Programmazione dinamica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Programmazione dinamica"

Transcript

1 Capitolo 6 Programmazione dinamica 6.4 Il problema della distanza di edit tra due stringhe x e y chiede di calcolare il minimo numero di operazioni su singoli caratteri (inserimento, cancellazione e sostituzione) per trasformare x in y (o viceversa). Fornire un algoritmo quadratico di programmazione dinamica per calcolare la distanza di edit tra x e y Progettare l algoritmo per stampare il massimo insieme indipendente di un albero Progettare un algoritmo di programmazione dinamica per trovare la sequenza di moltiplicazioni che minimizzi il costo complessivo del prodotto A = A 0 A 1 A n 1 di n matrici, dove la loro taglia è specificata mediante una sequenza di n+1 interi positivi d 0,d 1,...,d n : la matrice A i ha taglia d i d i+1 per 0 i n 1. Ipotizzare che il costo della moltiplicazione di due matrici di taglia r s e s t sia proporzionale a r s t. Soluzioni 6.4 Applichiamo il paradigma della programmazione dinamica per il calcolo della distanza di edit, in tempo polinomiale O(mn) dove m = x e n = y. Definiamo una notazione per la distanza di edit tra un prefisso di x e uno di y D(i,j)=edit(x[0,i 1],y[0,j 1]) dove 0 i m e0 j n (adottiamo la convenzione che x[0, 1] sia vuota e che x[0, 1] sia vuota). Osserviamo che D(m, n) fornisce la soluzione al nostro problema e definiamo i sotto-problemi elementari come D(i, 0)=i e D(0, j)=j, in quanto se (almeno)

2 18 Capitolo 6 Programmazione dinamica una delle sequenze è vuota, allora occorrono un numero di operazioni di edit pari alla lunghezza dell altra stringa. Forniamo la definizione ricorsiva in termini dei sotto-problemi D(i, j) per i>0 e j>0, secondo la seguente regola: D(i, j)=min max{i,j} se i = 0oj = 0 D(i 1,j 1) se i,j>0ex[i 1]=y[j 1] D(i 1,j 1)+1 se i,j>0ex[i 1] = y[j 1] D(i,j 1)+1 se j>0ex[i 1] = y[j 1] D(i 1,j)+1 se i>0ex[i 1] = y[j 1] (6.1) La prima riga della regola in (6.1) riporta i valori per i sotto-problemi elementari (i 0 o j 0). Le successive quattro righe in (6.1) descrivono come ricombinare le soluzioni dei sotto-problemi (i,j>0): x[i 1] =y[j 1]: se k = D(i 1,j 1) è l edit distnace per x[0,i 2] e y[0,j 2], allora k + 1 lo è per x[0,i 1] e y[0,j 1], in quanto il loro ultimo elemento è uguale; x[i 1] = y[j 1]: se D(i 1,j 1), D(i,j 1) e D(i 1,j) sono le distanze di edit, allora la minima tra queste più uno fornisce la distanza D(i,j), perché dobbiamo sicurante effettuare una sostituzione, una cancellazione o una inserzione. 1 EDIT( a, b ): pre: x e y sono di lunghezza m e n 2 for (i = 0; i <= m; i = i+1) 3 distanza[i][0] = i; 4 for (j = 0; j <= n; j = j+1) 5 distanza[0][j] = j; 6 for (i = 1; i <= m; i = i+1) 7 for (j = 1; j <= n; j = j+1) { 8 if (x[i-1] == y[j-1]) { 9 distanza[i][j] = distanza[i-1][j-1]; 10 } else { 11 distanza[i][j] = 1 + MIN{ distanza[i-1][j-1], distanza[i][j-1], distanza[i-1][j] }; 12 } 13 } 14 return distanza[m][n]; 6.11 La modifica è semplice poiché basta stabilire se il nodo corrente contribuisce o meno al massimo insieme indipendente di un albero. Ipotizziamo per

3 Programmare algoritmi 19 semplicità che ogni nodo u abbia due campi dove è stato memorizzato il corrispondente valore di sizet e sizef. La chiama iniziale è con u uguale alla radice dell albero ed escluso posto a false. 1 Stampa( u, escluso ): 2 if (u.primo == null) return; 3 if (escluso) { 4 for (v = u.primo; v!= NULL; v = v.fratello) { 5 Stampa( v, false ); 6 } 7 } else { 8 if (u.sizet >= sizef) { 9 print u; 10 for (v = u.primo; v!= NULL; v = v.fratello) { 11 Stampa( v, true ); 12 } 13 } else { 14 for (v = u.primo; v!= NULL; v = v.fratello) { 15 Stampa( v, false ); 16 } 17 } 18 } 6.17 Applichiamo la programmazione dinamica al calcolo della sequenza ottima di moltiplicazioni di n>2 matrici A = A 0 A 1 A n 1. Ai fini della nostra discussione, utilizziamo l algoritmo immediato che moltiplica due matrici di taglia r s e s t con l ipotesi semplificativa che tale algoritmo richieda un numero di operazioni esattamente pari a r s t, notando che quanto descritto si applica anche agli algoritmi più veloci come quello di Strassen. Dovendo eseguire n 1 moltiplicazioni per ottenere A, osserviamo che l ordine con cui le eseguiamo può cambiare il costo totale quando le matrici hanno taglia differente: nel seguito indichiamo con d i d i+1 la taglia della matrice A i, dove 0 i n 1. Date ad esempio n = 4 matrici tali che d 0 = 100, d 1 = 20, d 2 = 1000, d 3 = 2ed 4 = 50, nella seguente tabella mostriamo con le parentesi tutti i possibili ordini di valutazione del loro prodotto A = A 0 A 1 A 2 A 3 (di taglia d 0 d 4 ), riportando il corrispettivo costo totale di esecuzione per ottenere A :

4 20 Capitolo 6 Programmazione dinamica (A 0 (A 1 (A 2 A 3 )) d 2 d 3 d 4 + d 1 d 2 d 4 + d 0 d 1 d 4 = (A 0 ((A 1 A 2 ) A 3 ) d 1 d 2 d 3 + d 1 d 3 d 4 + d 0 d 1 d 4 = ((A 0 A 1 ) (A 2 A 3 )) d 0 d 1 d 2 + d 2 d 3 d 4 + d 0 d 2 d 4 = (((A 0 A 1 ) A 2 ) A 3 ) d 0 d 1 d 2 + d 0 d 2 d 3 + d 0 d 3 d 4 = ((A 0 (A 1 A 2 )) A 3 ) d 1 d 2 d 3 + d 0 d 1 d 3 + d 0 d 3 d 4 = Per esempio, la quarta riga corrisponde all ordine naturale di moltiplicazione da sinistra verso destra: la moltiplicazione A 0 A 1 richiede d 0 d 1 d 2 operazioni e restituisce una matrice di taglia d 0 d 2 ; la successiva moltiplicazione per A 2 richiede d 0 d 2 d 3 operazioni e restituisce una matrice di taglia d 0 d 3 ); l ultima moltiplicazione per A 3 richiede d 0 d 3 d 4 operazioni. Sommando tali costi e sostituendo i valori di d 0,...,d 4, otteniamo un totale di operazioni. Le altre righe della tabella mostrano che il costo complessivo del prodotto può variare in dipendenza dell ordine in cui sono effettuate le singole moltiplicazioni per ottenere lo stesso risultato: in questo caso, appare molto più conveniente effettuare le moltiplicazioni nell ordine indicato nella quinta riga, che fornisce un costo di sole operazioni. Il problema che ci poniamo è quello di trovare la sequenza di moltiplicazioni che minimizzi il costo complessivo del prodotto A = A 0 A 1 A n 1 per una data sequenza di n + 1 interi positivi d 0,d 1,...,d n (ricordiamo la nostra ipotesi che il costo della moltiplicazione di due matrici di taglia r s e s t sia pari a r s t). Possiamo ottenere un modo efficiente di affrontare il problema considerando il sotto-problema di trovare il costo per effettuare il prodotto di un gruppo consecutivo di matrici, A i A i+1 A j, dove 0 i j n 1, indicando con M(i, j) il corrispondente costo minimo: chiaramente, in tal modo siamo anche in grado di risolvere il problema iniziale calcolando M(0,n 1). Possiamo immediatamente notare che M(i, i)=0 per ogni i, in quanto ha costo nullo calcolare il prodotto della sequenza composta dalla sola matrice A i. Se passiamo al caso di M(i,j) con i<j, osserviamo che possiamo ottenere la matrice A i A i+1 A j (di taglia d i d j+1 ) fattorizzandola come una moltiplicazione tra A i A r (di taglia d i d r+1 )ea r+1 A j (di taglia d r+1 d j+1 ), per un qualunque intero r tale che i r<j. Il costo di tale moltiplicazione è pari a d i d r+1 d j+1, a cui vanno aggiunti i costi minimi M(i,r) e M(r + 1,j) per calcolare rispettivamente A i A r e A r+1 A j. Supponiamo di aver già calcolato induttivamente quest ultimi costi per tutti i possibili valori r con i r<j: allora il costo minimo M(i,j) sarà dato dal minimo, al variare di r, tra i valori M(i,r)+M(r + 1,j)+d i d r+1 d j+1. Da

5 Programmare algoritmi 21 1 CostoMinimoIterativo( ): 2 for (i = 0; i < n; i = i+1) { 3 costi[i][i] = 0; 4 } 5 for (diagonale = 1; diagonale < n; diagonale = diagonale+1) { 6 for (i = 0; i < n-diagonale; i = i+1) { 7 j = i + diagonale; 8 costi[i][j] = + ; 9 for (r = i; r < j; r = r+1) { 10 costo = costi[i][r] + costi[r+1][j]; 11 costo = costo + d[i] d[r+1] d[j+1]; 12 if (costo < costi[i][j]) { 13 costi[i][j] = costo; 14 indice[i][j] = r; 15 } 16 } 17 } 18 } 19 return costi[0][n-1]; Codice 6.1 Algoritmo iterativo per il calcolo dei costi minimi di moltiplicazione M(i,j). ciò deriva la seguente regola ricorsiva: 0 M(i,j)= min ir<j M(i,r)+M(r + 1,j)+di d r+1 d j+1 se i j altrimenti (6.2) Calcoliamo una sola volta i valori M(i, j) memorizzandoli in una tabella dei costi, realizzata mediante un array bidimensionale costi di taglia n n, in modo tale che costi[i][j] =M(i, j) per 0 i j n 1 (gli elementi della tabella corrispondenti a valori di i e j tali che i>jnon sono utilizzati dall algoritmo). L algoritmo descritto nel Codice 6.1 effettua il calcolo dei valori M(i, j) secondo quanto appena illustrato e, basandosi sulla regola in (6.2), riempie l array costi dal basso in alto, a partire dai valori costi[i][i], per 0 i<n, fino a ottenere il valore costi[0][n 1] da restituire. A partire dai valori noti costi[i][i] =0 sulla diagonale 0 (righe 2 3), l algoritmo determina tutti i valori costi[i][j] sulla diagonale 1 (con 0 i<n 1e j = i +1), poi quelli sulla diagonale 2 (con 0 i<n 2ej = i +2), e così via, fino al valore costi[0][n 1] sulla diagonale n 1 (righe 5 18): come possiamo notare, gli elementi su una data diagonale sono identificati nel codice dai

6 22 Capitolo 6 Programmazione dinamica due indici i e j tali che 0 i<n diagonale e j = i + diagonale. A ogni iterazione, il ciclo alle righe 9 16 calcola il minimo costo. Osserviamo che la complessità dell algoritmo nel Codice 6.1 è polinomiale, in quanto esegue tre cicli annidati, ciascuno di n iterazioni al più, per un totale di O(n 3 ) operazioni (chiaramente, le istruzioni all interno di tali cicli possono essere eseguite in tempo costante rispetto al numero n di matrici da moltiplicare). Nel corso della sua esecuzione, inoltre, l algoritmo usa le matrici costi e indice, aventi ciascuna n righe e n colonne, e una quantità costante di altre locazioni di memoria. Da ciò possiamo concludere che la complessità temporale dell algoritmo è O(n 3 ), mentre la sua complessità spaziale è O(n 2 ).

Universita' di Ferrara Dipartimento di Matematica e Informatica. Algoritmi e Strutture Dati

Universita' di Ferrara Dipartimento di Matematica e Informatica. Algoritmi e Strutture Dati Universita' di Ferrara Dipartimento di Matematica e Informatica Algoritmi e Strutture Dati Strategie per la progettazione di algoritmi: memoizzazione e programmazione dinamica Numeri di Fibonacci Coefficienti

Dettagli

Introduzione alla tecnica di Programmazione Dinamica

Introduzione alla tecnica di Programmazione Dinamica Universitá degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/37 Sommario della lezione Introduzione alla tecnica di Programmazione Dinamica Esempio di applicazione n. 1:

Dettagli

Sommario della lezione

Sommario della lezione Universitá degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/36 Sommario della lezione Ulteriori esempi di applicazione della Programmazione Dinamica Esempio di applicazione

Dettagli

4.1 Modelli di calcolo analisi asintotica e ricorrenze

4.1 Modelli di calcolo analisi asintotica e ricorrenze 4 Esercizi Prima Parte 4.1 Modelli di calcolo analisi asintotica e ricorrenze Esercizio 4 1 Rispondere alle seguenti domande: 1. Come misuriamo l efficienza di un algoritmo?. Quali sono gli algoritmi più

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Laboratorio di architettura degli elaboratori Progetto finale AA 2005/2006

Laboratorio di architettura degli elaboratori Progetto finale AA 2005/2006 Laboratorio di architettura degli elaboratori Progetto finale AA 2005/2006 Esercizio 1 - Heapsort Si consideri la seguente struttura dati, chiamata heap. Essa è un albero binario semi-completo (ossia un

Dettagli

ALGORITMI 1. GLI ALGORITMI 2. IL LINGUAGGIO DI PROGETTO

ALGORITMI 1. GLI ALGORITMI 2. IL LINGUAGGIO DI PROGETTO ALGORITMI 1. GLI ALGORITMI Un algoritmo è la descrizione del percorso risolutivo di un problema per giungere dai dati iniziali ai risultati finali. Scriviamo l algoritmo pensando di rivolgerci a un esecutore,

Dettagli

Lezione 8. La macchina universale

Lezione 8. La macchina universale Lezione 8 Algoritmi La macchina universale Un elaboratore o computer è una macchina digitale, elettronica, automatica capace di effettuare trasformazioni o elaborazioni su i dati digitale= l informazione

Dettagli

I tipi di dato astratti

I tipi di dato astratti I tipi di dato astratti.0 I tipi di dato astratti c Diego Calvanese Fondamenti di Informatica Corso di Laurea in Ingegneria Elettronica A.A. 001/00.0 0 I tipi di dato astratti La nozione di tipo di dato

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati schifano@fe.infn.it Laurea di Informatica - Università di Ferrara 2011-2012 [1] Strutture dati Dinamiche: Le liste Una lista è una sequenza di elementi di un certo tipo in cui è possibile aggiungere e/o

Dettagli

Metodi diretti per la soluzione di sistemi lineari

Metodi diretti per la soluzione di sistemi lineari Metodi diretti per la soluzione di sistemi lineari N Del Buono 1 Introduzione Consideriamo un sistema di n equazioni in n incognite a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1, a 21 x 1 + a 22 x

Dettagli

Esercizi Capitolo 5 - Alberi

Esercizi Capitolo 5 - Alberi Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle

Dettagli

Una funzione è detta ricorsiva se chiama, direttamente o indirettamente, se stessa. In C tutte le funzioni possono essere usate ricorsivamente.

Una funzione è detta ricorsiva se chiama, direttamente o indirettamente, se stessa. In C tutte le funzioni possono essere usate ricorsivamente. Ricorsione Funzioni ricorsive Una funzione è detta ricorsiva se chiama, direttamente o indirettamente, se stessa. In C tutte le funzioni possono essere usate ricorsivamente. Un esempio di funzione ricorsiva

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dell informazione negli elaboratori

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dell informazione negli elaboratori Informazione e computer Si può rappresentare l informazione attraverso varie forme: Numeri Testi Suoni Immagini 0001010010100101010 Computer Cerchiamo di capire come tutte queste informazioni possano essere

Dettagli

Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy

Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy Dr Maria Federico Programmazione dinamica Solitamente usata per risolvere problemi di ottimizzazione il problema ammette

Dettagli

Complessità computazionale

Complessità computazionale 1 Introduzione alla complessità computazionale Un problema spesso può essere risolto utilizzando algoritmi diversi Come scegliere il migliore? La bontà o efficienza di un algoritmo si misura in base alla

Dettagli

Esercizi di Algoritmi e Strutture Dati

Esercizi di Algoritmi e Strutture Dati Esercizi di Algoritmi e Strutture Dati Moreno Marzolla marzolla@cs.unibo.it 18 marzo 2011 Problema basato su 10.5 del libro di testo La CINA (Compagnia Italiana per il Noleggio di Automobili) dispone di

Dettagli

Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione

Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Appello dell 8 Febbraio 2005 Esercizio 1 (ASD) 1. Dire quale delle seguenti affermazioni è vera giustificando la risposta. (a) lg

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

Algoritmi e strutture dati. Codici di Huffman

Algoritmi e strutture dati. Codici di Huffman Algoritmi e strutture dati Codici di Huffman Memorizzazione dei dati Quando un file viene memorizzato, esso va memorizzato in qualche formato binario Modo più semplice: memorizzare il codice ASCII per

Dettagli

b i 1,1,1 1,1,1 0,1,2 0,3,4

b i 1,1,1 1,1,1 0,1,2 0,3,4 V o Appello // RICERCA OPERATIVA - Corso A (a.a. 9/) Nome Cognome: Corso di Laurea: L C6 LS LM Matricola: ) Si consideri il problema di flusso di costo minimo in figura. Si verifichi se il flusso ammissibile

Dettagli

Esercizi Capitolo 6 - Alberi binari di ricerca

Esercizi Capitolo 6 - Alberi binari di ricerca Esercizi Capitolo 6 - Alberi binari di ricerca Alberto Montresor 23 settembre 200 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile

Dettagli

16.3.1 Alberi binari di ricerca

16.3.1 Alberi binari di ricerca 442 CAPITOLO 16. STRUTTURE DI DATI DINAMICHE root 7 5 11 2 8 13 10 Figura 16.11 Esempio di albero binario: ogni nodo contiene il dato da immagazzinare e tre puntatori che definiscono le sue relazioni di

Dettagli

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo)

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) Se si ha un problema lineare e' possibile risolverlo in piu' modi (equivalenti ) - Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) - Trovare soluzione ottima duale (con il simplesso

Dettagli

Le Macchine di Turing

Le Macchine di Turing Le Macchine di Turing Come è fatta una MdT? Una MdT è definita da: un nastro una testina uno stato interno un programma uno stato iniziale Il nastro Il nastro è infinito suddiviso in celle In una cella

Dettagli

Cicli, Array e Programmazione su Sequenze

Cicli, Array e Programmazione su Sequenze Cicli, Array e Programmazione su Sequenze Luca Tesei Università di Camerino luca.tesei at unicam.it Università di Camerino - Corso di Laurea in Informatica - Programmazione + Laboratorio di Programmazione

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Elementi di Programmazione Dinamica Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Il problema La CMC produce automobili in uno stabilimento

Dettagli

Esercizi di Ricerca Operativa I

Esercizi di Ricerca Operativa I Esercizi di Ricerca Operativa I Dario Bauso, Raffaele Pesenti May 10, 2006 Domande Programmazione lineare intera 1. Gli algoritmi per la programmazione lineare continua possono essere usati per la soluzione

Dettagli

Elementi di Informatica

Elementi di Informatica Università degli Studi di Udine Facoltà di Ingegneria CORSO DI LAUREA IN SCIENZE dell ARCHITETTURA Elementi di Informatica Algoritmi, e Programmi D. Gubiani 29 marzo 2010 D. Gubiani Algoritmi, e Programmi

Dettagli

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti Corso di Analisi Numerica - AN1 Parte 2: metodi diretti per sistemi lineari Roberto Ferretti Richiami sulle norme e sui sistemi lineari Il Metodo di Eliminazione di Gauss Il Metodo di Eliminazione con

Dettagli

Programma di Paradigmi e possibili domande. Capitolo 1

Programma di Paradigmi e possibili domande. Capitolo 1 Definizione di macchina astratta Programma di Paradigmi e possibili domande Capitolo 1 Una macchina astratta per il linguaggio L detta ML, è un qualsiasi insieme di algoritmi e strutture dati che permettono

Dettagli

Laboratorio 07. Programmazione - CdS Matematica. Michele Donini 10 dicembre 2015

Laboratorio 07. Programmazione - CdS Matematica. Michele Donini 10 dicembre 2015 Laboratorio 07 Programmazione - CdS Matematica Michele Donini 10 dicembre 2015 Esercizio Lista I Costruire la classe lista concatenata: class Lista(): def init (self, val=none, succ=none): Denire le principali

Dettagli

DNA sequence alignment

DNA sequence alignment DNA sequence alignment - Introduzione: un possibile modello per rappresentare il DNA. Il DNA (Acido desossiribonucleico) è una sostanza presente nei nuclei cellulari, sia vegetali che animali; a questo

Dettagli

Algoritmi di Ricerca. Esempi di programmi Java

Algoritmi di Ricerca. Esempi di programmi Java Fondamenti di Informatica Algoritmi di Ricerca Esempi di programmi Java Fondamenti di Informatica - D. Talia - UNICAL 1 Ricerca in una sequenza di elementi Data una sequenza di elementi, occorre verificare

Dettagli

Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione

Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Esercizi II parte Esercizio 1 Discutere la correttezza di ciascuna delle seguenti affermazioni. Dimostrare formalmente la validità

Dettagli

1 introdurre le monete per l importo necessario. 2 selezionare la quantità di zucchero. 3 selezionare la bevanda desiderata

1 introdurre le monete per l importo necessario. 2 selezionare la quantità di zucchero. 3 selezionare la bevanda desiderata Esempi di Problema: Prendere un Caffè al Distributore Università degli Studi di Udine Facoltà di Ingegneria CORSO DI LAUREA IN SCIENZE dell ARCHITETTURA Elementi di Informatica, e Programmi D. Gubiani

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

MATLAB. Caratteristiche. Dati. Esempio di programma MATLAB. a = [1 2 3; 4 5 6; 7 8 9]; b = [1 2 3] ; c = a*b; c

MATLAB. Caratteristiche. Dati. Esempio di programma MATLAB. a = [1 2 3; 4 5 6; 7 8 9]; b = [1 2 3] ; c = a*b; c Caratteristiche MATLAB Linguaggio di programmazione orientato all elaborazione di matrici (MATLAB=MATrix LABoratory) Le variabili sono matrici (una variabile scalare equivale ad una matrice di dimensione

Dettagli

Crittografia. Primalità e Fattorizzazione. Corso di Laurea Specialistica. in Informatica

Crittografia. Primalità e Fattorizzazione. Corso di Laurea Specialistica. in Informatica Crittografia Corso di Laurea Specialistica in Informatica Primalità e Fattorizzazione Alberto Leporati Dipartimento di Informatica, Sistemistica e Comunicazione Università degli Studi di Milano Bicocca

Dettagli

10 - Programmare con gli Array

10 - Programmare con gli Array 10 - Programmare con gli Array Programmazione e analisi di dati Modulo A: Programmazione in Java Paolo Milazzo Dipartimento di Informatica, Università di Pisa http://www.di.unipi.it/ milazzo milazzo di.unipi.it

Dettagli

Appunti di Informatica 1. Gianluca Rossi

Appunti di Informatica 1. Gianluca Rossi Appunti di Informatica 1 Gianluca Rossi Versione maggio 2011 Indice 1 Algoritmi, macchine e linguaggi di programmazione 3 1.1 La macchina di Von Neumann........................ 5 1.2 Dal linguaggio macchina

Dettagli

Verifica della correttezza formale del numero di partita IVA

Verifica della correttezza formale del numero di partita IVA Verifica della correttezza formale del numero di partita IVA A tutti i soggetti che intraprendono un attività rilevante ai fini Iva (impresa, arte, professione), al momento della presentazione della dichiarazione

Dettagli

La selezione binaria

La selezione binaria Andrea Marin Università Ca Foscari Venezia Laurea in Informatica Corso di Programmazione part-time a.a. 2011/2012 Introduzione L esecuzione di tutte le istruzioni in sequenza può non è sufficiente per

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo L. De Giovanni G. Zambelli 1 Problema del flusso a costo minimo Il problema del flusso a costo minimo é definito

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

La ricorsione. Politecnico di Milano Sede di Cremona

La ricorsione. Politecnico di Milano Sede di Cremona La ricorsione Politecnico di Milano Sede di Cremona Gianpaolo Cugola Dipartimento di Elettronica e Informazione cugola@elet.polimi.it http://www.elet.polimi.it/~cugola Definizioni ricorsive Sono comuni

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

Iterazione e ricorsione. Cicli, Array e Programmazione su Sequenze. Ciclo while. Cicli

Iterazione e ricorsione. Cicli, Array e Programmazione su Sequenze. Ciclo while. Cicli Iterazione e ricorsione Dal punto di vista della teoria della computazione, affinché un linguaggio di programmazione imperativo (C, Pascal, codice nei metodi del Java, ecc.) raggiunga la potenza di calcolo

Dettagli

Ricorsione. Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona.

Ricorsione. Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona. Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona Sommario Implementazione di Utilizzo ricorsione per processare dati in java vs. multipla

Dettagli

(71,1), (35,1), (17,1), (8,1), (4,0), (2,0), (1,0), (0,1) 0, 7155 2 = 1, 431 0, 431 2 = 0, 862 0, 896 2 = 1, 792 0, 724 2 = 1, 448 0, 448 2 = 0, 896

(71,1), (35,1), (17,1), (8,1), (4,0), (2,0), (1,0), (0,1) 0, 7155 2 = 1, 431 0, 431 2 = 0, 862 0, 896 2 = 1, 792 0, 724 2 = 1, 448 0, 448 2 = 0, 896 2 Esercizio 2.2 La rappresentazione esadecimale prevede 16 configurazioni corrispondenti a 4 bit. Il contenuto di una parola di 16 bit può essere rappresentato direttamente con 4 digit esadecimali, sostituendo

Dettagli

Ottimizzazione Combinatoria

Ottimizzazione Combinatoria Ottimizzazione Combinatoria Esercitazione AMPL A.A. 2009-2010 Esercitazione a cura di Silvia Canale contatto e-mail: canale@dis.uniroma1.it Università di Roma La Sapienza Dipartimento di Informatica e

Dettagli

Due algoritmi di ordinamento. basati sulla tecnica Divide et Impera: Mergesort e Quicksort

Due algoritmi di ordinamento. basati sulla tecnica Divide et Impera: Mergesort e Quicksort Due algoritmi di ordinamento basati sulla tecnica Divide et Impera: Mergesort e Quicksort (13 ottobre 2009, 2 novembre 2010) Ordinamento INPUT: un insieme di n oggetti a 1, a 2,, a n presi da un dominio

Dettagli

Vettori Algoritmi elementari di ordinamento

Vettori Algoritmi elementari di ordinamento Dipartimento di Informatica e Sistemistica Antonio Ruberti Sapienza Università di Roma Vettori Algoritmi elementari di ordinamento Corso di Fondamenti di Informatica Laurea in Ingegneria Informatica (Canale

Dettagli

Universita' di Ferrara Dipartimento di Matematica e Informatica. Algoritmi e Strutture Dati. Rappresentazione concreta di insiemi e Hash table

Universita' di Ferrara Dipartimento di Matematica e Informatica. Algoritmi e Strutture Dati. Rappresentazione concreta di insiemi e Hash table Universita' di Ferrara Dipartimento di Matematica e Informatica Algoritmi e Strutture Dati Rappresentazione concreta di insiemi e Hash table Copyright 2006-2015 by Claudio Salati. Lez. 9a 1 Rappresentazione

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 Sessione straordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 3 Sessione straordinaria Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA È assegnata

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

ESAME SCRITTO DI ELEMENTI DI INFORMATICA E PROGRAMMAZIONE. 27 Gennaio 2015

ESAME SCRITTO DI ELEMENTI DI INFORMATICA E PROGRAMMAZIONE. 27 Gennaio 2015 COGNOME E NOME: MATRICOLA: Civile Ambiente e Territorio Non si possono consultare manuali, appunti e calcolatrici. Esercizio 1: [3 punto] Rappresentare i numeri 36 e 91 (in base 10) in notazione binaria

Dettagli

Corso di Laurea in INFORMATICA

Corso di Laurea in INFORMATICA Corso di Laurea in INFORMATICA Algoritmi e Strutture Dati MODULO 2. Algebre di dati Dati e rappresentazioni, requisiti delle astrazioni di dati, costrutti. Astrazioni di dati e dati primitivi. Specifica

Dettagli

Esercitazione Informatica I AA 2012-2013. Nicola Paoletti

Esercitazione Informatica I AA 2012-2013. Nicola Paoletti Esercitazione Informatica I AA 2012-2013 Nicola Paoletti 4 Gigno 2013 2 Conversioni Effettuare le seguenti conversioni, tenendo conto del numero di bit con cui si rappresenta il numero da convertire/convertito.

Dettagli

Tipologie di macchine di Turing

Tipologie di macchine di Turing Tipologie di macchine di Turing - Macchina di Turing standard - Macchina di Turing con un nastro illimitato in una sola direzione - Macchina di Turing multinastro - Macchina di Turing non deterministica

Dettagli

Correttezza. Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1. Dispensa 10. A. Miola Novembre 2007

Correttezza. Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1. Dispensa 10. A. Miola Novembre 2007 Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1 Dispensa 10 Correttezza A. Miola Novembre 2007 http://www.dia.uniroma3.it/~java/fondinf1/ Correttezza 1 Contenuti Introduzione alla correttezza

Dettagli

Laboratorio di programmazione

Laboratorio di programmazione Laboratorio di programmazione Lezione VI Tatiana Zolo tatiana.zolo@libero.it 1 LE STRUCT Tipo definito dall utente i cui elementi possono essere eterogenei (di tipo diverso). Introduce un nuovo tipo di

Dettagli

AA 2006-07 LA RICORSIONE

AA 2006-07 LA RICORSIONE PROGRAMMAZIONE AA 2006-07 LA RICORSIONE AA 2006-07 Prof.ssa A. Lanza - DIB 1/18 LA RICORSIONE Il concetto di ricorsione nasce dalla matematica Una funzione matematica è definita ricorsivamente quando nella

Dettagli

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 2

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 2 Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 2 Dispensa 10 Strutture collegate - 2 A. Miola Febbraio 2008 http://www.dia.uniroma3.it/~java/fondinf2/ Strutture collegate - 2 1 Contenuti!Strutture

Dettagli

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU 9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A LU 9.1 Il metodo di Gauss Come si è visto nella sezione 3.3, per la risoluzione di un sistema lineare si può considerare al posto

Dettagli

Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012

Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012 Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012 Concetti importanti da (ri)vedere Programmazione imperativa Strutture di

Dettagli

Politecnico di Milano. Ingegneria del Software a.a. 2006/07. Appello del 14 settembre 2007 Cognome Nome Matricola

Politecnico di Milano. Ingegneria del Software a.a. 2006/07. Appello del 14 settembre 2007 Cognome Nome Matricola Politecnico di Milano Ingegneria del Software a.a. 2006/07 Appello del 14 settembre 2007 Cognome Nome Matricola Sezione (segnarne una) Baresi, Ghezzi, Morzenti, SanPietro Istruzioni 1. La mancata indicazione

Dettagli

Parte 3: Gestione dei progetti, Shop scheduling

Parte 3: Gestione dei progetti, Shop scheduling Parte : Gestione dei progetti, Shop scheduling Rappresentazione reticolare di un progetto Insieme di attività {,...,n} p i durata (nota e deterministica dell attività i) relazione di precedenza fra attività:

Dettagli

COGNOME E NOME (IN STAMPATELLO) MATRICOLA

COGNOME E NOME (IN STAMPATELLO) MATRICOLA Politecnico di Milano Facoltà di Ingegneria dell Informazione Informatica 3 Proff. Ghezzi, Lanzi, Matera e Morzenti Seconda prova in itinere 4 Luglio 2005 COGNOME E NOME (IN STAMPATELLO) MATRICOLA Risolvere

Dettagli

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010 elementi di teoria dei grafi anno acc. 2009/2010 Grafi semplici Un grafo semplice G è una coppia ordinata (V(G), L(G)), ove V(G) è un insieme finito e non vuoto di elementi detti vertici o nodi di G, mentre

Dettagli

Dimensionamento dei lotti di produzione: il caso con variabilità nota

Dimensionamento dei lotti di produzione: il caso con variabilità nota Dimensionamento dei lotti di produzione: il caso con variabilità nota A. Agnetis In questi appunti studieremo alcuni modelli per il problema del lot sizing, vale a dire il problema di programmare la dimensione

Dettagli

Ricerca Operativa 2. Introduzione al metodo del Simplesso

Ricerca Operativa 2. Introduzione al metodo del Simplesso Ricerca Operativa 2. Introduzione al metodo del Simplesso Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema di ottimizzazione vincolata è definito dalla massimizzazione

Dettagli

Corso di Visione Artificiale. Matlab per Visione. Samuel Rota Bulò

Corso di Visione Artificiale. Matlab per Visione. Samuel Rota Bulò Corso di Visione Artificiale Matlab per Visione Samuel Rota Bulò Cos'è Matlab? MATLAB MATLAB - - MATrix MATrix LABoratory LABoratory Ambiente Ambiente di di sviluppo sviluppo ed ed esecuzione esecuzione

Dettagli

Alberi binari di ricerca

Alberi binari di ricerca Alberi binari di ricerca Definizione Visita dell albero inorder Ricerca Ricerca minimo, massimo e successore. Inserimento ed eliminazione di un nodo Problema del bilanciamento dell albero Albero binario

Dettagli

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza Il problema di flusso di costo minimo (MCF) Dati : grafo orientato G = ( N, A ) i N, deficit del nodo i : b i (i, j) A u ij, capacità superiore (max quantità di flusso che può transitare) c ij, costo di

Dettagli

La Macchina RAM Shepherdson e Sturgis (1963)

La Macchina RAM Shepherdson e Sturgis (1963) La Macchina RAM Shepherdson e Sturgis (963) Nastro di ingresso.......... PROGRAM COUNTER Nastro di uscita PROGRAMMA ACCUMULATORE UNITA' ARITMETICA............... 2 3 4 M E M O R I A Formato delle Istruzioni

Dettagli

Ricorsione. (da lucidi di Marco Benedetti)

Ricorsione. (da lucidi di Marco Benedetti) Ricorsione (da lucidi di Marco Benedetti) Funzioni ricorsive Dal punto di vista sintattico, siamo in presenza di una funzione ricorsiva quando all interno della definizione di una funzione compaiono una

Dettagli

Macchine di Turing, problemi ricorsivi e ricorsivamente enumerabili

Macchine di Turing, problemi ricorsivi e ricorsivamente enumerabili Macchine di Turing, problemi ricorsivi e ricorsivamente enumerabili roblemi che i calcolatori non possono risolvere E importante sapere se un programma e corretto, cioe fa quello che ci aspettiamo. E facile

Dettagli

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA in termini generali: Dati in input un insieme S di elementi (numeri, caratteri, stringhe, ) e un elemento

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboratorio di Algoritmi e Strutture Dati Docente: Camillo Fiorentini 18 dicembre 2007 Esercizio 1: rappresentazione di una tabella di occorrenze L obiettivo è quello di rappresentare in modo efficiente

Dettagli

Studente (Cognome Nome): Corso di Informatica Corso di Laurea in Ingegneria Gestionale a.a. 2007-08 Primo scritto 11 Gennaio 2008

Studente (Cognome Nome): Corso di Informatica Corso di Laurea in Ingegneria Gestionale a.a. 2007-08 Primo scritto 11 Gennaio 2008 Studente (Cognome Nome): Matricola: Corso di Informatica Corso di Laurea in Ingegneria Gestionale a.a. 2007-08 Primo scritto 11 Gennaio 2008 Si noti che le soluzioni ai quesiti saranno considerate valide

Dettagli

Esempio: dest = parolagigante, lettere = PROVA dest (dopo l'invocazione di tipo pari ) = pprrlogvgante

Esempio: dest = parolagigante, lettere = PROVA dest (dopo l'invocazione di tipo pari ) = pprrlogvgante Esercizio 0 Scambio lettere Scrivere la funzione void scambiolettere(char *dest, char *lettere, int p_o_d) che modifichi la stringa destinazione (dest), sostituendone i caratteri pari o dispari (a seconda

Dettagli

Elementi di informatica e Programmazione

Elementi di informatica e Programmazione Elementi di informatica e Programmazione Corsi di Laurea di Ing. Informatica, Ing. Elettronica e delle Telecomunicazioni, Ing. dell'automazione Industriale Alessandro Saetti Marco Sechi e Alessandro Bugatti

Dettagli

Descrizione di un algoritmo

Descrizione di un algoritmo Descrizione di un algoritmo Un algoritmo descrive due tipi fondamentali di oper: calcoli ottenibili tramite le oper primitive su tipi di dato (valutazione di espressioni) che consistono nella modifica

Dettagli

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici C. Vergara 3. Metodo della fattorizzazione LU per la risoluzione di un sistema lineare Errori di arrotondamento. Prima di affrontare la

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

GESTIONE INFORMATICA DEI DATI AZIENDALI

GESTIONE INFORMATICA DEI DATI AZIENDALI GESTIONE INFORMATICA DEI DATI AZIENDALI Alberto ZANONI Centro Vito Volterra Università Tor Vergata Via Columbia 2, 00133 Roma, Italy zanoni@volterra.uniroma2.it Rudimenti di programmazione Programming

Dettagli

Sommario della lezione

Sommario della lezione Università degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/33 Sommario della lezione Ancora sui cammini minimi: Cammini minimi in grafi con archi di costo negativo Algoritmi

Dettagli

Informatica B. Sezione D. Scuola di Ingegneria Industriale Laurea in Ingegneria Energetica Laurea in Ingegneria Meccanica

Informatica B. Sezione D. Scuola di Ingegneria Industriale Laurea in Ingegneria Energetica Laurea in Ingegneria Meccanica Scuola di Ingegneria Industriale Laurea in Ingegneria Energetica Laurea in Ingegneria Meccanica Dipartimento di Elettronica, Informazione e Bioingegneria Informatica B Sezione D Franchi Alessio Mauro,

Dettagli

Appunti sulla Macchina di Turing. Macchina di Turing

Appunti sulla Macchina di Turing. Macchina di Turing Macchina di Turing Una macchina di Turing è costituita dai seguenti elementi (vedi fig. 1): a) una unità di memoria, detta memoria esterna, consistente in un nastro illimitato in entrambi i sensi e suddiviso

Dettagli

Linguaggi formali e compilazione

Linguaggi formali e compilazione Linguaggi formali e compilazione Corso di Laurea in Informatica A.A. 2015/2016 Linguaggi formali e compilazione Elementi generali Un parser generico di tipo procede operando una sequenza di riduzioni a

Dettagli

OBIETTIVI SPECIFICI DI APPRENDIMENTO

OBIETTIVI SPECIFICI DI APPRENDIMENTO Disciplina:... Anno scolastico: 20.../20... Classe/i :... Docente:... DI APPRENDIMENTO SEZIONE 1 Premesse matematiche Nozioni fondamentali sui sistemi di numerazione Sistemi di numerazione in base diversa

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Gli algoritmi. Gli algoritmi. Analisi e programmazione

Gli algoritmi. Gli algoritmi. Analisi e programmazione Gli algoritmi Analisi e programmazione Gli algoritmi Proprietà ed esempi Costanti e variabili, assegnazione, istruzioni, proposizioni e predicati Vettori e matrici I diagrammi a blocchi Analisi strutturata

Dettagli

Parte IV. I fogli elettronici e Excel

Parte IV. I fogli elettronici e Excel Parte IV I fogli elettronici e Excel Caratteristiche principali dei fogli elettronici Organizzazione dei dati in forma tabellare. Ogni cella può contenere: numeri, testi, formule il cui calcolo è aggiornato

Dettagli

COMPITO DI LABORATORIO DI PROGRAMMAZIONE 2001-2002 17 Luglio 2002. Soluzione degli Esercizi

COMPITO DI LABORATORIO DI PROGRAMMAZIONE 2001-2002 17 Luglio 2002. Soluzione degli Esercizi COMPITO DI LABORATORIO DI PROGRAMMAZIONE 2001-2002 17 Luglio 2002 degli Esercizi ESERCIZIO 1. Si consideri il seguente frammento di codice in linguaggio Java: int i=0, j=0; int[][] a=b; boolean trovato=false;

Dettagli

Metodi Numerici per Equazioni Ellittiche

Metodi Numerici per Equazioni Ellittiche Metodi Numerici per Equazioni Ellittiche Vediamo ora di descrivere una tecnica per la risoluzione numerica della più semplice equazione ellittica lineare, l Equazione di Laplace: u xx + u yy = 0, (x, y)

Dettagli

Codifica dei numeri. Rappresentazione dell informazione

Codifica dei numeri. Rappresentazione dell informazione Rappresentazione dell informazione Rappresentazione informazione Elementi di aritmetica dei computer Organizzazione della memoria e codici correttori Salvatore Orlando Differenza tra simbolo e significato

Dettagli

Problema del trasporto

Problema del trasporto p. 1/1 Problema del trasporto Supponiamo di avere m depositi in cui è immagazzinato un prodotto e n negozi che richiedono tale prodotto. Nel deposito i è immagazzinata la quantità a i di prodotto. Nel

Dettagli