Programmazione dinamica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Programmazione dinamica"

Transcript

1 Capitolo 6 Programmazione dinamica 6.4 Il problema della distanza di edit tra due stringhe x e y chiede di calcolare il minimo numero di operazioni su singoli caratteri (inserimento, cancellazione e sostituzione) per trasformare x in y (o viceversa). Fornire un algoritmo quadratico di programmazione dinamica per calcolare la distanza di edit tra x e y Progettare l algoritmo per stampare il massimo insieme indipendente di un albero Progettare un algoritmo di programmazione dinamica per trovare la sequenza di moltiplicazioni che minimizzi il costo complessivo del prodotto A = A 0 A 1 A n 1 di n matrici, dove la loro taglia è specificata mediante una sequenza di n+1 interi positivi d 0,d 1,...,d n : la matrice A i ha taglia d i d i+1 per 0 i n 1. Ipotizzare che il costo della moltiplicazione di due matrici di taglia r s e s t sia proporzionale a r s t. Soluzioni 6.4 Applichiamo il paradigma della programmazione dinamica per il calcolo della distanza di edit, in tempo polinomiale O(mn) dove m = x e n = y. Definiamo una notazione per la distanza di edit tra un prefisso di x e uno di y D(i,j)=edit(x[0,i 1],y[0,j 1]) dove 0 i m e0 j n (adottiamo la convenzione che x[0, 1] sia vuota e che x[0, 1] sia vuota). Osserviamo che D(m, n) fornisce la soluzione al nostro problema e definiamo i sotto-problemi elementari come D(i, 0)=i e D(0, j)=j, in quanto se (almeno)

2 18 Capitolo 6 Programmazione dinamica una delle sequenze è vuota, allora occorrono un numero di operazioni di edit pari alla lunghezza dell altra stringa. Forniamo la definizione ricorsiva in termini dei sotto-problemi D(i, j) per i>0 e j>0, secondo la seguente regola: D(i, j)=min max{i,j} se i = 0oj = 0 D(i 1,j 1) se i,j>0ex[i 1]=y[j 1] D(i 1,j 1)+1 se i,j>0ex[i 1] = y[j 1] D(i,j 1)+1 se j>0ex[i 1] = y[j 1] D(i 1,j)+1 se i>0ex[i 1] = y[j 1] (6.1) La prima riga della regola in (6.1) riporta i valori per i sotto-problemi elementari (i 0 o j 0). Le successive quattro righe in (6.1) descrivono come ricombinare le soluzioni dei sotto-problemi (i,j>0): x[i 1] =y[j 1]: se k = D(i 1,j 1) è l edit distnace per x[0,i 2] e y[0,j 2], allora k + 1 lo è per x[0,i 1] e y[0,j 1], in quanto il loro ultimo elemento è uguale; x[i 1] = y[j 1]: se D(i 1,j 1), D(i,j 1) e D(i 1,j) sono le distanze di edit, allora la minima tra queste più uno fornisce la distanza D(i,j), perché dobbiamo sicurante effettuare una sostituzione, una cancellazione o una inserzione. 1 EDIT( a, b ): pre: x e y sono di lunghezza m e n 2 for (i = 0; i <= m; i = i+1) 3 distanza[i][0] = i; 4 for (j = 0; j <= n; j = j+1) 5 distanza[0][j] = j; 6 for (i = 1; i <= m; i = i+1) 7 for (j = 1; j <= n; j = j+1) { 8 if (x[i-1] == y[j-1]) { 9 distanza[i][j] = distanza[i-1][j-1]; 10 } else { 11 distanza[i][j] = 1 + MIN{ distanza[i-1][j-1], distanza[i][j-1], distanza[i-1][j] }; 12 } 13 } 14 return distanza[m][n]; 6.11 La modifica è semplice poiché basta stabilire se il nodo corrente contribuisce o meno al massimo insieme indipendente di un albero. Ipotizziamo per

3 Programmare algoritmi 19 semplicità che ogni nodo u abbia due campi dove è stato memorizzato il corrispondente valore di sizet e sizef. La chiama iniziale è con u uguale alla radice dell albero ed escluso posto a false. 1 Stampa( u, escluso ): 2 if (u.primo == null) return; 3 if (escluso) { 4 for (v = u.primo; v!= NULL; v = v.fratello) { 5 Stampa( v, false ); 6 } 7 } else { 8 if (u.sizet >= sizef) { 9 print u; 10 for (v = u.primo; v!= NULL; v = v.fratello) { 11 Stampa( v, true ); 12 } 13 } else { 14 for (v = u.primo; v!= NULL; v = v.fratello) { 15 Stampa( v, false ); 16 } 17 } 18 } 6.17 Applichiamo la programmazione dinamica al calcolo della sequenza ottima di moltiplicazioni di n>2 matrici A = A 0 A 1 A n 1. Ai fini della nostra discussione, utilizziamo l algoritmo immediato che moltiplica due matrici di taglia r s e s t con l ipotesi semplificativa che tale algoritmo richieda un numero di operazioni esattamente pari a r s t, notando che quanto descritto si applica anche agli algoritmi più veloci come quello di Strassen. Dovendo eseguire n 1 moltiplicazioni per ottenere A, osserviamo che l ordine con cui le eseguiamo può cambiare il costo totale quando le matrici hanno taglia differente: nel seguito indichiamo con d i d i+1 la taglia della matrice A i, dove 0 i n 1. Date ad esempio n = 4 matrici tali che d 0 = 100, d 1 = 20, d 2 = 1000, d 3 = 2ed 4 = 50, nella seguente tabella mostriamo con le parentesi tutti i possibili ordini di valutazione del loro prodotto A = A 0 A 1 A 2 A 3 (di taglia d 0 d 4 ), riportando il corrispettivo costo totale di esecuzione per ottenere A :

4 20 Capitolo 6 Programmazione dinamica (A 0 (A 1 (A 2 A 3 )) d 2 d 3 d 4 + d 1 d 2 d 4 + d 0 d 1 d 4 = (A 0 ((A 1 A 2 ) A 3 ) d 1 d 2 d 3 + d 1 d 3 d 4 + d 0 d 1 d 4 = ((A 0 A 1 ) (A 2 A 3 )) d 0 d 1 d 2 + d 2 d 3 d 4 + d 0 d 2 d 4 = (((A 0 A 1 ) A 2 ) A 3 ) d 0 d 1 d 2 + d 0 d 2 d 3 + d 0 d 3 d 4 = ((A 0 (A 1 A 2 )) A 3 ) d 1 d 2 d 3 + d 0 d 1 d 3 + d 0 d 3 d 4 = Per esempio, la quarta riga corrisponde all ordine naturale di moltiplicazione da sinistra verso destra: la moltiplicazione A 0 A 1 richiede d 0 d 1 d 2 operazioni e restituisce una matrice di taglia d 0 d 2 ; la successiva moltiplicazione per A 2 richiede d 0 d 2 d 3 operazioni e restituisce una matrice di taglia d 0 d 3 ); l ultima moltiplicazione per A 3 richiede d 0 d 3 d 4 operazioni. Sommando tali costi e sostituendo i valori di d 0,...,d 4, otteniamo un totale di operazioni. Le altre righe della tabella mostrano che il costo complessivo del prodotto può variare in dipendenza dell ordine in cui sono effettuate le singole moltiplicazioni per ottenere lo stesso risultato: in questo caso, appare molto più conveniente effettuare le moltiplicazioni nell ordine indicato nella quinta riga, che fornisce un costo di sole operazioni. Il problema che ci poniamo è quello di trovare la sequenza di moltiplicazioni che minimizzi il costo complessivo del prodotto A = A 0 A 1 A n 1 per una data sequenza di n + 1 interi positivi d 0,d 1,...,d n (ricordiamo la nostra ipotesi che il costo della moltiplicazione di due matrici di taglia r s e s t sia pari a r s t). Possiamo ottenere un modo efficiente di affrontare il problema considerando il sotto-problema di trovare il costo per effettuare il prodotto di un gruppo consecutivo di matrici, A i A i+1 A j, dove 0 i j n 1, indicando con M(i, j) il corrispondente costo minimo: chiaramente, in tal modo siamo anche in grado di risolvere il problema iniziale calcolando M(0,n 1). Possiamo immediatamente notare che M(i, i)=0 per ogni i, in quanto ha costo nullo calcolare il prodotto della sequenza composta dalla sola matrice A i. Se passiamo al caso di M(i,j) con i<j, osserviamo che possiamo ottenere la matrice A i A i+1 A j (di taglia d i d j+1 ) fattorizzandola come una moltiplicazione tra A i A r (di taglia d i d r+1 )ea r+1 A j (di taglia d r+1 d j+1 ), per un qualunque intero r tale che i r<j. Il costo di tale moltiplicazione è pari a d i d r+1 d j+1, a cui vanno aggiunti i costi minimi M(i,r) e M(r + 1,j) per calcolare rispettivamente A i A r e A r+1 A j. Supponiamo di aver già calcolato induttivamente quest ultimi costi per tutti i possibili valori r con i r<j: allora il costo minimo M(i,j) sarà dato dal minimo, al variare di r, tra i valori M(i,r)+M(r + 1,j)+d i d r+1 d j+1. Da

5 Programmare algoritmi 21 1 CostoMinimoIterativo( ): 2 for (i = 0; i < n; i = i+1) { 3 costi[i][i] = 0; 4 } 5 for (diagonale = 1; diagonale < n; diagonale = diagonale+1) { 6 for (i = 0; i < n-diagonale; i = i+1) { 7 j = i + diagonale; 8 costi[i][j] = + ; 9 for (r = i; r < j; r = r+1) { 10 costo = costi[i][r] + costi[r+1][j]; 11 costo = costo + d[i] d[r+1] d[j+1]; 12 if (costo < costi[i][j]) { 13 costi[i][j] = costo; 14 indice[i][j] = r; 15 } 16 } 17 } 18 } 19 return costi[0][n-1]; Codice 6.1 Algoritmo iterativo per il calcolo dei costi minimi di moltiplicazione M(i,j). ciò deriva la seguente regola ricorsiva: 0 M(i,j)= min ir<j M(i,r)+M(r + 1,j)+di d r+1 d j+1 se i j altrimenti (6.2) Calcoliamo una sola volta i valori M(i, j) memorizzandoli in una tabella dei costi, realizzata mediante un array bidimensionale costi di taglia n n, in modo tale che costi[i][j] =M(i, j) per 0 i j n 1 (gli elementi della tabella corrispondenti a valori di i e j tali che i>jnon sono utilizzati dall algoritmo). L algoritmo descritto nel Codice 6.1 effettua il calcolo dei valori M(i, j) secondo quanto appena illustrato e, basandosi sulla regola in (6.2), riempie l array costi dal basso in alto, a partire dai valori costi[i][i], per 0 i<n, fino a ottenere il valore costi[0][n 1] da restituire. A partire dai valori noti costi[i][i] =0 sulla diagonale 0 (righe 2 3), l algoritmo determina tutti i valori costi[i][j] sulla diagonale 1 (con 0 i<n 1e j = i +1), poi quelli sulla diagonale 2 (con 0 i<n 2ej = i +2), e così via, fino al valore costi[0][n 1] sulla diagonale n 1 (righe 5 18): come possiamo notare, gli elementi su una data diagonale sono identificati nel codice dai

6 22 Capitolo 6 Programmazione dinamica due indici i e j tali che 0 i<n diagonale e j = i + diagonale. A ogni iterazione, il ciclo alle righe 9 16 calcola il minimo costo. Osserviamo che la complessità dell algoritmo nel Codice 6.1 è polinomiale, in quanto esegue tre cicli annidati, ciascuno di n iterazioni al più, per un totale di O(n 3 ) operazioni (chiaramente, le istruzioni all interno di tali cicli possono essere eseguite in tempo costante rispetto al numero n di matrici da moltiplicare). Nel corso della sua esecuzione, inoltre, l algoritmo usa le matrici costi e indice, aventi ciascuna n righe e n colonne, e una quantità costante di altre locazioni di memoria. Da ciò possiamo concludere che la complessità temporale dell algoritmo è O(n 3 ), mentre la sua complessità spaziale è O(n 2 ).

Universita' di Ferrara Dipartimento di Matematica e Informatica. Algoritmi e Strutture Dati

Universita' di Ferrara Dipartimento di Matematica e Informatica. Algoritmi e Strutture Dati Universita' di Ferrara Dipartimento di Matematica e Informatica Algoritmi e Strutture Dati Strategie per la progettazione di algoritmi: memoizzazione e programmazione dinamica Numeri di Fibonacci Coefficienti

Dettagli

Introduzione alla tecnica di Programmazione Dinamica

Introduzione alla tecnica di Programmazione Dinamica Universitá degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/37 Sommario della lezione Introduzione alla tecnica di Programmazione Dinamica Esempio di applicazione n. 1:

Dettagli

4.1 Modelli di calcolo analisi asintotica e ricorrenze

4.1 Modelli di calcolo analisi asintotica e ricorrenze 4 Esercizi Prima Parte 4.1 Modelli di calcolo analisi asintotica e ricorrenze Esercizio 4 1 Rispondere alle seguenti domande: 1. Come misuriamo l efficienza di un algoritmo?. Quali sono gli algoritmi più

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

Sommario della lezione

Sommario della lezione Universitá degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/36 Sommario della lezione Ulteriori esempi di applicazione della Programmazione Dinamica Esempio di applicazione

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Laboratorio di architettura degli elaboratori Progetto finale AA 2005/2006

Laboratorio di architettura degli elaboratori Progetto finale AA 2005/2006 Laboratorio di architettura degli elaboratori Progetto finale AA 2005/2006 Esercizio 1 - Heapsort Si consideri la seguente struttura dati, chiamata heap. Essa è un albero binario semi-completo (ossia un

Dettagli

Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy

Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy Dr Maria Federico Programmazione dinamica Solitamente usata per risolvere problemi di ottimizzazione il problema ammette

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati schifano@fe.infn.it Laurea di Informatica - Università di Ferrara 2011-2012 [1] Strutture dati Dinamiche: Le liste Una lista è una sequenza di elementi di un certo tipo in cui è possibile aggiungere e/o

Dettagli

Esercizi Capitolo 5 - Alberi

Esercizi Capitolo 5 - Alberi Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle

Dettagli

b i 1,1,1 1,1,1 0,1,2 0,3,4

b i 1,1,1 1,1,1 0,1,2 0,3,4 V o Appello // RICERCA OPERATIVA - Corso A (a.a. 9/) Nome Cognome: Corso di Laurea: L C6 LS LM Matricola: ) Si consideri il problema di flusso di costo minimo in figura. Si verifichi se il flusso ammissibile

Dettagli

Lezione 8. La macchina universale

Lezione 8. La macchina universale Lezione 8 Algoritmi La macchina universale Un elaboratore o computer è una macchina digitale, elettronica, automatica capace di effettuare trasformazioni o elaborazioni su i dati digitale= l informazione

Dettagli

I tipi di dato astratti

I tipi di dato astratti I tipi di dato astratti.0 I tipi di dato astratti c Diego Calvanese Fondamenti di Informatica Corso di Laurea in Ingegneria Elettronica A.A. 001/00.0 0 I tipi di dato astratti La nozione di tipo di dato

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dell informazione negli elaboratori

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dell informazione negli elaboratori Informazione e computer Si può rappresentare l informazione attraverso varie forme: Numeri Testi Suoni Immagini 0001010010100101010 Computer Cerchiamo di capire come tutte queste informazioni possano essere

Dettagli

Complessità computazionale

Complessità computazionale 1 Introduzione alla complessità computazionale Un problema spesso può essere risolto utilizzando algoritmi diversi Come scegliere il migliore? La bontà o efficienza di un algoritmo si misura in base alla

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

Elementi di Informatica

Elementi di Informatica Università degli Studi di Udine Facoltà di Ingegneria CORSO DI LAUREA IN SCIENZE dell ARCHITETTURA Elementi di Informatica Algoritmi, e Programmi D. Gubiani 29 marzo 2010 D. Gubiani Algoritmi, e Programmi

Dettagli

ALGORITMI 1. GLI ALGORITMI 2. IL LINGUAGGIO DI PROGETTO

ALGORITMI 1. GLI ALGORITMI 2. IL LINGUAGGIO DI PROGETTO ALGORITMI 1. GLI ALGORITMI Un algoritmo è la descrizione del percorso risolutivo di un problema per giungere dai dati iniziali ai risultati finali. Scriviamo l algoritmo pensando di rivolgerci a un esecutore,

Dettagli

1 introdurre le monete per l importo necessario. 2 selezionare la quantità di zucchero. 3 selezionare la bevanda desiderata

1 introdurre le monete per l importo necessario. 2 selezionare la quantità di zucchero. 3 selezionare la bevanda desiderata Esempi di Problema: Prendere un Caffè al Distributore Università degli Studi di Udine Facoltà di Ingegneria CORSO DI LAUREA IN SCIENZE dell ARCHITETTURA Elementi di Informatica, e Programmi D. Gubiani

Dettagli

Una funzione è detta ricorsiva se chiama, direttamente o indirettamente, se stessa. In C tutte le funzioni possono essere usate ricorsivamente.

Una funzione è detta ricorsiva se chiama, direttamente o indirettamente, se stessa. In C tutte le funzioni possono essere usate ricorsivamente. Ricorsione Funzioni ricorsive Una funzione è detta ricorsiva se chiama, direttamente o indirettamente, se stessa. In C tutte le funzioni possono essere usate ricorsivamente. Un esempio di funzione ricorsiva

Dettagli

La selezione binaria

La selezione binaria Andrea Marin Università Ca Foscari Venezia Laurea in Informatica Corso di Programmazione part-time a.a. 2011/2012 Introduzione L esecuzione di tutte le istruzioni in sequenza può non è sufficiente per

Dettagli

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010 elementi di teoria dei grafi anno acc. 2009/2010 Grafi semplici Un grafo semplice G è una coppia ordinata (V(G), L(G)), ove V(G) è un insieme finito e non vuoto di elementi detti vertici o nodi di G, mentre

Dettagli

Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione

Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Appello dell 8 Febbraio 2005 Esercizio 1 (ASD) 1. Dire quale delle seguenti affermazioni è vera giustificando la risposta. (a) lg

Dettagli

16.3.1 Alberi binari di ricerca

16.3.1 Alberi binari di ricerca 442 CAPITOLO 16. STRUTTURE DI DATI DINAMICHE root 7 5 11 2 8 13 10 Figura 16.11 Esempio di albero binario: ogni nodo contiene il dato da immagazzinare e tre puntatori che definiscono le sue relazioni di

Dettagli

10 - Programmare con gli Array

10 - Programmare con gli Array 10 - Programmare con gli Array Programmazione e analisi di dati Modulo A: Programmazione in Java Paolo Milazzo Dipartimento di Informatica, Università di Pisa http://www.di.unipi.it/ milazzo milazzo di.unipi.it

Dettagli

Dimensionamento dei lotti di produzione: il caso con variabilità nota

Dimensionamento dei lotti di produzione: il caso con variabilità nota Dimensionamento dei lotti di produzione: il caso con variabilità nota A. Agnetis In questi appunti studieremo alcuni modelli per il problema del lot sizing, vale a dire il problema di programmare la dimensione

Dettagli

MATLAB. Caratteristiche. Dati. Esempio di programma MATLAB. a = [1 2 3; 4 5 6; 7 8 9]; b = [1 2 3] ; c = a*b; c

MATLAB. Caratteristiche. Dati. Esempio di programma MATLAB. a = [1 2 3; 4 5 6; 7 8 9]; b = [1 2 3] ; c = a*b; c Caratteristiche MATLAB Linguaggio di programmazione orientato all elaborazione di matrici (MATLAB=MATrix LABoratory) Le variabili sono matrici (una variabile scalare equivale ad una matrice di dimensione

Dettagli

Componenti di un sistema KNOWLEDGE-BASED

Componenti di un sistema KNOWLEDGE-BASED Componenti di un sistema KNOWLEDGE-BASED DYNAMIC DATABASE PROBLEM FORMALIZATION CONTROL STRATEGY IL DATABASE DESCRIVE LA SITUAZIONE CORRENTE NELLA DETERMINAZIONE DELLA SOLUZIONE AL PROBLEMA. LA FORMALIZZAZIONE

Dettagli

Sommario della lezione

Sommario della lezione Università degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/33 Sommario della lezione Ancora sui cammini minimi: Cammini minimi in grafi con archi di costo negativo Algoritmi

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

Appunti sulla Macchina di Turing. Macchina di Turing

Appunti sulla Macchina di Turing. Macchina di Turing Macchina di Turing Una macchina di Turing è costituita dai seguenti elementi (vedi fig. 1): a) una unità di memoria, detta memoria esterna, consistente in un nastro illimitato in entrambi i sensi e suddiviso

Dettagli

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza Il problema di flusso di costo minimo (MCF) Dati : grafo orientato G = ( N, A ) i N, deficit del nodo i : b i (i, j) A u ij, capacità superiore (max quantità di flusso che può transitare) c ij, costo di

Dettagli

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA in termini generali: Dati in input un insieme S di elementi (numeri, caratteri, stringhe, ) e un elemento

Dettagli

Esercizi di Algoritmi e Strutture Dati

Esercizi di Algoritmi e Strutture Dati Esercizi di Algoritmi e Strutture Dati Moreno Marzolla marzolla@cs.unibo.it 18 marzo 2011 Problema basato su 10.5 del libro di testo La CINA (Compagnia Italiana per il Noleggio di Automobili) dispone di

Dettagli

Esercitazione Informatica I AA 2012-2013. Nicola Paoletti

Esercitazione Informatica I AA 2012-2013. Nicola Paoletti Esercitazione Informatica I AA 2012-2013 Nicola Paoletti 4 Gigno 2013 2 Conversioni Effettuare le seguenti conversioni, tenendo conto del numero di bit con cui si rappresenta il numero da convertire/convertito.

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo L. De Giovanni G. Zambelli 1 Problema del flusso a costo minimo Il problema del flusso a costo minimo é definito

Dettagli

Esercizi Capitolo 6 - Alberi binari di ricerca

Esercizi Capitolo 6 - Alberi binari di ricerca Esercizi Capitolo 6 - Alberi binari di ricerca Alberto Montresor 23 settembre 200 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Elementi di Programmazione Dinamica Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Il problema La CMC produce automobili in uno stabilimento

Dettagli

Tipologie di macchine di Turing

Tipologie di macchine di Turing Tipologie di macchine di Turing - Macchina di Turing standard - Macchina di Turing con un nastro illimitato in una sola direzione - Macchina di Turing multinastro - Macchina di Turing non deterministica

Dettagli

Crittografia. Primalità e Fattorizzazione. Corso di Laurea Specialistica. in Informatica

Crittografia. Primalità e Fattorizzazione. Corso di Laurea Specialistica. in Informatica Crittografia Corso di Laurea Specialistica in Informatica Primalità e Fattorizzazione Alberto Leporati Dipartimento di Informatica, Sistemistica e Comunicazione Università degli Studi di Milano Bicocca

Dettagli

Alberi binari di ricerca

Alberi binari di ricerca Alberi binari di ricerca Definizione Visita dell albero inorder Ricerca Ricerca minimo, massimo e successore. Inserimento ed eliminazione di un nodo Problema del bilanciamento dell albero Albero binario

Dettagli

Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012

Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012 Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012 Concetti importanti da (ri)vedere Programmazione imperativa Strutture di

Dettagli

Algoritmi di Ricerca. Esempi di programmi Java

Algoritmi di Ricerca. Esempi di programmi Java Fondamenti di Informatica Algoritmi di Ricerca Esempi di programmi Java Fondamenti di Informatica - D. Talia - UNICAL 1 Ricerca in una sequenza di elementi Data una sequenza di elementi, occorre verificare

Dettagli

Ricorsione. Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona.

Ricorsione. Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona. Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona Sommario Implementazione di Utilizzo ricorsione per processare dati in java vs. multipla

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 Sessione straordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 3 Sessione straordinaria Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA È assegnata

Dettagli

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici C. Vergara 3. Metodo della fattorizzazione LU per la risoluzione di un sistema lineare Errori di arrotondamento. Prima di affrontare la

Dettagli

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti Corso di Analisi Numerica - AN1 Parte 2: metodi diretti per sistemi lineari Roberto Ferretti Richiami sulle norme e sui sistemi lineari Il Metodo di Eliminazione di Gauss Il Metodo di Eliminazione con

Dettagli

Laboratorio 07. Programmazione - CdS Matematica. Michele Donini 10 dicembre 2015

Laboratorio 07. Programmazione - CdS Matematica. Michele Donini 10 dicembre 2015 Laboratorio 07 Programmazione - CdS Matematica Michele Donini 10 dicembre 2015 Esercizio Lista I Costruire la classe lista concatenata: class Lista(): def init (self, val=none, succ=none): Denire le principali

Dettagli

Algoritmi e strutture dati. Codici di Huffman

Algoritmi e strutture dati. Codici di Huffman Algoritmi e strutture dati Codici di Huffman Memorizzazione dei dati Quando un file viene memorizzato, esso va memorizzato in qualche formato binario Modo più semplice: memorizzare il codice ASCII per

Dettagli

Macchine di Turing, problemi ricorsivi e ricorsivamente enumerabili

Macchine di Turing, problemi ricorsivi e ricorsivamente enumerabili Macchine di Turing, problemi ricorsivi e ricorsivamente enumerabili roblemi che i calcolatori non possono risolvere E importante sapere se un programma e corretto, cioe fa quello che ci aspettiamo. E facile

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

Correttezza. Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1. Dispensa 10. A. Miola Novembre 2007

Correttezza. Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1. Dispensa 10. A. Miola Novembre 2007 Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1 Dispensa 10 Correttezza A. Miola Novembre 2007 http://www.dia.uniroma3.it/~java/fondinf1/ Correttezza 1 Contenuti Introduzione alla correttezza

Dettagli

Le Macchine di Turing

Le Macchine di Turing Le Macchine di Turing Come è fatta una MdT? Una MdT è definita da: un nastro una testina uno stato interno un programma uno stato iniziale Il nastro Il nastro è infinito suddiviso in celle In una cella

Dettagli

Elementi di Informatica e Programmazione

Elementi di Informatica e Programmazione Elementi di Informatica e Programmazione Il concetto di Algoritmo e di Calcolatore Corsi di Laurea in: Ingegneria Civile Ingegneria per l Ambiente e il Territorio Università degli Studi di Brescia Cos

Dettagli

Corso di Laurea in INFORMATICA

Corso di Laurea in INFORMATICA Corso di Laurea in INFORMATICA Algoritmi e Strutture Dati MODULO 2. Algebre di dati Dati e rappresentazioni, requisiti delle astrazioni di dati, costrutti. Astrazioni di dati e dati primitivi. Specifica

Dettagli

Due algoritmi di ordinamento. basati sulla tecnica Divide et Impera: Mergesort e Quicksort

Due algoritmi di ordinamento. basati sulla tecnica Divide et Impera: Mergesort e Quicksort Due algoritmi di ordinamento basati sulla tecnica Divide et Impera: Mergesort e Quicksort (13 ottobre 2009, 2 novembre 2010) Ordinamento INPUT: un insieme di n oggetti a 1, a 2,, a n presi da un dominio

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboratorio di Algoritmi e Strutture Dati Docente: Camillo Fiorentini 18 dicembre 2007 Esercizio 1: rappresentazione di una tabella di occorrenze L obiettivo è quello di rappresentare in modo efficiente

Dettagli

Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione

Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Esercizi II parte Esercizio 1 Discutere la correttezza di ciascuna delle seguenti affermazioni. Dimostrare formalmente la validità

Dettagli

(71,1), (35,1), (17,1), (8,1), (4,0), (2,0), (1,0), (0,1) 0, 7155 2 = 1, 431 0, 431 2 = 0, 862 0, 896 2 = 1, 792 0, 724 2 = 1, 448 0, 448 2 = 0, 896

(71,1), (35,1), (17,1), (8,1), (4,0), (2,0), (1,0), (0,1) 0, 7155 2 = 1, 431 0, 431 2 = 0, 862 0, 896 2 = 1, 792 0, 724 2 = 1, 448 0, 448 2 = 0, 896 2 Esercizio 2.2 La rappresentazione esadecimale prevede 16 configurazioni corrispondenti a 4 bit. Il contenuto di una parola di 16 bit può essere rappresentato direttamente con 4 digit esadecimali, sostituendo

Dettagli

Verifica della correttezza formale del numero di partita IVA

Verifica della correttezza formale del numero di partita IVA Verifica della correttezza formale del numero di partita IVA A tutti i soggetti che intraprendono un attività rilevante ai fini Iva (impresa, arte, professione), al momento della presentazione della dichiarazione

Dettagli

Insiemi con un operazione

Insiemi con un operazione Capitolo 3 Insiemi con un operazione 3.1 Gruppoidi, semigruppi, monoidi Definizione 309 Un operazione binaria su un insieme G è una funzione: f : G G G Quindi, un operazione binaria f su un insieme G è

Dettagli

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU 9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A LU 9.1 Il metodo di Gauss Come si è visto nella sezione 3.3, per la risoluzione di un sistema lineare si può considerare al posto

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Esempio: dest = parolagigante, lettere = PROVA dest (dopo l'invocazione di tipo pari ) = pprrlogvgante

Esempio: dest = parolagigante, lettere = PROVA dest (dopo l'invocazione di tipo pari ) = pprrlogvgante Esercizio 0 Scambio lettere Scrivere la funzione void scambiolettere(char *dest, char *lettere, int p_o_d) che modifichi la stringa destinazione (dest), sostituendone i caratteri pari o dispari (a seconda

Dettagli

Vettori Algoritmi elementari di ordinamento

Vettori Algoritmi elementari di ordinamento Dipartimento di Informatica e Sistemistica Antonio Ruberti Sapienza Università di Roma Vettori Algoritmi elementari di ordinamento Corso di Fondamenti di Informatica Laurea in Ingegneria Informatica (Canale

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 7-8 9 7 9-8 79

Dettagli

La ricorsione. Politecnico di Milano Sede di Cremona

La ricorsione. Politecnico di Milano Sede di Cremona La ricorsione Politecnico di Milano Sede di Cremona Gianpaolo Cugola Dipartimento di Elettronica e Informazione cugola@elet.polimi.it http://www.elet.polimi.it/~cugola Definizioni ricorsive Sono comuni

Dettagli

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo)

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) Se si ha un problema lineare e' possibile risolverlo in piu' modi (equivalenti ) - Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) - Trovare soluzione ottima duale (con il simplesso

Dettagli

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI PROBLEMA: un azienda deve scegliere fra due possibili investimenti al fine di massimizzare il profitto netto nel rispetto delle condizioni interne e di mercato

Dettagli

DNA sequence alignment

DNA sequence alignment DNA sequence alignment - Introduzione: un possibile modello per rappresentare il DNA. Il DNA (Acido desossiribonucleico) è una sostanza presente nei nuclei cellulari, sia vegetali che animali; a questo

Dettagli

Ricerca Operativa A.A. 2007/2008

Ricerca Operativa A.A. 2007/2008 Ricerca Operativa A.A. 2007/2008 9. Cenni su euristiche e metaeuristiche per ottimizzazione combinatoria Motivazioni L applicazione di metodi esatti non è sempre possibile a causa della complessità del

Dettagli

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 2

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 2 Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 2 Dispensa 10 Strutture collegate - 2 A. Miola Febbraio 2008 http://www.dia.uniroma3.it/~java/fondinf2/ Strutture collegate - 2 1 Contenuti!Strutture

Dettagli

Politecnico di Milano. Ingegneria del Software a.a. 2006/07. Appello del 14 settembre 2007 Cognome Nome Matricola

Politecnico di Milano. Ingegneria del Software a.a. 2006/07. Appello del 14 settembre 2007 Cognome Nome Matricola Politecnico di Milano Ingegneria del Software a.a. 2006/07 Appello del 14 settembre 2007 Cognome Nome Matricola Sezione (segnarne una) Baresi, Ghezzi, Morzenti, SanPietro Istruzioni 1. La mancata indicazione

Dettagli

12 - Introduzione alla Programmazione Orientata agli Oggetti (Object Oriented Programming OOP)

12 - Introduzione alla Programmazione Orientata agli Oggetti (Object Oriented Programming OOP) 12 - Introduzione alla Programmazione Orientata agli Oggetti (Object Oriented Programming OOP) Programmazione e analisi di dati Modulo A: Programmazione in Java Paolo Milazzo Dipartimento di Informatica,

Dettagli

Studente (Cognome Nome): Corso di Informatica Corso di Laurea in Ingegneria Gestionale a.a. 2007-08 Primo scritto 11 Gennaio 2008

Studente (Cognome Nome): Corso di Informatica Corso di Laurea in Ingegneria Gestionale a.a. 2007-08 Primo scritto 11 Gennaio 2008 Studente (Cognome Nome): Matricola: Corso di Informatica Corso di Laurea in Ingegneria Gestionale a.a. 2007-08 Primo scritto 11 Gennaio 2008 Si noti che le soluzioni ai quesiti saranno considerate valide

Dettagli

Parte 3: Gestione dei progetti, Shop scheduling

Parte 3: Gestione dei progetti, Shop scheduling Parte : Gestione dei progetti, Shop scheduling Rappresentazione reticolare di un progetto Insieme di attività {,...,n} p i durata (nota e deterministica dell attività i) relazione di precedenza fra attività:

Dettagli

Programma di Paradigmi e possibili domande. Capitolo 1

Programma di Paradigmi e possibili domande. Capitolo 1 Definizione di macchina astratta Programma di Paradigmi e possibili domande Capitolo 1 Una macchina astratta per il linguaggio L detta ML, è un qualsiasi insieme di algoritmi e strutture dati che permettono

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

ARRAY E STRINGHE. G. Frosini Slide 1

ARRAY E STRINGHE. G. Frosini Slide 1 ARRAY E STRINGHE G. Frosini Slide 1 Array: VARIABILI ARRAY struttura dati costituita da elementi (anche nessuno, array vuoto) dello stesso tipo; tipo array: tipo degli elementi, non numero degli elementi;

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 3 5 7-8 9 57

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

IMSV 0.8. (In Media Stat Virtus) Manuale Utente

IMSV 0.8. (In Media Stat Virtus) Manuale Utente Introduzione IMSV 0.8 (In Media Stat Virtus) Manuale Utente IMSV è una applicazione che calcola che voti può'prendere uno studente negli esami che gli mancano per ottenere la media che desidera. Importante:

Dettagli

If a cascata, switch, boolean

If a cascata, switch, boolean If a cascata, switch, boolean If a cascata Switch Il tipo boolean Operatori logici, valutazione pigra 1 If a cascata Consideriamo una semplice classe che deve descrivere con una stringa gli effetti di

Dettagli

Intelligenza Artificiale

Intelligenza Artificiale Intelligenza Artificiale Esercizi e Domande di Esame Tecniche di Ricerca e Pianificazione Esercizi Griglia Si consideri un ambiente costituito da una griglia n n in cui si muove un agente che può spostarsi

Dettagli

La Macchina RAM Shepherdson e Sturgis (1963)

La Macchina RAM Shepherdson e Sturgis (1963) La Macchina RAM Shepherdson e Sturgis (963) Nastro di ingresso.......... PROGRAM COUNTER Nastro di uscita PROGRAMMA ACCUMULATORE UNITA' ARITMETICA............... 2 3 4 M E M O R I A Formato delle Istruzioni

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

La Memoria Virtuale Ottimizzazione della memoria centrale

La Memoria Virtuale Ottimizzazione della memoria centrale La Memoria Virtuale Ottimizzazione della memoria centrale 1) Introduzione- Gerarchia della memoria Da un punto di vista funzionale, ogni dispositivo di memorizzazione elettronica di informazioni presenta

Dettagli

Sintesi di Reti Sequenziali Sincrone

Sintesi di Reti Sequenziali Sincrone LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 9 Prof. Rosario Cerbone rosario.cerbone@uniparthenope.it a.a. 2007-2008 http://digilander.libero.it/rosario.cerbone Sintesi di Reti Sequenziali Sincrone

Dettagli

Esercizi di Ricerca Operativa I

Esercizi di Ricerca Operativa I Esercizi di Ricerca Operativa I Dario Bauso, Raffaele Pesenti May 10, 2006 Domande Programmazione lineare intera 1. Gli algoritmi per la programmazione lineare continua possono essere usati per la soluzione

Dettagli

Ricerca Operativa 2. Introduzione al metodo del Simplesso

Ricerca Operativa 2. Introduzione al metodo del Simplesso Ricerca Operativa 2. Introduzione al metodo del Simplesso Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema di ottimizzazione vincolata è definito dalla massimizzazione

Dettagli

Altri metodi di indicizzazione

Altri metodi di indicizzazione Organizzazione a indici su più livelli Altri metodi di indicizzazione Al crescere della dimensione del file l organizzazione sequenziale a indice diventa inefficiente: in lettura a causa del crescere del

Dettagli

Metodi diretti per la soluzione di sistemi lineari

Metodi diretti per la soluzione di sistemi lineari Metodi diretti per la soluzione di sistemi lineari N Del Buono 1 Introduzione Consideriamo un sistema di n equazioni in n incognite a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1, a 21 x 1 + a 22 x

Dettagli

Introduzione al MATLAB c Parte 2

Introduzione al MATLAB c Parte 2 Introduzione al MATLAB c Parte 2 Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 18 gennaio 2008 Outline 1 M-file di tipo Script e Function Script Function 2 Costrutti di programmazione

Dettagli

Strutture dati in C e loro traduzione in assembler MIPS 1 Direttive assembler per l'allocazione dei dati Prima di iniziare a trattare il problema dell'allocazione delle varie strutture dati, introduciamo

Dettagli

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2)

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Algebra e Geometria Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Traccia delle lezioni che saranno svolte nell anno accademico 2012/13 I seguenti appunti

Dettagli

Gli algoritmi: definizioni e proprietà

Gli algoritmi: definizioni e proprietà Dipartimento di Elettronica ed Informazione Politecnico di Milano Informatica e CAD (c.i.) - ICA Prof. Pierluigi Plebani A.A. 2008/2009 Gli algoritmi: definizioni e proprietà La presente dispensa e da

Dettagli

Breve introduzione al Calcolo Evoluzionistico

Breve introduzione al Calcolo Evoluzionistico Breve introduzione al Calcolo Evoluzionistico Stefano Cagnoni Dipartimento di Ingegneria dell Informazione, Università di Parma cagnoni@ce.unipr.it 1 Introduzione Il mondo fisico ed i fenomeni naturali

Dettagli

3. La sintassi di Java

3. La sintassi di Java pag.9 3. La sintassi di Java 3.1 I tipi di dati statici In Java, come in Pascal, esistono tipi di dati statici predefiniti e sono i seguenti: byte 8 bit da -128 a 127 short 16 bit coincide con l integer

Dettagli

GESTIONE INFORMATICA DEI DATI AZIENDALI

GESTIONE INFORMATICA DEI DATI AZIENDALI GESTIONE INFORMATICA DEI DATI AZIENDALI Alberto ZANONI Centro Vito Volterra Università Tor Vergata Via Columbia 2, 00133 Roma, Italy zanoni@volterra.uniroma2.it Rudimenti di programmazione Programming

Dettagli

Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2)

Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Definiamo innanzitutto una relazione d ordine tra le funzioni. Siano φ e ψ funzioni

Dettagli