0.65 nrt P.0 P Eserzo 56 g d azoto oleolare N sono ontenut n un repente d volue d alla teperatura t C. Deternare la pressone esertata dal gas. T 00 K Oorre alolare d quant gra è oposta una ole d azoto. Dal sstea perodo degl eleent s ha N ontene pressone: N, qund una ole oposta da oleole d 8 g d sostanza. Calolao l nuero d ol e la 56 nrt n ol P 5.0 Pa 8 Eserzo 8 Una bobola d apatà 0 d ontene azoto N alla pressone P Pa e teperatura un altra vuota, della apatà d t 0 C. La bobola vene posta n ounazone on d. Sapendo he dopo l espansone l gas s trova alla stessa teperatura nzale, s da quanto vale la sua pressone e quant Kg d azoto sono ontenut n asuna bobola. Srvao lo stato nzale del gas: P Pa, T 0 9 K 0.0 Calolao l nuero d ol: P.0 n 8 ol RT 8.9

5 Srvao ora lo stato nale del gas: T P T 9 K nrt Pa Calolao l nuero d ol n asuna bobola onsderandole oe repent a sé stant, avent la edesa pressone P e teperatura T : P n RT, P n RT Faendo l rapporto ebro a ebro delle relazon sopra: n n.0 n n.0 oè l repente d volue doppo ontene l doppo delle ol. Sappao noltre he le ol sono n tutto 8, qund s tratta d rsolvere l sstea: n n n n n n (.) 5. ol n n 8 n 8 8 n. ol Pohé una ole d N (on N ) ha assa 8 g s trova nne la assa d gas n asun repente: M Kg M Kg Eserzo 9 Sapendo he un grao d aqua oupa un volue par a, usare l nuero d Avogadro per ravare la dstanza eda ra due oleole vne. S assua, per sepltà, he le oleole sano ubhe. S proede pra alolando quante oleole sono n un grao d aqua e suessvaente s dvde l volue totale per l nuero delle oleole. Oorre alolare la assa d una ole d H O e per arlo serve l nuero d assa dell aqua: 6

6 nuero d assa nuero d assa nuero d assa dell'aqua dell'drogeno dell'ossgeno nuero d assa 6 8 dell'aqua Qund una ole d aqua ha assa ontene un nuero d ol par a: n ol 8 E d onseguenza, sapendo he ogn ole ontene oleole d aqua n un grao d sostanza sono. 8 g. Ne segue he un grao d aqua N oleole abbao he le A N nn A Il volue oupato da asuna oleola s ottene dvdendo l volue d un grao d sostanza dato dal testo per l nuero d oleole appena trovato: oleola Assuendo ora he la oleola oup un ubo d lato, possao assuere oe sura della dstanza eda ra le oleole: oleola

5. Il lavoro di un gas perfetto

5. Il lavoro di un gas perfetto 5. Il lavoro d un gas perfetto ome s esprme l energa nterna d un gas perfetto? Un gas perfetto è l sstema pù semplce che possamo mmagnare: le nterazon a dstanza fra le molecole sono così debol da essere

Dettagli

Argomenti. Misure di corrente elettrica continua, di differenza di potenziale e di resistenza elettrica.

Argomenti. Misure di corrente elettrica continua, di differenza di potenziale e di resistenza elettrica. ppunt per l corso d Laboratoro d Fsca per le Scuole Superor rgoent Msure d corrente elettrca contnua, d dfferenza d potenzale e d resstenza elettrca. Struent d sura: prncp d funzonaento. Coe s effettuano

Dettagli

ELABORAZIONE DI SEGNALI E IMMAGINI

ELABORAZIONE DI SEGNALI E IMMAGINI Fltraggo d un segnale EABORAZIOE DI SEGAI E IAGII. Bertero P. Boccacc bertero@ds.unge.t boccacc@ds.unge.t Al ne d glorare la qualtà d un segnale dgtale una tecnca d prara portanza è l ltraggo. Con l quale

Dettagli

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p =

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p = 5. Rette e piani in R 3 ; sfere. In questo paragrafo studiamo le rette, i piani e le sfere in R 3. Ci sono due modi per desrivere piani e rette in R 3 : mediante equazioni artesiane oppure mediante equazioni

Dettagli

Leggere i dati da file

Leggere i dati da file Esempo %soluzon d una equazone d secondo grado dsp('soluzon d a^+b+c') anput('damm l coeffcente a '); bnput('damm l coeffcente b '); cnput('damm l coeffcente c '); deltab^-4*a*c; f delta0 dsp('soluzon

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

1 2-6 7-74 Commento * Continuazione riga! Viene ignorato tutto quello che viene scritto dopo questo carattere [etichett a]

1 2-6 7-74 Commento * Continuazione riga! Viene ignorato tutto quello che viene scritto dopo questo carattere [etichett a] La programmazione è l'arte di far ompiere al omputer una suessione di operazioni atte ad ottenere il risultato voluto. Srivere un programma è un po' ome dialogare ol omputer, dobbiamo fornirgli delle informazioni

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

MACCHINE ELETTRICHE. Stefano Pastore. Macchine in Corrente Continua

MACCHINE ELETTRICHE. Stefano Pastore. Macchine in Corrente Continua MACCHINE ELETTRICHE Mahine in Corrente Continua Stefano Pastore Dipartiento di Ingegneria e Arhitettura Corso di Elettrotenia (IN 043) a.a. 2012-13 Statore Sistea induttore (Statore): anello in ghisa o

Dettagli

CIRCUITI DI IMPIEGO DEI DIODI

CIRCUITI DI IMPIEGO DEI DIODI UT D MPEGO DE DOD addrzzare ad na seonda. l crcto pù seplce, che pega l dodo coe raddrzzatore d na tensone alternata, è rappresentato n Fg.. n esso n generatore deale d tensone alternata l c valore stantaneo

Dettagli

Il linguaggio Pascal. Piero Gallo Fabio Salerno

Il linguaggio Pascal. Piero Gallo Fabio Salerno Il linguaggio Pasal Piero Gallo Fabio Salerno Introduzione alla programmazione in Pasal In ogni momento della nostra vita siamo hiamati a risolvere dei problemi. A volte operiamo senza riflettere, spinti

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

PRINCIPIO DI INDUZIONE. k =. 2. k 2 n(n + 1)(2n + 1) 6

PRINCIPIO DI INDUZIONE. k =. 2. k 2 n(n + 1)(2n + 1) 6 PRINCIPIO DI INDUZIONE LORENZO BRASCO Esercizio. Diostrare che per ogni n si ha nn. 2 Esercizio 2. Diostrare che per ogni n si ha 2 2 nn 2n. Soluzione Procediao per induzione: la 2 è ovviaente vera per

Dettagli

Figura 2.1. A sottoinsieme di B

Figura 2.1. A sottoinsieme di B G Sammito, ernardo, Formulario di matematia Insiemi F Cimolin, L arletta, L Lussardi Insiemi Generalità Un insieme è una ollezione distinguibile di oggetti, detti elementi dell'insieme Quando un elemento

Dettagli

Impianti di Condizionamento: Impianti a tutt'aria e misti

Impianti di Condizionamento: Impianti a tutt'aria e misti Facoltà di Ingegneria - Polo di Rieti Corso di " Ipianti Tecnici per l'edilizia" Ipianti di Condizionaento: Ipianti a tutt'aria e isti Prof. Ing. Marco Roagna INTRODUZIONE Una volta noti i carichi sensibili

Dettagli

Corrente elettrica e circuiti

Corrente elettrica e circuiti Corrente elettrca e crcut Generator d forza elettromotrce Intenstà d corrente Legg d Ohm esstenza e resstvtà esstenze n sere e n parallelo Effetto termco della corrente Legg d Krchhoff Corrente elettrca

Dettagli

Dai numeri naturali ai numeri reali

Dai numeri naturali ai numeri reali .1 Introduzione Dai nueri naturali ai nueri reali In questa unità didattica vogliao riprendere rapidaente le nostre conoscenze sugli insiei nuerici (N, Z e Q), e successivaente apliarle a coprendere i

Dettagli

6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI

6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI 6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI Consdeao un sstea d n unt ateal con n > nteagent ta loo e con l esto dell unveso. Nello studo d un tale sstea sulta convenente scooe la foza agente ( et) sull

Dettagli

Misure elettriche circuiti a corrente continua

Misure elettriche circuiti a corrente continua Misure elettriche circuiti a corrente continua Legge di oh Dato un conduttore che connette i terinali di una sorgente di forza elettrootrice si osserva nel conduttore stesso un passaggio di corrente elettrica

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100

Dettagli

63- Nel Sistema Internazionale SI, l unità di misura del calore latente di fusione è A) J / kg B) kcal / m 2 C) kcal / ( C) D) kcal * ( C) E) kj

63- Nel Sistema Internazionale SI, l unità di misura del calore latente di fusione è A) J / kg B) kcal / m 2 C) kcal / ( C) D) kcal * ( C) E) kj 61- Quand è che volumi uguali di gas perfetti diversi possono contenere lo stesso numero di molecole? A) Quando hanno uguale pressione e temperatura diversa B) Quando hanno uguale temperatura e pressione

Dettagli

GUIDA DELL UTENTE CARATTERISTICHE PRINCIPALI

GUIDA DELL UTENTE CARATTERISTICHE PRINCIPALI DORO Analisi e verifia di sezioni in.a., preompresso/post-teso e miste aiaio-alestruzzo v. 3.01.29 del 17 marzo 2015 dott. ing. FERRARI Alberto www.ferrarialberto.it GUIDA DELL UTENTE CARATTERISTICHE PRINCIPALI

Dettagli

Nota metodologica Strategia di campionamento e livello di precisione dei risultati

Nota metodologica Strategia di campionamento e livello di precisione dei risultati Nota etodologica Strategia di capionaento e livello di precisione dei risultati 1. Obiettivi conoscitivi La popolaione di interesse dell indagine in oggetto, ossia l insiee delle unità statistiche intorno

Dettagli

Esercizi e Problemi di Termodinamica.

Esercizi e Problemi di Termodinamica. Esercizi e Problemi di Termodinamica. Dr. Yves Gaspar March 18, 2009 1 Problemi sulla termologia e sull equilibrio termico. Problema 1. Un pezzetto di ghiaccio di massa m e alla temperatura di = 250K viene

Dettagli

ALCUNI ELEMENTI DI TEORIA DELLA STIMA

ALCUNI ELEMENTI DI TEORIA DELLA STIMA ALCUNI ELEMENTI DI TEORIA DELLA STIMA Quado s vuole valutare u parametro θ ad esempo: meda, varaza, proporzoe, oeffete d regressoe leare, oeffete d orrelazoe leare, e) d ua popolazoe medate u ampoe asuale,

Dettagli

Una formula molecolare è una formula chimica che dà l'esatto numero degli atomi di una molecola.

Una formula molecolare è una formula chimica che dà l'esatto numero degli atomi di una molecola. Una formula molecolare è una formula chimica che dà l'esatto numero degli atomi di una molecola. La formula empirica e una formula in cui il rappporto tra gli atomi e il piu semplice possibil Acqua Ammoniaca

Dettagli

ESERCIZI DI CHIMICA. 5. Calcolare le masse in grammi di: a) 0,30 moli di HNO 3 ; b) 2,50 moli di Na 2 SO 4. [19 g di HNO 3 ; 355 g di Na 2 SO 4 ]

ESERCIZI DI CHIMICA. 5. Calcolare le masse in grammi di: a) 0,30 moli di HNO 3 ; b) 2,50 moli di Na 2 SO 4. [19 g di HNO 3 ; 355 g di Na 2 SO 4 ] ESERCIZI DI CHIMICA 1. Calcolare:a) le moli di H 2 O e le moli di atomi d idrogeno ed ossigeno contenuti in 10g di H 2 O; b) il numero di molecole di H 2 O e di atomi di idrogeno e di ossigeno. [0,55 moli;

Dettagli

4. FLUIDI AERIFORMI NEI CONDOTTI

4. FLUIDI AERIFORMI NEI CONDOTTI Politenio di oino Lauea a Distanza in Ingegneia Meania Coso di Mahine 4 FLUIDI AERIFORMI NEI CONDOI Nello studio delle ahine si one il oblea di deteinae la onfoazione dei ondotti in odo he il fluido subisa

Dettagli

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE UNA RASSEGNA SUI METODI DI STIMA DEL VALUE at RISK (VaR) Chara Pederzol - Costanza Torrcell Dpartmento d Economa Poltca - Unverstà degl Stud d Modena e Reggo Emla Marzo 999 INDICE Introduzone. Il concetto

Dettagli

SCALA DEI PESI ATOMICI RELATIVI E MEDI

SCALA DEI PESI ATOMICI RELATIVI E MEDI SCALA DEI PESI ATOMICI RELATIVI E MEDI La massa dei singoli atomi ha un ordine di grandezza compreso tra 10-22 e 10-24 g. Per evitare di utilizzare numeri così piccoli, essa è espressa relativamente a

Dettagli

LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE

LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI Dipartimeto di Sieze Eoomihe Uiversità di Veroa VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE Lezioi di Matematia per

Dettagli

CompitoTotale_21Feb_tutti_2011.nb 1

CompitoTotale_21Feb_tutti_2011.nb 1 CopitoTotale_2Feb_tutti_20.nb L Sia data una distribuzione di carica positiva, disposta su una seicirconferenza di raggio R con densità lineare di carica costante l. Deterinare : al l espressione del capo

Dettagli

GLI INDICI DEI COSTI DI COSTRUZIONE DI UN FABBRICATO RESIDENZIALE

GLI INDICI DEI COSTI DI COSTRUZIONE DI UN FABBRICATO RESIDENZIALE 21 arzo 2013 GLI INDICI DEI COSTI DI COSTRUZIONE DI UN FABBRICATO RESIDENZIALE La nuova base 2010 A partire dal ese di arzo 2013, l Istituto nazionale di statistica avvia la pubblicazione dei nuovi indici

Dettagli

r~~f~~. --r-~r-r ---- _[::=_~- r-l

r~~f~~. --r-~r-r ---- _[::=_~- r-l In tutti i problei si userà coe velocità del suono in aria il valore 340 /s (valido per una teperatura dell'aria di circa 18 C), salvo diversa indicazione. La propagazione ondosa La figura seguente ostra

Dettagli

1. Integrazione di funzioni razionali fratte

1. Integrazione di funzioni razionali fratte . Integazone d fnzon azonal fatte P S songa d vole calcolae n ntegale del to: d Q ove P e Q sono olno nell ndetenata d gado assegnato. Sonao ce: P a n n a n n a a Q b b b b oleent s etod d ntegazone I

Dettagli

Capitolo 8 - Introduzione alla probabilità

Capitolo 8 - Introduzione alla probabilità Appunti di Teoria dei Segnali Capitolo 8 - Introduzione alla probabilità Concetti preliminari di probabilità... Introduzione alla probabilità... Deinizione di spazio degli eventi... Deinizione di evento...

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

Unità Didattica N 25. La corrente elettrica

Unità Didattica N 25. La corrente elettrica Untà Ddattca N 5 : La corrente elettrca 1 Untà Ddattca N 5 La corrente elettrca 01) Il problema dell elettrocnetca 0) La corrente elettrca ne conduttor metallc 03) Crcuto elettrco elementare 04) La prma

Dettagli

Manuale di riferimento

Manuale di riferimento Manuale di riferimento Copyright 2011 2014 JetLab S.r.l. Tutti i diritti riservati è un marhio di JetLab S.r.l. Mirosoft, Windows, Windows NT, Windows XP, Windows Vista, Windows 7 e il logo di Windows

Dettagli

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t;

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t; CAPITOLO CIRCUITI IN CORRENTE CONTINUA Definizioni Dato un conduttore filiforme ed una sua sezione normale S si definisce: Corrente elettrica i Q = (1) t dove Q è la carica che attraversa la sezione S

Dettagli

Genova, 26 febbraio 2014. Commissione di Garanzia - Roma. Osservatorio sui conflitti sindacali - Roma. Prefetto di Genova

Genova, 26 febbraio 2014. Commissione di Garanzia - Roma. Osservatorio sui conflitti sindacali - Roma. Prefetto di Genova CG t FY-#tsL ry F[OERAZt0NEtfÀilAr{ATRASP0fii' Wrh-rsFoRîr Genova, 26 febbraio 2014 Commissione di Garanzia - Roma Osservatorio sui conflitti sindacali - Roma Prefetto di Genova Direzione ATP EsercizioSr!

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

Protezione dai contatti indiretti

Protezione dai contatti indiretti Protezione dai contatti indiretti Se una persona entra in contatto contemporaneamente con due parti di un impianto a potenziale diverso si trova sottoposto ad una tensione che può essere pericolosa. l

Dettagli

f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire.

f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire. Consideriamo l insieme P dei punti del piano e una f funzione biiettiva da P in P: f : { P P A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che

Dettagli

AA 2006-07 LA RICORSIONE

AA 2006-07 LA RICORSIONE PROGRAMMAZIONE AA 2006-07 LA RICORSIONE AA 2006-07 Prof.ssa A. Lanza - DIB 1/18 LA RICORSIONE Il concetto di ricorsione nasce dalla matematica Una funzione matematica è definita ricorsivamente quando nella

Dettagli

RELAZIONE TECNICA PROTEZIONE CONTRO I FULMINI. di struttura adibita a Ufficio. relativa alla

RELAZIONE TECNICA PROTEZIONE CONTRO I FULMINI. di struttura adibita a Ufficio. relativa alla II I RELAZIONE TECNICA t relativa alla PROTEZIONE CONTRO I FULMINI di struttura adibita a Ufficio. sita nel comune di AF.EZZO (AR) PROPRIET A' AP{EZZO MULTISERVIZI SRL Valutazione del rischio dovuto al

Dettagli

AGENZIA TERRITORIALE DELL EMILIA-ROMAGNA

AGENZIA TERRITORIALE DELL EMILIA-ROMAGNA AGENZIA TERRITORIALE DELL EMILIA-ROMAGNA PER I SERVIZI IDRICI E RIFIUTI CAMB/2014/60 del 12 novembre 2014 CONSIGLIO D AMBITO Oggetto: Servizio Idrico Integrato - Approvazione della revisione tariffaria

Dettagli

funzionamento degli accumulatori al piombo/acido.

funzionamento degli accumulatori al piombo/acido. Il triangolo dell Incendio Possibili cause d incendio: I carrelli elevatori Particolare attenzione nella individuazione delle cause di un incendio va posta ai carrelli elevatori, normalmente presenti nelle

Dettagli

Pezze TIP 06 TIP 07 TIP 08 TIP 20 TIP 21 TIP 09 TIP 22 DIMENSIONI REALI. 2 45 ø. 1 35 ø. 7 74 x 37 mm.

Pezze TIP 06 TIP 07 TIP 08 TIP 20 TIP 21 TIP 09 TIP 22 DIMENSIONI REALI. 2 45 ø. 1 35 ø. 7 74 x 37 mm. Pezze DIMENSIONI REALI TIP 06 TIP 07 TIP 08 1 35 ø 2 45 ø TIP 20 TIP 21 7 74 x 37 mm. TIP 09 TIP 22 282 Mastice TIP 42 TIP 12 TIP 10 TIP 11 TIP 28 Pezza Tip-Top tonda F0 16 mm (confezione da 100 pz.) TIP

Dettagli

FUNZIONI LINEARI. FUNZIONE VALORE ASSOLUTO. Si chiama funzione lineare (o funzione affine) una funzione del tipo = +

FUNZIONI LINEARI. FUNZIONE VALORE ASSOLUTO. Si chiama funzione lineare (o funzione affine) una funzione del tipo = + FUNZIONI LINEARI. FUNZIONE VALORE ASSOLUTO Si chiama funzione lineare (o funzione affine) una funzione del tipo = + dove m e q sono numeri reali fissati. Il grafico di tale funzione è una retta, di cui

Dettagli

Solare Pannelli solari termici

Solare Pannelli solari termici Solare Pannelli solari termici Il Sole: fonte inesauribile... e gratuita Il sole, fonte energetica primaria e origine di tutti gli elementi naturali, fonte indiscussa dell energia pulita, libera, eterna,

Dettagli

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE.

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE. FCA D UN CCUTO SSTO CONTNNT PÙ GNATO CON UN TMNAL COMUN SNZA TMNAL COMUN. Si verifino quttro iruiti on due genertori: genertori on polrità onorde e un terminle omune genertori on polrità disorde e un terminle

Dettagli

Ridefiniamo l Integrazione Verticale

Ridefiniamo l Integrazione Verticale Certifiazioni Ridefiniamo l Integrazione Vertiale Siliio Cristallino Siliio di prima selta garantise la qualità superiore dei prodotti finiti Certifiazioni Internazionali per la Siurezza del Prodotto Oggi

Dettagli

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri Artmetca de calcolator Rappresentazone de numer natural e relatv Addzone e sommator: : a propagazone d rporto, veloce, con segno Moltplcazone e moltplcator: senza segno, con segno e algortmo d Booth Rappresentazone

Dettagli

Monossido d azoto NO (Nitric Oxide) Messaggero del segnale cellulare. Molecola regolatoria nel sistema nervoso centrale e periferico

Monossido d azoto NO (Nitric Oxide) Messaggero del segnale cellulare. Molecola regolatoria nel sistema nervoso centrale e periferico Monossido d azoto NO (Nitric Oxide) Ruolo biologico: Messaggero del segnale cellulare Molecola regolatoria nel sistema cardiovascolare Molecola regolatoria nel sistema nervoso centrale e periferico Componente

Dettagli

COMUNICAZIONE AI GRUPPI DI LAVORO SIDEA (13/09/02) LE CONDIZIONI DI OTTIMALITÀ PER LA DETERMINAZIONE DELLE CATTURE DI PESCE

COMUNICAZIONE AI GRUPPI DI LAVORO SIDEA (13/09/02) LE CONDIZIONI DI OTTIMALITÀ PER LA DETERMINAZIONE DELLE CATTURE DI PESCE COMUNICAZIONE AI GRUPPI DI LAVORO SIDEA (13/9/2) ECONOMIA E POLITICA DEL SETTORE ITTICO 1.INTRODUZIONE. LE CONDIZIONI DI OTTIMALITÀ PER LA DETERMINAZIONE DELLE CATTURE DI PESCE (una applcazone ad un contesto

Dettagli

TERMODINAMICA DI UNA REAZIONE DI CELLA

TERMODINAMICA DI UNA REAZIONE DI CELLA TERMODINAMICA DI UNA REAZIONE DI CELLA INTRODUZIONE Lo scopo dell esperienza è ricavare le grandezze termodinamiche per la reazione che avviene in una cella galvanica, attraverso misure di f.e.m. effettuate

Dettagli

CONDIZIONATORI DI PRECISIONE AD ESPANSIONE DIRETTA E ACQUA REFRIGERATA PER CENTRALI TELEFONICHE CON SISTEMA FREE-COOLING

CONDIZIONATORI DI PRECISIONE AD ESPANSIONE DIRETTA E ACQUA REFRIGERATA PER CENTRALI TELEFONICHE CON SISTEMA FREE-COOLING CONDIZIONATORI DI PRECISIONE AD ESPANSIONE DIRETTA E ACQUA REFRIGERATA PER CENTRALI TELEFONICHE CON SISTEMA FREE-COOLING POTENZA FRIGORIFERA DA 4 A 26,8 kw ED.P 161 SF E K 98 FC La gamma di condizionatori

Dettagli

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso. I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess

Dettagli

CONTO CONSUNTIVO PER L'ESERCIZIO FINANZIARIO 2012 RELAZIONE ILLUSTRATIVA DEL DIRIGENTE SCOLASTICO

CONTO CONSUNTIVO PER L'ESERCIZIO FINANZIARIO 2012 RELAZIONE ILLUSTRATIVA DEL DIRIGENTE SCOLASTICO DIREZIONE DIDATTICA DEL 4 CIRCOLO DI FORLI' Va Gorgna Saff, n.12 Tel 0543/33345 fax 0543/458861 C.F. 80004560407 CM FOEE00400B e-mal foee00400b@struzone.t - posta cert.: foee00400b@pec.struzone.t sto web:

Dettagli

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys.

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys. METODO DEI MINIMI QUADRATI GIUSEPPE GIUDICE Sommario Il metodo dei minimi quadrati è trattato in tutti i testi di statistica e di elaborazione dei dati sperimentali, ma non sempre col rigore necessario

Dettagli

Presentazione format Konopizza per nuove aperture Punti Vendita ITALIA.

Presentazione format Konopizza per nuove aperture Punti Vendita ITALIA. Presentazione format Konopizza per nuove aperture Punti Vendita ITALIA. In che cosa consiste il nostro format? Il cono è l attore protagonista di tutte le formule Konopizza diventando un ottimo contenitore

Dettagli

Lorenzo Pistocchini RICERCA DI SISTEMA ELETTRICO. Agenzia Nazionale per le Nuove Tecnologie, l Energia e lo Sviluppo Economico Sostenibile

Lorenzo Pistocchini RICERCA DI SISTEMA ELETTRICO. Agenzia Nazionale per le Nuove Tecnologie, l Energia e lo Sviluppo Economico Sostenibile Agenza Nazonale per le Nuove Tecnologe, l Energa e lo Svluppo Economco Sostenble RICERCA DI SISTEMA ELETTRICO Ottmzzazone termofludodnamca e dmensonamento d uno scambatore d calore n controcorrente con

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

Progetto Lauree Scientifiche. La corrente elettrica

Progetto Lauree Scientifiche. La corrente elettrica Progetto Lauree Scentfche La corrente elettrca Conoscenze d base Forza elettromotrce Corrente Elettrca esstenza e resstvtà Legge d Ohm Crcut 2 Una spra d rame n equlbro elettrostatco In un crcuto semplce

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

SEMINARIO DI AGGIORNAMENTO ORGANIZZATO DA ORDINE DEGLI INGEGNERI DELLA PROVINCIA DI ROMA INCONTRO - 16 SETTEMBRE 2013 ARCH. VITO ROCCO PANETTA

SEMINARIO DI AGGIORNAMENTO ORGANIZZATO DA ORDINE DEGLI INGEGNERI DELLA PROVINCIA DI ROMA INCONTRO - 16 SETTEMBRE 2013 ARCH. VITO ROCCO PANETTA SEMINARIO DI AGGIORNAMENTO ORGANIZZATO DA ORDINE DEGLI INGEGNERI DELLA PROVINCIA DI ROMA INCONTRO - 16 SETTEMBRE 2013 ARCH. VITO ROCCO PANETTA ARGOMENTI DA TRATTARE: DETERMINAZIONE DEL CONTRIBUTO DI COSTRUZIONE

Dettagli

Rexroth Pneumatics. Cilindro senz asta Cilindri senza stelo. Pressione di esercizio min/max Temperatura ambiente min./max.

Rexroth Pneumatics. Cilindro senz asta Cilindri senza stelo. Pressione di esercizio min/max Temperatura ambiente min./max. Rexroth Pneumatics 1 Pressione di esercizio min/max 2 bar / 8 bar Temperatura ambiente min./max. -10 C / +60 C Fluido Aria compressa Dimensione max. particella 5 µm contenuto di olio dell aria compressa

Dettagli

COMPORTAMENTO SISMICO DELLE STRUTTURE

COMPORTAMENTO SISMICO DELLE STRUTTURE COMPORTAMENTO SISMICO DELLE STRUTTURE Durane un erreoo, le oscillazioni del erreno di fondazione provocano nelle sovrasani sruure delle oscillazioni forzae. Quando il erreoo si arresa, i ovieni della sruura

Dettagli

Dall atomo di Bohr alla costante di struttura fine

Dall atomo di Bohr alla costante di struttura fine Dall atomo di Bohr alla ostate di struttura fie. INFORMAZIONI SPETTROSCOPICHE SUGLI ATOMI E be oto he ogi sostaza opportuamete eitata emette radiazioi elettromagetihe. Co uo spettrosopio, o strumeti aaloghi,

Dettagli

La probabilità di avere non più di un maschio, significa la probabilità di averne 0 o 1: ( 0) P( 1)

La probabilità di avere non più di un maschio, significa la probabilità di averne 0 o 1: ( 0) P( 1) Esercizi sulle distribuzioni binoiale e poissoniana Esercizio n. Una coppia ha tre figli. Calcolare la probabilità che abbia non più di un aschio se la probabilità di avere un aschio od una feina è sepre

Dettagli

Una voce poco fa / Barbiere di Siviglia

Una voce poco fa / Barbiere di Siviglia Una voce oco a / Barbiere di Siviglia Andante 4 3 RÔ tr tr tr 4 3 RÔ & K r # Gioachino Rossini # n 6 # R R n # n R R R R # n 8 # R R n # R R n R R & & 12 r r r # # # R Una voce oco a qui nel cor mi ri

Dettagli

AGENZIA TERRITORIALE DELL EMILIA-ROMAGNA

AGENZIA TERRITORIALE DELL EMILIA-ROMAGNA AGENZIA TERRITORIALE DELL EMILIAROMAGNA PER I SERVIZI IDRICI E RIFIUTI CAMB/2014/71 del 30 dicembre 2014 CONSIGLIO D AMBITO Oggetto: Proroga delle scadenze temporali previste dall'art. 12 del "Regolamento

Dettagli

Misura della distanza focale. di una lente convergente. Metodo di Bessel

Misura della distanza focale. di una lente convergente. Metodo di Bessel Zuccarello Francesco Laboratoro d Fsca II Msura della dstanza focale d una lente convergente Metodo d Bessel A.A. 003-004 Indce Introduzone..pag. 3 Presuppost Teorc.pag. 4 Anals de dat.pag. 8. Modo d operare...pag.

Dettagli

Come leggere la bolletta dell acqua

Come leggere la bolletta dell acqua LE GUIDE DI IREN ACQUA GAS Come leggere la bolletta dell acqua Guida alla bolletta dell acqua a contatore per uso domestico LE GUIDE DI IREN ACQUA GAS La tariffa dell acqua per uso domestico Da quando

Dettagli

La Raccolta Differenziata Utenze non domestiche

La Raccolta Differenziata Utenze non domestiche La Raccolta Differenziata Utenze non domestiche istruzioni per l uso Raccolta Differenziata Una soluzione alla portata di tutti La produzione di rifiuti è in continuo aumento e deve essere gestita in modo

Dettagli

Analisi funzionale. Riccarda Rossi Lezione 9

Analisi funzionale. Riccarda Rossi Lezione 9 Riarda Rossi Lezione 9 Caratterizzazione della onvergenza debole in L p (Ω) Siano 1 < p < e {f n}, f L p (Ω): allora f n f in L p (Ω) Teorema di ompattezza debole in L p (Ω) Teorema Siano 1 < p < e {f

Dettagli

OGNI SPAZIO VETTORIALE HA BASE

OGNI SPAZIO VETTORIALE HA BASE 1 Mimmo Arezzo OGNI SPAZIO VETTORIALE HA BASE CONVERSAZIONE CON ALCUNI STUDENTI DI FISICA 19 DICEMBRE 2006 2 1 Preliminari Definizione 1.0.1 Un ordinamento parziale (o una relazione d ordine parziale)

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

TIP Aerotermi TIP. Aerotermi come apparecchi a parete e soffitto Catalogo tecnico

TIP Aerotermi TIP. Aerotermi come apparecchi a parete e soffitto Catalogo tecnico TIP Aeroteri TIP Aeroteri coe apparecchi a parete e soffitto Catalogo tecnico Indice 01 Inforazioni sul prodotto 6 Panoraica 7 Dati sul prodotto 8 Guida alla scelta: Panoraica delle versioni 9 TIP in un

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO 1 Modi di formare gruppi di k oggetti presi da n dati 11 disposizioni semplici, permutazioni Dati n oggetti distinti a 1,, a n si chiamano disposizioni semplici di questi oggetti,

Dettagli

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME 6. IL CONDNSATOR FNOMNI DI LTTROSTATICA MOTO DI UNA CARICA IN UN CAMPO LTTRICO UNIFORM Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice

Dettagli

Prot. Novara, 20 luglio 2015. Date Impegni Orario

Prot. Novara, 20 luglio 2015. Date Impegni Orario Prot. Novara, 20 luglio 20 OGGETTO: CALENDARIO DEGLI IMPEGNI DI SETTEMBRE 20 Date Impegni Orario 1 settembre Collegio Docenti :00 2 settembre Prove studenti con giudizio sospeso (vedi elenco) 8:30 3 settembre

Dettagli

LA TEORIA DELLA RELATIVITÀ GENERALE

LA TEORIA DELLA RELATIVITÀ GENERALE Fo h Eglsh so s blow af h Iala o. LA EOIA DELLA ELAIIÀ GENEALE I: Loao bo lobo@ahoo. www.fsa. Maggo 99. Ggo. Agoso. -I. -Ioo. -Caolo : Pss Goa. Pa..: Foalso lgh ah a sf. Pa..: Goa ffal bas. Pa..: Goa ffal

Dettagli

GRUPPI REFRIGERANTI ALIMENTATI AD ACQUA CALDA

GRUPPI REFRIGERANTI ALIMENTATI AD ACQUA CALDA GRUPPI REFRIGERANTI ALIMENTATI AD ACQUA CALDA 1 Specifiche tecniche WFC-SC 10, 20 & 30 Ver. 03.04 SERIE WFC-SC. SEZIONE 1: SPECIFICHE TECNICHE 1 Indice Ver. 03.04 1. Informazioni generali Pagina 1.1 Designazione

Dettagli

Il vapor saturo e la sua pressione

Il vapor saturo e la sua pressione Il vapor saturo e la sua pressione Evaporazione = fuga di molecole veloci dalla superficie di un liquido Alla temperatura T, energia cinetica di traslazione media 3/2 K B T Le molecole più veloci sfuggono

Dettagli

Calcolo combinatorio

Calcolo combinatorio Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Calcolo combinatorio Ines Campa e Marco Longhi Probabilità e Statistica

Dettagli

ANALISI PREZZI AGGIUNTIVI

ANALISI PREZZI AGGIUNTIVI PA.01 Oneri di discarica valutati a mc misurato sul volume effettivo di scavo o demolizione. Oneri di discarica MC 1.000 24.76 24.76 TOTALE 24.76 PREZZO TOTALE PER MC 24.76 Pagina 1 di 11 PA.02 Fornitura

Dettagli

COMPRESSORE ROTATIVO A VITE CSM MAXI 7,5-10 - 15-20 HP

COMPRESSORE ROTATIVO A VITE CSM MAXI 7,5-10 - 15-20 HP LABORATORI INDUSTRIA COMPRESSORE ROTATIVO A VITE CSM MAXI HP SERVIZIO CLIENTI CSM Maxi la Gamma MAXI HP Una soluzione per ogni esigenza Versione su Basamento Particolarmente indicato per installazioni

Dettagli

Sede Legale: Via Forche 2/A Castelfranco V.to. (Tv) Sede Amministrativa: Via G. Verdi 6/A 31050 Vedelago ( Tv )

Sede Legale: Via Forche 2/A Castelfranco V.to. (Tv) Sede Amministrativa: Via G. Verdi 6/A 31050 Vedelago ( Tv ) SIVIERA GIREVOLE A RIBALTAMENTO IDRAULICO BREVETTATA TRASPORTABILE CON MULETTO MODELLO S.A.F.-SIV-R-G SIVIERA A RIBALTAMENTO MANUALE MODELLO S.A.F. SIV-R1-R2 1 DESCRIZIONE DELLA SIVIERA Si è sempre pensato

Dettagli

La struttura della materia

La struttura della materia Unità didattica 11 La struttura della materia Competenze 1 Descrivere il modello atomico di Dalton 2 Spiegare le caratteristiche macroscopiche e microscopiche delle principali trasformazioni fisiche 3

Dettagli

Lampade: MASTER SON-T PIA Plus

Lampade: MASTER SON-T PIA Plus 13, Seembre 10 Lampade: Plus Lampade ai vapori di sodio ad ala pressione di ala qualià realizzae con ecnologia PIA (Philips Inegraed Anenna). Vanaggi La ecnologia PIA aumena l'affidabilià e riduce il asso

Dettagli

GRANDEZZE SINUSOIDALI

GRANDEZZE SINUSOIDALI GRANDEE SINUSOIDALI INDICE -Grandezze variabili. -Grandezze periodiche. 3-Parametri delle grandezze periodiche. 4-Grandezze alternate. 5-Grandezze sinusoidali. 6-Parametri delle grandezze sinusoidali.

Dettagli

B9. Equazioni di grado superiore al secondo

B9. Equazioni di grado superiore al secondo B9. Equazioni di grado superiore al secondo Le equazioni di terzo grado hanno una, due o tre soluzioni, risolvibili algebricamente con formule molto più complesse di quelle dell equazione di secondo grado.

Dettagli

ECO HOT WATER Pompa di calore per acqua calda sanitaria con gestione remota tramite APP IT 01. Ecoenergia. Idee da installare

ECO HOT WATER Pompa di calore per acqua calda sanitaria con gestione remota tramite APP IT 01. Ecoenergia. Idee da installare ECO HOT WATER Pompa di calore per acqua calda sanitaria con gestione remota tramite APP IT 01 Ecoenergia Idee da installare La pompa di calore Eco Hot Water TEMP La pompa di calore a basamento Eco Hot

Dettagli

ESERCIZI ph SOLUZIONI

ESERCIZI ph SOLUZIONI ESERCIZI ph SOLUZIONI 1. Una soluzione contiene 3,6 g di LiOH (PM = 23,9 g/mole). Calcolare il ph di questa soluzione [13,3] 2. Calcolare il ph di una soluzione preparata con 10,85 ml di HCl (PM = 36,46

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

A prima vista: Dati tecnici microfonditrice MC 15. 44 cm. 40 cm. Perfettamente adatta per piccole fusioni e piccole serie. Minimo utilizzo di metallo

A prima vista: Dati tecnici microfonditrice MC 15. 44 cm. 40 cm. Perfettamente adatta per piccole fusioni e piccole serie. Minimo utilizzo di metallo A prima vista: Perfettamente adatta per piccole fusioni e piccole serie Minimo utilizzo di metallo Generatore ad induzione da 3,5 kw per un riscaldamento estremamente veloce e per raggiungere alte temperature

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli