Esercizi sui gas perfetti

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi sui gas perfetti"

Transcript

1 Eserz su gas perett Eserzo In un repente d esertata dal gas è d delle oleole d elo. 0 d sono ontenute ol d He. La pressone 5.5 Trasorao l volue n untà SI: 0d 0 Pa. Deternare la velotà quadrata eda Ravao la Teperatura del gas dall equazone d stato P 5 P.5 Pa T 00 K nr 8. J/(ol K) nrt : Se ndhao la velotà quadrata eda delle oleole del gas on v, la sua energa neta eda s srve: E dove è la assa d una oleola d rava v : v E. v He. Invertendo questa orula s Qund per avere v devo alolare sa E he la assa d un atoo d elo. Dalla teora neta de gas perett s ha: E k T Mentre la assa d un atoo d He vale:.6 Kg 6.68 Inserendo nuer trovat s ha: Kg J v K /s 6.68 Eserzo Un gas peretto è osttuto da ato d assa olare M = 0g. La velotà eda delle sue oleole rsulta uguale a 50 /s. Deternare la sua teperatura. Dalla teora neta de gas sappao he l energa neta eda vale: E k T ed noltre per denzone:

2 E v. Conrontando queste due relazon s ottene la teperatura: k T v v T k L una quanttà non nota è la assa d una oleola, he però s rava alente dvdendo la assa olare (=assa d una ole) per l nuero d Avogadro: M 0 Kg.6 N 6.0 A 5 Kg Inserendo nuer nella orula preedente s ha: T 5 v.6 (50) 566 K k.8 Eserzo Un repente ontene neon rsaldato a volue ostante no alla teperatura d 0 Ne alla teperatura d K. Il repente vene eda delle oleole d neon pra e dopo l rsaldaento. K. Deternare la velotà Dalla teora neta de gas perett la velotà eda per un gas onoatoo vale: E k T v Oorre la assa d una oleola (he onde n questo aso on quella dell atoo) d 0 Ne. Abbao: Kg. Kg. Inserendo valor trovat s ha, pra del rsaldaento: k T.8 v 586 /s 6. e, dopo l rsaldaento: k T.8 v /s 6. Eserzo Due gas s trovano nello stesso repente alla stessa teperatura. Le oleole del pro gas hanno assa doppa d quelle del seondo gas. Deternare l rapporto ra la velotà eda delle oleole del pro e del seondo gas.

3 Indando on v la velotà quadrata eda delle oleole del pro gas e on v quella del seondo, da quanto srtto nell eserzo abbao, essendo la assa delle oleole del pro gas : v k T k T e v k T v k T Faendo l rapporto: 0.0 v k T Eserzo 5 D quanto aba l energa neta d una ole d elo ( He onoatoo) se la teperatura auenta d 50 K? Chaao T la teperatura nzale he non vene ornta dal testo, e haao T la teperatura nale, anh essa gnota. Dalla teora neta del gas peretto sappao he una oleola d gas peretto ha n eda un energa neta par a E k T, qund, dato he una ole ontene N oleole A all nzo l energa d una ole d elo sarà: E N k T A entre dopo l rsaldaento d 50 K sarà: E N k T A qund la varazone d energa neta d una ole d elo vene: E N k ( T T ) N.5k 50 A A J Eserzo 6 Un gas peretto rahuso n un ontentore on un pstone sorrevole oupa un volue d 500. Se la pressone auenta del 0% e la teperatura n kelvn dnuse del 5%, quale volue oupa l gas? Indhao on P, e T nuov valor, e on P, e T quell d partenza: P P 0.0P.0P T T 0.5T 0.65T Dato he l nuero n d ol non aba nel proesso abbao:

4 nrt P nrt P P nrt.0 P nr(0.65 T ) Rsolvendo: nr(0.65 T ) 0.65 nrt P.0 P Eserzo 56 g d azoto oleolare N sono ontenut n un repente d volue d alla teperatura t C. Deternare la pressone esertata dal gas. T 00 K Oorre alolare d quant gra è oposta una ole d azoto. Dal sstea perodo degl eleent s ha N ontene pressone: N, qund una ole oposta da oleole d 8 g d sostanza. Calolao l nuero d ol e la 56 nrt n ol P 5.0 Pa 8 Eserzo 8 Una bobola d apatà 0 d ontene azoto N alla pressone P Pa e teperatura un altra vuota, della apatà d t 0 C. La bobola vene posta n ounazone on d. Sapendo he dopo l espansone l gas s trova alla stessa teperatura nzale, s da quanto vale la sua pressone e quant Kg d azoto sono ontenut n asuna bobola. Srvao lo stato nzale del gas: P Pa, T 0 9 K 0.0 Calolao l nuero d ol: P.0 n 8 ol RT 8.9

5 Srvao ora lo stato nale del gas: T P T 9 K nrt Pa Calolao l nuero d ol n asuna bobola onsderandole oe repent a sé stant, avent la edesa pressone P e teperatura T : P n RT, P n RT Faendo l rapporto ebro a ebro delle relazon sopra: n n.0 n n.0 oè l repente d volue doppo ontene l doppo delle ol. Sappao noltre he le ol sono n tutto 8, qund s tratta d rsolvere l sstea: n n n n n n (.) 5. ol n n 8 n 8 8 n. ol Pohé una ole d N (on N ) ha assa 8 g s trova nne la assa d gas n asun repente: M Kg M Kg Eserzo 9 Sapendo he un grao d aqua oupa un volue par a, usare l nuero d Avogadro per ravare la dstanza eda ra due oleole vne. S assua, per sepltà, he le oleole sano ubhe. S proede pra alolando quante oleole sono n un grao d aqua e suessvaente s dvde l volue totale per l nuero delle oleole. Oorre alolare la assa d una ole d H O e per arlo serve l nuero d assa dell aqua: 6

6 nuero d assa nuero d assa nuero d assa dell'aqua dell'drogeno dell'ossgeno nuero d assa 6 8 dell'aqua Qund una ole d aqua ha assa ontene un nuero d ol par a: n ol 8 E d onseguenza, sapendo he ogn ole ontene oleole d aqua n un grao d sostanza sono. 8 g. Ne segue he un grao d aqua N oleole abbao he le A N nn A Il volue oupato da asuna oleola s ottene dvdendo l volue d un grao d sostanza dato dal testo per l nuero d oleole appena trovato: oleola Assuendo ora he la oleola oup un ubo d lato, possao assuere oe sura della dstanza eda ra le oleole: oleola

FORMULARIO DI TERMODINAMICA

FORMULARIO DI TERMODINAMICA Formularo d ermodnama e eora neta Pagna d 5 FORMURIO DI ERMODINMIC Denzone d alora: la CORI e' la quanttà d alore eduta da un grammo d aqua nel rareddars da 5.5 C a 4.5 C alla ressone d una atmosera alora

Dettagli

Richiami di Termodinamica Applicata

Richiami di Termodinamica Applicata Unverstà degl Stud d aglar ors d Studo n Ingegnera hca ed Elettrca Rcha d Terodnaca Applcata Il ro rncpo della Terodnaca, o rncpo d onservazone dell Energa, n tern dfferenzal e con rferento all untà d

Dettagli

GAS IDEALI. Dell ossigeno, supposto gas ideale con k = 1.4 cost, evolve secondo un ciclo costituito dalle seguenti trasformazioni reversibili:

GAS IDEALI. Dell ossigeno, supposto gas ideale con k = 1.4 cost, evolve secondo un ciclo costituito dalle seguenti trasformazioni reversibili: Eserzo GAS IDEALI Dell osseo, sosto as deale o.4 ost, eole seodo lo osttto dalle seet trasorazo reersl: Coressoe sotera dallo stato ( 0.9 ar; 0.88 /) allo stato 2; trasorazoe soora da 2 a ( 2.5 ar); esasoe

Dettagli

Appendice B. B Elementi di Teoria dell Informazione 1. p k =P(X = x k ) ovviamente, valgono gli assiomi del calcolo della probabilità: = 1;

Appendice B. B Elementi di Teoria dell Informazione 1. p k =P(X = x k ) ovviamente, valgono gli assiomi del calcolo della probabilità: = 1; Appendce B Eleent d Teora dell Inforazone Appendce B B Eleent d Teora dell Inforazone B Introduzone E noto da tepo che fenoen percettv possono essere foralzzat e studat edante la Teora dell Inforazone

Dettagli

UNIONI BULLONATE e SALDATE

UNIONI BULLONATE e SALDATE UNIONI BULLONATE e SALDATE VERIFICA AGLI STATI LIMITE D.M. 14/01/2008 NORME TECNICHE PER LE COSTRUZIONI Appunt d Maro Zafonte 1 1. GENERALITA... 3 2. IL MATERIALE... 3 3. GEOMETRIA DEL BULLONE... 4 4.

Dettagli

5. Il lavoro di un gas perfetto

5. Il lavoro di un gas perfetto 5. Il lavoro d un gas perfetto ome s esprme l energa nterna d un gas perfetto? Un gas perfetto è l sstema pù semplce che possamo mmagnare: le nterazon a dstanza fra le molecole sono così debol da essere

Dettagli

Trasformazioni termodinamiche - I parte

Trasformazioni termodinamiche - I parte Le trasormazon recproche tra le energe d tpo meccanco e l calore, classcato da tempo come una delle orme nelle qual avvene lo scambo d energa, sono l oggetto d studo su cu s onda la Termodnamca, una mportante

Dettagli

Capitolo 6 - Aria umida

Capitolo 6 - Aria umida unt d FISIC TECIC Catolo 6 - ra uda ca sulle scele gassose... Proretà terodnace dell ara uda...5 elazon er l calcolo d alcune roretà nterne...7 Ttolo...7 Eseo nuerco...8 Entala...9 Eseo nuerco...0 olue

Dettagli

LE CARTE DI CONTROLLO

LE CARTE DI CONTROLLO ITIS OMAR Dpartento d Meccanca LE CARTE DI CONTROLLO Carte d Controllo Le carte d controllo rappresentano uno degl struent pù portant per l controllo statstco d qualtà. La carta d controllo è corredata

Dettagli

La riforma della CARD: opportunità per l efficienza e la concorrenza nel ramo r.c. auto

La riforma della CARD: opportunità per l efficienza e la concorrenza nel ramo r.c. auto INSURANCE DAY 2014 XIII Edzone La rforma della CARD: opportuntà per l effenza e la onorrenza nel ramo r.. auto Intervento del Consglere dell IVASS Prof. Rardo Cesar Mlano, 3 ottobre 2014 1. Il sstema d

Dettagli

Argomenti. Misure di corrente elettrica continua, di differenza di potenziale e di resistenza elettrica.

Argomenti. Misure di corrente elettrica continua, di differenza di potenziale e di resistenza elettrica. ppunt per l corso d Laboratoro d Fsca per le Scuole Superor rgoent Msure d corrente elettrca contnua, d dfferenza d potenzale e d resstenza elettrca. Struent d sura: prncp d funzonaento. Coe s effettuano

Dettagli

Analisi dell interazione terreno struttura: il Modulo geotecnico Capitolo 23 Analisi dell interazione terreno struttura: il Modulo geotecnico

Analisi dell interazione terreno struttura: il Modulo geotecnico Capitolo 23 Analisi dell interazione terreno struttura: il Modulo geotecnico Captolo 3 Anals dell nterazone terreno struttura: l Modulo geoteno Questo aptolo presenta una panorama de omand e delle proedure per la defnzone delle propretà e la verfa del terreno d fondazone della

Dettagli

7. TERMODINAMICA RICHIAMI DI TEORIA

7. TERMODINAMICA RICHIAMI DI TEORIA 7. ERMODINMI RIHIMI DI EORI Introduzone ermodnamca: è lo studo delle trasformazon dell energa da un sstema all altro e da una forma all altra. Sstema termodnamco: è una defnta e dentfcable quanttà d matera

Dettagli

CBM a.s. 2012/2013 PROBLEMA DELLE SCORTE

CBM a.s. 2012/2013 PROBLEMA DELLE SCORTE CBM a.s. 212/213 PROBLEMA DELLE SCORTE Chiamiamo SCORTA ogni riserva di materiali presente all interno del sistema produttivo in attesa di essere sottoposto ad un proesso di trasformazione o di distribuzione.

Dettagli

Il rendimento globale di una macchina

Il rendimento globale di una macchina 0 Shede d Impant Naval Il rendmento globale d una mahna η g PB m& H ver 1.1 A ura d Frano Quaranta 1 Il rendmento globale d una mahna versone: 1.1 fle orgnale: Il rendmento globale d una mahna 130518 ver

Dettagli

Primo principio della termodinamica

Primo principio della termodinamica Primo riniio della termodinamia Priniio di equivalenza Due ori a temeratura diversa, in ontatto, raggiungono l'equilibrio termio Durante il ontatto, il "alore" si trasferise dal oro iù aldo al oro iù freddo

Dettagli

Fotonica per telecomunicazioni Ottica guidata Pagina 1 di 7 ESERCIZI

Fotonica per telecomunicazioni Ottica guidata Pagina 1 di 7 ESERCIZI Fotonca per telecouncazon Ottca udata Pana d 7 ESERCIZI. Una fbra ottca a salto d'ndce ha un nucleo d rao a= 3µ ed ndce d rfrazone n=.5, un antello d ndce d rfrazone n =.5 e lunhezza L= K. In essa vene

Dettagli

ELABORAZIONE DI SEGNALI E IMMAGINI

ELABORAZIONE DI SEGNALI E IMMAGINI Fltraggo d un segnale EABORAZIOE DI SEGAI E IAGII. Bertero P. Boccacc bertero@ds.unge.t boccacc@ds.unge.t Al ne d glorare la qualtà d un segnale dgtale una tecnca d prara portanza è l ltraggo. Con l quale

Dettagli

Calcolo della densità dell aria alle due temperature utilizzando l equazione dei gas:

Calcolo della densità dell aria alle due temperature utilizzando l equazione dei gas: Lezione XXIII - 0/04/00 ora 8:0-0:0 - Esercizi tiraggio e sorbona - Originale di Marco Sisto. Esercizio Si consideri un ipianto di riscaldaento a caino caratterizzato dai seguenti dati: T T Sezione ati

Dettagli

ESERCIZI ESERCIZI. La termodinamica Stati termodinamici e trasformazioni

ESERCIZI ESERCIZI. La termodinamica Stati termodinamici e trasformazioni La termodnamca Stat termodnamc e trasormazon QUNTO? Gl stat e rappresentat nel dagramma sono relatv a n mol d gas peretto. Quanto vale l rapporto T T ra le temperature de due stat? 6@ 40 4 P =,4 $ 0 Pa,

Dettagli

Circolare Decreto Legislativo 155/97 - Sistema HACCP e coinvolgimento dei comparti Imballaggi Ortofrutticoli e Sughero.

Circolare Decreto Legislativo 155/97 - Sistema HACCP e coinvolgimento dei comparti Imballaggi Ortofrutticoli e Sughero. Crolare Dereto Legslatvo 155/97 - Sstema HACCP e onvolgmento de ompart Imballagg Ortofruttol e Sughero. Sheda esplatva D.Lvo 155/97" Sopo del presente doumento è quello d llustrare gl aspett nerent alla

Dettagli

PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI DI DISTRIBUZIONE E MISURA DEL GAS PER IL PERIODO DI REGOLAZIONE 2009-2012 (RTDG)

PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI DI DISTRIBUZIONE E MISURA DEL GAS PER IL PERIODO DI REGOLAZIONE 2009-2012 (RTDG) Allegao A Teso Uno delle dsposzon della regolazone della qualà e delle arffe de servz d dsrbuzone e msura del gas per l perodo d regolazone 2009-2012 (TUDG) PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI

Dettagli

Comune di MERATE PROVINCIA DI LECCO

Comune di MERATE PROVINCIA DI LECCO via azzini 17 4034 Cisano B.so - BG tel.035.438131. fax.035.4381875 P.IVA 03415090160 - email: dbmassoiati@gmail.om Comune di ERATE PROVICIA DI LECCO Progetto ESECUTIVO art. 33 e seguenti del D.P.R. n.

Dettagli

COMUNE DI TROIA (Provincia di Foggia)

COMUNE DI TROIA (Provincia di Foggia) COMUE DI TROIA (Provna d Foa) denomnazone proetto: Fondo Per lo Svluppo e Coesone 007-013 Aordo d proramma uadro "Settore Aree Urane - Cttà" Realzzazone d n. 18 allo d edlza resdenzale pula nella zona

Dettagli

3. Compositi a fibre corte

3. Compositi a fibre corte 3. Copositi a ibre orte 3.1. Generalità Coe visto al apitolo preedente lainati opositi unidirezionali opositi a ibre lunghe sono aratterizzati da una elevata resistenza nella direzione delle ibre unita

Dettagli

Stati di aggregazione della materia

Stati di aggregazione della materia SOLIDO: Forma e volume propri. Stati di aggregazione della materia LIQUIDO: Forma del recipiente in cui è contenuto, ma volume proprio. GASSOSO: Forma e volume del recipiente in cui è contenuto. Parametri

Dettagli

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni:

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni: Anals ammortzzata Anals ammortzzata S consdera l tempo rchesto per esegure, nel caso pessmo, una ntera sequenza d operazon. Se le operazon costose sono relatvamente meno frequent allora l costo rchesto

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

Elettropompa da fognatura per uso non gravoso tipo ABS MF 154-804 Elettropompe sommergibili trituratrici tipo ABS Piranha 08 & 09

Elettropompa da fognatura per uso non gravoso tipo ABS MF 154-804 Elettropompe sommergibili trituratrici tipo ABS Piranha 08 & 09 Elettropopa da fognatura per uso non gravoso tipo ABS MF 154-804 1010-00 15975131IT (08/2015) IT Istruzioni di Installazione e Uso www.sulzer.o 2 Istruzioni di Installazione e Uso (Traduzione delle istruzioni

Dettagli

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p =

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p = 5. Rette e piani in R 3 ; sfere. In questo paragrafo studiamo le rette, i piani e le sfere in R 3. Ci sono due modi per desrivere piani e rette in R 3 : mediante equazioni artesiane oppure mediante equazioni

Dettagli

Leggere i dati da file

Leggere i dati da file Esempo %soluzon d una equazone d secondo grado dsp('soluzon d a^+b+c') anput('damm l coeffcente a '); bnput('damm l coeffcente b '); cnput('damm l coeffcente c '); deltab^-4*a*c; f delta0 dsp('soluzon

Dettagli

6. MACCHINE VOLUMETRICHE

6. MACCHINE VOLUMETRICHE 6. MHINE OLUMETRIHE 6. OMPRESSORI DI GS OLUMETRII 6.. INTRODUZIONE I coressor d gas voluetrc sono acchne oeratrc che trasferscono energa eccanca ad un fludo corble edante aret obl; la ressone del gas vene

Dettagli

Motore ad induzione: modelli matematici e modelli per la simulazione. 1.1 Modelli matematici del motore ad induzione

Motore ad induzione: modelli matematici e modelli per la simulazione. 1.1 Modelli matematici del motore ad induzione OTOE AD INDUZIONE ODEI ATEATICI E ODEI PE A IUAZIONE otore ad nduzone: odell ateatc e odell per la sulazone. odell ateatc del otore ad nduzone Nello studo degl azonaent ndustral è necessaro rappresentare

Dettagli

Rilevati sui terreni molli

Rilevati sui terreni molli Rlevat ferrovar, rlevat stradal, argn, serbato ndustral Sono tpologe ostruttve he trasmettono al terreno arh rlevant (100-200 kpa) su ampe aree. E neessaro verfare ogn fase della ostruzone, nel breve e

Dettagli

Fondamenti di Fisica Acustica

Fondamenti di Fisica Acustica Fondament d Fsca Acustca Pro. Paolo Zazzn - DSSARR Archtettura Pescara Anals n requenza de segnal sonor, bande d ottava e terz d ottava. Rumore banco e rumore rosa. Lvello equvalente. Fsologa dell apparato

Dettagli

Compressori e ventilatori. Impianti frigoriferi

Compressori e ventilatori. Impianti frigoriferi Sheda riassuntiva 10 apitolo 13 Compressori e ventilatori. Impianti frigoriferi Compressori e ventilatori I ompressori si possono lassifiare seondo lo shema seguente: Volumetrii alternativi rotativi Dinamii

Dettagli

MACROECONOMIA A.A. 2014/2015

MACROECONOMIA A.A. 2014/2015 MACROECONOMIA A.A. 2014/2015 ESERCITAZIONE 2 MERCATO MONETARIO E MODELLO /LM ESERCIZIO 1 A) Un economa sta attraversando un perodo d profonda crs economca. Le banche decdono d aumentare la quota d depost

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

Termometria e calorimetria

Termometria e calorimetria ermometria e alorimetria Priniio zero della termodinamia: 2 ori, e, a temerature differenti ( < ) osti a ontatto raggiungono l equilibrio termio. Se e sono in equilibrio termio on un terzo oro C allora

Dettagli

MOMENTI E CENTRAGGIO DEL VELIVOLO

MOMENTI E CENTRAGGIO DEL VELIVOLO x 1 x ISTITUZIONI DI INGEGNERIA AEROSAZIALE OENTI E CENTRAGGIO VELIVOLO OENTI E CENTRAGGIO DEL VELIVOLO er il alolo delle prestazioni in volo orizzontale rettilineo ed uniforme, il velivolo può essere

Dettagli

1. Elementi di Calcolo Combinatorio.

1. Elementi di Calcolo Combinatorio. . Elementi di Calolo Combinatorio. Prinipio Base del Conteggio Supponiamo he si devono ompiere due esperimenti. Se l esperimento uno può assumere n risultati possibili, e per ognuno di questi i sono n

Dettagli

La potenza assorbita dalla pompa per sollevare il liquido dal serbatoio a valle al serbatoio a monte si calcola con la relazione

La potenza assorbita dalla pompa per sollevare il liquido dal serbatoio a valle al serbatoio a monte si calcola con la relazione 1 E S E R C I Z I S U L L E P O M P E C E N T R I F U G E ESERCIZIO 1 In un panto ollevaento per acqua ono not Il lvello geoetco tra ue erbato g 0 La preone aoluta ul erbatoo a valle p A p at La preone

Dettagli

2 Modello IS-LM. 2.1 Gli e etti della politica monetaria

2 Modello IS-LM. 2.1 Gli e etti della politica monetaria 2 Modello IS-LM 2. Gl e ett della poltca monetara S consderun modello IS-LM senzastatocon seguent datc = 0:8, I = 00( ), L d = 0:5 500, M s = 00 e P =. ) S calcolno valor d equlbro del reddto e del tasso

Dettagli

Analizzata: - Nei livelli Prezzi - Nelle differenze Rendimenti. Rendimento al tempo t: Variabile finanziaria

Analizzata: - Nei livelli Prezzi - Nelle differenze Rendimenti. Rendimento al tempo t: Variabile finanziaria Varable fnanzara Analzzata: - Ne lvell Prezz - Nelle dfferenze endent endento al tepo t: t ( P P ) t P t 1 t 1 1 Unverstà d Terao - Teora del portafoglo fnanzaro - Prof. Paolo D Antono endento atteso:

Dettagli

DIMENSIONAMENTO DELLA STAZIONE DI SOLLEVAMENTO A SERVIZIO DI UN SOTTOPASSO

DIMENSIONAMENTO DELLA STAZIONE DI SOLLEVAMENTO A SERVIZIO DI UN SOTTOPASSO DIMENSIONAMENTO DELLA STAZIONE DI SOLLEVAMENTO A SERVIZIO DI UN SOTTOPASSO Appliazione: Dimensionare l impianto di sollevamento per il sottopasso illustrato alle figure 3.60 e 3.61. Elaborazione delle

Dettagli

2014 2015 CCS - Biologia CCS - Fisica I gas e loro proprietà. I liquidi e loro proprietà

2014 2015 CCS - Biologia CCS - Fisica I gas e loro proprietà. I liquidi e loro proprietà 2014 2015 CCS - Biologia CCS - Fisica I gas e loro proprietà 1 I liquidi e loro proprietà 2 Proprietà Generali dei Gas I gas possono essere espansi all infinito. I gas occupano i loro contenitori uniformemente

Dettagli

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse Lezone 1. L equlbro del mercato fnanzaro: la struttura de tass d nteresse Ttol con scadenza dversa hanno prezz (e tass d nteresse) dfferent. Due ttol d durata dversa emess dallo stesso soggetto (stesso

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Esercitazione X - Legge dei gas perfetti e trasformazioni

Esercitazione X - Legge dei gas perfetti e trasformazioni Esercitazione X - Legge dei gas perfetti e trasformazioni termodinamiche Formulario Il primo principio della termodinamica afferma che la variazione dell energia interna di un sistema U è uguale alla somma

Dettagli

Gas. Vapore. Forma e volume del recipiente in cui è contenuto. un gas liquido a temperatura e pressione ambiente. microscopico MACROSCOPICO

Gas. Vapore. Forma e volume del recipiente in cui è contenuto. un gas liquido a temperatura e pressione ambiente. microscopico MACROSCOPICO Lo Stato Gassoso Gas Vapore Forma e volume del recipiente in cui è contenuto. un gas liquido a temperatura e pressione ambiente MACROSCOPICO microscopico bassa densità molto comprimibile distribuzione

Dettagli

DISPENSA DI PROGETTO DEL TELAIO www.tecnicadacorsa.it

DISPENSA DI PROGETTO DEL TELAIO www.tecnicadacorsa.it DISPENSA DI PROGETTO DEL TELAIO www.teniadaorsa.it Capitolo 7 Analisi Dinaia Analitia e Nueria 7. - Introduzione La gran parte delle strutture reali è soggetta a eitazioni vibratorie. Gli senari appliativi

Dettagli

I gas. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1

I gas. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1 I gas Universita' di Udine Problema Un cubo di osmio ha lato di 0. m ed e appoggiato su una tavola. Al contatto tra la tavola ed il cubo, quanto vale la pressione (N/m )? Nota: le densita vi vengono date

Dettagli

PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI DI DISTRIBUZIONE E MISURA DEL GAS PER IL PERIODO DI REGOLAZIONE 2014-2019 (RTDG 2014-2019)

PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI DI DISTRIBUZIONE E MISURA DEL GAS PER IL PERIODO DI REGOLAZIONE 2014-2019 (RTDG 2014-2019) Teso Uno delle dsposzon della regolazone della qualà e delle arffe de servz d dsrbuzone e msura del gas per l perodo d regolazone 2014-2019 (TUDG) PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI DI DISTRIBUZIONE

Dettagli

Capitolo III: I Regolatori

Capitolo III: I Regolatori SCC Cap. III: Regolaor Capolo III: I Regolaor III-1: Inrouzone Il regolaore ha l ompo sablre l azone orreva a apporare n ngresso al proesso, per mezzo ell auaore; l segnale n usa al regolaore (s) è funzone

Dettagli

Allocazione Statica. n i

Allocazione Statica. n i Esercazon d Sse Inegra d Produzone Allocazone Saca I eod asa sull'allocazone saca scheazzano l processo d assegnazone delle rsorse alle par consderandolo da un lao ndpendene dal epo e rascurando dall'alro

Dettagli

1 2-6 7-74 Commento * Continuazione riga! Viene ignorato tutto quello che viene scritto dopo questo carattere [etichett a]

1 2-6 7-74 Commento * Continuazione riga! Viene ignorato tutto quello che viene scritto dopo questo carattere [etichett a] La programmazione è l'arte di far ompiere al omputer una suessione di operazioni atte ad ottenere il risultato voluto. Srivere un programma è un po' ome dialogare ol omputer, dobbiamo fornirgli delle informazioni

Dettagli

Valutazione delle opzioni col modello di Black e Scholes

Valutazione delle opzioni col modello di Black e Scholes Valutazone delle opzon col modello d Black e Scholes Rosa Mara Mnnn a.a. 2014-2015 1 Introduzone L applcazone del moto Brownano all economa é stata nnescata prncpalmente da due cause. Attorno agl ann 70,

Dettagli

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II Faoltà d Ingegnera Dottorato d rera n Ingegnera de Sstem Idraul, d Trasporto e Terrtoral XXIV lo Indrzzo INGEGNERIA IDRAULICA ED AMBIENTALE Canddato Federo

Dettagli

MACCHINE ELETTRICHE. Stefano Pastore. Macchine in Corrente Continua

MACCHINE ELETTRICHE. Stefano Pastore. Macchine in Corrente Continua MACCHINE ELETTRICHE Mahine in Corrente Continua Stefano Pastore Dipartiento di Ingegneria e Arhitettura Corso di Elettrotenia (IN 043) a.a. 2012-13 Statore Sistea induttore (Statore): anello in ghisa o

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

La corrente elettrica

La corrente elettrica La corrente elettrica nei conduttori. La corrente elettrica Connettendo due conduttori a diverso potenziale si ha un oto di cariche fino a quando si raggiunge una condizione di uilibrio. Questo oto terina

Dettagli

Quesiti e problemi (sul libro da pag. 431)

Quesiti e problemi (sul libro da pag. 431) Quesiti e prolemi (sul liro da pag. 431) 1 Che os è la di reazione 1 Trova almeno tre esempi, tratti dall esperienza quotidiana, di reazioni he devono proedere a assa e tre esempi di reazioni he, invee,

Dettagli

PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI DI DISTRIBUZIONE E MISURA DEL GAS PER IL PERIODO DI REGOLAZIONE 2014-2019 (RTDG 2014-2019)

PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI DI DISTRIBUZIONE E MISURA DEL GAS PER IL PERIODO DI REGOLAZIONE 2014-2019 (RTDG 2014-2019) Teso Uno delle dsposzon della regolazone della qualà e delle arffe de servz d dsrbuzone e msura del gas per l perodo d regolazone 2014-2019 (TUDG) PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI DI DISTRIBUZIONE

Dettagli

Gas e gas perfetti. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1

Gas e gas perfetti. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1 Gas e gas perfetti 1 Densita Densita - massa per unita di volume Si misura in g/cm 3 ρ = M V Bassa densita Alta densita Definizione di Pressione Pressione = Forza / Area P = F/A unita SI : 1 Nt/m 2 = 1

Dettagli

CIRCUITI DI IMPIEGO DEI DIODI

CIRCUITI DI IMPIEGO DEI DIODI UT D MPEGO DE DOD addrzzare ad na seonda. l crcto pù seplce, che pega l dodo coe raddrzzatore d na tensone alternata, è rappresentato n Fg.. n esso n generatore deale d tensone alternata l c valore stantaneo

Dettagli

Ottimizzazione nella gestione dei progetti Capitolo 6 Project Scheduling con vincoli sulle risorse CARLO MANNINO

Ottimizzazione nella gestione dei progetti Capitolo 6 Project Scheduling con vincoli sulle risorse CARLO MANNINO Ottmzzazone nella gtone de progett Captolo 6 Project Schedulng con vncol sulle rsorse CARLO MANNINO Unverstà d Roma La Sapenza Dpartmento d Informatca e Sstemstca 1 Rsorse Ogn attvtà rchede rsorse per

Dettagli

Indicatori di rendimento per i titoli obbligazionari

Indicatori di rendimento per i titoli obbligazionari Indcator d rendmento per ttol obblgazonar LA VALUTAZIONE DEGLI INVESTIMENTI A TASSO FISSO Per valutare la convenenza d uno strumento fnanzaro è necessaro precsare: /4 Le specfche esgenze d un nvesttore

Dettagli

Valore attuale di una rendita. Valore attuale in Excel: funzione VA

Valore attuale di una rendita. Valore attuale in Excel: funzione VA Valore attuale d una rendta Nella scorsa lezone c samo concentrat sul problema del calcolo del alore attuale d una rendta S che è dato n generale da V ( S) { R ; t, 0,,,..., n,... } n 0 R ( t ), doe (t

Dettagli

SCIENZE: Compiti delle vacanze Estate 2015

SCIENZE: Compiti delle vacanze Estate 2015 SCIEZE: Copiti delle vacanze Estate 2015 Classe I a Per agevolare lo svolgiento degli esercizi ho realizzato questa breve dispensa che, se ben utilizzata, ti peretterà di ripassare tutti gli argoenti svolti

Dettagli

Impianti di Condizionamento: Impianti a tutt'aria e misti

Impianti di Condizionamento: Impianti a tutt'aria e misti Facoltà di Ingegneria - Polo di Rieti Corso di " Ipianti Tecnici per l'edilizia" Ipianti di Condizionaento: Ipianti a tutt'aria e isti Prof. Ing. Marco Roagna INTRODUZIONE Una volta noti i carichi sensibili

Dettagli

Validazione del codice di calcolo

Validazione del codice di calcolo Valdazone ode d alolo software OADCAP Valdazone del ode d alolo Informatva sull affdabltà de od d alolo D.M. 4--8 pararafo.. e fas d proettazone e svluppo de software GeoStru sono sottopost al ontrollo

Dettagli

LAVORO ED ENERGIA Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006

LAVORO ED ENERGIA Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006 LAVORO ED ENERGIA INTRODUZIONE L introduzione dei concetto di lavoro, energia cinetica ed energia potenziale ci perettono di affrontare i problei della dinaica in un odo nuovo In particolare enuncereo

Dettagli

TEST D INGRESSO MATEMATICA 24/05/2011

TEST D INGRESSO MATEMATICA 24/05/2011 TEST D INGRESSO MATEMATICA // COGNOME NOME ISTITUTO COMPRENSIVO/SCUOLA MEDIA CITTA Legg attentamente. ISTRUZIONI PER LA COMPILAZIONE DEL QUESTIONARIO Inza a lavorare solo quando te lo drà l nsegnante e

Dettagli

Impianto di pressurizzazione e condizionamento

Impianto di pressurizzazione e condizionamento Capitolo 8 Impianto di pressurizzazione e ondizionamento Capitolo 8 Impianto di pressurizzazione e ondizionamento Queste dispense possono essere liberamente sariate dal sito internet del Politenio di Milano.

Dettagli

A. AUMENTO DELLA SPESA PUBBLICA FINANZIATO ESCLUSIVAMENTE TRAMITE INDEBITAMENTO

A. AUMENTO DELLA SPESA PUBBLICA FINANZIATO ESCLUSIVAMENTE TRAMITE INDEBITAMENTO 4. SCHMI ALTRNATIVI DI FINANZIAMNTO DLLA SPSA PUBBLICA. Se l Governo decde d aumentare la Spesa Pubblca G (o Trasferment TR), allora deve anche reperre fond necessar per fnanzare questa sua maggore spesa.

Dettagli

Figura 2.1. A sottoinsieme di B

Figura 2.1. A sottoinsieme di B G Sammito, ernardo, Formulario di matematia Insiemi F Cimolin, L arletta, L Lussardi Insiemi Generalità Un insieme è una ollezione distinguibile di oggetti, detti elementi dell'insieme Quando un elemento

Dettagli

MODELLISTICA DI SISTEMI DINAMICI

MODELLISTICA DI SISTEMI DINAMICI CONTROLLI AUTOMATICI Ingegnera Gestonale http://www.automazone.ngre.unmore.t/pages/cors/controllautomatcgestonale.htm MODELLISTICA DI SISTEMI DINAMICI Ing. Federca Gross Tel. 059 2056333 e-mal: federca.gross@unmore.t

Dettagli

Esercizio no.1 soluzione a pag.3

Esercizio no.1 soluzione a pag.3 Edutenia.it Modulazioni digitali eserizi risolti 1 Eserizio no.1 soluzione a pag.3 Quanti bit sono neessari per trasmettere 3 simboli e quale è la veloità di modulazione e la veloità di trasmissione se

Dettagli

Il linguaggio Pascal. Piero Gallo Fabio Salerno

Il linguaggio Pascal. Piero Gallo Fabio Salerno Il linguaggio Pasal Piero Gallo Fabio Salerno Introduzione alla programmazione in Pasal In ogni momento della nostra vita siamo hiamati a risolvere dei problemi. A volte operiamo senza riflettere, spinti

Dettagli

Insieme di bilancio. Capitolo Due. Vincolo di bilancio. Vincolo di bilancio. Vincolo di bilancio. Vincolo di bilancio

Insieme di bilancio. Capitolo Due. Vincolo di bilancio. Vincolo di bilancio. Vincolo di bilancio. Vincolo di bilancio Insiee di bilancio Capitolo Due Il vincolo di bilancio L insiee di bilancio è l insiee delle coinazioni di consuo disponibili per un consuatore. Cosa vincola la scelta di un consuatore? Il suo budget,

Dettagli

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007 Fondament d Vsone Artfcale (Seconda Parte PhD. Ing. Mchele Folgherater Corso d Robotca Prof.ssa Guseppna Gn Anno Acc.. 006/007 Caso Bdmensonale el caso bdmensonale, per ndvduare punt d contorno degl oggett

Dettagli

INTEK. Caldaia murale a gas da incasso Con modulazione continua a microprocessore Per riscaldamento e produzione di acqua calda sanitaria

INTEK. Caldaia murale a gas da incasso Con modulazione continua a microprocessore Per riscaldamento e produzione di acqua calda sanitaria INTEK Caldaia urale a gas da inasso Con odulazione ontinua a iroproessore Per risaldaento e produzione di aqua alda sanitaria Manuale di installazione ed uso Indie Indie Indie...2 Inforazioni generali...3

Dettagli

C V. gas monoatomici 3 R/2 5 R/2 gas biatomici 5 R/2 7 R/2 gas pluriatomici 6 R/2 8 R/2

C V. gas monoatomici 3 R/2 5 R/2 gas biatomici 5 R/2 7 R/2 gas pluriatomici 6 R/2 8 R/2 46 Tonzig La fisica del calore o 6 R/2 rispettivamente per i gas a molecola monoatomica, biatomica e pluriatomica. Per un gas perfetto, il calore molare a pressione costante si ottiene dal precedente aggiungendo

Dettagli

Ammessi alla semifinale Kangourou della Lingua inglese 2015

Ammessi alla semifinale Kangourou della Lingua inglese 2015 237 A D D A R I A N A S T A S I A WALLABY 54 45 IH Accademia Britannica 237 D I C O S I M O S A R A WALLABY 51 39 IH Accademia Britannica 237 F E R R A R O G I A D A WALLABY 53 45 IH Accademia Britannica

Dettagli

CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI 1. LEGGI FINANZIARIE

CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI 1. LEGGI FINANZIARIE CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI SOMMARIO:. Legg fnanzare. - 2. Regme fnanzaro dell neresse semplce e dello scono razonale. - 3. Regme fnanzaro dell neresse e dello scono composo. - 4. Tass equvalen.

Dettagli

6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI

6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI 6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI Consdeao un sstea d n unt ateal con n > nteagent ta loo e con l esto dell unveso. Nello studo d un tale sstea sulta convenente scooe la foza agente ( et) sull

Dettagli

Nella lezione precedente abbiamo visto che l'energia totale posseduta da un corpo di massa a riposo m 0 che viaggia con velocità v è pari a

Nella lezione precedente abbiamo visto che l'energia totale posseduta da un corpo di massa a riposo m 0 che viaggia con velocità v è pari a LEZIONE VI Il quadriettore Energia - quantità di moto. Nella lezione preedente abbiamo isto he l'energia totale posseduta da un orpo di massa a riposo m he iaggia on eloità è pari a m E = m = (1) D'altra

Dettagli

PRINCIPIO DI INDUZIONE. k =. 2. k 2 n(n + 1)(2n + 1) 6

PRINCIPIO DI INDUZIONE. k =. 2. k 2 n(n + 1)(2n + 1) 6 PRINCIPIO DI INDUZIONE LORENZO BRASCO Esercizio. Diostrare che per ogni n si ha nn. 2 Esercizio 2. Diostrare che per ogni n si ha 2 2 nn 2n. Soluzione Procediao per induzione: la 2 è ovviaente vera per

Dettagli

Corso di TECNOLOGIE DELLE ENERGIE RINNOVABILI. L energia eolica: il vento

Corso di TECNOLOGIE DELLE ENERGIE RINNOVABILI. L energia eolica: il vento POLITECNICO DI BARI - FACOLTA DI INGEGNERIA CORSO DI LAUREA SPECIALISTICA IN INGEGNERIA MECCANICA Corso di TECNOLOGIE DELLE ENERGIE RINNOABILI L energia eolia: il vento A.A. 203/4 Tenologie delle Energie

Dettagli

6.1 PROVA DI CARICO STATICA SU PALI DI FONDAZIONE

6.1 PROVA DI CARICO STATICA SU PALI DI FONDAZIONE 6 PROVE SULLE FONDAZIONI 6.1 PROVA DI CARICO STATICA SU PALI DI FONDAZIONE Il omportamento di un palo di fondazione è influenzato in maniera determinante dalla tenologia eseutiva (palo battuto prefabbriato,

Dettagli

Politecnico di Milano. Facoltà di Ingegneria dell Informazione. Reti Radiomobili. Prof. Antonio Capone. 4 Gestione della mobilità

Politecnico di Milano. Facoltà di Ingegneria dell Informazione. Reti Radiomobili. Prof. Antonio Capone. 4 Gestione della mobilità Politenio di Milano Faoltà di Ingegneria dell Informazione Reti Radiomobili Prof. Antonio Capone 4 Gestione della mobilità Gestione della mobilità Nelle reti ellulari gli utenti possono muoversi nell area

Dettagli

Strategie di internazionalizzazione delle piccole-medie imprese

Strategie di internazionalizzazione delle piccole-medie imprese Stratege d nternazonalzzazone delle pccole-ede prese Marco Laer arco.laer@ntesasanpaolo.co Alessandra Lanza alessandra.lanza@ntesasanpaolo.co Uffco Stud Iprese e Terrtoro Intesa Sanpaolo s.p.a. JEL: F11,

Dettagli

LA VERIFICA SISMICA DI SERBATOI DI GAS DI PETROLIO LIQUEFATTO (Ing. G. Petrangeli, Via C. Maes 53, 00162 Roma)

LA VERIFICA SISMICA DI SERBATOI DI GAS DI PETROLIO LIQUEFATTO (Ing. G. Petrangeli, Via C. Maes 53, 00162 Roma) 1 LA VERIFICA SISMICA DI SERBATOI DI GAS DI PETROLIO LIQUEFATTO (Ing. G. Petrangeli, Via C. Maes 53, 0016 Roma) 1- SOMMARIO Si prendono in esame serbatoi sferii (sfere Horton) e serbatoi ilindrii (sigari)

Dettagli

1. B A N C A P O P O L A R E D I C O R T O N A S C P A, C o r t o n a ( A r e z z o )

1. B A N C A P O P O L A R E D I C O R T O N A S C P A, C o r t o n a ( A r e z z o ) JPMORGAN FUNDS ELENCO AGGIORNATO DEI SOGGETTI COLLOCATORI Collocatori di Azioni di Classe A 1. B A N C A P O P O L A R E D I C O R T O N A S C P A, C o r t o n a ( A r e z z o ) Collocatori di Azioni di

Dettagli

Elettropompa per acque chiare tipo ABS Robusta 200 e 300

Elettropompa per acque chiare tipo ABS Robusta 200 e 300 Elettropopa per aque hiare tipo ABS Robusta 200 e 300 1081-02 Type tested and onitored 15970230IT (04/2015) IT Istruzioni d installazione e uso www.sulzer.o 2 Istruzioni d installazione e uso (Traduzione

Dettagli

PROGETTO SCUOLA POPOLARE

PROGETTO SCUOLA POPOLARE SPIN TIME LABS & ICBIE Europa Onlus PROGETTO SCUOLA POPOLARE 1 P a g e 1. Introduzone 2. Obettv e fnaltà 3. I tutor del progetto 4. Modulo I. Sostegno scolastco. 5. Modulo II.- Corso d lngua talana 6.

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

CARL 10.0 MANUALE D USO. Aztec Informatica CARL 10.0. Carico Limite e Cedimenti MANUALE D USO

CARL 10.0 MANUALE D USO. Aztec Informatica CARL 10.0. Carico Limite e Cedimenti MANUALE D USO CARL 10.0 MANUALE D USO Azte Informatia CARL 10.0 Cario Limite e Cedimenti MANUALE D USO 0 1 CARL 10.0 MANUALE D USO Copyright 1999-2009 Azte Informatia S.r.l. Tutti i diritti riservati. Qualsiasi doumento

Dettagli

11 PROGRAMMA DI CONSOLIDAMENTO DELL ABITATO DI CUTIGLIANO PROGETTO ESECUTIVO COMPUTO METRICO ESTIMATIVO

11 PROGRAMMA DI CONSOLIDAMENTO DELL ABITATO DI CUTIGLIANO PROGETTO ESECUTIVO COMPUTO METRICO ESTIMATIVO COMUNE DI CUTIGLIANO PROVINCIA DI PISTOIA 11 PROGRAMMA DI CONSOLIDAMENTO DELL ABITATO DI CUTIGLIANO PROGETTO ESECUTIVO COMPUTO METRICO ESTIMATIVO Stazione appaltante: Coune di Cutigliano Responsabile Unico

Dettagli

10.2 Come stimare l amaro di una birra: le unita IBU 1

10.2 Come stimare l amaro di una birra: le unita IBU 1 10.2 Come stmare l amaro d una brra: le unta IBU 1 Il prncpale contrbuto al sapore amaro della brra provene dagl alfa-acd (abbrevato n AA) del luppolo che durante l processo d bolltura vengono trasformat

Dettagli