Programmazione dinamica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Programmazione dinamica"

Transcript

1 Capitolo 6 Programmazione dinamica 6.4 Il problema della distanza di edit tra due stringhe x e y chiede di calcolare il minimo numero di operazioni su singoli caratteri (inserimento, cancellazione e sostituzione) per trasformare x in y (o viceversa). Fornire un algoritmo quadratico di programmazione dinamica per calcolare la distanza di edit tra x e y Progettare l algoritmo per stampare il massimo insieme indipendente di un albero Progettare un algoritmo di programmazione dinamica per trovare la sequenza di moltiplicazioni che minimizzi il costo complessivo del prodotto A = A 0 A 1 A n 1 di n matrici, dove la loro taglia è specificata mediante una sequenza di n+1 interi positivi d 0,d 1,...,d n : la matrice A i ha taglia d i d i+1 per 0 i n 1. Ipotizzare che il costo della moltiplicazione di due matrici di taglia r s e s t sia proporzionale a r s t. Soluzioni 6.4 Applichiamo il paradigma della programmazione dinamica per il calcolo della distanza di edit, in tempo polinomiale O(mn) dove m = x e n = y. Definiamo una notazione per la distanza di edit tra un prefisso di x e uno di y D(i,j)=edit(x[0,i 1],y[0,j 1]) dove 0 i m e0 j n (adottiamo la convenzione che x[0, 1] sia vuota e che x[0, 1] sia vuota). Osserviamo che D(m, n) fornisce la soluzione al nostro problema e definiamo i sotto-problemi elementari come D(i, 0)=i e D(0, j)=j, in quanto se (almeno)

2 18 Capitolo 6 Programmazione dinamica una delle sequenze è vuota, allora occorrono un numero di operazioni di edit pari alla lunghezza dell altra stringa. Forniamo la definizione ricorsiva in termini dei sotto-problemi D(i, j) per i>0 e j>0, secondo la seguente regola: D(i, j)=min max{i,j} se i = 0oj = 0 D(i 1,j 1) se i,j>0ex[i 1]=y[j 1] D(i 1,j 1)+1 se i,j>0ex[i 1] = y[j 1] D(i,j 1)+1 se j>0ex[i 1] = y[j 1] D(i 1,j)+1 se i>0ex[i 1] = y[j 1] (6.1) La prima riga della regola in (6.1) riporta i valori per i sotto-problemi elementari (i 0 o j 0). Le successive quattro righe in (6.1) descrivono come ricombinare le soluzioni dei sotto-problemi (i,j>0): x[i 1] =y[j 1]: se k = D(i 1,j 1) è l edit distnace per x[0,i 2] e y[0,j 2], allora k + 1 lo è per x[0,i 1] e y[0,j 1], in quanto il loro ultimo elemento è uguale; x[i 1] = y[j 1]: se D(i 1,j 1), D(i,j 1) e D(i 1,j) sono le distanze di edit, allora la minima tra queste più uno fornisce la distanza D(i,j), perché dobbiamo sicurante effettuare una sostituzione, una cancellazione o una inserzione. 1 EDIT( a, b ): pre: x e y sono di lunghezza m e n 2 for (i = 0; i <= m; i = i+1) 3 distanza[i][0] = i; 4 for (j = 0; j <= n; j = j+1) 5 distanza[0][j] = j; 6 for (i = 1; i <= m; i = i+1) 7 for (j = 1; j <= n; j = j+1) { 8 if (x[i-1] == y[j-1]) { 9 distanza[i][j] = distanza[i-1][j-1]; 10 } else { 11 distanza[i][j] = 1 + MIN{ distanza[i-1][j-1], distanza[i][j-1], distanza[i-1][j] }; 12 } 13 } 14 return distanza[m][n]; 6.11 La modifica è semplice poiché basta stabilire se il nodo corrente contribuisce o meno al massimo insieme indipendente di un albero. Ipotizziamo per

3 Programmare algoritmi 19 semplicità che ogni nodo u abbia due campi dove è stato memorizzato il corrispondente valore di sizet e sizef. La chiama iniziale è con u uguale alla radice dell albero ed escluso posto a false. 1 Stampa( u, escluso ): 2 if (u.primo == null) return; 3 if (escluso) { 4 for (v = u.primo; v!= NULL; v = v.fratello) { 5 Stampa( v, false ); 6 } 7 } else { 8 if (u.sizet >= sizef) { 9 print u; 10 for (v = u.primo; v!= NULL; v = v.fratello) { 11 Stampa( v, true ); 12 } 13 } else { 14 for (v = u.primo; v!= NULL; v = v.fratello) { 15 Stampa( v, false ); 16 } 17 } 18 } 6.17 Applichiamo la programmazione dinamica al calcolo della sequenza ottima di moltiplicazioni di n>2 matrici A = A 0 A 1 A n 1. Ai fini della nostra discussione, utilizziamo l algoritmo immediato che moltiplica due matrici di taglia r s e s t con l ipotesi semplificativa che tale algoritmo richieda un numero di operazioni esattamente pari a r s t, notando che quanto descritto si applica anche agli algoritmi più veloci come quello di Strassen. Dovendo eseguire n 1 moltiplicazioni per ottenere A, osserviamo che l ordine con cui le eseguiamo può cambiare il costo totale quando le matrici hanno taglia differente: nel seguito indichiamo con d i d i+1 la taglia della matrice A i, dove 0 i n 1. Date ad esempio n = 4 matrici tali che d 0 = 100, d 1 = 20, d 2 = 1000, d 3 = 2ed 4 = 50, nella seguente tabella mostriamo con le parentesi tutti i possibili ordini di valutazione del loro prodotto A = A 0 A 1 A 2 A 3 (di taglia d 0 d 4 ), riportando il corrispettivo costo totale di esecuzione per ottenere A :

4 20 Capitolo 6 Programmazione dinamica (A 0 (A 1 (A 2 A 3 )) d 2 d 3 d 4 + d 1 d 2 d 4 + d 0 d 1 d 4 = (A 0 ((A 1 A 2 ) A 3 ) d 1 d 2 d 3 + d 1 d 3 d 4 + d 0 d 1 d 4 = ((A 0 A 1 ) (A 2 A 3 )) d 0 d 1 d 2 + d 2 d 3 d 4 + d 0 d 2 d 4 = (((A 0 A 1 ) A 2 ) A 3 ) d 0 d 1 d 2 + d 0 d 2 d 3 + d 0 d 3 d 4 = ((A 0 (A 1 A 2 )) A 3 ) d 1 d 2 d 3 + d 0 d 1 d 3 + d 0 d 3 d 4 = Per esempio, la quarta riga corrisponde all ordine naturale di moltiplicazione da sinistra verso destra: la moltiplicazione A 0 A 1 richiede d 0 d 1 d 2 operazioni e restituisce una matrice di taglia d 0 d 2 ; la successiva moltiplicazione per A 2 richiede d 0 d 2 d 3 operazioni e restituisce una matrice di taglia d 0 d 3 ); l ultima moltiplicazione per A 3 richiede d 0 d 3 d 4 operazioni. Sommando tali costi e sostituendo i valori di d 0,...,d 4, otteniamo un totale di operazioni. Le altre righe della tabella mostrano che il costo complessivo del prodotto può variare in dipendenza dell ordine in cui sono effettuate le singole moltiplicazioni per ottenere lo stesso risultato: in questo caso, appare molto più conveniente effettuare le moltiplicazioni nell ordine indicato nella quinta riga, che fornisce un costo di sole operazioni. Il problema che ci poniamo è quello di trovare la sequenza di moltiplicazioni che minimizzi il costo complessivo del prodotto A = A 0 A 1 A n 1 per una data sequenza di n + 1 interi positivi d 0,d 1,...,d n (ricordiamo la nostra ipotesi che il costo della moltiplicazione di due matrici di taglia r s e s t sia pari a r s t). Possiamo ottenere un modo efficiente di affrontare il problema considerando il sotto-problema di trovare il costo per effettuare il prodotto di un gruppo consecutivo di matrici, A i A i+1 A j, dove 0 i j n 1, indicando con M(i, j) il corrispondente costo minimo: chiaramente, in tal modo siamo anche in grado di risolvere il problema iniziale calcolando M(0,n 1). Possiamo immediatamente notare che M(i, i)=0 per ogni i, in quanto ha costo nullo calcolare il prodotto della sequenza composta dalla sola matrice A i. Se passiamo al caso di M(i,j) con i<j, osserviamo che possiamo ottenere la matrice A i A i+1 A j (di taglia d i d j+1 ) fattorizzandola come una moltiplicazione tra A i A r (di taglia d i d r+1 )ea r+1 A j (di taglia d r+1 d j+1 ), per un qualunque intero r tale che i r<j. Il costo di tale moltiplicazione è pari a d i d r+1 d j+1, a cui vanno aggiunti i costi minimi M(i,r) e M(r + 1,j) per calcolare rispettivamente A i A r e A r+1 A j. Supponiamo di aver già calcolato induttivamente quest ultimi costi per tutti i possibili valori r con i r<j: allora il costo minimo M(i,j) sarà dato dal minimo, al variare di r, tra i valori M(i,r)+M(r + 1,j)+d i d r+1 d j+1. Da

5 Programmare algoritmi 21 1 CostoMinimoIterativo( ): 2 for (i = 0; i < n; i = i+1) { 3 costi[i][i] = 0; 4 } 5 for (diagonale = 1; diagonale < n; diagonale = diagonale+1) { 6 for (i = 0; i < n-diagonale; i = i+1) { 7 j = i + diagonale; 8 costi[i][j] = + ; 9 for (r = i; r < j; r = r+1) { 10 costo = costi[i][r] + costi[r+1][j]; 11 costo = costo + d[i] d[r+1] d[j+1]; 12 if (costo < costi[i][j]) { 13 costi[i][j] = costo; 14 indice[i][j] = r; 15 } 16 } 17 } 18 } 19 return costi[0][n-1]; Codice 6.1 Algoritmo iterativo per il calcolo dei costi minimi di moltiplicazione M(i,j). ciò deriva la seguente regola ricorsiva: 0 M(i,j)= min ir<j M(i,r)+M(r + 1,j)+di d r+1 d j+1 se i j altrimenti (6.2) Calcoliamo una sola volta i valori M(i, j) memorizzandoli in una tabella dei costi, realizzata mediante un array bidimensionale costi di taglia n n, in modo tale che costi[i][j] =M(i, j) per 0 i j n 1 (gli elementi della tabella corrispondenti a valori di i e j tali che i>jnon sono utilizzati dall algoritmo). L algoritmo descritto nel Codice 6.1 effettua il calcolo dei valori M(i, j) secondo quanto appena illustrato e, basandosi sulla regola in (6.2), riempie l array costi dal basso in alto, a partire dai valori costi[i][i], per 0 i<n, fino a ottenere il valore costi[0][n 1] da restituire. A partire dai valori noti costi[i][i] =0 sulla diagonale 0 (righe 2 3), l algoritmo determina tutti i valori costi[i][j] sulla diagonale 1 (con 0 i<n 1e j = i +1), poi quelli sulla diagonale 2 (con 0 i<n 2ej = i +2), e così via, fino al valore costi[0][n 1] sulla diagonale n 1 (righe 5 18): come possiamo notare, gli elementi su una data diagonale sono identificati nel codice dai

6 22 Capitolo 6 Programmazione dinamica due indici i e j tali che 0 i<n diagonale e j = i + diagonale. A ogni iterazione, il ciclo alle righe 9 16 calcola il minimo costo. Osserviamo che la complessità dell algoritmo nel Codice 6.1 è polinomiale, in quanto esegue tre cicli annidati, ciascuno di n iterazioni al più, per un totale di O(n 3 ) operazioni (chiaramente, le istruzioni all interno di tali cicli possono essere eseguite in tempo costante rispetto al numero n di matrici da moltiplicare). Nel corso della sua esecuzione, inoltre, l algoritmo usa le matrici costi e indice, aventi ciascuna n righe e n colonne, e una quantità costante di altre locazioni di memoria. Da ciò possiamo concludere che la complessità temporale dell algoritmo è O(n 3 ), mentre la sua complessità spaziale è O(n 2 ).

Universita' di Ferrara Dipartimento di Matematica e Informatica. Algoritmi e Strutture Dati

Universita' di Ferrara Dipartimento di Matematica e Informatica. Algoritmi e Strutture Dati Universita' di Ferrara Dipartimento di Matematica e Informatica Algoritmi e Strutture Dati Strategie per la progettazione di algoritmi: memoizzazione e programmazione dinamica Numeri di Fibonacci Coefficienti

Dettagli

Introduzione alla tecnica di Programmazione Dinamica

Introduzione alla tecnica di Programmazione Dinamica Universitá degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/37 Sommario della lezione Introduzione alla tecnica di Programmazione Dinamica Esempio di applicazione n. 1:

Dettagli

Sommario della lezione

Sommario della lezione Universitá degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/36 Sommario della lezione Ulteriori esempi di applicazione della Programmazione Dinamica Esempio di applicazione

Dettagli

Laboratorio di architettura degli elaboratori Progetto finale AA 2005/2006

Laboratorio di architettura degli elaboratori Progetto finale AA 2005/2006 Laboratorio di architettura degli elaboratori Progetto finale AA 2005/2006 Esercizio 1 - Heapsort Si consideri la seguente struttura dati, chiamata heap. Essa è un albero binario semi-completo (ossia un

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

Una funzione è detta ricorsiva se chiama, direttamente o indirettamente, se stessa. In C tutte le funzioni possono essere usate ricorsivamente.

Una funzione è detta ricorsiva se chiama, direttamente o indirettamente, se stessa. In C tutte le funzioni possono essere usate ricorsivamente. Ricorsione Funzioni ricorsive Una funzione è detta ricorsiva se chiama, direttamente o indirettamente, se stessa. In C tutte le funzioni possono essere usate ricorsivamente. Un esempio di funzione ricorsiva

Dettagli

Metodi diretti per la soluzione di sistemi lineari

Metodi diretti per la soluzione di sistemi lineari Metodi diretti per la soluzione di sistemi lineari N Del Buono 1 Introduzione Consideriamo un sistema di n equazioni in n incognite a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1, a 21 x 1 + a 22 x

Dettagli

Cicli, Array e Programmazione su Sequenze

Cicli, Array e Programmazione su Sequenze Cicli, Array e Programmazione su Sequenze Luca Tesei Università di Camerino luca.tesei at unicam.it Università di Camerino - Corso di Laurea in Informatica - Programmazione + Laboratorio di Programmazione

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati schifano@fe.infn.it Laurea di Informatica - Università di Ferrara 2011-2012 [1] Strutture dati Dinamiche: Le liste Una lista è una sequenza di elementi di un certo tipo in cui è possibile aggiungere e/o

Dettagli

MATLAB. Caratteristiche. Dati. Esempio di programma MATLAB. a = [1 2 3; 4 5 6; 7 8 9]; b = [1 2 3] ; c = a*b; c

MATLAB. Caratteristiche. Dati. Esempio di programma MATLAB. a = [1 2 3; 4 5 6; 7 8 9]; b = [1 2 3] ; c = a*b; c Caratteristiche MATLAB Linguaggio di programmazione orientato all elaborazione di matrici (MATLAB=MATrix LABoratory) Le variabili sono matrici (una variabile scalare equivale ad una matrice di dimensione

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Elementi di Programmazione Dinamica Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Il problema La CMC produce automobili in uno stabilimento

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

16.3.1 Alberi binari di ricerca

16.3.1 Alberi binari di ricerca 442 CAPITOLO 16. STRUTTURE DI DATI DINAMICHE root 7 5 11 2 8 13 10 Figura 16.11 Esempio di albero binario: ogni nodo contiene il dato da immagazzinare e tre puntatori che definiscono le sue relazioni di

Dettagli

Elementi di Informatica

Elementi di Informatica Università degli Studi di Udine Facoltà di Ingegneria CORSO DI LAUREA IN SCIENZE dell ARCHITETTURA Elementi di Informatica Algoritmi, e Programmi D. Gubiani 29 marzo 2010 D. Gubiani Algoritmi, e Programmi

Dettagli

Appunti di Informatica 1. Gianluca Rossi

Appunti di Informatica 1. Gianluca Rossi Appunti di Informatica 1 Gianluca Rossi Versione maggio 2011 Indice 1 Algoritmi, macchine e linguaggi di programmazione 3 1.1 La macchina di Von Neumann........................ 5 1.2 Dal linguaggio macchina

Dettagli

1 introdurre le monete per l importo necessario. 2 selezionare la quantità di zucchero. 3 selezionare la bevanda desiderata

1 introdurre le monete per l importo necessario. 2 selezionare la quantità di zucchero. 3 selezionare la bevanda desiderata Esempi di Problema: Prendere un Caffè al Distributore Università degli Studi di Udine Facoltà di Ingegneria CORSO DI LAUREA IN SCIENZE dell ARCHITETTURA Elementi di Informatica, e Programmi D. Gubiani

Dettagli

Algoritmi di Ricerca. Esempi di programmi Java

Algoritmi di Ricerca. Esempi di programmi Java Fondamenti di Informatica Algoritmi di Ricerca Esempi di programmi Java Fondamenti di Informatica - D. Talia - UNICAL 1 Ricerca in una sequenza di elementi Data una sequenza di elementi, occorre verificare

Dettagli

Esercizi Capitolo 5 - Alberi

Esercizi Capitolo 5 - Alberi Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dell informazione negli elaboratori

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dell informazione negli elaboratori Informazione e computer Si può rappresentare l informazione attraverso varie forme: Numeri Testi Suoni Immagini 0001010010100101010 Computer Cerchiamo di capire come tutte queste informazioni possano essere

Dettagli

Ottimizzazione Combinatoria

Ottimizzazione Combinatoria Ottimizzazione Combinatoria Esercitazione AMPL A.A. 2009-2010 Esercitazione a cura di Silvia Canale contatto e-mail: canale@dis.uniroma1.it Università di Roma La Sapienza Dipartimento di Informatica e

Dettagli

Ricorsione. Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona.

Ricorsione. Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona. Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona Sommario Implementazione di Utilizzo ricorsione per processare dati in java vs. multipla

Dettagli

Esercizi di Algoritmi e Strutture Dati

Esercizi di Algoritmi e Strutture Dati Esercizi di Algoritmi e Strutture Dati Moreno Marzolla marzolla@cs.unibo.it 18 marzo 2011 Problema basato su 10.5 del libro di testo La CINA (Compagnia Italiana per il Noleggio di Automobili) dispone di

Dettagli

Descrizione di un algoritmo

Descrizione di un algoritmo Descrizione di un algoritmo Un algoritmo descrive due tipi fondamentali di oper: calcoli ottenibili tramite le oper primitive su tipi di dato (valutazione di espressioni) che consistono nella modifica

Dettagli

Politecnico di Milano. Ingegneria del Software a.a. 2006/07. Appello del 14 settembre 2007 Cognome Nome Matricola

Politecnico di Milano. Ingegneria del Software a.a. 2006/07. Appello del 14 settembre 2007 Cognome Nome Matricola Politecnico di Milano Ingegneria del Software a.a. 2006/07 Appello del 14 settembre 2007 Cognome Nome Matricola Sezione (segnarne una) Baresi, Ghezzi, Morzenti, SanPietro Istruzioni 1. La mancata indicazione

Dettagli

Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy

Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy Dr Maria Federico Programmazione dinamica Solitamente usata per risolvere problemi di ottimizzazione il problema ammette

Dettagli

La ricorsione. Politecnico di Milano Sede di Cremona

La ricorsione. Politecnico di Milano Sede di Cremona La ricorsione Politecnico di Milano Sede di Cremona Gianpaolo Cugola Dipartimento di Elettronica e Informazione cugola@elet.polimi.it http://www.elet.polimi.it/~cugola Definizioni ricorsive Sono comuni

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

AA 2006-07 LA RICORSIONE

AA 2006-07 LA RICORSIONE PROGRAMMAZIONE AA 2006-07 LA RICORSIONE AA 2006-07 Prof.ssa A. Lanza - DIB 1/18 LA RICORSIONE Il concetto di ricorsione nasce dalla matematica Una funzione matematica è definita ricorsivamente quando nella

Dettagli

Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione

Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Esercizi II parte Esercizio 1 Discutere la correttezza di ciascuna delle seguenti affermazioni. Dimostrare formalmente la validità

Dettagli

Laboratorio di programmazione

Laboratorio di programmazione Laboratorio di programmazione Lezione VI Tatiana Zolo tatiana.zolo@libero.it 1 LE STRUCT Tipo definito dall utente i cui elementi possono essere eterogenei (di tipo diverso). Introduce un nuovo tipo di

Dettagli

Le Macchine di Turing

Le Macchine di Turing Le Macchine di Turing Come è fatta una MdT? Una MdT è definita da: un nastro una testina uno stato interno un programma uno stato iniziale Il nastro Il nastro è infinito suddiviso in celle In una cella

Dettagli

Gli algoritmi. Gli algoritmi. Analisi e programmazione

Gli algoritmi. Gli algoritmi. Analisi e programmazione Gli algoritmi Analisi e programmazione Gli algoritmi Proprietà ed esempi Costanti e variabili, assegnazione, istruzioni, proposizioni e predicati Vettori e matrici I diagrammi a blocchi Analisi strutturata

Dettagli

Esercizi Capitolo 6 - Alberi binari di ricerca

Esercizi Capitolo 6 - Alberi binari di ricerca Esercizi Capitolo 6 - Alberi binari di ricerca Alberto Montresor 23 settembre 200 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile

Dettagli

Corso di Laurea in INFORMATICA

Corso di Laurea in INFORMATICA Corso di Laurea in INFORMATICA Algoritmi e Strutture Dati MODULO 2. Algebre di dati Dati e rappresentazioni, requisiti delle astrazioni di dati, costrutti. Astrazioni di dati e dati primitivi. Specifica

Dettagli

Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012

Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012 Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012 Concetti importanti da (ri)vedere Programmazione imperativa Strutture di

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

Esercitazione Informatica I AA 2012-2013. Nicola Paoletti

Esercitazione Informatica I AA 2012-2013. Nicola Paoletti Esercitazione Informatica I AA 2012-2013 Nicola Paoletti 4 Gigno 2013 2 Conversioni Effettuare le seguenti conversioni, tenendo conto del numero di bit con cui si rappresenta il numero da convertire/convertito.

Dettagli

Rapida Introduzione all uso del Matlab Ottobre 2002

Rapida Introduzione all uso del Matlab Ottobre 2002 Rapida Introduzione all uso del Matlab Ottobre 2002 Tutti i tipi di dato utilizzati dal Matlab sono in forma di array. I vettori sono array monodimensionali, e così possono essere viste le serie temporali,

Dettagli

PHP e MySQL. Guida scaricata da www.webstyling.it

PHP e MySQL. Guida scaricata da www.webstyling.it Home -> Manuali & Tutorials -> Guida PHP PHP e MySQL E' possibile realizzare delle applicazioni in php appoggiandosi ad un database, quale ad esempio MySQL. Con le novità introdotte ai tempi di MySQL 4.1

Dettagli

Università degli studi di Roma Tor Vergata Ingegneria Medica Informatica I Programma del Corso

Università degli studi di Roma Tor Vergata Ingegneria Medica Informatica I Programma del Corso Obiettivi formativi Introdurre i principi del funzionamento di un elaboratore e della programmazione. Presentare gli approcci elementari alla soluzione di problemi (algoritmi)e al progetto di strutture

Dettagli

Due algoritmi di ordinamento. basati sulla tecnica Divide et Impera: Mergesort e Quicksort

Due algoritmi di ordinamento. basati sulla tecnica Divide et Impera: Mergesort e Quicksort Due algoritmi di ordinamento basati sulla tecnica Divide et Impera: Mergesort e Quicksort (13 ottobre 2009, 2 novembre 2010) Ordinamento INPUT: un insieme di n oggetti a 1, a 2,, a n presi da un dominio

Dettagli

Universita' di Ferrara Dipartimento di Matematica e Informatica. Algoritmi e Strutture Dati. Rappresentazione concreta di insiemi e Hash table

Universita' di Ferrara Dipartimento di Matematica e Informatica. Algoritmi e Strutture Dati. Rappresentazione concreta di insiemi e Hash table Universita' di Ferrara Dipartimento di Matematica e Informatica Algoritmi e Strutture Dati Rappresentazione concreta di insiemi e Hash table Copyright 2006-2015 by Claudio Salati. Lez. 9a 1 Rappresentazione

Dettagli

10 - Programmare con gli Array

10 - Programmare con gli Array 10 - Programmare con gli Array Programmazione e analisi di dati Modulo A: Programmazione in Java Paolo Milazzo Dipartimento di Informatica, Università di Pisa http://www.di.unipi.it/ milazzo milazzo di.unipi.it

Dettagli

ARRAY E STRINGHE. G. Frosini Slide 1

ARRAY E STRINGHE. G. Frosini Slide 1 ARRAY E STRINGHE G. Frosini Slide 1 Array: VARIABILI ARRAY struttura dati costituita da elementi (anche nessuno, array vuoto) dello stesso tipo; tipo array: tipo degli elementi, non numero degli elementi;

Dettagli

La selezione binaria

La selezione binaria Andrea Marin Università Ca Foscari Venezia Laurea in Informatica Corso di Programmazione part-time a.a. 2011/2012 Introduzione L esecuzione di tutte le istruzioni in sequenza può non è sufficiente per

Dettagli

Parte 3: Gestione dei progetti, Shop scheduling

Parte 3: Gestione dei progetti, Shop scheduling Parte : Gestione dei progetti, Shop scheduling Rappresentazione reticolare di un progetto Insieme di attività {,...,n} p i durata (nota e deterministica dell attività i) relazione di precedenza fra attività:

Dettagli

Corso di Visione Artificiale. Matlab per Visione. Samuel Rota Bulò

Corso di Visione Artificiale. Matlab per Visione. Samuel Rota Bulò Corso di Visione Artificiale Matlab per Visione Samuel Rota Bulò Cos'è Matlab? MATLAB MATLAB - - MATrix MATrix LABoratory LABoratory Ambiente Ambiente di di sviluppo sviluppo ed ed esecuzione esecuzione

Dettagli

Studente (Cognome Nome): Corso di Informatica Corso di Laurea in Ingegneria Gestionale a.a. 2007-08 Primo scritto 11 Gennaio 2008

Studente (Cognome Nome): Corso di Informatica Corso di Laurea in Ingegneria Gestionale a.a. 2007-08 Primo scritto 11 Gennaio 2008 Studente (Cognome Nome): Matricola: Corso di Informatica Corso di Laurea in Ingegneria Gestionale a.a. 2007-08 Primo scritto 11 Gennaio 2008 Si noti che le soluzioni ai quesiti saranno considerate valide

Dettagli

Esercizi di Ricerca Operativa I

Esercizi di Ricerca Operativa I Esercizi di Ricerca Operativa I Dario Bauso, Raffaele Pesenti May 10, 2006 Domande Programmazione lineare intera 1. Gli algoritmi per la programmazione lineare continua possono essere usati per la soluzione

Dettagli

Laboratorio di Algoritmi e Strutture Dati. Aniello Murano. www.dia.unisa.it/dottorandi/murano. Il linguaggio C II

Laboratorio di Algoritmi e Strutture Dati. Aniello Murano. www.dia.unisa.it/dottorandi/murano. Il linguaggio C II Laboratorio di Algoritmi e Strutture Dati Aniello Murano www.dia.unisa.it/dottorandi/murano 1 Il linguaggio C II 2 1 Indice (seconda parte) Funzioni Array Puntatori Preprocessore Storage Class Ricorsione

Dettagli

Tabelle hash. Damiano Macedonio Università Ca' Foscari di Venezia. mace@unive.it

Tabelle hash. Damiano Macedonio Università Ca' Foscari di Venezia. mace@unive.it Tabelle hash Damiano Macedonio Università Ca' Foscari di Venezia mace@unive.it Original work Copyright Alberto Montresor, University of Trento (http://www.dit.unitn.it/~montreso/asd/index.shtml) Modifications

Dettagli

Foglio di calcolo. Foglio di calcolo: nomi celle

Foglio di calcolo. Foglio di calcolo: nomi celle Foglio di calcolo L'astrazione offerta da un programma di gestione di fogli di calcolo è quella di una matrice (un foglio a quadretti). Colonne: A, B, C,... Righe: 1, 2, 3,... Ogni cella ha un nome composto

Dettagli

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA in termini generali: Dati in input un insieme S di elementi (numeri, caratteri, stringhe, ) e un elemento

Dettagli

Introduzione al linguaggio C Gli array

Introduzione al linguaggio C Gli array Introduzione al linguaggio C Gli array Vettori nome del vettore (tutti gli elementi hanno lo stesso nome, c) Vettore (Array) Gruppo di posizioni (o locazioni di memoria) consecutive Hanno lo stesso nome

Dettagli

ARRAY BIDIMENSIONALI float [][] mx = new float[3][4]; (float []) [] mx = new float[3][4];

ARRAY BIDIMENSIONALI float [][] mx = new float[3][4]; (float []) [] mx = new float[3][4]; ARRAY BIDIMENSIONALI Si possono definire array di qualunque tipo di dato, quindi anche di altre array float [][] mx = new float[3][4]; ovvero.. (float []) [] mx = new float[3][4]; La loro motivazione (storica)

Dettagli

Alberi binari di ricerca

Alberi binari di ricerca Alberi binari di ricerca Definizione Visita dell albero inorder Ricerca Ricerca minimo, massimo e successore. Inserimento ed eliminazione di un nodo Problema del bilanciamento dell albero Albero binario

Dettagli

OBIETTIVI SPECIFICI DI APPRENDIMENTO

OBIETTIVI SPECIFICI DI APPRENDIMENTO Disciplina:... Anno scolastico: 20.../20... Classe/i :... Docente:... DI APPRENDIMENTO SEZIONE 1 Premesse matematiche Nozioni fondamentali sui sistemi di numerazione Sistemi di numerazione in base diversa

Dettagli

Alcuni consigli per un uso di base delle serie di dati automatiche in Microsoft Excel

Alcuni consigli per un uso di base delle serie di dati automatiche in Microsoft Excel Alcuni consigli per un uso di base delle serie di dati automatiche in Microsoft Excel Le serie Una serie di dati automatica è una sequenza di informazioni legate tra loro da una relazione e contenute in

Dettagli

Algoritmi per la Visualizzazione. Disegno 2D ortogonale. Disegno ortogonale 2D (1) Disegno ortogonale 2D (2)

Algoritmi per la Visualizzazione. Disegno 2D ortogonale. Disegno ortogonale 2D (1) Disegno ortogonale 2D (2) Algoritmi per la visualizzazione DISEGNO DI GRAFI: ALCUNI CASI PARTICOLARI Disegno 2D ortogonale Disegno ortogonale 2D () Disegno ortogonale 2D (2) Punto di vista umano: primo criterio per giudicare la

Dettagli

Utilizzo del linguaggio Basic utilizzando l interfaccia di Excel Silvia Patacchini

Utilizzo del linguaggio Basic utilizzando l interfaccia di Excel Silvia Patacchini Introduzione all utilizzo di Visual Basic for Application Utilizzo del linguaggio Basic utilizzando l interfaccia di Excel Silvia Patacchini PROGRAMMAZIONE Insieme delle attività da svolgersi per creare

Dettagli

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza Il problema di flusso di costo minimo (MCF) Dati : grafo orientato G = ( N, A ) i N, deficit del nodo i : b i (i, j) A u ij, capacità superiore (max quantità di flusso che può transitare) c ij, costo di

Dettagli

La Memoria Virtuale Ottimizzazione della memoria centrale

La Memoria Virtuale Ottimizzazione della memoria centrale La Memoria Virtuale Ottimizzazione della memoria centrale 1) Introduzione- Gerarchia della memoria Da un punto di vista funzionale, ogni dispositivo di memorizzazione elettronica di informazioni presenta

Dettagli

Esercitazione 7. Procedure e Funzioni

Esercitazione 7. Procedure e Funzioni Esercitazione 7 Procedure e Funzioni Esercizio Scrivere un programma che memorizza in un array di elementi di tipo double le temperature relative al mese corrente e ne determina la temperatura massima,

Dettagli

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti Corso di Analisi Numerica - AN1 Parte 2: metodi diretti per sistemi lineari Roberto Ferretti Richiami sulle norme e sui sistemi lineari Il Metodo di Eliminazione di Gauss Il Metodo di Eliminazione con

Dettagli

Definire all'interno del codice un vettore di interi di dimensione DIM, es. int array[] = {1, 5, 2, 4, 8, 1, 1, 9, 11, 4, 12};

Definire all'interno del codice un vettore di interi di dimensione DIM, es. int array[] = {1, 5, 2, 4, 8, 1, 1, 9, 11, 4, 12}; ESERCIZI 2 LABORATORIO Problema 1 Definire all'interno del codice un vettore di interi di dimensione DIM, es. int array[] = {1, 5, 2, 4, 8, 1, 1, 9, 11, 4, 12}; Chiede all'utente un numero e, tramite ricerca

Dettagli

Appunti del corso di Informatica 1 (IN110 Fondamenti) 6 Introduzione al linguaggio C

Appunti del corso di Informatica 1 (IN110 Fondamenti) 6 Introduzione al linguaggio C Università di Roma Tre Facoltà di Scienze M.F.N. Corso di Laurea in Matematica Appunti del corso di Informatica 1 (IN110 Fondamenti) 6 Introduzione al linguaggio C Marco Liverani (liverani@mat.uniroma3.it)

Dettagli

Dispensa del corso di Informatica

Dispensa del corso di Informatica Dispensa 6-Boolean 1 Algebra Booleana Dispensa del corso di Informatica La logica George Boole (1815 1864) è stato un matematico e logico britannico, ed è considerato il padre fondatore della logica matematica.

Dettagli

Componenti di un sistema KNOWLEDGE-BASED

Componenti di un sistema KNOWLEDGE-BASED Componenti di un sistema KNOWLEDGE-BASED DYNAMIC DATABASE PROBLEM FORMALIZATION CONTROL STRATEGY IL DATABASE DESCRIVE LA SITUAZIONE CORRENTE NELLA DETERMINAZIONE DELLA SOLUZIONE AL PROBLEMA. LA FORMALIZZAZIONE

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

Tipologie di macchine di Turing

Tipologie di macchine di Turing Tipologie di macchine di Turing - Macchina di Turing standard - Macchina di Turing con un nastro illimitato in una sola direzione - Macchina di Turing multinastro - Macchina di Turing non deterministica

Dettagli

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU 9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A LU 9.1 Il metodo di Gauss Come si è visto nella sezione 3.3, per la risoluzione di un sistema lineare si può considerare al posto

Dettagli

Introduzione ai tipi di dato astratti: applicazione alle liste

Introduzione ai tipi di dato astratti: applicazione alle liste Universitàdegli Studi di L Aquila Facoltàdi Scienze M.F.N. Corso di Laurea in Informatica Corso di Laboratorio di Algoritmi e Strutture Dati A.A. 2005/2006 Introduzione ai tipi di dato astratti: applicazione

Dettagli

Macchine di Turing, problemi ricorsivi e ricorsivamente enumerabili

Macchine di Turing, problemi ricorsivi e ricorsivamente enumerabili Macchine di Turing, problemi ricorsivi e ricorsivamente enumerabili roblemi che i calcolatori non possono risolvere E importante sapere se un programma e corretto, cioe fa quello che ci aspettiamo. E facile

Dettagli

Regole sintattiche. Simboli

Regole sintattiche. Simboli Simboli Regole sintattiche Ogni sequenza di caratteri alfanumerici che inizi con un carattere alfabetico e non contenga spazi o caratteri speciali è interpretata come un unico simbolo. Le lettere maiuscole

Dettagli

12 - Introduzione alla Programmazione Orientata agli Oggetti (Object Oriented Programming OOP)

12 - Introduzione alla Programmazione Orientata agli Oggetti (Object Oriented Programming OOP) 12 - Introduzione alla Programmazione Orientata agli Oggetti (Object Oriented Programming OOP) Programmazione e analisi di dati Modulo A: Programmazione in Java Paolo Milazzo Dipartimento di Informatica,

Dettagli

Test Excel conoscenze di Base

Test Excel conoscenze di Base Test Excel conoscenze di Base 1)Che tipo di barra ha un foglio di calcolo, che un elaboratore testi non ha? a. La barra dei menu b. La barra della formula c. La barra del titolo d. La barra della formattazione

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Dispensa E04 Esempi di algoritmi e programmi C. Limongelli - A. Miola Novembre 2011 1 Contenuti q Somma di una sequenza di numeri interi

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

String, Array e Main. Lezione 7

String, Array e Main. Lezione 7 String, Array e Main Lezione 7 Scopo della Lezione Presentare la classe String ed il tipo Stringa; Presentare ed imparare ad usare gli array in Java; Approfondire la conoscenza con il metodo speciale main.

Dettagli

Sommario della lezione

Sommario della lezione Università degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/33 Sommario della lezione Ancora sui cammini minimi: Cammini minimi in grafi con archi di costo negativo Algoritmi

Dettagli

if t>=0 x=1; else x=0; end fornisce, nella variabile x, il valore della funzione gradino a tempi continui, calcolata in t.

if t>=0 x=1; else x=0; end fornisce, nella variabile x, il valore della funzione gradino a tempi continui, calcolata in t. Il programma MATLAB In queste pagine si introduce in maniera molto breve il programma di simulazione MAT- LAB (una abbreviazione di MATrix LABoratory). Introduzione MATLAB è un programma interattivo di

Dettagli

Libreria standard Java possiede un enorme libreria di classi standard organizzata in vari package che raccolgono le classi secondo un organizzazione

Libreria standard Java possiede un enorme libreria di classi standard organizzata in vari package che raccolgono le classi secondo un organizzazione Libreria standard Java possiede un enorme libreria di classi standard organizzata in vari package che raccolgono le classi secondo un organizzazione basata sul campo d utilizzo. I principali package sono:

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Funzioni in C. Violetta Lonati

Funzioni in C. Violetta Lonati Università degli studi di Milano Dipartimento di Scienze dell Informazione Laboratorio di algoritmi e strutture dati Corso di laurea in Informatica Funzioni - in breve: Funzioni Definizione di funzioni

Dettagli

Computabilità e complessità

Computabilità e complessità Computabilità e complessità I problemi computazionali possono essere classificati in base alla complessità dei relativi algoritmi di risoluzione. Questo capitolo offre una visione d insieme dei temi che

Dettagli

Richiesta pagina PHP (es: index.php)

Richiesta pagina PHP (es: index.php) PHP PHP = personal home page SERVER Richiesta pagina PHP (es: index.php) Server Web (Apache) in ascolto sulla porta 80, si accorge che la pagina richiesta è una pagina PHP in base all'estensione o con

Dettagli

Ricerca Operativa A.A. 2007/2008

Ricerca Operativa A.A. 2007/2008 Ricerca Operativa A.A. 2007/2008 9. Cenni su euristiche e metaeuristiche per ottimizzazione combinatoria Motivazioni L applicazione di metodi esatti non è sempre possibile a causa della complessità del

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboratorio di Algoritmi e Strutture Dati Docente: Camillo Fiorentini 18 dicembre 2007 Esercizio 1: rappresentazione di una tabella di occorrenze L obiettivo è quello di rappresentare in modo efficiente

Dettagli

Fondamenti di Informatica. Dichiarazione, creazione e gestione di array in Java

Fondamenti di Informatica. Dichiarazione, creazione e gestione di array in Java Fondamenti di Informatica Dichiarazione, creazione e gestione di array in Java Array in Java - creazione La creazione fa una inizializzazione implicita: num = new int[10]; con valore 0 per int e double,

Dettagli

STRUTTURE NON LINEARI

STRUTTURE NON LINEARI PR1 Lezione 13: STRUTTURE NON LINEARI Michele Nappi mnappi@unisa.it www.dmi.unisa.it/people/nappi Per la realizzazione della presentazione è stato utilizzato in parte materiale didattico prodotto da Oronzo

Dettagli

[MANUALE VISUAL BASIC SCUOLA24ORE PROF.SSA PATRIZIA TARANTINO] 14 dicembre 2008

[MANUALE VISUAL BASIC SCUOLA24ORE PROF.SSA PATRIZIA TARANTINO] 14 dicembre 2008 Se devo memorizzare più valori che sono in qualche modo parenti dal punto di vista logico, posso usare il concetto di vettore di variabili (array). Ad esempio, se devo memorizzare le temperature di tutti

Dettagli

Parte IV. I fogli elettronici e Excel

Parte IV. I fogli elettronici e Excel Parte IV I fogli elettronici e Excel Caratteristiche principali dei fogli elettronici Organizzazione dei dati in forma tabellare. Ogni cella può contenere: numeri, testi, formule il cui calcolo è aggiornato

Dettagli

Altri metodi di indicizzazione

Altri metodi di indicizzazione Organizzazione a indici su più livelli Altri metodi di indicizzazione Al crescere della dimensione del file l organizzazione sequenziale a indice diventa inefficiente: in lettura a causa del crescere del

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 3 5 7-8 9 57

Dettagli

FORMULE: Operatori matematici

FORMULE: Operatori matematici Formule e funzioni FORMULE Le formule sono necessarie per eseguire calcoli utilizzando i valori presenti nelle celle di un foglio di lavoro. Una formula inizia col segno uguale (=). La formula deve essere

Dettagli

Aurora Martina Angelo Raffaele Meo Clotilde Moro Mario Scovazzi. Passo dopo passo impariamo a programmare con PYTHON

Aurora Martina Angelo Raffaele Meo Clotilde Moro Mario Scovazzi. Passo dopo passo impariamo a programmare con PYTHON Aurora Martina Angelo Raffaele Meo Clotilde Moro Mario Scovazzi Passo dopo passo impariamo a programmare con PYTHON Usare Python come calcolatrice Sul tuo computer clicca su: start, programmi, Python,

Dettagli