Nel caso di un regime di capitalizzazione definiamo, relativamente al periodo [t, t + t] : i t

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Nel caso di un regime di capitalizzazione definiamo, relativamente al periodo [t, t + t] : i t"

Transcript

1 4. Approcco formale E neressane efnre le caraersche e var regm fnanzar n manera pù asraa e generale, n moo a poer suare qualsas regme fnanzaro. A al fne efnamo percò e paramer n grao escrvere qualsas po regme. Legg capalzzazone Nel caso un regme capalzzazone efnamo, relavamene al peroo [, + ] : Ineresse : I(, + ) = M(, + ) M() [varazone] Tasso effevo neresse : (, + ) = M (, ) M ( ) M ( ) [varazone relava] Inensà neresse : (, + ) = [varazone mea] Forza neresse : s () = lm 0 (, + ) [varazone sananea] Ques ulma granezza è ea anche asso sananeo neresse o nensà sananea neresse. La forza neresse può essere pensaa come l fferenzale relavo ella funzone M(), oppure come l graene relavo. Infa, se la funzone M() è connua e ervable ( classe C ), allora la forza neresse è sempre efna là ove M() 0, e vale: s () = M '( ) M ( ) = ln(m()) D ora n po, se non precseremo versamene, con l smbolo s nenerà sempre la forza neresse, ovvero la granezza sananea (e non l nensà neresse). Inolre faremo rfermeno al faore monane m() efno alla M() = C m(), anzchè al monane effevo M(). La forza neresse enfca senza ambguà l regme capalzzazone. A esempo, se conseramo una legge capalzzazone con = 5%, non è possble re se s raa un buon nvesmeno o meno, perché non conoscamo l unà empo (mensle, semesrale, annuale ecc.). Al conraro, la forza neresse permee confronare regm vers, perché normalzza ass neresse all unà empo ( solo su base annuale). Un alro paramero ulzzao è l bnomo capalzzazone, efno come: u = + per cu u = m() analogamene, per ncare l recproco u s ulzza l smbolo: v = / u = (+ ) - per cu v = v() = / f() 2007 Sefano Aran

2 La forza neresse E facle calcolare la forza neresse () e regm capalzzazone consera: Regme a neresse semplce (R.I.S. o c.s.) () = Regme a neresse composo (R.I.C. o c.c.) () = ln ( + ) Regme a neresse ancpao (R.I.A) () = Cò sgnfca che la forza neresse () nvua unvocamene la legge capalzzazone. Infa, noa la funzone (), è sempre possble esprmere l faore monane come: m() = exp ( ( s) s ) 0 In u cas n cu vale ques ulma espressone s parla capalzzazone connua: aa la semplcà ella nosra raazone, queso vale per u regm consera fnora. Esempo: alla () = a / (+ ) s rcava faclmene m() = ( + ) a. Il asso nomnale converble j k Usano l conceo forza neresse, è possble eurre l RIC come caso lme, per la uraa ella capalzzazone che ene a zero, ella legge capalzzazone RIS. Fssamo un asso annuale, e vamo l anno n k-pero. Supponamo applcare un RIC su cascuno ques pero, e volere che a fne anno le ue capalzzazone sano equvalen: (I) C ( + ) = C ( + k ) k ove k = asso el RIC Per comoà, esprmamo k n funzone el asso nomnale converble k vole l anno, efno come j k = k k, per cu scrvamo k = j k / k (veas capolo ). Se conseramo k, coè una capalzzazone sane per sane, s oene (lme fonamenale): + = lm k ( + j k / k) k = e con = lm k { j k } Cò sgnfca che la forza neresse è nerpreable come un asso nomnale converble nfnesmo. Inolre, possamo cheerc come calcolare j k al asso equvalene (rfero a un RIS). A al fne rcoramo la formula rovaa nel capolo : k = j k / k = k ( ) j k = k ( k ( ) ) Da cu s oene (usano l Hospal): lm k { j k } = ln(+ ). Cò conferma quano vso sopra: la forza neresse può essere conseraa l asso neresse sananeo (n queso caso, el regme capalzzazone composa) Sefano Aran

3 Legg aualzzazone In moo analogo a quano vso per regm capalzzazone, efnamo: Scono : D(, + ) = M(, + ) M() Tasso effevo scono : (, + ) = M (, ) M ( ) M ( ) Inensà scono : (, + ) = Inensà sananea scono : s () = lm 0 (, + ) Anche n queso caso, se la funzone M() è connua e ervable ( classe C ), allora la forza neresse è sempre efna là ove M() 0, e vale: s () = M '( ) M ( ) = ln(m()) con M() = C v() Inolre è facle verfcare che vale s () = - s (), se ue regm sono conuga ( cu parleremo nel prossmo paragrafo). Regm conuga Abbamo gà eo che ogn regme aualzzazone può essere pensao come l conugao, ovvero v() = / m(), un opporuno regme capalzzazone. Ulzzamo aesso le granezze efne sopra per llusrare l procemeno conraro: l passaggo a un regme aualzzazone a uno capalzzazone. Per fssare le ee, conseremo l caso el RAS (regme aualzzazone a scono commercale) e eurremo a esso l RIA (regme nvesmeno a neresse ancpao). Il faore monane conugao al RAS è: m() = / v() = che è una funzone po omografco Tale funzone è un faore monane nell nervallo [0, /), e pere sgnfcao per > /. E facle verfcare che la ervaa prma vale m () = m 2 (), per cu: s () = M '( ) M ( ) = m() = Esaamene par alla forza neresse el regme nvesmeno a neresse ancpao Sefano Aran

4 Formalzzazone e regm no Analzamo aesso, all nerno ella eora generale appena llusraa, regm fnanzar classc capalzzazone e aualzzazone. REGIME m() v() () () nensà (0, ) nensà (0, ) s () s () R.I.S. + R.I.C. ( + ) ( + ) - ( ) ln ( + ) R.I.A. R.S.S. - R.S.Comp. ( ) ( ) ( ) ( ) ( ) - ln ( + ) R.S.Comm. - Osservamo che l passaggo all espressone nensà () a quella s () non s può oenere operano l lme 0 sulla prma espressone, perchè essa è rcavaa alla: nensà () = = 0 (assumamo 0 = 0) per cu s è gà vso per l nervallo non nfnesmo, semplfcanolo, per cu s è persa la penenza nensà ( ) alla lunghezza Sefano Aran

5 Scnblà Una legge fnanzara s ce scnble se nerrompeno l operazone n un cero sane, e renveseno mmeaamene, l rsulao fnale non camba. Maemacamene cò sgnfca: f( 2 ) = f( ) f( 2 ) con 0 < < 2 Veamo, ne cas e re regm capalzzazone consera, se ale conzone è verfcaa. Esempo: conseramo l RIA, efno al faore monane: m() = Per suarne la scnblà, conseramo un nvesmeno all sane = 0 all sane 2, e confronamolo con lo sesso nvesmeno nerroo all sane, con 0 < < 2. S raa verfcare la sequazone: ( ( 2 ))( ) > 2 (opo alcune semplfcazon) Che corrspone alla 2 ( 2 2 ) > 0, che è sempre verfcaa (perché 2 > ). Dal puno vsa praco, possamo re che l monane mnusce perché gl neress sono gà sa percep all nzo ell operazone (soo forma scono). Per queso movo non è convenene nerrompere la capalzzazone prma aver recuperao l monane nero (n caso nerruzone vene percepa una cfra mnore quella promessa). Analzzano re regm vs fnora s oene: Regme capalzzazone Scnble Effe el rempego Semplce NO S oene un monane maggore Composa SI Non camba nulla Ineresse ancpao NO S oene un monane mnore E propro per queso movo che nasce l esgenza el regme a capalzzazone composa, pochè sosfa al requso essere nfferene alla capalzzazone nermea. Legg raslabl S ce raslable una legge fnanzara ale che: m(, 2 ) = m( + q, 2 + q) q [0,+ ], 0 2 coè la legge pene solo alla uraa ell operazone fnanzara, ovvero è unforme rspeo al empo. Tu regm che abbamo conserao fnora sono raslabl. Nel prossmo capolo veremo qual sono le conzon affnché una legge fnanzara sa raslable. Noamo che, se s ulzza la convenzone lneare, anche l regme composo non è scnble Sefano Aran

CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI 1. LEGGI FINANZIARIE

CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI 1. LEGGI FINANZIARIE CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI SOMMARIO:. Legg fnanzare. - 2. Regme fnanzaro dell neresse semplce e dello scono razonale. - 3. Regme fnanzaro dell neresse e dello scono composo. - 4. Tass equvalen.

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria APPENDICE ATEATICA Elemen d maemaca fnanzara. Il regme dell neresse semplce L neresse è l fruo reso dall nvesmeno del capale. Nel corso dell esposzone s farà rfermeno a due regm o pologe d calcolo dell

Dettagli

Università di Siena Sede di Grosseto Secondo Semestre 2010-2011. Macroeconomia. Paolo Pin ( pin3@unisi.it ) Lezione 7 2 Maggio 2011

Università di Siena Sede di Grosseto Secondo Semestre 2010-2011. Macroeconomia. Paolo Pin ( pin3@unisi.it ) Lezione 7 2 Maggio 2011 Unversà d Sena Sede d Grosseo Secondo Semesre 200-20 acroeconoma Paolo Pn ( pn3@uns. ) Lezone 7 2 aggo 20 La lezone d ogg Rpasso e conclusone capolo 4 qulbro nel mercao della monea e la relazone L Polca

Dettagli

Operazioni finanziarie. Operazioni finanziarie

Operazioni finanziarie. Operazioni finanziarie Operazioni finanziarie Una operazione finanziaria è uno scambio di flussi finanziari disponibili in isani di empo differeni. Disinguiamo ra: operazioni finanziarie in condizioni di cerezza, quando ui gli

Dettagli

Criteri metodologici per la valutazione dei titoli obbligazionari standard e dei contratti derivati non quotati

Criteri metodologici per la valutazione dei titoli obbligazionari standard e dei contratti derivati non quotati Crer meodologc per la valuazone de ol obblgazonar sandard e de conra derva non quoa Adoao con delbera del Consglo d ammnsrazone del /0/20 Modfcao con delbera del Consglo d Ammnsrazone del 28//20 Aggornao

Dettagli

Note su energie e forze del campo elettromagnetico

Note su energie e forze del campo elettromagnetico A. Maffucc: oe su Energe e Forze e campo eeromagneco ver.. /4. Energe e forze n un ssema eerosaco.. Energa n funzone carche e poenza. conser ssema n fgura, uo a conuor ne vuoo o n mezzo eerco omogeneo,

Dettagli

Valore attuale di una rendita. Valore attuale in Excel: funzione VA

Valore attuale di una rendita. Valore attuale in Excel: funzione VA Valore attuale d una rendta Nella scorsa lezone c samo concentrat sul problema del calcolo del alore attuale d una rendta S che è dato n generale da V ( S) { R ; t, 0,,,..., n,... } n 0 R ( t ), doe (t

Dettagli

Teoria delle leggi finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08

Teoria delle leggi finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08 Teoria delle leggi finanziarie Inensià di ineresse L inensià di ineresse relaiva al periodo da x ad y è definia come adimensionale I( xy, ) 1 ixy (, ) γ ( xy, ) = = C y x ( dimensione di empo -1 ) L inensià

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Esercizi di Maemaica Finanziaria Copyrigh SDA Bocconi Faori nanziari Classi care e rappresenare gra camene i segueni faori nanziari per : (a) = + ; 8 (b) = ( + ; ) (c) = (d) () = ; (e) () = ( + ; ) (f)

Dettagli

Cenni di matematica finanziaria Unità 61

Cenni di matematica finanziaria Unità 61 Prerequst: - Rsolvere equazon algebrche d 1 grado ed equazon esponenzal Questa untà è rvolta al 2 benno del seguente ndrzzo dell Isttuto Tecnco, settore Tecnologco: Agrara, Agroalmentare e Agrondustra.

Dettagli

Titoli obbligazionari (Bond) Tipi di titoli obbligazionari

Titoli obbligazionari (Bond) Tipi di titoli obbligazionari Tol obblgazoar Bod U obblgazoe è u olo d debo emesso da ua soceà da uo sao o da u ee pubblco che dà dro al suo possessore al rmborso del capale presao alla scadeza e al pagameo d eress cedole. La emssoe

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2012-2013 Eserctazone: 4 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/41? Aula "Ranzan B" 255 post 1 2 3 4 5 6 7 8 9

Dettagli

Risoluzione quesiti I esonero 2011

Risoluzione quesiti I esonero 2011 Rsoluzone quest I esonero 011 1) Compto 1 Q3 Un azenda a a dsposzone due progett d nvestmento tra d loro alternatv. Il prmo prevede l pagamento d un mporto par a 100 all epoca 0 e fluss par a 60 all epoca

Dettagli

Allocazione Statica. n i

Allocazione Statica. n i Esercazon d Sse Inegra d Produzone Allocazone Saca I eod asa sull'allocazone saca scheazzano l processo d assegnazone delle rsorse alle par consderandolo da un lao ndpendene dal epo e rascurando dall'alro

Dettagli

Amplificatori operazionali

Amplificatori operazionali mplfcator operazonal Parte www.e.ng.unbo.t/pers/mastr/attca.htm (ersone el 9-5-0) mplfcatore operazonale L amplfcatore operazonale è un sposto, normalmente realzzato come crcuto ntegrato, otato tre termnal

Dettagli

Indicatori di rendimento per i titoli obbligazionari

Indicatori di rendimento per i titoli obbligazionari Indcator d rendmento per ttol obblgazonar LA VALUTAZIONE DEGLI INVESTIMENTI A TASSO FISSO Per valutare la convenenza d uno strumento fnanzaro è necessaro precsare: /4 Le specfche esgenze d un nvesttore

Dettagli

Osservatorio dinamica prezzi dispositivi medici Assobiomedica - CEr. Presentazione. Assobiomedica Centro Studi

Osservatorio dinamica prezzi dispositivi medici Assobiomedica - CEr. Presentazione. Assobiomedica Centro Studi Osservaoro dnamca prezz dsposv medc Assobomedca - CEr Presenazone Assobomedca Cenro Sud L Osservaoro L ndagne è condoa dal CER a cadenza semesrale presso le mprese assocae ad Assobomedca per rlevare la

Dettagli

Regolamento dell Indice. Banca IMI Protected Basket Index June 2015 A

Regolamento dell Indice. Banca IMI Protected Basket Index June 2015 A Sede legale n Pazzea Gordano Dell Amore 3, 20121 Mlano scra all Albo delle Banche con l n. 5570 Soceà apparenene al Gruppo Bancaro Inesa Sanpaolo scro all Albo de Grupp Bancar Soceà soggea alla drezone

Dettagli

Prodotti extra prenotabili e pagabili in anticipo

Prodotti extra prenotabili e pagabili in anticipo gu da ag ex r a ho dayau os Anche prodo prenoab n ancpo sono commssonab. Ques prodo sono: 1. Rmborso dea Franchga STANDARD 2. Rmborso dea Franchga TOTALE 3. Proezone dea Canceazone Qu d seguo speghamo

Dettagli

Schemi a blocchi. Sistema in serie

Schemi a blocchi. Sistema in serie Scem a blocc Nel caso ssem semplc, ques possoo essere scemazza meae blocc, ce rappreseao vers compoe, collega ra loro sere o parallelo a secoa ella logca uzoameo. Vl Valvolal solvee Sesore Pompa Pompa

Dettagli

Capitolo III: I Regolatori

Capitolo III: I Regolatori SCC Cap. III: Regolaor Capolo III: I Regolaor III-1: Inrouzone Il regolaore ha l ompo sablre l azone orreva a apporare n ngresso al proesso, per mezzo ell auaore; l segnale n usa al regolaore (s) è funzone

Dettagli

UNIVERISITA DEGLI STUDI DI PADOVA. Marketing e Pubblicità: una rassegna

UNIVERISITA DEGLI STUDI DI PADOVA. Marketing e Pubblicità: una rassegna FACOLTA DI SCIENZE STATISTICHE UNIVERISITA DEGLI STUDI DI PADOVA Corso d Laurea n STATISTICA E GESTIONE DELLE IMPRESE Currculum: Anals d Mercao Tes d Laurea d: Eva Luse Markeng e Pubblcà: una rassegna

Dettagli

Capitolo 2 Le leggi del decadimento radioattivo

Capitolo 2 Le leggi del decadimento radioattivo Capolo Le legg del decadmeno radoavo. Sablà e nsablà nucleare Se analzzamo aenamene la cara de nucld, vedamo che n essa sono rappresena, olre a nucle sabl, anche var nucle nsabl. Con l ermne nsable s nende

Dettagli

Realizzazione e studio di un oscillatore a denti di sega

Realizzazione e studio di un oscillatore a denti di sega 1 Realzzazone e stuo un oscllatore a ent sega Cenn teorc Lo scopo quest esperenza è quello stuare la cosetta tensone a ent sega, ovvero una tensone alternata, peroo T, che vara lnearmente con l tempo a

Dettagli

3.1 Modellistica di un attuatore elettromeccanico

3.1 Modellistica di un attuatore elettromeccanico 3 PRINCIPI DI CONVERSIONE ELETTROMECCANICA DELL ENERGIA 3. Moellsca un auaoe eleomeccanco Pe noue fonamen ella convesone eleomeccanca ell enega conseamo la suua elemenae llusaa n Fg. 3., noa come auaoe

Dettagli

Sviluppare una metodologia di analisi per valutare la convenienza economica di un nuovo investimento, tenendo conto di alcuni fattori rilevanti:

Sviluppare una metodologia di analisi per valutare la convenienza economica di un nuovo investimento, tenendo conto di alcuni fattori rilevanti: Analisi degli Invesimeni Obieivo: Sviluppare una meodologia di analisi per valuare la convenienza economica di un nuovo invesimeno, enendo cono di alcuni faori rilevani: 1. Dimensione emporale. 2. Grado

Dettagli

Struttura dei tassi per scadenza

Struttura dei tassi per scadenza Sruura dei assi per scadenza /45-Unià 7. Definizione del modello ramie gli -coupon bonds preseni sul mercao Ipoesi di parenza Sul mercao sono preseni all isane ZCB che scadono fra,2,,n periodi Periodo:

Dettagli

ELEMENTI DI MATEMATICA FINANZIARIA

ELEMENTI DI MATEMATICA FINANZIARIA ELEMENTI DI MATEMATICA FINANZIARIA 9. OPERAZIONI FINANZIARIE La Maemaca Fazara ha per oggeo suo le operazo fazare, coè le operazo scambo somme earo spoble emp vers. Gl eleme foameal u'operazoe fazara soo

Dettagli

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse Lezone 1. L equlbro del mercato fnanzaro: la struttura de tass d nteresse Ttol con scadenza dversa hanno prezz (e tass d nteresse) dfferent. Due ttol d durata dversa emess dallo stesso soggetto (stesso

Dettagli

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva

Dettagli

PROCESSI CASUALI. Segnali deterministici e casuali

PROCESSI CASUALI. Segnali deterministici e casuali POCESSI CASUALI POCESSI CASUALI Segnal deermnsc e casual Un segnale () s dce DEEMIISICO se è una funzone noa d, coè se, fssao un qualunque sane d empo o, l valore ( o ) assuno dal segnale è noo con esaezza

Dettagli

Costi della politica: Giudizio positivo per i sindaci, maglia nera per parlamentari e consiglieri regionali

Costi della politica: Giudizio positivo per i sindaci, maglia nera per parlamentari e consiglieri regionali XXVI I IAssembl eaanci-larepubbl cadecomun Au onom apercamb ar e lpaese Lac l assepol c aec ad n Op n onsucos,r esponsab l àe mpegnodch gover nal e s uz on Cos della polca: Gudzo posvo per sndac, magla

Dettagli

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi.

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi. 7. Redte I questo captolo edremo solamete u caso d redta, che useremo po per geeralzzare le redte e dedurre tutt gl altr cas. S defsce redta ua successoe d captal (rate) tutte da pagare, o tutte da rscuotere,

Dettagli

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice Eserciazione 7: Modelli di crescia: arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Popolazione sabile e sazionaria. Viviana Amai 03/06/200 Modelli di crescia Nella

Dettagli

Condensatore + - Volt

Condensatore + - Volt 1) Defnzone Condensaore Sruura: l condensaore è formao da due o pù superfc condurc, chamae armaure, separae da un maerale solane, chamao delerco. Equazon Caraersche: La ensone ra armaure è dreamene proporzonale

Dettagli

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard Corso d Statstca (canale P-Z) A.A. 2009/0 Prof.ssa P. Vcard VALORI MEDI Introduzone Con le dstrbuzon e le rappresentazon grafche abbamo effettuato le prme sntes de dat. E propro osservando degl stogramm

Dettagli

Corso di Economia del Lavoro Daniele Checchi Blanchard-Amighini-Giavazzi cap.4 anno 2014-15

Corso di Economia del Lavoro Daniele Checchi Blanchard-Amighini-Giavazzi cap.4 anno 2014-15 Corso i Economia el Lavoro Daniele Checchi Blanchar-Amighini-Giavazzi cap.4 anno 2014-15 I MERCATI FINANZIARI Esise una grane varieà i aivià finanziarie. Il risparmiaore eve scegliere in quali forme eenere

Dettagli

VA TIR - TA - TAEG Introduzione

VA TIR - TA - TAEG Introduzione VA TIR - TA - TAEG Introduzone La presente trattazone s pone come obettvo d analzzare due prncpal crter d scelta degl nvestment e fnanzament per valutare la convenenza tra due o pù operazon fnanzare. S

Dettagli

1.1 Identificazione del campo di operatività di un motore AC brushless. Sia dato un motore AC brushless isotropo di cui siano noti i seguenti dati:

1.1 Identificazione del campo di operatività di un motore AC brushless. Sia dato un motore AC brushless isotropo di cui siano noti i seguenti dati: Captolo 1 1.1 Ientfcazone el campo operatvtà un motore AC bruhle Sa ato un motore AC bruhle otropo cu ano not eguent at: Vn = 190 V In = 3.5 A Tn =.6 N n pol = R = 1 Ω L = 8 mh Ke = Kt = 0.4 S etermn l

Dettagli

Dipartimento di Economia Aziendale e Studi Giusprivatistici. Università degli Studi di Bari Aldo Moro. Corso di Macroeconomia 2014

Dipartimento di Economia Aziendale e Studi Giusprivatistici. Università degli Studi di Bari Aldo Moro. Corso di Macroeconomia 2014 Dpartmento d Economa Azendale e Stud Gusprvatstc Unverstà degl Stud d Bar Aldo Moro Corso d Macroeconoma 2014 1.Consderate l seguente grafco: LM Partà de tass d nteresse LM B A IS IS Y E E E Immagnate

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

Il valore dei titoli azionari. a) DCF Model con TV. I metodi finanziari. I flussi di cassa. Flussidi cassa t

Il valore dei titoli azionari. a) DCF Model con TV. I metodi finanziari. I flussi di cassa. Flussidi cassa t Il valore de ol azoar IL VALORE DEI TITOLI AZIONARI: meod azar Soo possbl dvers approcc: approcco basao su luss d rsulao: meod azar, redduale e del valore (exra pro); approcco d mercao: meodo de mulpl

Dettagli

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni:

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni: Anals ammortzzata Anals ammortzzata S consdera l tempo rchesto per esegure, nel caso pessmo, una ntera sequenza d operazon. Se le operazon costose sono relatvamente meno frequent allora l costo rchesto

Dettagli

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere DIPRTIMENTO DI SCIENZE POLITICHE Modello di Solow (1) 1 a. a. 2015-2016 ppuni dalle lezioni. Uso riservao Maurizio Zenezini Consideriamo un economia (chiusa e senza inerveno dello sao) in cui viene prodoo

Dettagli

Processi periodici. Capitolo 2. 2.1 Modello. 2.1.1 Simboli. 2.1.2 Grafico dei processi. {τ 1,...,τ n } processi periodici

Processi periodici. Capitolo 2. 2.1 Modello. 2.1.1 Simboli. 2.1.2 Grafico dei processi. {τ 1,...,τ n } processi periodici 3 Capolo 2 Process perodc 2. Modello 2.. Smbol {,...,τ n } process perodc τ,k sanza k-esma del processo φ fase d un processo (prmo empo d avazone) T perodo del processo r,k = φ +(k ) T k-esma avazone D

Dettagli

TECNICHE DI PROGRAMMAZIONE

TECNICHE DI PROGRAMMAZIONE TECNICHE DI PROGRAMMAZIONE IPOTESI SOTTOSTANTE: TECNICHE LINEARI (COEFFICIENTI FISSI DI PRODUZIONE) PREVISIONI (vendte, prezz de ben e de fattor) medante tecnche estrapolatve, econometrche e d mercato

Dettagli

MATEMATICA FINANZIARIA 1 ECONOMIA AZIENDALE. Cognome... Nome Matricola..

MATEMATICA FINANZIARIA 1 ECONOMIA AZIENDALE. Cognome... Nome Matricola.. MATEMATICA FINANZIARIA PROVA SCRITTA DEL 0 FEBBRAIO 009 ECONOMIA AZIENDALE Cognome... Nome Matrcola.. ESERCIZIO Un ndduo ha ogg a dsposzone una somma S0.000 che ha accumulato negl ultm ann tramte l ersamento

Dettagli

Mauro Vettorello. Vi veneto. come Calcolare la Rata di un Finanziamento o di un Leasing senza calcolatrice STUDIO VETTORELLO

Mauro Vettorello. Vi veneto. come Calcolare la Rata di un Finanziamento o di un Leasing senza calcolatrice STUDIO VETTORELLO Mauro Vettorello V veneto come Calcolare la Rata d un Fnanzamento o d un Leasng senza calcolatrce STUDIO VETTORELLO V veneto come Calcolare la Rata d un Fnanzamento o d un Leasng senza calcolatrce Mauro

Dettagli

Attualizzazione. Attualizzazione

Attualizzazione. Attualizzazione Attualzzazoe Il problema erso alla captalzzazoe prede l ome d attualzzazoe Abbamo ua operazoe fazara elemetare e dato l motate M dobbamo determare l corrspodete captale zale C L'attualzzazoe è la operazoe

Dettagli

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz LEZIONE e 3 La teora della selezone d portafoglo d Markowtz Unverstà degl Stud d Bergamo Premessa Unverstà degl Stud d Bergamo Premessa () È puttosto frequente osservare come gl nvesttor tendano a non

Dettagli

MODULO 1 GLI AMPLIFICATORI OPERAZIONALI

MODULO 1 GLI AMPLIFICATORI OPERAZIONALI MODULO GL AMPLFCATO OPEAZONAL. PAAMET CAATTESTC D UN AMPLFCATOE OPEAZONALE Per la corretta utlzzazone un A.O. reale bsogna nterpretare at caratterstc fornt al costruttore e conoscere termn pù comunemente

Dettagli

MACROECONOMIA A.A. 2014/2015

MACROECONOMIA A.A. 2014/2015 MACROECONOMIA A.A. 2014/2015 ESERCITAZIONE 2 MERCATO MONETARIO E MODELLO /LM ESERCIZIO 1 A) Un economa sta attraversando un perodo d profonda crs economca. Le banche decdono d aumentare la quota d depost

Dettagli

flusso in uscita (FU) Impresa flusso in entrata (FE)

flusso in uscita (FU) Impresa flusso in entrata (FE) Analisi degli invesimeni Il bilancio è una sinesi a poseriori della siuazione di un'azienda. La valuazione degli invesimeni è un enaivo di valuare a priori la validià delle scele dell'azienda. L'invesimeno

Dettagli

Convertitore DC-DC Flyback

Convertitore DC-DC Flyback Conerore C-C Flyback era al buck-boos e al poso ell nuore c è un rasforaore n ala frequenza: Fgura : schea prncpo el flyback conerer Prncpo funzonaeno: TO: la correne ene a enrare al pallno superore el

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

UNIVERSITA DEGLI STUDI DI FIRENZE. Facoltà di Ingegneria Corso di Laurea in Ingegneria Informatica! "#$

UNIVERSITA DEGLI STUDI DI FIRENZE. Facoltà di Ingegneria Corso di Laurea in Ingegneria Informatica! #$ UNIVERITA DEGLI TUDI DI FIRENZE Facolà d Ingegnera Corso d Laurea n Ingegnera Informaca! "#$ ##%& ' ommaro OMMARIO... 1 INTRODUZIONE... 2 1.1 I DATI BIOLOGICI COME EQUENZE DI IMBOLI... 3 1.1.1 Qualà delle

Dettagli

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti)

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti) MATEMATICA FINANZIARIA A.A. 007 008 Prova dell 8 febbraio 008 Nome Cognome Maricola Esercizio (6 puni) La vendia raeale di un bene di valore 000 prevede il pagameno di rae mensili posicipae cosani calcolae

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 lezione 22: 30 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 lezione 22: 30 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 22: 30 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/27? Eserczo Dmostrare che l equazone della frontera

Dettagli

SCELTE INTERTEMPORALI E DEBITO PUBBLICO

SCELTE INTERTEMPORALI E DEBITO PUBBLICO SCELTE INTERTEMPORALI E DEBITO PUBBLICO Lo sudio delle poliiche economiche con il modello IS-LM permee di analizzare gli effei di breve periodo delle decisioni di poliica fiscale e monearia del governo.

Dettagli

POLITECNICO DI BARI - DICATECh Corso di Laurea in Ingegneria Ambientale e del Territorio IDRAULICA AMBIENTALE - A.A. 2015/2016 ESONERO 15/01/2016

POLITECNICO DI BARI - DICATECh Corso di Laurea in Ingegneria Ambientale e del Territorio IDRAULICA AMBIENTALE - A.A. 2015/2016 ESONERO 15/01/2016 POLITECNICO DI BARI - DICATECh Corso d Laurea n Ingegnera Ambentale e del Terrtoro IDRAULICA AMBIENTALE - A.A. 015/016 ESONERO 15/01/016 ESERCIZIO 1 S consder la rete aperta n fgura, nella quale le portate

Dettagli

Newsletter "Lean Production" Autore: Dott. Silvio Marzo

Newsletter Lean Production Autore: Dott. Silvio Marzo Il concetto d "Produzone Snella" (Lean Producton) s sta rapdamente mponendo come uno degl strument pù modern ed effcac per garantre alle azende la flessbltà e la compettvtà che l moderno mercato rchede.

Dettagli

Lezione n.12. Gerarchia di memoria

Lezione n.12. Gerarchia di memoria Lezione n.2 Gerarchia di memoria Sommario: Conceo di gerarchia Principio di localià Definizione di hi raio e miss raio La gerarchia di memoria Il sisema di memoria è molo criico per le presazioni del calcolaore.

Dettagli

Teoria delle opzioni e Prodotti strutturati

Teoria delle opzioni e Prodotti strutturati L FIME a.a. 8-9 9 eoria elle opzioni e Prooi sruurai Giorgio onsigli giorgio.consigli@unibg.i Uff 58 ricevimeno merc:.-3. Programma. Mercao elle opzioni e conrai erivai. eoria elle opzioni 3. ecniche i

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

5. Il lavoro di un gas perfetto

5. Il lavoro di un gas perfetto 5. Il lavoro d un gas perfetto ome s esprme l energa nterna d un gas perfetto? Un gas perfetto è l sstema pù semplce che possamo mmagnare: le nterazon a dstanza fra le molecole sono così debol da essere

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Condensatori e resistenze

Condensatori e resistenze Condensator e resstenze Lucano attaa Versone del 22 febbrao 2007 Indce In questa nota presento uno schema replogatvo relatvo a condensator e alle resstenze, con partcolare rguardo a collegament n sere

Dettagli

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo)

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo) V A = AMPIEZZA = lunghezza di V A ALTERNATA Proiezione di V X ISTANTE = velocià angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un inervallo di empo) DEVE ESSERE COSTANTE Angolo

Dettagli

DAL DATO ALL INFORMAZIONE GESTIONALE

DAL DATO ALL INFORMAZIONE GESTIONALE DAL DATO ALL INFORMAZIONE GESTIONALE Srumen sasc per supporare ssem d conrollo d gesone e d comuncazone negraa Ducco Sefano Gazze Con l conrbuo d: Gan Pero Cervellera e Gann Be 1 Inroduzone... 4 Capolo

Dettagli

Prova di verifica n.0 Elettronica I (26/2/2015)

Prova di verifica n.0 Elettronica I (26/2/2015) Proa d erfca n.0 lettronca I (26/2/2015) OUT he hfe + L OUT - Fgura 1 Con rfermento alla rete elettrca d Fg.1, determnare: OUT / OUT / la resstenza sta dal generatore ( V ) la resstenza sta dall uscta

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

Manutenibilità e Disponibilità

Manutenibilità e Disponibilità produzone servaa ffdablà, Manuenblà e Dsponblà Sefano Ierace Obev Ulzzo dell anals d affdablà come srumeno predvo d comporameno d un ssema Valuazone requs d funzonameno d un componene Confrono d alernave

Dettagli

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1 APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone

Dettagli

La retroazione negli amplificatori

La retroazione negli amplificatori La retroazone negl amplfcator P etroazonare un amplfcatore () sgnfca sottrarre (o sommare) al segnale d ngresso (S ) l segnale d retroazone (S r ) ottenuto dal segnale d uscta (S u ) medante un quadrpolo

Dettagli

V AK. Fig.1 Caratteristica del Diodo

V AK. Fig.1 Caratteristica del Diodo 1 Raddrizzaore - Generalià I circuii raddrizzaori uilizzano componeni come i Diodi che presenano la caraerisica di unidirezionalià, cioè permeono il passaggio della correne solo in un verso. In figura

Dettagli

I RENDIMENTI LE SERIE STORICHE FINANZIARIE

I RENDIMENTI LE SERIE STORICHE FINANZIARIE I EDIMETI LE SEIE STOICHE FIAZIAIE Aivià finanziarie Azioni es. Capialia, Mediase,... Tioli di sao BOT, BT, Tassi di cambio Euro/Dollaro, Euro/Serlina, Indici di Borsa S&/MIB, CAC4, ETF Tassi di ineresse

Dettagli

Distribuzione Weibull

Distribuzione Weibull Disribuzione Weibull f() 6.6.4...8.6.4. 5 5 5 3 Disribuzione di Weibull Una variabile T ha disribuzione di Weibull di parameri α> β> se la sua densià di probabilià è scria nella forma: f ( ) exp da cui

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

Esercitazioni del corso: STATISTICA

Esercitazioni del corso: STATISTICA A. A. 0-0 Eserctazon del corso: STATISTICA Sommaro Eserctazone : Moda Medana Meda Artmetca Varabltà: Varanza, Devazone Standard, Coefcente d Varazone ESERCIZIO : UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA

Dettagli

Appunti del Corso di. Costruzioni In Zona Sismica. Prof. Ing. Camillo Nuti. Università Degli Studi Roma Tre

Appunti del Corso di. Costruzioni In Zona Sismica. Prof. Ing. Camillo Nuti. Università Degli Studi Roma Tre Prof. Camllo Nu Dspense d Cosruzon n Zona Ssmca 7 Appun del Corso d Cosruzon In Zona Ssmca Prof. Ing. Camllo Nu Unversà Degl Sud Roma Tre Prof. Camllo Nu Dspense d Cosruzon n Zona Ssmca 7 RISPOSTA DINAMICA

Dettagli

Fig.1.2.1 Schema a blocchi di un PMSM isotropo con ingressi ed uscite del controllo digitale.

Fig.1.2.1 Schema a blocchi di un PMSM isotropo con ingressi ed uscite del controllo digitale. . ll metodo del fattore d scala globale Il progetto d un sstema d controllo dgtale può avvalers del cosddetto metodo del fattore d scala globale (FSG), attraverso l quale è possble stablre una corrspondenza

Dettagli

CARATTERISTICHE DELLE POMPE

CARATTERISTICHE DELLE POMPE CARATTERISTICHE DELLE OME La pompa rappresena l elemeno pù complesso e pù mporane d un crcuo draulco perché ha l compo d rasferre l fludo draulco e realzzare l flusso d poraa che permee la conversone dell

Dettagli

Previsione della domanda - contenuti di base -

Previsione della domanda - contenuti di base - Prevsoe della domada - coeu d base - Prof. Rccardo Mello rccardo.mello@umore. Uversà d Modea ad Reggo Emla Dparmeo d Igegera Ezo Ferrar va Vgolese 905, 400, Modea - Iala Gruppo d Rcerca: Impa Idusral Ig.

Dettagli

4 La riserva matematica

4 La riserva matematica 4 La riserva maemaica 4.1 Inroduzione La polizza, come si è viso, viene cosruia in modo da essere in equilibrio auariale alla daa di sipula = 0 e rispeo alla base ecnica del I ordine: se X è il flusso

Dettagli

Calcolo della caduta di tensione con il metodo vettoriale

Calcolo della caduta di tensione con il metodo vettoriale Calcolo della caduta d tensone con l metodo vettorale Esempo d rete squlbrata ed effett del neutro nel calcolo. In Ampère le cadute d tensone sono calcolate vettoralmente. Per ogn utenza s calcola la caduta

Dettagli

Lezione n.7. Variabili di stato

Lezione n.7. Variabili di stato Lezione n.7 Variabili di sao 1. Variabili di sao 2. Funzione impulsiva di Dirac 3. Generaori impulsivi per variabili di sao disconinue 3.1 ondizioni iniziali e generaori impulsivi In quesa lezione inrodurremo

Dettagli

I COMPONENTI DEGLI IMPIANTI TERMICI 2 parte

I COMPONENTI DEGLI IMPIANTI TERMICI 2 parte I comonen degl man ermc II.8 I COMPONENTI DEGLI IMPIANTI TERMICI are II. Generalà sulle macchne a fludo Per "macchna" s nende normalmene un ssema comao d organ (fss e mobl) n grado d effeuare una rasformazone

Dettagli

Strutture deformabili torsionalmente: analisi in FaTA-E

Strutture deformabili torsionalmente: analisi in FaTA-E Strutture deformabl torsonalmente: anals n FaTA-E Il comportamento dsspatvo deale è negatvamente nfluenzato nel caso d strutture deformabl torsonalmente. Nelle Norme Tecnche cò vene consderato rducendo

Dettagli

CONSIGLIO NAZIONALE DEGLI INGEGNERI

CONSIGLIO NAZIONALE DEGLI INGEGNERI " ',, C", -, 'ra L," ' CONSGLO NAZONALE DEGL NGEGNER PRESSO L MNSTERO DELLA GUSTZA - 00186 ROMA - VA ARENULA, 71 PRESDENZA E SEGRETERA 00187 ROMA - VA V NOVEMBRE, 114 TEL. 06.6976701 r.a. - FAX 06.69767048

Dettagli

Soluzione esercizio Mountbatten

Soluzione esercizio Mountbatten Soluzone eserczo Mountbatten I dat fornt nel testo fanno desumere che la Mountbatten utlzz un sstema d Actvty Based Costng. 1. Calcolo del costo peno ndustrale de tre prodott Per calcolare l costo peno

Dettagli

EH SmartView. Una SmartView sui rischi e sulle opportunità. Servizio di monitoraggio dell assicurazione del credito. www.eulerhermes.

EH SmartView. Una SmartView sui rischi e sulle opportunità. Servizio di monitoraggio dell assicurazione del credito. www.eulerhermes. EH SmartVew Servz Onlne d Euler Hermes Una SmartVew su rsch e sulle opportuntà Servzo d montoraggo dell asscurazone del credto www.eulerhermes.t Cos è EH SmartVew? EH SmartVew è l servzo d Euler Hermes

Dettagli

Lezione n.13. Regime sinusoidale

Lezione n.13. Regime sinusoidale Lezone 3 Regme snusodale Lezone n.3 Regme snusodale. Rcham sulle funzon snusodal. etodo de fasor e fasor. mpedenza ed ammettenza. Dagramm fasoral 3. Potenza n regme snusodale 3. Potenza attva e reattva

Dettagli

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007 Fondament d Vsone Artfcale (Seconda Parte PhD. Ing. Mchele Folgherater Corso d Robotca Prof.ssa Guseppna Gn Anno Acc.. 006/007 Caso Bdmensonale el caso bdmensonale, per ndvduare punt d contorno degl oggett

Dettagli

REGIMI FINANZIARI USUALI: Interessi semplici Interessi composti Interessi anticipati. Giulio Diale

REGIMI FINANZIARI USUALI: Interessi semplici Interessi composti Interessi anticipati. Giulio Diale REGIMI FINANZIARI USUALI: Ineressi seplici Ineressi coposi Ineressi anicipai Giulio Diale INTERESSI SEMPLICI I C L ineresse è proporzionale al capiale e alla duraa dell ipiego I = C i Denoinazioni di i:

Dettagli

TEST D INGRESSO MATEMATICA 24/05/2011

TEST D INGRESSO MATEMATICA 24/05/2011 TEST D INGRESSO MATEMATICA // COGNOME NOME ISTITUTO COMPRENSIVO/SCUOLA MEDIA CITTA Legg attentamente. ISTRUZIONI PER LA COMPILAZIONE DEL QUESTIONARIO Inza a lavorare solo quando te lo drà l nsegnante e

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Universià di Napoli Parenope Facolà di Ingegneria Corso di Comunicazioni Elerice docene: Prof. Vio Pascazio a Lezione: 7/04/003 Sommario Caraerizzazione energeica di processi aleaori Processi aleaori nel

Dettagli

Esercitazione n 2. Morganti Nicola Matr. 642686. Molla ad elica cicilindrica

Esercitazione n 2. Morganti Nicola Matr. 642686. Molla ad elica cicilindrica ar. 64686 olla ad elica cicilindrica Eserciazione n 9 In figura è rappresenao un basameno sospeso anivibrane di una macchina nella quale viene originaa una forza perurbane alernaa sinusoidale di inensià

Dettagli

Induzione elettromagnetica

Induzione elettromagnetica Induzone elettromagnetca L esperenza d Faraday L'effetto d produzone d corrente elettrca n un crcuto prvo d generatore d tensone fu scoperto dal fsco nglese Mchael Faraday nel 83. Egl studò la relazone

Dettagli