Esercizi sui gas perfetti

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi sui gas perfetti"

Transcript

1 Eserz su gas perett Eserzo In un repente d esertata dal gas è d delle oleole d elo. 0 d sono ontenute ol d He. La pressone 5.5 Trasorao l volue n untà SI: 0d 0 Pa. Deternare la velotà quadrata eda Ravao la Teperatura del gas dall equazone d stato P 5 P.5 Pa T 00 K nr 8. J/(ol K) nrt : Se ndhao la velotà quadrata eda delle oleole del gas on v, la sua energa neta eda s srve: E dove è la assa d una oleola d rava v : v E. v He. Invertendo questa orula s Qund per avere v devo alolare sa E he la assa d un atoo d elo. Dalla teora neta de gas perett s ha: E k T Mentre la assa d un atoo d He vale:.6 Kg 6.68 Inserendo nuer trovat s ha: Kg J v K /s 6.68 Eserzo Un gas peretto è osttuto da ato d assa olare M = 0g. La velotà eda delle sue oleole rsulta uguale a 50 /s. Deternare la sua teperatura. Dalla teora neta de gas sappao he l energa neta eda vale: E k T ed noltre per denzone:

2 E v. Conrontando queste due relazon s ottene la teperatura: k T v v T k L una quanttà non nota è la assa d una oleola, he però s rava alente dvdendo la assa olare (=assa d una ole) per l nuero d Avogadro: M 0 Kg.6 N 6.0 A 5 Kg Inserendo nuer nella orula preedente s ha: T 5 v.6 (50) 566 K k.8 Eserzo Un repente ontene neon rsaldato a volue ostante no alla teperatura d 0 Ne alla teperatura d K. Il repente vene eda delle oleole d neon pra e dopo l rsaldaento. K. Deternare la velotà Dalla teora neta de gas perett la velotà eda per un gas onoatoo vale: E k T v Oorre la assa d una oleola (he onde n questo aso on quella dell atoo) d 0 Ne. Abbao: Kg. Kg. Inserendo valor trovat s ha, pra del rsaldaento: k T.8 v 586 /s 6. e, dopo l rsaldaento: k T.8 v /s 6. Eserzo Due gas s trovano nello stesso repente alla stessa teperatura. Le oleole del pro gas hanno assa doppa d quelle del seondo gas. Deternare l rapporto ra la velotà eda delle oleole del pro e del seondo gas.

3 Indando on v la velotà quadrata eda delle oleole del pro gas e on v quella del seondo, da quanto srtto nell eserzo abbao, essendo la assa delle oleole del pro gas : v k T k T e v k T v k T Faendo l rapporto: 0.0 v k T Eserzo 5 D quanto aba l energa neta d una ole d elo ( He onoatoo) se la teperatura auenta d 50 K? Chaao T la teperatura nzale he non vene ornta dal testo, e haao T la teperatura nale, anh essa gnota. Dalla teora neta del gas peretto sappao he una oleola d gas peretto ha n eda un energa neta par a E k T, qund, dato he una ole ontene N oleole A all nzo l energa d una ole d elo sarà: E N k T A entre dopo l rsaldaento d 50 K sarà: E N k T A qund la varazone d energa neta d una ole d elo vene: E N k ( T T ) N.5k 50 A A J Eserzo 6 Un gas peretto rahuso n un ontentore on un pstone sorrevole oupa un volue d 500. Se la pressone auenta del 0% e la teperatura n kelvn dnuse del 5%, quale volue oupa l gas? Indhao on P, e T nuov valor, e on P, e T quell d partenza: P P 0.0P.0P T T 0.5T 0.65T Dato he l nuero n d ol non aba nel proesso abbao:

4 nrt P nrt P P nrt.0 P nr(0.65 T ) Rsolvendo: nr(0.65 T ) 0.65 nrt P.0 P Eserzo 56 g d azoto oleolare N sono ontenut n un repente d volue d alla teperatura t C. Deternare la pressone esertata dal gas. T 00 K Oorre alolare d quant gra è oposta una ole d azoto. Dal sstea perodo degl eleent s ha N ontene pressone: N, qund una ole oposta da oleole d 8 g d sostanza. Calolao l nuero d ol e la 56 nrt n ol P 5.0 Pa 8 Eserzo 8 Una bobola d apatà 0 d ontene azoto N alla pressone P Pa e teperatura un altra vuota, della apatà d t 0 C. La bobola vene posta n ounazone on d. Sapendo he dopo l espansone l gas s trova alla stessa teperatura nzale, s da quanto vale la sua pressone e quant Kg d azoto sono ontenut n asuna bobola. Srvao lo stato nzale del gas: P Pa, T 0 9 K 0.0 Calolao l nuero d ol: P.0 n 8 ol RT 8.9

5 Srvao ora lo stato nale del gas: T P T 9 K nrt Pa Calolao l nuero d ol n asuna bobola onsderandole oe repent a sé stant, avent la edesa pressone P e teperatura T : P n RT, P n RT Faendo l rapporto ebro a ebro delle relazon sopra: n n.0 n n.0 oè l repente d volue doppo ontene l doppo delle ol. Sappao noltre he le ol sono n tutto 8, qund s tratta d rsolvere l sstea: n n n n n n (.) 5. ol n n 8 n 8 8 n. ol Pohé una ole d N (on N ) ha assa 8 g s trova nne la assa d gas n asun repente: M Kg M Kg Eserzo 9 Sapendo he un grao d aqua oupa un volue par a, usare l nuero d Avogadro per ravare la dstanza eda ra due oleole vne. S assua, per sepltà, he le oleole sano ubhe. S proede pra alolando quante oleole sono n un grao d aqua e suessvaente s dvde l volue totale per l nuero delle oleole. Oorre alolare la assa d una ole d H O e per arlo serve l nuero d assa dell aqua: 6

6 nuero d assa nuero d assa nuero d assa dell'aqua dell'drogeno dell'ossgeno nuero d assa 6 8 dell'aqua Qund una ole d aqua ha assa ontene un nuero d ol par a: n ol 8 E d onseguenza, sapendo he ogn ole ontene oleole d aqua n un grao d sostanza sono. 8 g. Ne segue he un grao d aqua N oleole abbao he le A N nn A Il volue oupato da asuna oleola s ottene dvdendo l volue d un grao d sostanza dato dal testo per l nuero d oleole appena trovato: oleola Assuendo ora he la oleola oup un ubo d lato, possao assuere oe sura della dstanza eda ra le oleole: oleola

1atm = 760 torr (o anche mmhg) = 101325 Pa = 1.01325 bar

1atm = 760 torr (o anche mmhg) = 101325 Pa = 1.01325 bar ressone: tendenza del gas ad espanders densonalente è Forza superce ewton L'untà d sura usata n pratca è l'atosera (at) a (ascal) at 760 torr (o anche Hg) 05 a.05 bar olue: sura d una porzone d spazo densonalente

Dettagli

5.4 I TURBOCOMPRESSORI (di gas)

5.4 I TURBOCOMPRESSORI (di gas) 5.4 I TURBOCOMPRESSORI (d gas) 5.4.. INTRODUZIONE I turboopressor sono ahne terhe operatr, per le qual l lavoro nterno è dato dalla seguente espressone: u u, u u dove ped e, al solto, ndano le ondzon d

Dettagli

Unità Didattica N 16. Il comportamento dei gas perfetti

Unità Didattica N 16. Il comportamento dei gas perfetti Unità Didattica N 16 Il coportaento dei gas perfetti Unità Didattica N 16 Il coportaento dei gas perfetti 1) Alcune considerazioni sullo studio dei sistei gassosi 2) Dilatazione terica degli aerifori 3)

Dettagli

Problemi: calore -transizioni di fase

Problemi: calore -transizioni di fase Problem: alore -transzon d ase. a uanto alore oorre er ar assare del ghao d massa m 7 g e temeratura d - allo stato lqudo alla temeratura d? b suonete d ornre al ghao un alore totale d solo kj. ual sono

Dettagli

FORMULARIO DI TERMODINAMICA

FORMULARIO DI TERMODINAMICA Formularo d ermodnama e eora neta Pagna d 5 FORMURIO DI ERMODINMIC Denzone d alora: la CORI e' la quanttà d alore eduta da un grammo d aqua nel rareddars da 5.5 C a 4.5 C alla ressone d una atmosera alora

Dettagli

Sensori Segnali Rumore - Prof. S. Cova - appello 22/06/2011 P1-1

Sensori Segnali Rumore - Prof. S. Cova - appello 22/06/2011 P1-1 ensor egnal Rumore - ro.. Cova - appello /06/011 1-1 ROBLEM 1 Quadro de dat egnale otto: rettangolare a durata T 00 µs; otenza ; lunghezza d onda λ 1 800 nm oppure λ 60 nm. p--n otododo n lo: oeente d

Dettagli

Richiami di Termodinamica Applicata

Richiami di Termodinamica Applicata Unverstà degl Stud d aglar ors d Studo n Ingegnera hca ed Elettrca Rcha d Terodnaca Applcata Il ro rncpo della Terodnaca, o rncpo d onservazone dell Energa, n tern dfferenzal e con rferento all untà d

Dettagli

GAS IDEALI. Dell ossigeno, supposto gas ideale con k = 1.4 cost, evolve secondo un ciclo costituito dalle seguenti trasformazioni reversibili:

GAS IDEALI. Dell ossigeno, supposto gas ideale con k = 1.4 cost, evolve secondo un ciclo costituito dalle seguenti trasformazioni reversibili: Eserzo GAS IDEALI Dell osseo, sosto as deale o.4 ost, eole seodo lo osttto dalle seet trasorazo reersl: Coressoe sotera dallo stato ( 0.9 ar; 0.88 /) allo stato 2; trasorazoe soora da 2 a ( 2.5 ar); esasoe

Dettagli

ESEMPIO DI AMPLIFICATORE A BJT AD EMETTITORE COMUNE CON RESISTENZA DI EMETTITORE

ESEMPIO DI AMPLIFICATORE A BJT AD EMETTITORE COMUNE CON RESISTENZA DI EMETTITORE SMPIO DI AMPIFIATO A JT AD MTTITO OMUN ON SISTNZA DI MTTITO (Dat uual all sepo d par.8.2, F.8. del testo..spener & M.M.Ghaus: Introduton to letron rut Desn) alolare l punto d laoro del JT Q d F., le aplfazon

Dettagli

5. Il lavoro di un gas perfetto

5. Il lavoro di un gas perfetto 5. Il lavoro d un gas perfetto ome s esprme l energa nterna d un gas perfetto? Un gas perfetto è l sstema pù semplce che possamo mmagnare: le nterazon a dstanza fra le molecole sono così debol da essere

Dettagli

Politecnico di Torino Laurea a Distanza in Ingegneria Meccanica Corso di Macchine

Politecnico di Torino Laurea a Distanza in Ingegneria Meccanica Corso di Macchine Polteno d orno aurea a Dstanza n Ingegnera Meana Corso d Mahne SRCIZI SVOI Sono d seguto svolt gl serz 4 6 e 7 roost al terne del Ca 4 (Moto d un fludo aerfore n un ondotto) al eserz non sono stat svolt

Dettagli

UNIONI BULLONATE e SALDATE

UNIONI BULLONATE e SALDATE UNIONI BULLONATE e SALDATE VERIFICA AGLI STATI LIMITE D.M. 14/01/2008 NORME TECNICHE PER LE COSTRUZIONI Appunt d Maro Zafonte 1 1. GENERALITA... 3 2. IL MATERIALE... 3 3. GEOMETRIA DEL BULLONE... 4 4.

Dettagli

Trasformazioni termodinamiche - I parte

Trasformazioni termodinamiche - I parte Le trasormazon recproche tra le energe d tpo meccanco e l calore, classcato da tempo come una delle orme nelle qual avvene lo scambo d energa, sono l oggetto d studo su cu s onda la Termodnamca, una mportante

Dettagli

Appendice B. B Elementi di Teoria dell Informazione 1. p k =P(X = x k ) ovviamente, valgono gli assiomi del calcolo della probabilità: = 1;

Appendice B. B Elementi di Teoria dell Informazione 1. p k =P(X = x k ) ovviamente, valgono gli assiomi del calcolo della probabilità: = 1; Appendce B Eleent d Teora dell Inforazone Appendce B B Eleent d Teora dell Inforazone B Introduzone E noto da tepo che fenoen percettv possono essere foralzzat e studat edante la Teora dell Inforazone

Dettagli

Considerate gli insiemi A = {1,2,3,4} e B = {a,b,c}; quante sono le applicazioni (le funzioni) di A in B?

Considerate gli insiemi A = {1,2,3,4} e B = {a,b,c}; quante sono le applicazioni (le funzioni) di A in B? FUNZIONI E CALCOLO COMBINATORIO Il quesito assegnato all esame di stato 2004 (sientifio Ordinamento e PNI) suggerise un ollegamento tra funzioni ostruite tra insiemi finiti e Calolo Combinatorio QUESITO

Dettagli

Analisi dell interazione terreno struttura: il Modulo geotecnico Capitolo 23 Analisi dell interazione terreno struttura: il Modulo geotecnico

Analisi dell interazione terreno struttura: il Modulo geotecnico Capitolo 23 Analisi dell interazione terreno struttura: il Modulo geotecnico Captolo 3 Anals dell nterazone terreno struttura: l Modulo geoteno Questo aptolo presenta una panorama de omand e delle proedure per la defnzone delle propretà e la verfa del terreno d fondazone della

Dettagli

Capitolo 6 - Aria umida

Capitolo 6 - Aria umida unt d FISIC TECIC Catolo 6 - ra uda ca sulle scele gassose... Proretà terodnace dell ara uda...5 elazon er l calcolo d alcune roretà nterne...7 Ttolo...7 Eseo nuerco...8 Entala...9 Eseo nuerco...0 olue

Dettagli

7. TERMODINAMICA RICHIAMI DI TEORIA

7. TERMODINAMICA RICHIAMI DI TEORIA 7. ERMODINMI RIHIMI DI EORI Introduzone ermodnamca: è lo studo delle trasformazon dell energa da un sstema all altro e da una forma all altra. Sstema termodnamco: è una defnta e dentfcable quanttà d matera

Dettagli

CBM a.s. 2012/2013 PROBLEMA DELLE SCORTE

CBM a.s. 2012/2013 PROBLEMA DELLE SCORTE CBM a.s. 212/213 PROBLEMA DELLE SCORTE Chiamiamo SCORTA ogni riserva di materiali presente all interno del sistema produttivo in attesa di essere sottoposto ad un proesso di trasformazione o di distribuzione.

Dettagli

Primo principio della termodinamica

Primo principio della termodinamica Primo riniio della termodinamia Priniio di equivalenza Due ori a temeratura diversa, in ontatto, raggiungono l'equilibrio termio Durante il ontatto, il "alore" si trasferise dal oro iù aldo al oro iù freddo

Dettagli

Il rendimento globale di una macchina

Il rendimento globale di una macchina 0 Shede d Impant Naval Il rendmento globale d una mahna η g PB m& H ver 1.1 A ura d Frano Quaranta 1 Il rendmento globale d una mahna versone: 1.1 fle orgnale: Il rendmento globale d una mahna 130518 ver

Dettagli

Esercitazione di Meccanica dei fluidi con Fondamenti di Ingegneria Chimica. Scambio di materia (II)

Esercitazione di Meccanica dei fluidi con Fondamenti di Ingegneria Chimica. Scambio di materia (II) Eercitazione di Meccanica dei fluidi con Fondaenti di Ingegneria hiica Eercitazione 5 Gennaio 3 Scabio di ateria (II) Eercizio Evaporazione di acqua da una picina Stiare la perdita giornaliera di acqua

Dettagli

La riforma della CARD: opportunità per l efficienza e la concorrenza nel ramo r.c. auto

La riforma della CARD: opportunità per l efficienza e la concorrenza nel ramo r.c. auto INSURANCE DAY 2014 XIII Edzone La rforma della CARD: opportuntà per l effenza e la onorrenza nel ramo r.. auto Intervento del Consglere dell IVASS Prof. Rardo Cesar Mlano, 3 ottobre 2014 1. Il sstema d

Dettagli

f Le trasformazioni e il trattamento dell aria

f Le trasformazioni e il trattamento dell aria f Le trasformazioni e il trattamento dell aria 1 Generalità Risolvendo il sistema (1) rispetto ad m a si ottiene: () Pertanto, il punto di misela sul diagramma psirometrio è situato sulla ongiungente dei

Dettagli

LE CARTE DI CONTROLLO

LE CARTE DI CONTROLLO ITIS OMAR Dpartento d Meccanca LE CARTE DI CONTROLLO Carte d Controllo Le carte d controllo rappresentano uno degl struent pù portant per l controllo statstco d qualtà. La carta d controllo è corredata

Dettagli

Calcolo della densità dell aria alle due temperature utilizzando l equazione dei gas:

Calcolo della densità dell aria alle due temperature utilizzando l equazione dei gas: Lezione XXIII - 0/04/00 ora 8:0-0:0 - Esercizi tiraggio e sorbona - Originale di Marco Sisto. Esercizio Si consideri un ipianto di riscaldaento a caino caratterizzato dai seguenti dati: T T Sezione ati

Dettagli

MISURE DI RESISTENZA CON IL METODO DI CONFRONTO DELLE CADUTE DI TENSIONE

MISURE DI RESISTENZA CON IL METODO DI CONFRONTO DELLE CADUTE DI TENSIONE MISUR DI RSISTNZA CON IL MTODO DI CONFRONTO DLL CADUT DI TNSION 1. Premessa Oggigiorno esistono strumenti ompatti e semplii da utilizzare per la misura di resistenza: gli ohmetri (parte integrante dei

Dettagli

CAPITOLO 16 CEDIMENTI DI FONDAZIONI SUPERFICIALI

CAPITOLO 16 CEDIMENTI DI FONDAZIONI SUPERFICIALI 6. Introduone CAPITOLO 6 I edment delle fondaon superfal sono gl spostament vertal del pano d posa, e sono l rsultato (l ntegrale) delle deformaon vertal del terreno sottostante la fondaone. Tal deformaon

Dettagli

Fotonica per telecomunicazioni Ottica guidata Pagina 1 di 7 ESERCIZI

Fotonica per telecomunicazioni Ottica guidata Pagina 1 di 7 ESERCIZI Fotonca per telecouncazon Ottca udata Pana d 7 ESERCIZI. Una fbra ottca a salto d'ndce ha un nucleo d rao a= 3µ ed ndce d rfrazone n=.5, un antello d ndce d rfrazone n =.5 e lunhezza L= K. In essa vene

Dettagli

ESERCIZI ESERCIZI. La termodinamica Stati termodinamici e trasformazioni

ESERCIZI ESERCIZI. La termodinamica Stati termodinamici e trasformazioni La termodnamca Stat termodnamc e trasormazon QUNTO? Gl stat e rappresentat nel dagramma sono relatv a n mol d gas peretto. Quanto vale l rapporto T T ra le temperature de due stat? 6@ 40 4 P =,4 $ 0 Pa,

Dettagli

Argomenti. Misure di corrente elettrica continua, di differenza di potenziale e di resistenza elettrica.

Argomenti. Misure di corrente elettrica continua, di differenza di potenziale e di resistenza elettrica. ppunt per l corso d Laboratoro d Fsca per le Scuole Superor rgoent Msure d corrente elettrca contnua, d dfferenza d potenzale e d resstenza elettrca. Struent d sura: prncp d funzonaento. Coe s effettuano

Dettagli

ELABORAZIONE DI SEGNALI E IMMAGINI

ELABORAZIONE DI SEGNALI E IMMAGINI Fltraggo d un segnale EABORAZIOE DI SEGAI E IAGII. Bertero P. Boccacc bertero@ds.unge.t boccacc@ds.unge.t Al ne d glorare la qualtà d un segnale dgtale una tecnca d prara portanza è l ltraggo. Con l quale

Dettagli

Circolare Decreto Legislativo 155/97 - Sistema HACCP e coinvolgimento dei comparti Imballaggi Ortofrutticoli e Sughero.

Circolare Decreto Legislativo 155/97 - Sistema HACCP e coinvolgimento dei comparti Imballaggi Ortofrutticoli e Sughero. Crolare Dereto Legslatvo 155/97 - Sstema HACCP e onvolgmento de ompart Imballagg Ortofruttol e Sughero. Sheda esplatva D.Lvo 155/97" Sopo del presente doumento è quello d llustrare gl aspett nerent alla

Dettagli

PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI DI DISTRIBUZIONE E MISURA DEL GAS PER IL PERIODO DI REGOLAZIONE 2009-2012 (RTDG)

PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI DI DISTRIBUZIONE E MISURA DEL GAS PER IL PERIODO DI REGOLAZIONE 2009-2012 (RTDG) Allegao A Teso Uno delle dsposzon della regolazone della qualà e delle arffe de servz d dsrbuzone e msura del gas per l perodo d regolazone 2009-2012 (TUDG) PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI

Dettagli

Comune di MERATE PROVINCIA DI LECCO

Comune di MERATE PROVINCIA DI LECCO via azzini 17 4034 Cisano B.so - BG tel.035.438131. fax.035.4381875 P.IVA 03415090160 - email: dbmassoiati@gmail.om Comune di ERATE PROVICIA DI LECCO Progetto ESECUTIVO art. 33 e seguenti del D.P.R. n.

Dettagli

5. Unità di misura, fattori di conversione, costanti fisiche

5. Unità di misura, fattori di conversione, costanti fisiche 5. Unità di isura, fattori di conversione, costanti fisiche 5.1. Unità di isura del Sistea Internazionale (SI) Grandezze fondaentali: Unità di isura Grandezza Sibolo etro lunghezza kilograo assa kg secondo

Dettagli

COMUNE DI TROIA (Provincia di Foggia)

COMUNE DI TROIA (Provincia di Foggia) COMUE DI TROIA (Provna d Foa) denomnazone proetto: Fondo Per lo Svluppo e Coesone 007-013 Aordo d proramma uadro "Settore Aree Urane - Cttà" Realzzazone d n. 18 allo d edlza resdenzale pula nella zona

Dettagli

MACROECONOMIA A.A. 2014/2015

MACROECONOMIA A.A. 2014/2015 MACROECONOMIA A.A. 2014/2015 ESERCITAZIONE 2 MERCATO MONETARIO E MODELLO /LM ESERCIZIO 1 A) Un economa sta attraversando un perodo d profonda crs economca. Le banche decdono d aumentare la quota d depost

Dettagli

3. Compositi a fibre corte

3. Compositi a fibre corte 3. Copositi a ibre orte 3.1. Generalità Coe visto al apitolo preedente lainati opositi unidirezionali opositi a ibre lunghe sono aratterizzati da una elevata resistenza nella direzione delle ibre unita

Dettagli

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni:

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni: Anals ammortzzata Anals ammortzzata S consdera l tempo rchesto per esegure, nel caso pessmo, una ntera sequenza d operazon. Se le operazon costose sono relatvamente meno frequent allora l costo rchesto

Dettagli

UNITÀ 1 LA MISURA DELLE GRANDEZZE FISICHE

UNITÀ 1 LA MISURA DELLE GRANDEZZE FISICHE UNITÀ 1 LA MISURA DELLE GRANDEZZE FISICHE 1. Che cos è la Fisica. La fisica è una scienza sperientale che studia i fenoeni naturali, detti anche fenoeni fisici, utilizzando il etodo scientifico. Si tratta

Dettagli

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato gassoso

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato gassoso GLI STATI DI AGGREGAZIONE DELLA MATERIA Lo stato gassoso Classificazione della materia MATERIA Composizione Struttura Proprietà Trasformazioni 3 STATI DI AGGREGAZIONE SOLIDO (volume e forma propri) LIQUIDO

Dettagli

Verifica termoigrometrica delle pareti

Verifica termoigrometrica delle pareti Unverstà Medterranea d Reggo Calabra Facoltà d Archtettura Corso d Tecnca del Controllo Ambentale A.A. 2009-200 Verfca termogrometrca delle paret Prof. Marna Mstretta ANALISI IGROTERMICA DEGLI ELEMENTI

Dettagli

PROVA DI LABORATORIO # 5

PROVA DI LABORATORIO # 5 PROVA DI LABORATORIO # 5 DEL 03/11/1998 Corso di Tenia delle Alte Tensioni ANALISI DELLA CURVA DI PASCHEN IN ARIA E IN SF 6. VERIFICHE DI MASSIMA E NUMERICA DI UN CIRCUITO MOLTIPLICATORE DI MARX Si intende

Dettagli

PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI DI DISTRIBUZIONE E MISURA DEL GAS PER IL PERIODO DI REGOLAZIONE 2009-2012 (RTDG)

PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI DI DISTRIBUZIONE E MISURA DEL GAS PER IL PERIODO DI REGOLAZIONE 2009-2012 (RTDG) Allegao A Teso Uno delle dsposzon della regolazone della qualà e delle arffe de servz d dsrbuzone e msura del gas per l perodo d regolazone 2009-2012 (TUDG) PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 lezione 22: 30 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 lezione 22: 30 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 22: 30 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/27? Eserczo Dmostrare che l equazone della frontera

Dettagli

Pressione totale 689 Pa Coefficiente di sicurezza 1,1 Pressione netta 522 Pa Perdita di carico aggiuntiva 115 Pa Filtri ad elevato rendimento

Pressione totale 689 Pa Coefficiente di sicurezza 1,1 Pressione netta 522 Pa Perdita di carico aggiuntiva 115 Pa Filtri ad elevato rendimento I.T.I.S. PININFARINA Via Ponhielli, 16 - Monalieri INTERVENTI DI ADEGUAMENTO FUNZIONALE E NORMATIVO FINANZIATI CON FONDI DEI PATTI TERRITORIALI AREA TORINO SUD Progetto eseutivo IMPIANTI TERMO-FLUIDICI

Dettagli

Rilevati sui terreni molli

Rilevati sui terreni molli Rlevat ferrovar, rlevat stradal, argn, serbato ndustral Sono tpologe ostruttve he trasmettono al terreno arh rlevant (100-200 kpa) su ampe aree. E neessaro verfare ogn fase della ostruzone, nel breve e

Dettagli

Motore ad induzione: modelli matematici e modelli per la simulazione. 1.1 Modelli matematici del motore ad induzione

Motore ad induzione: modelli matematici e modelli per la simulazione. 1.1 Modelli matematici del motore ad induzione OTOE AD INDUZIONE ODEI ATEATICI E ODEI PE A IUAZIONE otore ad nduzone: odell ateatc e odell per la sulazone. odell ateatc del otore ad nduzone Nello studo degl azonaent ndustral è necessaro rappresentare

Dettagli

6. MACCHINE VOLUMETRICHE

6. MACCHINE VOLUMETRICHE 6. MHINE OLUMETRIHE 6. OMPRESSORI DI GS OLUMETRII 6.. INTRODUZIONE I coressor d gas voluetrc sono acchne oeratrc che trasferscono energa eccanca ad un fludo corble edante aret obl; la ressone del gas vene

Dettagli

Elettropompa da fognatura per uso non gravoso tipo ABS MF 154-804 Elettropompe sommergibili trituratrici tipo ABS Piranha 08 & 09

Elettropompa da fognatura per uso non gravoso tipo ABS MF 154-804 Elettropompe sommergibili trituratrici tipo ABS Piranha 08 & 09 Elettropopa da fognatura per uso non gravoso tipo ABS MF 154-804 1010-00 15975131IT (08/2015) IT Istruzioni di Installazione e Uso www.sulzer.o 2 Istruzioni di Installazione e Uso (Traduzione delle istruzioni

Dettagli

Fondamenti di Fisica Acustica

Fondamenti di Fisica Acustica Fondament d Fsca Acustca Pro. Paolo Zazzn - DSSARR Archtettura Pescara Anals n requenza de segnal sonor, bande d ottava e terz d ottava. Rumore banco e rumore rosa. Lvello equvalente. Fsologa dell apparato

Dettagli

Risoluzione quesiti I esonero 2011

Risoluzione quesiti I esonero 2011 Rsoluzone quest I esonero 011 1) Compto 1 Q3 Un azenda a a dsposzone due progett d nvestmento tra d loro alternatv. Il prmo prevede l pagamento d un mporto par a 100 all epoca 0 e fluss par a 60 all epoca

Dettagli

Stati di aggregazione della materia

Stati di aggregazione della materia SOLIDO: Forma e volume propri. Stati di aggregazione della materia LIQUIDO: Forma del recipiente in cui è contenuto, ma volume proprio. GASSOSO: Forma e volume del recipiente in cui è contenuto. Parametri

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

Compressori e ventilatori. Impianti frigoriferi

Compressori e ventilatori. Impianti frigoriferi Sheda riassuntiva 10 apitolo 13 Compressori e ventilatori. Impianti frigoriferi Compressori e ventilatori I ompressori si possono lassifiare seondo lo shema seguente: Volumetrii alternativi rotativi Dinamii

Dettagli

Termometria e calorimetria

Termometria e calorimetria ermometria e alorimetria Priniio zero della termodinamia: 2 ori, e, a temerature differenti ( < ) osti a ontatto raggiungono l equilibrio termio. Se e sono in equilibrio termio on un terzo oro C allora

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

Unità di misura. Perché servono le unità di misura nella pratica di laboratorio e in corsia? Le unità di misura sono molto importanti

Unità di misura. Perché servono le unità di misura nella pratica di laboratorio e in corsia? Le unità di misura sono molto importanti Unità di misura Le unità di misura sono molto importanti 1000 è solo un numero 1000 lire unità di misura monetaria 1000 unità di misura monetaria ma il valore di acquisto è molto diverso 1000/mese unità

Dettagli

MOMENTI E CENTRAGGIO DEL VELIVOLO

MOMENTI E CENTRAGGIO DEL VELIVOLO x 1 x ISTITUZIONI DI INGEGNERIA AEROSAZIALE OENTI E CENTRAGGIO VELIVOLO OENTI E CENTRAGGIO DEL VELIVOLO er il alolo delle prestazioni in volo orizzontale rettilineo ed uniforme, il velivolo può essere

Dettagli

2 Modello IS-LM. 2.1 Gli e etti della politica monetaria

2 Modello IS-LM. 2.1 Gli e etti della politica monetaria 2 Modello IS-LM 2. Gl e ett della poltca monetara S consderun modello IS-LM senzastatocon seguent datc = 0:8, I = 00( ), L d = 0:5 500, M s = 00 e P =. ) S calcolno valor d equlbro del reddto e del tasso

Dettagli

1. Elementi di Calcolo Combinatorio.

1. Elementi di Calcolo Combinatorio. . Elementi di Calolo Combinatorio. Prinipio Base del Conteggio Supponiamo he si devono ompiere due esperimenti. Se l esperimento uno può assumere n risultati possibili, e per ognuno di questi i sono n

Dettagli

PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI DI DISTRIBUZIONE E MISURA DEL GAS PER IL PERIODO DI REGOLAZIONE 2014-2019 (RTDG 2014-2019)

PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI DI DISTRIBUZIONE E MISURA DEL GAS PER IL PERIODO DI REGOLAZIONE 2014-2019 (RTDG 2014-2019) Teso Uno delle dsposzon della regolazone della qualà e delle arffe de servz d dsrbuzone e msura del gas per l perodo d regolazone 2014-2019 (TUDG) PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI DI DISTRIBUZIONE

Dettagli

DIMENSIONAMENTO DELLA STAZIONE DI SOLLEVAMENTO A SERVIZIO DI UN SOTTOPASSO

DIMENSIONAMENTO DELLA STAZIONE DI SOLLEVAMENTO A SERVIZIO DI UN SOTTOPASSO DIMENSIONAMENTO DELLA STAZIONE DI SOLLEVAMENTO A SERVIZIO DI UN SOTTOPASSO Appliazione: Dimensionare l impianto di sollevamento per il sottopasso illustrato alle figure 3.60 e 3.61. Elaborazione delle

Dettagli

La potenza assorbita dalla pompa per sollevare il liquido dal serbatoio a valle al serbatoio a monte si calcola con la relazione

La potenza assorbita dalla pompa per sollevare il liquido dal serbatoio a valle al serbatoio a monte si calcola con la relazione 1 E S E R C I Z I S U L L E P O M P E C E N T R I F U G E ESERCIZIO 1 In un panto ollevaento per acqua ono not Il lvello geoetco tra ue erbato g 0 La preone aoluta ul erbatoo a valle p A p at La preone

Dettagli

Leggere i dati da file

Leggere i dati da file Esempo %soluzon d una equazone d secondo grado dsp('soluzon d a^+b+c') anput('damm l coeffcente a '); bnput('damm l coeffcente b '); cnput('damm l coeffcente c '); deltab^-4*a*c; f delta0 dsp('soluzon

Dettagli

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p =

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p = 5. Rette e piani in R 3 ; sfere. In questo paragrafo studiamo le rette, i piani e le sfere in R 3. Ci sono due modi per desrivere piani e rette in R 3 : mediante equazioni artesiane oppure mediante equazioni

Dettagli

Analizzata: - Nei livelli Prezzi - Nelle differenze Rendimenti. Rendimento al tempo t: Variabile finanziaria

Analizzata: - Nei livelli Prezzi - Nelle differenze Rendimenti. Rendimento al tempo t: Variabile finanziaria Varable fnanzara Analzzata: - Ne lvell Prezz - Nelle dfferenze endent endento al tepo t: t ( P P ) t P t 1 t 1 1 Unverstà d Terao - Teora del portafoglo fnanzaro - Prof. Paolo D Antono endento atteso:

Dettagli

2014 2015 CCS - Biologia CCS - Fisica I gas e loro proprietà. I liquidi e loro proprietà

2014 2015 CCS - Biologia CCS - Fisica I gas e loro proprietà. I liquidi e loro proprietà 2014 2015 CCS - Biologia CCS - Fisica I gas e loro proprietà 1 I liquidi e loro proprietà 2 Proprietà Generali dei Gas I gas possono essere espansi all infinito. I gas occupano i loro contenitori uniformemente

Dettagli

Gas e gas perfetti. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1

Gas e gas perfetti. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1 Gas e gas perfetti 1 Densita Densita - massa per unita di volume Si misura in g/cm 3 ρ = M V Bassa densita Alta densita Definizione di Pressione Pressione = Forza / Area P = F/A unita SI : 1 Nt/m 2 = 1

Dettagli

Il Calcestruzzo strutturale e l acciaio da c.a. Tecnologia e proprietà meccaniche

Il Calcestruzzo strutturale e l acciaio da c.a. Tecnologia e proprietà meccaniche Il Calestruzzo strutturale e l aiaio da.a. Tenologia e proprietà meanihe Composizione del ls Il alestruzzo è un materiale lapideo artifiiale omposto on aggregati lapidei di diverse dimensioni (inerti)

Dettagli

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II Faoltà d Ingegnera Dottorato d rera n Ingegnera de Sstem Idraul, d Trasporto e Terrtoral XXIV lo Indrzzo INGEGNERIA IDRAULICA ED AMBIENTALE Canddato Federo

Dettagli

Lavoro, Energia e stabilità dell equilibrio II parte

Lavoro, Energia e stabilità dell equilibrio II parte Lavoro, Energa e stabltà dell equlbro II parte orze conservatve e non conservatve Il concetto d Energa potenzale s aanca per mportanza a quello d Energa cnetca, perché c permette d passare dallo studo

Dettagli

Gas. Vapore. Forma e volume del recipiente in cui è contenuto. un gas liquido a temperatura e pressione ambiente. microscopico MACROSCOPICO

Gas. Vapore. Forma e volume del recipiente in cui è contenuto. un gas liquido a temperatura e pressione ambiente. microscopico MACROSCOPICO Lo Stato Gassoso Gas Vapore Forma e volume del recipiente in cui è contenuto. un gas liquido a temperatura e pressione ambiente MACROSCOPICO microscopico bassa densità molto comprimibile distribuzione

Dettagli

Esercitazione X - Legge dei gas perfetti e trasformazioni

Esercitazione X - Legge dei gas perfetti e trasformazioni Esercitazione X - Legge dei gas perfetti e trasformazioni termodinamiche Formulario Il primo principio della termodinamica afferma che la variazione dell energia interna di un sistema U è uguale alla somma

Dettagli

Capitolo III: I Regolatori

Capitolo III: I Regolatori SCC Cap. III: Regolaor Capolo III: I Regolaor III-1: Inrouzone Il regolaore ha l ompo sablre l azone orreva a apporare n ngresso al proesso, per mezzo ell auaore; l segnale n usa al regolaore (s) è funzone

Dettagli

Induttori e induttanza

Induttori e induttanza Induttor e nduttanza Un nduttore o nduttanza è un dspostvo elettronco che mmagazzna energa sottoforma d campo magnetco così come l condensatore mmagazzna energa sotto forma d campo elettrco. Il flusso

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

I gas. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1

I gas. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1 I gas Universita' di Udine Problema Un cubo di osmio ha lato di 0. m ed e appoggiato su una tavola. Al contatto tra la tavola ed il cubo, quanto vale la pressione (N/m )? Nota: le densita vi vengono date

Dettagli

4.3.1. Stato limite di fessurazione.

4.3.1. Stato limite di fessurazione. DM 9/1/1996 4.3.1. Stato limite di fessurazione. 4.3.1. STATO LIMITE DI FESSURAZIONE. 4.3.1.1. Finalità. Per assiurare la funzionalità e la durata delle strutture è neessario: - prefissare uno stato limite

Dettagli

13 La temperatura - 8. Il gas perfetto

13 La temperatura - 8. Il gas perfetto La mole e l equazione del gas perfetto Tutto ciò che vediamo intorno a noi è composto di piccolissimi grani, che chiamiamo «molecole». Per esempio, il ghiaccio, l acqua liquida e il vapore acqueo sono

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

Fig. 1. Fig. 2. = + +ωc

Fig. 1. Fig. 2. = + +ωc Rifasamento monofase Sia dato i iruito di fig. 1 ostituito da un generatore di tensione indipendente reae di f.e.m. ed impedenza serie Z, da una inea di aimentazione di impedenza Z e da un ario + (a maggior

Dettagli

VENTILAZIONE NATURALE AD USO INDUSTRIALE Stabilimento Marcegaglia - Via Bresciani, 16-46040 Gazoldo Degli Ippoliti (MN) 2 febbraio 2010

VENTILAZIONE NATURALE AD USO INDUSTRIALE Stabilimento Marcegaglia - Via Bresciani, 16-46040 Gazoldo Degli Ippoliti (MN) 2 febbraio 2010 VENTILAZIONE NATURALE AD USO INDUSTRIALE Stabiliento Marcegaglia Via Bresciani, 16 46040 Gazoldo Degli Ippoliti (MN) 2 febbraio 2010 1 Schea dell intervento Obiettivo: riduzione della concentrazione di

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

1 2-6 7-74 Commento * Continuazione riga! Viene ignorato tutto quello che viene scritto dopo questo carattere [etichett a]

1 2-6 7-74 Commento * Continuazione riga! Viene ignorato tutto quello che viene scritto dopo questo carattere [etichett a] La programmazione è l'arte di far ompiere al omputer una suessione di operazioni atte ad ottenere il risultato voluto. Srivere un programma è un po' ome dialogare ol omputer, dobbiamo fornirgli delle informazioni

Dettagli

Valutazione delle opzioni col modello di Black e Scholes

Valutazione delle opzioni col modello di Black e Scholes Valutazone delle opzon col modello d Black e Scholes Rosa Mara Mnnn a.a. 2014-2015 1 Introduzone L applcazone del moto Brownano all economa é stata nnescata prncpalmente da due cause. Attorno agl ann 70,

Dettagli

Modelli di base per la politica economica

Modelli di base per la politica economica Marcella Mulno Modell d base per la poltca economca Corso d Poltca economca a.a. 22-23 Captolo 2 Modello - e poltche scal e monetare In questo captolo rchamamo brevemente l modello macroeconomco a prezz

Dettagli

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse Lezone 1. L equlbro del mercato fnanzaro: la struttura de tass d nteresse Ttol con scadenza dversa hanno prezz (e tass d nteresse) dfferent. Due ttol d durata dversa emess dallo stesso soggetto (stesso

Dettagli

CALDAIA A CONDENSAZIONE

CALDAIA A CONDENSAZIONE CALDAIA A CONDENSAZIONE abbinata ai sistemi RinNOVA Solar Tank Note d impiego e Tenihe per l installazione Complimenti per la selta. WARNING La Vostra aldaia è modulante a regolazione e aensione elettronia.

Dettagli

3. Esercitazioni di Teoria delle code

3. Esercitazioni di Teoria delle code 3. Eserctazon d Teora delle code Poltecnco d Torno Pagna d 33 Prevsone degl effett d una decsone S ndvduano due tpologe d problem: statc: l problema non vara nel breve perodo dnamc: l problema vara Come

Dettagli

MACCHINE ELETTRICHE. Stefano Pastore. Macchine in Corrente Continua

MACCHINE ELETTRICHE. Stefano Pastore. Macchine in Corrente Continua MACCHINE ELETTRICHE Mahine in Corrente Continua Stefano Pastore Dipartiento di Ingegneria e Arhitettura Corso di Elettrotenia (IN 043) a.a. 2012-13 Statore Sistea induttore (Statore): anello in ghisa o

Dettagli

PIATTAFORMA AEREE A PANTOGRAFO ELETTRICHE

PIATTAFORMA AEREE A PANTOGRAFO ELETTRICHE 1930ES Lunghezza m 1,87 Altezza m 1,98 Peso kg 1.565 Altezza al piede m 5,72 Altezza di lavoro m 7,72 Lunghezza pianale m 1,87 Lungh. pianale esteso m 2,77 Larghezza pianale m 0,76 Portata massima kg 230

Dettagli

Determinazione della quota sul livello del mare del monte Etna

Determinazione della quota sul livello del mare del monte Etna Deterinazione ella quota sul livello el are el onte Etna a.s. 998/999 classe 5 oorinatore: Prof.. Epainona Preessa Per ottenere una isura i tutto rispetto, ci siao avvalsi ella consulenza e ella collaborazione

Dettagli

Il corpo nero e la temperatura dei corpi celesti di Daniele Gasparri

Il corpo nero e la temperatura dei corpi celesti di Daniele Gasparri Il orpo nero e la temperatura dei orpi elesti di Daniele Gasparri Gli sienziati del diiannovesimo seolo, attraverso degli esperimenti, soprirono una osa estremamente interessante: prendendo un orpo qualsiasi

Dettagli

PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI DI DISTRIBUZIONE E MISURA DEL GAS PER IL PERIODO DI REGOLAZIONE 2014-2019 (RTDG 2014-2019)

PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI DI DISTRIBUZIONE E MISURA DEL GAS PER IL PERIODO DI REGOLAZIONE 2014-2019 (RTDG 2014-2019) Teso Uno delle dsposzon della regolazone della qualà e delle arffe de servz d dsrbuzone e msura del gas per l perodo d regolazone 2014-2019 (TUDG) PARTE II REGOLAZIONE DELLE TARIFFE DEI SERVIZI DI DISTRIBUZIONE

Dettagli

6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI

6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI 6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI Consdeao un sstea d n unt ateal con n > nteagent ta loo e con l esto dell unveso. Nello studo d un tale sstea sulta convenente scooe la foza agente ( et) sull

Dettagli

Quesiti e problemi (sul libro da pag. 431)

Quesiti e problemi (sul libro da pag. 431) Quesiti e prolemi (sul liro da pag. 431) 1 Che os è la di reazione 1 Trova almeno tre esempi, tratti dall esperienza quotidiana, di reazioni he devono proedere a assa e tre esempi di reazioni he, invee,

Dettagli