Segnali passa-banda ed equivalenti passa-basso

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Segnali passa-banda ed equivalenti passa-basso"

Transcript

1 Appendice C Segnali passa-banda ed equivalenti passa-basso C.1 Segnali deterministici Un segnale deterministico u(t) con trasformata di Fourier U(f) è un segnale passa-banda se f 0, W, con 0 < W < f 0, t.c. f R : f f 0 W U(f) = 0. (C.1) Se, in aggiunta, è verificata la condizione f 0 W, il segnale u(t) è detto a banda stretta. La definizione di segnale passa-banda appena introdotta si estende facilmente ad un sistema LTI, infatti, un sistema LTI con risposta impulsiva h(t) è detto essere un sistema LTI passa-banda se la sua risposta in frequenza H(f) è un segnale passa-banda. Esempio C.1.1. sinusoidale Un primo esempio di segnale passa-banda è dato dal segnale u(t) = A cos(2πf 0 t + θ), a cui corrisponde una trasformata di Fourier pari a U(f) = A 2 [ ] e jθ δ(f f 0 ) + e jθ δ(f + f 0 ) ; in questo caso, la trasformata di Fourier del segnale è formata da due impulsi di Dirac, ovvero due righe, e, quindi, la larghezza di banda è nulla. Esempio C.1.2. Un segnale DSB-SC AM, ottenuto dalla modulazione di un segnale deterministico m(t), rigorosamente limitato nella banda [ B, B], è un 105

2 106APPENDICE C. SEGNALI PASSA-BANDA ED EQUIVALENTI PASSA-BASSO secondo esempio di segnale passa-banda se f c > B. Infatti, dall espressione del segnale nel dominio del tempo u(t) = A c m(t) cos(2πf c t + φ c ), t R, (C.2) si ricava immediatamente la sua trasformata di Fourier U(f), i.e. U(f) = A c 2 [ ] e jφc M(f f c ) + e jφc M(f + f c ) dove M(f) denota la trasformata di Fourier di m(t). Il segnale u(t) è quindi passa-banda come risulta evidente ponendo f 0 = f c e W = B nella definizione (C.1). Dato un segnale passa-banda e reale si definisce segnale analitico ad esso associato, e si indica con z u (t), il segnale in uscita ad un filtro LTI con risposta in frequenza H(f) = 2δ 1 (f), dove δ 1 (f) è la funzione gradino unitario, sollecitato da u(t). Quindi l operazione che permette di passare dal segnale passa-banda u(t) al corrispondente segnale analitico z u (t) consiste nell eliminare i contributi nella Trasformata di Fourier di u(t) alle frequenze negative e nel moltiplicare per due quelli alle frequenze positive, i.e. Z u (f) 2δ 1 (f)u(f), dove U(f) e Z u (f) denotano, rispettivamente, le Trasformate di Fourier di u(t) e z u (t). La risposta impulsiva del filtro che permette di estrarre il segnale analitico z u (t) dal segnale passa-banda u(t) può essere calcolata come segue [3] h(t) = F 1 {H(f)} = F 1 {2δ 1 (f)} = F 1 {1 + sgn(f)} = δ(t) + j πt, (C.3) dove sgn(f) denota la funzione segno. Pertanto, l espressione del segnale analitico nel dominio del tempo è dove il segnale z u (t) = [h u](t) = u(t) + j û(t), û(t) 1 πt u(t) = + u(θ) t θ dθ, è, per definizione, la Trasformata di Hilbert del segnale u(t). Si noti che il sistema che consente di passare dal segnale u(t) alla sua Trasformata di Hilbert û(t) ha risposta in frequenza data da H(f) = jsgn(f),

3 C.1. SEGNALI DETERMINISTICI 107 e non è né BIBO stabile né causale. Infine, l equazione (C.3) suggerisce che è possibile estrarre il segnale passabanda u(t) dal segnale analitico z u (t) tramite la relazione u(t) = R {z u (t)}. La precedente relazione non caratterizza il segnale analitico con ciò intendendo che un segnale che soddisfa alla precedente relazione non è necessariamente il segnale analitico associato ad u(t). Vale, invece, il seguente risultato di facile dimostrazione. Teorema C.1.1 Sia u(t) un segnale passa-banda reale e z(t) un segnale (a valori complessi) la cui parte reale coincida con u(t) e la cui Trasformata di Fourier sia identicamente nulla per frequenze negative. Allora z(t) = z u (t), ovvero z(t) è il segnale analitico associato ad u(t). Si definisce inviluppo complesso o equivalente in banda base del segnale passa-banda u(t), e lo si denota con ũ(t), il seguente segnale ũ(t) z u (t)e j2πf 0t, (C.4) a cui corrisponde la Trasformata di Fourier Ũ(f) = Z u (f + f 0 ) = 2δ 1 (f + f 0 )U(f + f 0 ). Si osservi che ũ(t) è, in generale, un segnale complesso di tipo passa-basso e che la sua trasformata di Fourier coincide con la parte positiva dello spettro di u(t) traslata dall intorno della frequenza f 0 all intorno della frequenza zero. Combinando insieme le precedenti relazioni è possibile ricavare il legame tra il segnale u(t) ed il suo inviluppo complesso { } u(t) = R ũ(t) e j2πf 0t, (C.5) ũ(t) = [u(t) + j û(t)] e j2πf 0t. (C.6) Esempio C.1.1: continuazione. ha Trasformata di Fourier data da Il segnale analitico associato al segnale u(t) Z u (f) = Ae jθ δ(f f 0 ). Inoltre, è possibile scegliere come inviluppo complesso del segnale u(t) il segnale ũ(t) = Ae jθ,

4 108APPENDICE C. SEGNALI PASSA-BANDA ED EQUIVALENTI PASSA-BASSO la cui trasformata di Fourier è data da Ũ(f) F[ũ(t)] = Ae jθ δ(f). Quindi il segnale analitico e l inviluppo complesso di un segnale sinusoidale coincidono, rispettivamente, con le definizioni di vettore rotante, i.e. z u (t) = Ae j(2πf 0t+θ), e di fasore introdotte in Teoria dei Circuiti [4]. Dal fatto che la parte immaginaria del segnale analitico è la Trasformata di Hilbert di u(t), segue che la trasformata di Hilbert del segnale cosinusoidale è il segnale sinusoidale, i.e. û(t) = A sin(2πf 0 t + θ). Esempio C.1.2: continuazione. Il segnale analitico associato ad un segnale DSB-SC AM ha la seguente Trasformata di Fourier quindi, esso è dato da Inoltre, ponendo f 0 = f c si ottiene Z u (f) = A c e jφc M(f f c ); z u (t) = A c e jφc m(t)e j2πfct. Ũ(f) = Ae jφc M(f). Quindi, come era naturale aspettarsi, l inviluppo complesso del segnale passabanda (C.2) è proporzionale al segnale modulante m(t). Poiché, come appena accennato, l inviluppo complesso ũ(t) è un segnale complesso, può essere utile rappresentarlo in termini della sua parte reale u c (t) e della sua parte immaginaria u s (t), ovvero nella forma ũ(t) u c (t) + j u s (t); i segnali u c (t) e u s (t) sono denominati, rispettivamente, componente in fase (o componente in coseno) e componente in quadratura (o componente in seno) del segnale passa-banda; infatti, con facili passaggi algebrici, si può dimostrare che valgono le seguenti relazioni u(t) = u c (t) cos(2πf 0 t) u s (t) sin(2πf 0 t), u c (t) = u(t) cos(2πf 0 t) + û(t) sin(2πf 0 t), u s (t) = û(t) cos(2πf 0 t) u(t) sin(2πf 0 t).

5 C.2. SEGNALI ALEATORI 109 Analogamente, si può rappresentare ũ(t) in termini di modulo e fase ũ(t) v u (t)e jφu(t), dove i segnali v u (t) e φ u (t) sono detti, rispettivamente inviluppo reale e fase di ũ(t) e sono definiti come segue v u (t) u 2 c(t) + u 2 s(t) φ u (t) = arctg [ ] us (t) u c (t) dove l arcotangente va intesa come riportato in [3]. Utilizzando la (C.5) si può, infine, ricavare u(t) = v u (t) cos [2πf o t + φ u (t)], che evidenzia come un generico segnale passa-banda possa essere pensato come una sorta di generalizzazione di un segnale sinusoidale. Esempio C.1.3. Mostrare che il segnale u(t), ottenuto a partire dal segnale modulante m(t) deterministico, con Trasformata di Fourier M(f), attraverso la modulazione della portante in SSB-SC AM è dato da p(t) = A c cos(2πf c t) u(t) = m(t) cos(2πf c t) ± m(t) sin(2πf c t), dove il segno positivo si riferisce alla LSSB mentre quello negativo alla USSB. C.2 Segnali aleatori La definizione di processo aleatorio a banda stretta è analoga a quella data per i segnali deterministici a patto di sostiuire la Trasformata di Fourier del segnale con la sua PSD. Analogamente si estendono le definizioni di segnale analitico ed inviluppo complesso di un segnale aleatorio passa-banda e reale; ad esempio, il segnale analitico associato al segnale aleatorio u(t) ha come realizzazioni i segnali analitici associati alle realizzazioni di u(t). È inoltre evidente che la PSD del segnale analitico z u (t) è data da S zu (f) = 4δ 1 (f)s u (f).

6 110APPENDICE C. SEGNALI PASSA-BANDA ED EQUIVALENTI PASSA-BASSO Inoltre, la funzione di autocorrelazione in tempo-ritardo dell inviluppo complesso ũ(t) si calcola immediatamente a partire dalla equazione (C.4), ed è data da Rũ(t, τ) = E[ũ(t)ũ (t τ)] = E[z u (t)e j2πf 0t z u(t τ)e j2πf 0(t τ) ] = E[z u (t)z u(t τ)]e j2πf 0τ = R zu (t, τ)e j2πf 0τ. Quindi, l autocorrelazione media dell inviluppo complesso del segnale u(t) è data da Rũ(τ) = R zu (τ)e j2πf 0τ, e, di conseguenza, la PSD di ũ(t) è Sũ(f) = S zu (f + f 0 ) = 4δ 1 (f + f 0 )S u (f + f 0 ). La precedente relazione, tenuto conto del fatto che u(t) è un segnale reale e, quindi, la sua PSD è pari, consente di dimostrare con facili passaggi il seguente risultato notevole. Teorema C.2.1 La PSD del segnale (aleatorio) passa-banda reale u(t) è data da S u (f) = 1 4 [S ũ(f f 0 ) + Sũ( f f 0 )] dove Sũ(f) è la PSD del corrispondente inviluppo complesso. Il precedente teorema può essere utilizzato per calcolare la PSD di un segnale aleatorio passa-banda a patto di conoscere la PSD del corrispondente inviluppo complesso. A tal fine può essere necessario determinare preliminarmente il segnale analitico associato ad u(t) e, a partire da questo, l inviluppo complesso. È, quindi, importante evidenziare che per i segnali aleatori vale, con le ovvie modifiche del caso, la caratterizzazione del segnale analitico fornita con riferimento ai segnali deterministici, ovvero il Teorema 1.1. L esempio che segue illustra l utilizzo di tale caratterizzazione con riferimento ai segnali aleatori. Mostrare che l inviluppo complesso del segnale PAM in banda- Esempio C.2.1. passante u(t) = = R + { + c k 2g(t kt ) cos(2πfc t) } c k 2g(t kt )e j2πf ct, (C.7)

7 C.2. SEGNALI ALEATORI 111 è dato da ũ(t) = + c k 2g(t kt ) (C.8) se g(t) è un segnale di energia con trasformata di Fourier G(f) rigorosamente limitata nella banda [ B, B] ed f c > B. Mostrare, inoltre, che la (C.8) è un uguaglianza approssimata anche quando g(t) è un impulso rettangolare di durata T se f c 1/T. Dimostrazione. È sufficiente dimostrare che il segnale z(t) + c k 2g(t kt )e j2πf ct, ha una PSD nulla per f < 0. A tal fine si osservi che il segnale x(t) = z(t)e j2πfct = + c k 2g(t kt ) ha una PSD rigorosamente limitata in [ B, B]; infatti, la PSD di x(t) è data da S x (f) = 2 T S c(ft ) G(f) 2 ed è quindi limitata dalla ESD (dall inglese Energy Spectral Density) del segnale g(t). Inoltre, la funzione di autocorrelazione statistica in tempo-ritardo di z(t) è R z (t, τ) = E[z(t)z (t τ)] = E[x(t)e j2πfct x (t τ)e j2πfc(t τ) ] = R x (t, τ)e j2πfcτ ; di conseguenza, le autocorrelazioni medie di z(t) ed x(t) sono legate dalla relazione R z (τ) = R x (τ)e j2πfcτ, da cui si evince che la PSD di z(t) è data da S z (f) = S x (f f c ) e risulta evidentemente nulla per f < 0 se f c > B. Ovviamente tale conclusione continua a valere in modo approssimato se g(t) non è rigorosamente limitato nella banda [ B, B], ma è un impulso rettangolare di durata T ed f c 1/T. Se si considera un processo aleatorio passa-banda n(t) almeno SSL è facile dimostrare che sia il segnale analitico z n (t) che l inviluppo complesso ñ(t) ad esso associati sono almeno SSL. Infatti, il segnale analitico è l uscita di un filtro LTI sollecitato da un segnale almeno SSL. Per quanto riguarda l inviluppo complesso la dimostrazione necessiterebbe di calcolare la funzione di autocorrelazione statistica in tempo-ritardo di ñ(t) in termini di quella del corrispondente segnale analitico z n (t), ma su questo non ci si sofferma. Inoltre, se n(t) è a media nulla anche i processi derivati ñ(t), z n (t), n c (t), n s (t) hanno media nulla. Vale, inoltre, il seguente teorema per la cui dimostrazione si rimanda a [5].

8 112APPENDICE C. SEGNALI PASSA-BANDA ED EQUIVALENTI PASSA-BASSO Teorema C.2.2 Sia n(t) un processo aleatorio passa-banda almeno SSL e con media nulla. La componente in fase n c (t) e la componente in quadratura n s (t) sono congiuntamente SSL; inoltre n c (t) ed n s (t) hanno la stessa funzione di autocorrelazione media, i.e. R nc (τ) = R ns (τ); la funzione di mutua correlazione tra n c (t) e n s (t) e quella tra n s (t) e n c (t) sono l una l opposta dell altra R ncn s (τ) = R nsn c (τ); la funzione di autocorrelazione dell inviluppo complesso ñ(t) è data da Rñ(τ) = 2 [R nc (τ) + jr nsn c (τ)]. Inoltre, R nsn c (τ) = 0 (come è facile verificare tenuto conto del fatto che la potenza dell invilupo complesso deve essere reale) e, quindi, la potenza di ñ(t) è pari a due volte la potenza della componente in fase (quadratura), ovvero a due volte quella di n(t), i.e. E[ ñ(t) 2 ] = 2E[n c (t) 2 ] = 2E[n s (t) 2 ] = 2E[n(t) 2 ]. Infine, se la PSD di n(t) è simmetrica intorno a ±f 0, i.e. S n ( f + f 0 ) = S n (f + f 0 ), f f 0, l autocorrelazione di ñ(t) è una funzione reale; di conseguenza, n c (t) e n s (t) sono incoerenti, ovvero R ncn s (τ) = 0, τ, e, quindi, vale la seguente relazione di additività tra le PSD di ñ(t), n c (t) ed n s (t) Sñ(f) = 2S nc (f) = 2S nc (f). È anche evidente che se n(t) è un processo aleatorio gaussiano, ñ(t), z n (t), n c (t) ed n s (t) sono processi gaussiani. In particolare, n c (t) ed n s (t) sono congiuntamente gaussiani. Esempio C.2.2. Utilizzando il precedente teorema determinare le espressioni delle PSD di n c (t), n s (t) e ñ(t) nell ipotesi che n(t) sia rumore bianco nella banda [ f c W, f c + W ] [f c W, f c + W ] ovvero ottenuto dal filtraggio di un rumore gaussiano bianco con PSD di livello pari a N 0 /2 attraverso un filtro rettangolare con risposta in frequenza ( ) ( ) f + fc f fc H(f) = Π 2W + Π 2W.

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

v in v out x c1 (t) Molt. di N.L. H(f) n

v in v out x c1 (t) Molt. di N.L. H(f) n Comunicazioni elettriche A - Prof. Giulio Colavolpe Compito n. 3 3.1 Lo schema di Fig. 1 è un modulatore FM (a banda larga). L oscillatore che genera la portante per il modulatore FM e per la conversione

Dettagli

Laboratorio di Elettrotecnica

Laboratorio di Elettrotecnica 1 Laboratorio di Elettrotecnica Rappresentazione armonica dei Segnali Prof. Pietro Burrascano - Università degli Studi di Perugia Polo Scientifico Didattico di Terni 2 SEGNALI: ANDAMENTI ( NEL TEMPO, NELLO

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

SVILUPPO IN SERIE DI FOURIER

SVILUPPO IN SERIE DI FOURIER SVILUPPO IN SERIE DI FOURIER Cenni Storici (Wikipedia) Jean Baptiste Joseph Fourier ( nato a Auxerre il 21 marzo 1768 e morto a Parigi il 16 maggio 1830 ) è stato un matematico e fisico, ma è conosciuto

Dettagli

ANALISI DI SEGNALI BIOLOGICI

ANALISI DI SEGNALI BIOLOGICI ANALISI DI SEGNALI BIOLOGICI A.Accardo accardo@units.it LM Neuroscienze A.A. 2010-11 Parte II 1 Analisi in frequenza di un segnale l analisi in frequenza di un segnale o analisi di Fourier descrive il

Dettagli

GRANDEZZE ALTERNATE SINUSOIDALI

GRANDEZZE ALTERNATE SINUSOIDALI GRANDEZZE ALTERNATE SINUSOIDALI 1 Nel campo elettrotecnico-elettronico, per indicare una qualsiasi grandezza elettrica si usa molto spesso il termine di segnale. L insieme dei valori istantanei assunti

Dettagli

Analisi dei sistemi nel dominio del tempo

Analisi dei sistemi nel dominio del tempo Appunti di Teoria dei Segnali a.a. 010/011 L.Verdoliva In questa sezione studieremo i sistemi tempo continuo e tempo discreto nel dominio del tempo. Li classificheremo in base alle loro proprietà e focalizzeremo

Dettagli

Corso di Matematica finanziaria

Corso di Matematica finanziaria Corso di Matematica finanziaria modulo "Fondamenti della valutazione finanziaria" Eserciziario di Matematica finanziaria Università degli studi Roma Tre 2 Esercizi dal corso di Matematica finanziaria,

Dettagli

ELABORAZIONE DEL VALORE MEDIO NELLE MISURE ELETTRONICHE

ELABORAZIONE DEL VALORE MEDIO NELLE MISURE ELETTRONICHE NOTE PER IL TECNICO ELABORAZIONE DEL VALORE MEDIO NELLE MISURE ELETTRONICHE da BRUEL & KJAER Le cosiddette «application notes» pubblicate a cura della Bruel & Kjaer, nota Fabbrica danese specializzata

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Forma d onda rettangolare non alternativa.

Forma d onda rettangolare non alternativa. Forma d onda rettangolare non alternativa. Lo studio della forma d onda rettangolare è utile, perché consente di conoscere il contenuto armonico di un segnale digitale. FIGURA 33 Forma d onda rettangolare.

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante Circuiti Elettrici Schema riassuntivo Leggi fondamentali dei circuiti elettrici lineari Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante La conseguenza

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Risposte canoniche e sistemi elementari Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

Metodi e Strumenti per la Caratterizzazione e la Diagnostica di Trasmettitori Digitali RF ing. Gianfranco Miele g.miele@unicas.it

Metodi e Strumenti per la Caratterizzazione e la Diagnostica di Trasmettitori Digitali RF ing. Gianfranco Miele g.miele@unicas.it Corso di laurea magistrale in Ingegneria delle Telecomunicazioni Metodi e Strumenti per la Caratterizzazione e la Diagnostica di Trasmettitori Digitali RF ing. Gianfranco Miele g.miele@unicas.it Trasmettitore

Dettagli

Analisi in regime sinusoidale (parte V)

Analisi in regime sinusoidale (parte V) Appunti di Elettrotecnica Analisi in regime sinusoidale (parte ) Teorema sul massimo trasferimento di potenza attiva... alore della massima potenza attiva assorbita: rendimento del circuito3 Esempio...3

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

. analisi teorica (studio di esistenza, unicità della soluzione, sensitività rispetto ai dati, regolarità, comportamento qualitativo).

. analisi teorica (studio di esistenza, unicità della soluzione, sensitività rispetto ai dati, regolarità, comportamento qualitativo). 1 Modelli matematici Un modello è un insieme di equazioni e altre relazioni matematiche che rappresentano fenomeni fisici, spiegando ipotesi basate sull osservazione della realtà. In generale un modello

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc.

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. Classi Numeriche 1 1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. In questo breve capitolo richiamiamo le definizioni delle classi numeriche fondamentali, già note al lettore,

Dettagli

TRASMISSIONE DATI SU RETE TELEFONICA. 1 Fondamenti Segnali e Trasmissione

TRASMISSIONE DATI SU RETE TELEFONICA. 1 Fondamenti Segnali e Trasmissione TRASMISSIONE DATI SU RETE TELEFONICA Fondamenti Segnali e Trasmissione Trasmissione dati su rete telefonica rete telefonica analogica ISP (Internet Service Provider) connesso alla WWW (World Wide Web)

Dettagli

A.1 Definizione e rappresentazione di un numero complesso

A.1 Definizione e rappresentazione di un numero complesso 441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

nica Cagliari ) m Viene detto (1) Dal sistema dell energia Un possibile

nica Cagliari ) m Viene detto (1) Dal sistema dell energia Un possibile Viene detto sistema polifase un sistema costituito da più tensioni o da più correnti sinusoidali, sfasate l una rispetto all altra. Un sistema polifase è simmetrico quando le grandezze sinusoidali hanno

Dettagli

Elettronica Circuiti nel dominio del tempo

Elettronica Circuiti nel dominio del tempo Elettronica Circuiti nel dominio del tempo Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Circuiti nel dominio del tempo 14 aprile 211

Dettagli

Metodi risolutivi per le disequazioni algebriche

Metodi risolutivi per le disequazioni algebriche Metodi risolutivi per le disequazioni algebriche v.scudero Una disequazioni algebrica si presenta in una delle quattro forme seguenti: () P( () P( (3) P( () P( essendo P( un polinomio in. Noi studieremo

Dettagli

Dipendenza dai dati iniziali

Dipendenza dai dati iniziali Dipendenza dai dati iniziali Dopo aver studiato il problema dell esistenza e unicità delle soluzioni dei problemi di Cauchy, il passo successivo è vedere come le traiettorie di queste ultime dipendono

Dettagli

8. Il radar ad apertura sintetica

8. Il radar ad apertura sintetica 8. Il radar ad apertura sintetica Il radar ad apertura sintetica (SAR Synthetic Aperture Radar) è stato sviluppato a partire dal 1951 in seguito alle osservazioni effettuate da Carl Wiley della Goodyear

Dettagli

LIMITI E CONFRONTO LOCALE Esercizi svolti. b) lim. d) lim. h) lim x x + 1 x. l) lim. b) lim x cos x. x 0 sin 2 3x cos x p) lim.

LIMITI E CONFRONTO LOCALE Esercizi svolti. b) lim. d) lim. h) lim x x + 1 x. l) lim. b) lim x cos x. x 0 sin 2 3x cos x p) lim. LIMITI E CONFRONTO LOCALE Esercizi svolti. Calcolare i seguenti iti: a + 4 + b + 4 + 4 c 5 e ± g i + + sin 4 m sin o π q sin π + 4 + 7 d + 4 + + 5 4 + f 4 4 + 5 4 + 4 h + + l + + cos n sin cos p π π +

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie

Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie Metodi numerici per la risoluzione di equazioni differenziali ordinarie Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 5-31 ottobre 2005 Outline 1 Il problema di Cauchy Il problema

Dettagli

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE TELECOMUNICAZIONI (TLC) Tele (lontano) Comunicare (inviare informazioni) Comunicare a distanza Generico sistema di telecomunicazione (TLC) Segnale non elettrico Segnale elettrico TRASMESSO s x (t) Sorgente

Dettagli

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento RTICL rchimede 4 esame di stato seconda prova scritta per il liceo scientifico di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario PRBLEM Siano f e g le funzioni

Dettagli

SPECIFICHE DI UN SISTEMA IN ANELLO CHIUSO

SPECIFICHE DI UN SISTEMA IN ANELLO CHIUSO SPECIFICHE DI UN SISTEMA IN ANELLO CHIUSO Consideriamo il classico esempio di compensazione in cascata riportato in figura, comprendente il plant o sistema controllato con funzione di trasferimento G P

Dettagli

Politecnico di Bari Facoltà di Ingegneria

Politecnico di Bari Facoltà di Ingegneria Politecnico di Bari Facoltà di Ingegneria Dispensa per il Corso di Controlli Automatici I Uso del software di calcolo Matlab 4. per lo studio delle risposte nel tempo dei sistemi lineari tempoinvarianti

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

Teoria quantistica della conduzione nei solidi e modello a bande

Teoria quantistica della conduzione nei solidi e modello a bande Teoria quantistica della conduzione nei solidi e modello a bande Obiettivi - Descrivere il comportamento quantistico di un elettrone in un cristallo unidimensionale - Spiegare l origine delle bande di

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

Quando troncare uno sviluppo in serie di Taylor

Quando troncare uno sviluppo in serie di Taylor Quando troncare uno sviluppo in serie di Taylor Marco Robutti October 13, 2014 Lo sviluppo in serie di Taylor di una funzione è uno strumento matematico davvero molto utile, e viene spesso utilizzato in

Dettagli

ED. Equazioni cardinali della dinamica

ED. Equazioni cardinali della dinamica ED. Equazioni cardinali della dinamica Dinamica dei sistemi La dinamica dei sistemi di punti materiali si può trattare, rispetto ad un osservatore inerziale, scrivendo l equazione fondamentale della dinamica

Dettagli

Lezione del 28-11-2006. Teoria dei vettori ordinari

Lezione del 28-11-2006. Teoria dei vettori ordinari Lezione del 8--006 Teoria dei vettori ordinari. Esercizio Sia B = {i, j, k} una base ortonormale fissata. ) Determinare le coordinate dei vettori v V 3 complanari a v =,, 0) e v =, 0, ), aventi lunghezza

Dettagli

SciPy. Programmazione Orientata agli Oggetti e Scripting in Python

SciPy. Programmazione Orientata agli Oggetti e Scripting in Python SciPy Programmazione Orientata agli Oggetti e Scripting in Python SciPy: Informazioni di Base Libreria di algoritmi e strumenti matematici Fornisce: moduli per l'ottimizzazione, per l'algebra lineare,

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

Risposta temporale: esercizi

Risposta temporale: esercizi ...4 Risposta temporale: esercizi Esercizio. Calcolare la risposta al gradino del seguente sistema: G(s) X(s) = s (s+)(s+) Y(s) Per ottenere la risposta al gradino occorre antitrasformare la seguente funzione:

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

Richiami: funzione di trasferimento e risposta al gradino

Richiami: funzione di trasferimento e risposta al gradino Richiami: funzione di trasferimento e risposta al gradino 1 Funzione di trasferimento La funzione di trasferimento di un sistema lineare è il rapporto di due polinomi della variabile complessa s. Essa

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

Deviazione standard delle misure : dove è la varianza e sono gli scarti quadratici

Deviazione standard delle misure : dove è la varianza e sono gli scarti quadratici ELEMENTI DI PROBABILITA Media : migliore stima del valore vero in assenza di altre info. Aumentare il numero di misure permette di approssimare meglio il valor medio e quindi ridurre l influenza degli

Dettagli

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Come evidenziare l informazione contenuta nei dati S. Marsili-Libelli: Calibrazione di Modelli Dinamici pag. Perche PCA? E un semplice metodo non-parametrico per estrarre

Dettagli

Macchine rotanti. Premessa

Macchine rotanti. Premessa Macchine rotanti Premessa Sincrono, asincrono, a corrente continua, brushless sono parecchi i tipi di motori elettrici. Per ognuno teoria e formule diverse. Eppure la loro matrice fisica è comune. Unificare

Dettagli

MACCHINA SINCRONA TRIFASE

MACCHINA SINCRONA TRIFASE MACCHIA SICROA TRIFASE + + + + + + + + + + + + + + + + + + L avvolgimento di eccitazione, percorso dalla corrente continua i e, crea una f.m.m. al traferro e quindi un campo magnetico in modo tale che

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE 2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 INTRODUZIONE Il problema agli autovalori di un operatore La trattazione del problema agli autovalori di un operatore fatta negli spazi finitodimensionali

Dettagli

MODELLO ELASTICO (Legge di Hooke)

MODELLO ELASTICO (Legge di Hooke) MODELLO ELASTICO (Legge di Hooke) σ= Eε E=modulo elastico molla applicazioni determinazione delle tensioni indotte nel terreno calcolo cedimenti MODELLO PLASTICO T N modello plastico perfetto T* non dipende

Dettagli

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO Capitolo 14 EORIA PERURBAIVA DIPENDENE DAL EMPO Nel Cap.11 abbiamo trattato metodi di risoluzione dell equazione di Schrödinger in presenza di perturbazioni indipendenti dal tempo; in questo capitolo trattiamo

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Capitolo 2 Equazioni differenziali ordinarie 2.1 Formulazione del problema In questa sezione formuleremo matematicamente il problema delle equazioni differenziali ordinarie e faremo alcune osservazioni

Dettagli

Introduzione all elettronica

Introduzione all elettronica Introduzione all elettronica L elettronica nacque agli inizi del 1900 con l invenzione del primo componente elettronico, il diodo (1904) seguito poi dal triodo (1906) i cosiddetti tubi a vuoto. Questa

Dettagli

LA TRASFORMATA DISCRETA DI FOURIER l.

LA TRASFORMATA DISCRETA DI FOURIER l. LA TRASFORMATA DISCRETA DI FOURIER l. t " : SULUPPO PER VIA GRAFICA n mpionamento del segnale analogico x(t) produce una sequenza xsgts) il cui spettro nel dominio della frequ enza è periodico, sicché

Dettagli

La funzione di risposta armonica

La funzione di risposta armonica 0.0. 3.1 1 La funzione di risposta armonica Se ad un sistema lineare stazionario asintoticamente stabile si applica in ingresso un segnale sinusoidale x(t) = sen ωt di pulsazione ω: x(t) = sin ωt (s) =

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non cambiano mai segno

bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non cambiano mai segno Parametri dei segnali periodici I segnali, periodici e non periodici, si suddividono in: bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

Studio grafico-analitico delle funzioni reali a variabile reale

Studio grafico-analitico delle funzioni reali a variabile reale Studio grafico-analitico delle funzioni reali a variabile reale Sequenza dei passi Classificazione In pratica Classifica il tipo di funzione: Funzione razionale: intera / fratta Funzione irrazionale: intera

Dettagli

Elementi di analisi delle reti elettriche. Sommario

Elementi di analisi delle reti elettriche. Sommario I.T.I.S. "Antonio Meucci" di Roma Elementi di analisi delle reti elettriche a cura del Prof. Mauro Perotti Anno Scolastico 2009-2010 Sommario 1. Note sulla simbologia...4 2. Il generatore (e l utilizzatore)

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA ANALISI EDIANTE LO SPETTRO DI RISPOSTA arco BOZZA * * Ingegnere Strutturale, già Direttore della Federazione regionale degli Ordini degli Ingegneri del Veneto (FOIV), Amministratore di ADEPRON DINAICA

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 40: Filtro di Kalman - introduzione. Struttura ricorsiva della soluzione.

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 40: Filtro di Kalman - introduzione. Struttura ricorsiva della soluzione. IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI Lezione 40: Filtro di Kalman - introduzione Cenni storici Filtro di Kalman e filtro di Wiener Formulazione del problema Struttura ricorsiva della soluzione

Dettagli

GRANDEZZE SINUSOIDALI

GRANDEZZE SINUSOIDALI GRANDEE SINUSOIDALI INDICE -Grandezze variabili. -Grandezze periodiche. 3-Parametri delle grandezze periodiche. 4-Grandezze alternate. 5-Grandezze sinusoidali. 6-Parametri delle grandezze sinusoidali.

Dettagli

EQUAZIONI CON VALORE ASSOLUTO

EQUAZIONI CON VALORE ASSOLUTO VALORE AOLUTO EQUAZIONI CON VALORE AOLUTO Esercizi DIEQUAZIONI CON VALORE AOLUTO Esercizi Prof. Giulia Cagnetta ITI Marconi Domodossola (VB) *EQUAZIONI CON VALORE AOLUTO Data una qualsiasi espressione

Dettagli

CALCOLO FRAZIONARIO & VISCOELASTICITÀ

CALCOLO FRAZIONARIO & VISCOELASTICITÀ CALCOLO FRAZIONARIO & VISCOELASTICITÀ Mario Di Paola, Francesco Paolo Pinnola Dipartimento di Ingegneria Civile Ambientale e Aerospaziale Università degli Studi di Palermo Viale delle Scienze - 90128 Palermo

Dettagli

Sistemi e modelli matematici

Sistemi e modelli matematici 0.0.. Sistemi e modelli matematici L automazione è un complesso di tecniche volte a sostituire l intervento umano, o a migliorarne l efficienza, nell esercizio di dispositivi e impianti. Un importante

Dettagli