C. Borelli - C. Invernizzi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "C. Borelli - C. Invernizzi"

Transcript

1 Rend. Sem. Mat. Univ. Pol. Torino Vol. 57, 3 (999) C. Borelli - C. Invernizzi SULLA STABILITÀ DELL EQUAZIONE FUNZIONALE DEI POLINOMI Sommario. In this paper we obtain some stability results generalizing those well known due to Hyers concerning the Fréchet equation.. Introduzione Lo scopo di questo lavoro è quello di ottenere dei risultati di stabilità secondo Hyers-Ulam che generalizzino i ben noti risultati di Hyers per le equazioni alle differenze con incrementi variabili presentati in [3]. Hyers, rifacendosi alla definizione di polinomio astratto introdotta da Fréchet in [2], prova un teorema di stabilità senza richiedere alcuna condizione di regolarità sulla funzione. Sia X uno spazio vettoriale su Q a sia Y uno spazio vettoriale; sia inoltre T un cono convesso in X con vertice nell origine. Un monomio astratto di grado k su X è la restrizione alla diagonale di una trasformazione da X in Y k-additiva, cioè V k (x) = V(x,, x), } {{ } k volte dove V è una trasformazione k-additiva. Una trasformazione V : T Y è un polinomio astratto al più di grado m se è decomponibile nella forma V(x) = V 0 (x) + V (x) + + V m (x), dove ogni V k è un monomio astratto di grado k oppure è identicamente nullo in T, e V 0 è una costante. Se con k h,,h k indichiamo l operatore differenza k-esima rispetto agli incrementi h,, h k e con k h l operatore differenza k-esima con incrementi tutti uguali a h, è ben nota la caratterizzazione seguente: una trasformazione V : T Y è un polinomio astratto di grado al più m se e solo se h m+ V(x) = 0 per ogni x, h T. Inoltre se V k è un monomio astratto di grado k, esiste un unica trasformazione k-additiva simmetrica V(x,, x k ) tale che V k (x) = V(x,, x) e V(x,, x k ) = k! k x,,x k V k (x). Nel prossimo paragrafo dimostreremo un teorema che generalizza il risultato di Hyers in [3] nella direzione di vari risultati di stabilità per l equazione funzionale di Cauchy (si veda []). Lavoro finanziato dal M.U.R.S.T. Fondi di Ricerca (60%). 99

2 200 C. Borelli - C. Invernizzi 2. Dimostrazione dei risultati principali In questo paragrafo daremo la dimostrazione del seguente TEOREMA 4.. Sia S uno spazio vettoriale normato e sia B uno spazio di Banach. Consideriamo una funzione f : S B soddisfacente la disuguaglianza () m h,,h m f (x) m+ ( x, h,, h m ) + β, per ogni x S, h i S ( i m), β R + e dove m+ : R m+ + R + è una funzione simmetrica, monotona non decrescente in ciascuna variabile e omogenea di grado p [0, ). Allora esiste un polinomio astratto P m definito su S a valori in B di grado al più m, tale che per ogni x S è dove f (x) P m (x) M m x p + β, M m = ( ) m 2 m 2 p m+ (0,,, ). Inoltre P m (x) = f (0)+ H (x)+ + H m (x) dove ogni H k è il monomio astratto di grado k ottenuto nel modo seguente H m (x) = m n + (m )!nm nx f (0) [ m H k (x) = n + k!n k k nx f (0) ] k nx H j(0), k m 2. j=k+ Premettiamo, seguendo le idee di Hyers, i seguenti lemmi. LEMMA 4.. Sia S uno spazio vettoriale normato e sia B uno spazio di Banach. Se f : S B soddisfa per ogni x, y S la disuguaglianza f (x + y) f (x) f (y) + f (0) ( x, y ), dove : R + R + R + è simmetrica e omogenea di grado p [0, ), allora esiste una funzione ν : S B additiva e tale che (2) f (x) f (0) ν(x) x p (, ) 2 2 p, (3) ν(x) = n + n nx f (0) = n + f (nx). n Dimostrazione. Poniamo f (x) f (0) = g(x), così che g(0) = 0; allora (4) g(x + y) g(x) g(y) ( x, y ).

3 Sulla stabilità 20 Ponendo x = y nella precedente relazione si ottiene g(2x) 2g(x) x p (, ) e quindi Per induzione si prova che g(2x) 2 g(x) x p (, ). 2 (5) g(2n x) 2 n g(x) x p 2 p n (, ) 2 n( p) 2 i( p). i=0 Da questo segue che la successione T n (x) = g(2n x) 2 n è di Cauchy per ogni x S e quindi, per la completezza di B, converge a ν(x) = n + T n (x). Sostituendo in (4) x e y rispettivamente con 2 n x e 2 n y e dividendo per 2 n, otteniamo g(2n (x + y)) 2 n g(2n x) 2 n g(2n y) 2 n e passando al ite per n + si prova l additività di ν. Se ora si passa al ite in (5) si ottiene la (2). Sostituendo in (2) x con nx e dividendo per n, si ha ν(nx) f (nx) + f (0) = ν(x) n e passando al ite per n + otteniamo la (3). ( x, y ), 2n( p) f (nx) f (0) x p (, ) n (2 2 p )n p Si osservi che il precedente Lemma continua a valere anche nell ipotesi f (x + y) f (x) f (y) + f (0) ( x, y ) + β, β R + ; in tal caso si include il risultato di Hyers e si ottiene f (x) f (0) ν(x) x p (, ) 2 2 p + β. LEMMA 4.2. Sia f : S B tale che per ogni x, y S valga la relazione (6) f (x + y) f (x) f (y) + f (0) Q(x, y) H(x, y) ( x, y ), dove H(x, y) o è identicamente nulla o è un monomio astratto di grado k in x, Q(x, y) è un polinomio astratto di grado k 2 in x tale che Q(0, y) = 0 e la funzione verifica le ipotesi del Lemma 4. ed inoltre è non decrescente in ciascuna variabile. Allora H(x, x) = k Ĥ(x) e Ĥ(x) o è identicamente nulla oppure è un monomio astratto di grado k dato da Ĥ(x) = n + k!n k k nx f (0) e H(x, y) = k (k )! n + nk nx g(0, y), dove g(x, y) = f (x + y) f (x).

4 202 C. Borelli - C. Invernizzi Dimostrazione. Per ipotesi esiste una funzione ν(x,, x k, y) additiva e simmetrica nelle prime k variabili tale che (7) H(x, y) = ν(x,, x, y). (k )! Facendo la differenza (k )-esima con incrementi x,, x k nel primo membro della (6) e ricordando che k x,,x k Q(x, y) = 0, otteniamo e, per la (7), k x,,x k,y f (x) k x,,x k H(x, y) 2 k k ( x i + x, y ) i= (8) k x,,x k,y f (x) ν(x,, x k, y) 2 k k ( x i + x, y ). Se scambiamo in (8) y con x j, j k, grazie alla simmetria dell operatore differenza otteniamo i= (9) k x,,x k,y f (x) ν(x,, x j, y, x j+,, x k, x j ) 2 k k ( x i + x + y, x j ). i = j Da queste due ultime espressioni abbiamo (0) ν(x,, x k, y) ν(x,, x j, y, x j+,, x k, x j ) k 2 k k ( x i + x, y ) + 2 k ( x i + x + y, x j ). i= i = j Mostriamo ora che ν, additiva e simmetrica nelle prime (k ) variabili, lo è pure nell ultima variabile. Sia k = 2; la precedente relazione si riduce a ν(x, y) ν(y, x ) 2 ( x + x, y ) + 2 ( y + x, x ), da cui sostituendo x con nx e passando al ite dopo aver diviso per n, otteniamo ν(y, nx ) = ν(x, y), n + n da cui, sfruttando l additività di ν rispetto alla prima variabile, otteniamo l additività rispetto alla seconda e la simmetria. Se k > 2, sostituiamo in (0) x i con nx i ( i k, i = j) e passando al ite dopo aver diviso per n, si ottiene ν(nx,, y,, nx k, x j ) = ν(x,, x k, y) n + n

5 Sulla stabilità 203 e l additività di ν rispetto alla j-esima variabile porta a quella sulla k-esima ed alla simmetria. Posto g(x, y) = f (x + y) f (x), scrivendo la (9) in termini di g, dopo aver sostituito x j con x per ogni j e diviso per (k )!n k, otteniamo da cui nx k g(0, y) ν(nx,, nx, y) (k )!n k 2k ( n nx + x, y ) (k )!n k, k (k )! n + nk nx g(0, y) = ν(x,, x, y) = H(x, y). (k )! Definiamo ora Ĥ(x) = k H(x, x) = k! ν(x,, x) e sostituiamo y con nx nella precedente relazione; passando al ite si ha Ĥ(x) = n + k!n k k nx f (0). LEMMA 4.3. Sia f soddisfacente le ipotesi del Lemma4.2 e poniamo f ˆ(x) = f (x) Ĥ(x). Allora fˆ soddisfa le ipotesi del Lemma 4.2 con k al posto di k (k 3), cioè esistono un monomio astratto H (x, y) di grado k 2 in x e un polinomio astratto Q (x, y) di grado k 3 in x con Q (0, y) = 0, tali che ˆ f (x + y) ˆ f (x) ˆ f (y) + ˆ f (0) Q (x, y) H (x, y) ( x, y ). Dimostrazione. Sostituendo f (x) = ˆ f (x) + Ĥ(x) in (6) otteniamo ˆ f (x + y) ˆ f (x) ˆ f (y) + ˆ f (0) Q(x, y) H(x, y) + Ĥ(x + y) Ĥ(x) Ĥ(y) () e Poiché ( x, y ). Ĥ(x + y) Ĥ(x) Ĥ(y) = (ν(x + y,, x + y) ν(x,, x) ν(y,, y)) k! ν(x + y,, x + y) = k i=0 ( ) k ν(x,, x, y,, y), i } {{ } } {{ } k i volte i volte otteniamo Ĥ(x + y) Ĥ(x) Ĥ(y) = k ( ) k ν(x,, x, y,, y) k! i } {{ } = H(x, y) + q(x, y) } {{ } i= k i volte i volte dove q(x, y) è un polinomio astratto di grado al più k 2 in x che si annulla per x = 0. Quindi sostituendo nella disuguaglianza () abbiamo ˆ f (x + y) ˆ f (x) ˆ f (y) + ˆ f (0) Q(x, y) + q(x, y) ( x, y ),

6 204 C. Borelli - C. Invernizzi dove sia Q che q sono di grado al più k 2 e si annullano in x = 0. La loro differenza si può quindi scrivere nella forma Q(x, y) q(x, y) = Q (x, y) + H (x, y), dove H è un monomio astratto di grado k 2 e Q (x, y) è un polinomio astratto di grado al più k 3 in x che si annulla per x = 0. Osserviamo che analogamente al Lemma 4., anche i Lemmi 4.2 e 4.3 rimangono validi nel caso in cui si sostituisca la (6) con f (x + y) f (x) f (y) + f (0) Q(x, y) H(x, y) ( x, y ) +β, β R +. Dimostrazione. Dimostrazione del Teorema4. Procediamo per induzione. Posto g(x) = f (x) f (0), si ha che 2 h,h 2 f (x) = 2 h,h 2 g(x), quindi per la () otteniamo g(x + h + h 2 ) g(x + h ) g(x + h 2 ) + g(x) 3 ( x, h, h 2 ) + β; ponendo nella relazione precedente x = 0, h = x e h 2 = y, si ha g(x + y) g(x) g(y) 3 (0, x, y ) + β. Per il Lemma 4. possiamo costruire una funzione additiva H(x) = n + 2 n g(2 n x) tale che Se poniamo P(x) = H(x) + f (0), otteniamo g(x) H(x) 3(0,, ) 2 2 p x p + β. f (x) P(x) 3(0,, ) 2 2 p x p + β e sostituendo x con nx, dividendo per n e passando al ite abbiamo H(x) = [ f (nx) f (0)]. n + n Supponiamo ora il teorema vero per m. Poniamo G(x, y) = f (x + y) f (x) e da otteniamo m+ h,,h m,y f (x) m+2( x, h,, h m, y ) + β m h,,h m G(x, y) m+2 ( x, h,, h m, y ) + β, da cui, se pensiamo y fissato, per l ipotesi di induzione possiamo garantire l esistenza di un polinomio P m (x, y) di grado m in x tale che G(x, y) P m (x, y) ( ) m 2 m 2 p m+2 (0, x,, x, y ) + β

7 Sulla stabilità 205 e P m (x, y) = G(0, y) + Q(x, y) + H(x, y), dove H è un monomio astratto di grado al più m in x e Q è un polinomio astratto di grado m 2 tale che Q(0, y) = 0. Ricordando l espressione di G, ciò significa f (x + y) f (x) f (y) + f (0) Q(x, y) H(x, y) ( ) m 2 m 2 p m+2 (0, x,, x, y ) + β, quindi f soddisfa le ipotesi del Lemma 4.2 con k = m, da cui H m (x) = H(x, x) m = m! n + n m m nx f (0) è un monomio astratto di grado m. Applichiamo ora il Lemma 4.3 alla funzione f (x) = f (x) H m (x). Otteniamo f (x + y) f (x) f (y) + f (0) R m 3 (x, y) R m 2 (x, y) ( ) m 2 m 2 p m+2 (0, x,, x, y ) + β, dove R m 2 è un monomio astratto di grado m 2 in x e R m 3 è un polinomio astratto di grado al più m 3 in x tale che R m 3 (0, y) = 0. La funzione f verifica quindi le ipotesi del Lemma 4.2 con k = m, quindi H m (x) = R m 2(x, x) = (m )! = (m )! n + (m )! [ m nm nx n + m nm nx f (0) f (0) m nx H m (0)] è un monomio astratto di grado m in x. Riapplicando di nuovo il Lemma 4.3 alla funzione f 2 (x) = f (x) H m (x) = f (x) H m (x) H m (x), vediamo che sono verificate le ipotesi del Lemma 4.2 con k = m 2 che assicurano che H m 2 (x) = m 2 (m 2)! n + nm 2 nx f 2 (0) è un monomio astratto di grado m 2 in x. Continuando in questo modo si giunge ad una funzione f m 2 (x) = f (x) H 3 (x) H m (x) tale che f m 2 (x + y) f m 2 (x) f m 2 (y) + f m 2 (0) h(x, y) ( ) m 2 m 2 p m+2 (0, x,, x, y ) + β, con h monomio astratto di primo grado in x. Per il Lemma 4.2 H 2 (x) = h(x, x) 2 = 2! n + n 2 2 nx f m 2(0) è un monomio astratto di grado 2 e quindi la funzione f m (x) = f (x) H 2 (x) H m (x) per il Lemma 4.3 è tale che f m (x + y) f m (x) f m (y) + f m (0) ( ) m 2 m 2 p m+2 (0, x,, x, y ) + β.

8 206 C. Borelli - C. Invernizzi Poiché f m verifica le ipotesi del Lemma 4., possiamo assicurare l esistenza di una funzione additiva H (x) = n + n nx f m (0) tale che f m (x) f m (0) H (x) ( ) m 2 m 2 p m+2 (0,,, ) x p + β, quindi f (x) P m (x) x p M m+ + β dove P m (x) = f (0) + H (x) + H 2 (x) + + H m (x). 3. Ulteriori risultati Utilizzando procedimenti simili a quelli del paragrafo precedente è possibile provare risultati di stabilità anche nel caso in cui la funzione di controllo sia di una classe differente.il risultato che proveremo fa riferimento, per quanto riguarda la scelta della funzione di controllo, a [4]. Precisamente vale il TEOREMA 4.2. Sia f : S B, dove S è uno spazio vettoriale normato e B è uno spazio di Banach, una funzione soddisfacente la disuguaglianza m h,,h m f (x) ( x ) + m ( h i ) per ogni h,, h m, x S, dove : R + R + verifica le condizioni i) t + (t) t = 0, ii) (ts) (t) (s), iii) (t) < t per ogni t >, iv) è localmente itata. Allora esiste un polinomio astratto P m tale che i= f (x) P m (0) + ( x )T m, dove T m = 2 + (2 (2)) + (2 (2))2 + + (2 (2)) m 2 (2 (2)) m. La dimostrazione del Teorema 4.2 procede in maniera analoga a quella seguita per il Teorema 4., facendo uso dei lemmi seguenti che costituiscono una evidente variante dei Lemmi 4. e 4.2. LEMMA 4.4. Sia f : S B, dove S è uno spazio vettoriale normato e B è uno spazio di Banach, una funzione soddisfacente la disuguaglianza f (x + y) f (x) f (y) + f (0) ( x ) + ( y ),

9 Sulla stabilità 207 dove verifica le ipotesi del Teorema 4.2. Allora esiste una funzione ν : S B additiva e tale che e inoltre 2 f (x) f (0) ν(x) ( x ) 2 (2) ν(x) = n + n nx f (0) = n + f (nx). n LEMMA 4.5. Sia f : S B tale che per ogni x, y S valga la relazione f (x + y) f (x) f (y) + f (0) Q(x, y) H(x, y) ( x ) + ( y ), dove H(x, y) o è identicamente nulla o è un monomio astratto di grado k in x, Q(x, y) è un polinomio astratto di grado k 2 in x tale che Q(0, y) = 0. Allora H(x, x) = k Ĥ(x) e Ĥ(x) o è identicamente nullo oppure è un monomio astratto di grado k dato da Ĥ(x) = n + k!n k k nx f (0) e H(x, y) = k (k )! n + nk nx g(0, y), dove g(x, y) = f (x + y) f (x). Per concludere osserviamo che il Teorema non può essere esteso al caso p (assumendo β = 0). Dimostriamo l esistenza di una funzione f : R R continua e di una funzione n+ : R n+ + R + simmetrica, monotona crescente in ciascuna variabile e omogenea di grado tali che n h,,h n f (x) n+ ( x, h,, h n ), x, h,, h n R, e, per qualunque polinomio astratto P n di grado n, si verifica che sup f (x) P n (x) = +. x + x Consideriamo una funzione H : [0, + ) [0, + ) [0, + ) simmetrica, monotona crescente in ogni variabile, omogenea di grado e tale che H(, ) =, s + H(, s) = + e definiamo h(t) = H(, t). Poiché t + h(t) = +, esiste una successione monotona crescente di interi positivi {n k } tale che n = e h(2 n k) > k. Consideriamo ora la successione {a k } data da e definiamo a = 0, a 2 = 2, a k+ = 2 n k a k per k = 2, 3, g(a ) = 0, g(a k ) = , k = 2, 3,, k + estendiamo quindi g linearmente sugli intervalli determinati dalla successione {a k }. Si ottiene una funzione continua e monotona crescente che soddisfa le seguenti condizioni: i) g(0) = 0,

10 208 C. Borelli - C. Invernizzi ii) t + g(t) = +, iii) g(t + s) g(t) h(t s) per ogni s [0, + ) e t (0,+ ). Isac e Rassias in [4] hanno mostrato che la funzione (2) f (t) = tg(t) 2 verifica la disuguaglianza Da questo segue che f (t + s) f (t) f (s) H( t, s ), t, s R. n h,,h n f (x) n+ ( x, h,, h n ), x, h,, h n R, dove n+ : R n+ + R + è una funzione simmetrica, monotona crescente in ciascuna variabile e omogenea di grado. Infatti, procedendo per induzione, se n = 2 abbiamo 2 h,h 2 f (x) = f (x + h + h 2 ) f (x + h ) f (x + h 2 ) + f (x) f (x + h + h 2 ) f (x + h 2 ) f (h ) + f (x + h ) f (x) f (h ) H( x + h 2, h ) + H( x, h ) 2H( x + h + h 2, x + h + h 2 ) = 3 ( x, h, h 2 ) e 3 è simmetrica, monotona crescente e omogenea di primo grado, poiché H ha tali proprietà. Passiamo ora da n a n + : n+ h,,h n+ f (x) n h,,h n f (x + h n+ ) + n h,,h n f (x) n+ ( x + h n+, h,, h n ) + n+ ( x, h,, h n ) 2 n+ ( x + h + + h n+,, x + h + + h n+ ) = n+2 ( x, h,, h n+ ) con n+2 simmetrica, monotona crescente ed omogenea di grado. Supponiamo ora, per assurdo, che esista un polinomio astratto P n di grado n tale che sup f (x) P n (x) < +. x + x Essendo f continua, essa è itata su ogni intervallo compatto. Dalla relazione precedente segue che anche P n è itato su ogni intervallo compatto non contenente lo zero. Ma allora P n è un polinomio in senso ordinario, cioè P n (x) = c 0 + c x + + c n x n. Restringendoci ad x > 0, otteniamo f (x) P n (x) x = f (x) c 0 x x c c n x n 2 = g(x) c 0 2 x c c n x n 2. Per n = e n = 2 abbiamo ovviamente f (x) P n (x) x + x = +.

11 Sulla stabilità 209 Se n > 2, definiamo f (x) = g(a k )χ (ak,a k ](x) e osserviamo che per la costruzione fatta è n k k e, per k 5, a k a k 2 k. Si verifica allora che g(x) f (x) log(k + )χ (ak,a k ](x) log(a k )χ (ak,a k ](x) 3 log x e quindi g(x) x + x n 2 x + 3 log x = 0. xn 2 Possiamo quindi concludere che g(x) x + P n (x) 2 x = x + xn 2 g(x) 2x n 2 c 0 x n c n = +. La stessa funzione f fornisce il controesempio per il caso p >. Per mostrare ciò osserviamo che partendo dalla funzione n+ costruita in precedenza e fissato p >, la funzione Ɣ n+ definita da n+ Ɣ n+ (x,, x n+ ) = n+ (x p k,, x p k ) k= è simmetrica, monotona crescente ed omogenea di grado p e inoltre n+ (x,, x n+ ) Ɣ n+ (x,, x n+ ) + n+ (,, ). Utilizzando questo risultato, per la funzione costruita in (2) abbiamo la seguente disuguaglianza n h,,h n f (x) Ɣ n+ ( x, h,, h n ) + β. Fissato p > sia n = [p] + 2. Supponiamo ora che esista un polinomio astratto P n tale che f (x) P sup n (x) β x + x p < +. Come nel caso precedente la continuità di f ci garantisce che P n è un polinomio ordinario e, restringendoci ai reali positivi, otteniamo f (x) P n (x) β g(x) x p = 2x p c 0 x p c n x n x p β x p. Si prova quindi immediatamente che f (x) P n (x) β x + x p = +. Si noti che sono esclusi i casi n = e n = 2, per i quali infatti mediante le stesse tecniche dimostrative usate da Hyers si ottengono risultati positivi di stabilità. Riferimenti bibliografici [] FORTI G.L., Hyers-Ulam stability of functional equations in several variables, Aeq. Math. 50 (995), [2] FRÉCHET M., Les polynomes abstraits, J. Math. Pure Appl. (9) 8 (929), 7 92.

12 20 C. Borelli - C. Invernizzi [3] HYERS D.H., Transformations with bounded n-th differences, Pacific J. Math. (96), [4] ISAC G. AND RASSIAS T.M., On the Hyers-Ulam stability of ψ- additive mappings, J. Approx. Theory 72 (993), AMS Subject Classification: 39B52, 39B72, 47H5. Costanza BORELLI, Chiara INVERNIZZI Dipartimento di Matematica Università degli Studi di Milano Via C. Saldini Milano, ITALIA Lavoro pervenuto in redazione il e, in forma definitiva, il

Limiti e continuità di funzioni reali di una variabile

Limiti e continuità di funzioni reali di una variabile di funzioni reali di una variabile Corso di Analisi Matematica - capitolo VI Facoltà di Economia, UER Maria Caterina Bramati Université Libre de Bruxelles ECARES 22 Novembre 2006 Intuizione di ite di funzione

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

Università degli Studi di Catania A.A. 2012-2013. Corso di laurea in Ingegneria Industriale

Università degli Studi di Catania A.A. 2012-2013. Corso di laurea in Ingegneria Industriale Università degli Studi di Catania A.A. 2012-2013 Corso di laurea in Ingegneria Industriale Corso di Analisi Matematica I (A-E) (Prof. A.Villani) Elenco delle dimostrazioni che possono essere richieste

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

ESERCITAZIONI DI ANALISI 1 FOGLIO 1 FOGLIO 2 FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI. Marco Pezzulla

ESERCITAZIONI DI ANALISI 1 FOGLIO 1 FOGLIO 2 FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI. Marco Pezzulla ESERCITAZIONI DI ANALISI FOGLIO FOGLIO FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI Marco Pezzulla gennaio 05 FOGLIO. Determinare il dominio e il segno della funzione ( ) f(x) arccos x x + π/3.

Dettagli

L. Pandolfi. Lezioni di Analisi Matematica 2

L. Pandolfi. Lezioni di Analisi Matematica 2 L. Pandolfi Lezioni di Analisi Matematica 2 i Il testo presenta tre blocchi principali di argomenti: A Successioni e serie numeriche e di funzioni: Cap., e 2. B Questa parte consta di due, da studiarsi

Dettagli

Alcune note sulle serie di potenze 1

Alcune note sulle serie di potenze 1 Alcune note sulle serie di potenze Contents G. Falqui Preliminari 2 Serie di potenze 3 3 Rappresentazione di funzioni mediante serie di potenze 7 3. Esempi notevoli........................... 9 3.2 Formula

Dettagli

Una ricetta per il calcolo dell asintoto obliquo. Se f(x) è asintotica a mx+q allora abbiamo f(x) mx q = o(1), da cui (dividendo per x) + o(1), m =

Una ricetta per il calcolo dell asintoto obliquo. Se f(x) è asintotica a mx+q allora abbiamo f(x) mx q = o(1), da cui (dividendo per x) + o(1), m = Una ricetta per il calcolo dell asintoto obliquo Se f() è asintotica a m+q allora abbiamo f() m q = o(1), da cui (dividendo per ) m = f() q + 1 f() o(1) = + o(1), mentre q = f() m = o(1). Dunque si ha

Dettagli

Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio

Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio. Funzioni e insiemi numerici.4 Verificare che (A B) (A B) = (A A ) B. ) Sia (a, b) (A B) (A B). Allora a (A A ) e b B, da cui (a,

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3.

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3. 7 LEZIONE 7 Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2 2 6x, x3 +2x 2 6x, 3x + x2 2, x3 +2x +3. Le derivate sono rispettivamente,

Dettagli

21. Studio del grafico di una funzione: esercizi

21. Studio del grafico di una funzione: esercizi 1. Studio del grafico di una funzione: esercizi Esercizio 1.6. Studiare ciascuna delle seguenti funzioni in base allo schema di pagina 194, eseguendo anche il computo della derivata seconda e lo studio

Dettagli

Note integrative ed Esercizi consigliati

Note integrative ed Esercizi consigliati - a.a. 2006-07 Corso di Laurea Specialistica in Ingegneria Civile (CIS) Note integrative ed consigliati Laura Poggiolini e Gianna Stefani Indice 0 1 Convergenza uniforme 1 2 Convergenza totale 5 1 Numeri

Dettagli

Appunti di Analisi Matematica 1. Docente: Klaus Engel. Università degli Studi dell Aquila Facoltà di Ingegneria A.A. 2011/12

Appunti di Analisi Matematica 1. Docente: Klaus Engel. Università degli Studi dell Aquila Facoltà di Ingegneria A.A. 2011/12 Appunti di Analisi Matematica Docente: Klaus Engel Università degli Studi dell Aquila Facoltà di Ingegneria A.A. / http://univaq.it/~engel ( = %7E) (Versione del 4 dicembre ) Note scritte in collaborazione

Dettagli

SIMULAZIONE TEST ESAME - 1

SIMULAZIONE TEST ESAME - 1 SIMULAZIONE TEST ESAME - 1 1. Il dominio della funzione f(x) = log (x2 + 1)(4 x 2 ) (x 2 2x + 1) è: (a) ( 2, 2) (b) ( 2, 1) (1, 2) (c) (, 2) (2, + ) (d) [ 2, 1) (1, 2] (e) R \{1} 2. La funzione f : R R

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

Patologia dei limiti

Patologia dei limiti G.Gorni 993/94. Il seno di uno su ics. Patologia dei limiti La funzione f(x) := sen x per x>0 èlapiù classica funzione patologica nel suo comportamento per x 0 +. Vediamo di studiarla brevemente. 0 Una

Dettagli

Finanza matematica - Lezione 01

Finanza matematica - Lezione 01 Finanza matematica - Lezione 01 Contratto d opzione Un opzione è un contratto finanziario stipulato al tempo, che permette di eseguire una certa transazione, d acquisto call o di vendita put, ad un tempo

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B FUNZIONI Definizione 1 Dati due insiemi A e B, si chiama funzione da A a B una legge che ad ogni elemento di A associa un (solo) elemento di B. L insieme A si chiama dominio della funzione e l insieme

Dettagli

6) f(x, y) = xy 1 log(5 2x 2y) x + y. 2x x 2 y 2 z 2 x 2 + y 2 + z 2 x Esercizio 2. Studiare gli insiemi di livello delle seguenti funzioni:

6) f(x, y) = xy 1 log(5 2x 2y) x + y. 2x x 2 y 2 z 2 x 2 + y 2 + z 2 x Esercizio 2. Studiare gli insiemi di livello delle seguenti funzioni: FUNZIONI IN PIÙ VARIABILI 1. Esercizi Esercizio 1. Determinare il dominio delle seguenti funzioni, specificando se si tratta di un insieme aperto o chiuso: 1) f(x, ) = log(x x ) ) f(x, ) = x + 3) f(x,

Dettagli

Insiemi di livello e limiti in più variabili

Insiemi di livello e limiti in più variabili Insiemi di livello e iti in più variabili Insiemi di livello Si consideri una funzione f : A R, con A R n. Un modo per poter studiare il comportamento di una funzione in più variabili potrebbe essere quello

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria federico.lastaria@polimi.it

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria federico.lastaria@polimi.it Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@poi.it Primi teoremi di caclolo differenziale Ottobre 2010. Indice 1 Funzioni derivabili su un intervallo 1 1.1

Dettagli

Stabilità di Lyapunov

Stabilità di Lyapunov Stabilità di Lyapunov Flaviano Battelli Dipartimento di Scienze Matematiche Università Politecnica delle Marche Ancona Introduzione. In queste note presentiamo i primi elementi della teoria della stabilità

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

3 GRAFICI DI FUNZIONI

3 GRAFICI DI FUNZIONI 3 GRAFICI DI FUNZIONI Particolari sottoinsiemi di R che noi studieremo sono i grafici di funzioni. Il grafico di una funzione f (se non è specificato il dominio di definizione) è dato da {(x, y) : x dom

Dettagli

Applicazioni del calcolo differenziale allo studio delle funzioni

Applicazioni del calcolo differenziale allo studio delle funzioni Capitolo 9 9.1 Crescenza e decrescenza in piccolo; massimi e minimi relativi Sia y = f(x) una funzione definita nell intervallo A; su di essa non facciamo, per ora, alcuna particolare ipotesi (né di continuità,

Dettagli

Grafico qualitativo di una funzione reale di variabile reale

Grafico qualitativo di una funzione reale di variabile reale Grafico qualitativo di una funzione reale di variabile reale Mauro Saita 1 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Dicembre 2014 Indice 1 Qualè il grafico

Dettagli

COGNOME e NOME: FIRMA: MATRICOLA:

COGNOME e NOME: FIRMA: MATRICOLA: Anno Accademico 04/ 05 Corsi di Analisi Matematica I Proff. A. Villani, R. Cirmi e F. Faraci) Prova d Esame del giorno 6 febbraio 05 Prima prova scritta compito A) Non sono consentiti formulari, appunti,

Dettagli

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA I - 11 Febbraio 2011, ore 8.30

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA I - 11 Febbraio 2011, ore 8.30 Esame di ANALISI MATEMATICA I - 11 Febbraio 2011, ore 830 A ESERCIZIO 1 (8 punti) Data la funzione = 1 + sin x 2 2 x (a) determinare lo sviluppo di MacLaurin al terzo ordine della funzione ; (b) determinare

Dettagli

Corso di Analisi Matematica. Funzioni continue

Corso di Analisi Matematica. Funzioni continue a.a. 203/204 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni continue Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti.

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

Serie di Fourier 1. Serie di Fourier. f(t + T )=f(t) t R.

Serie di Fourier 1. Serie di Fourier. f(t + T )=f(t) t R. Serie di Fourier 1 Serie di Fourier In questo capitolo introduciamo le funzioni periodiche, la serie di Fourier in forma trigonometrica per le funzioni di periodo π, e ne identifichiamo i coefficienti.

Dettagli

Parte 6. Applicazioni lineari

Parte 6. Applicazioni lineari Parte 6 Applicazioni lineari A Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Applicazioni fra insiemi, 2 Applicazioni lineari tra spazi vettoriali, 2 3 Applicazioni lineari da R n a R

Dettagli

Capitolo 4. Funzioni continue e limiti. 4.1 Intorni

Capitolo 4. Funzioni continue e limiti. 4.1 Intorni Capitolo 4 Funzioni continue e iti In questo capitolo definiremo la nozione di funzione continua e ne studieremo le proprietà fondamentali. Introdurremo inoltre l operazione fondamentale dell analisi infinitesimale,

Dettagli

Esercizi di Analisi Matematica I

Esercizi di Analisi Matematica I Esercizi di Analisi Matematica I Andrea Corli e Alessia Ascanelli gennaio 9 Indice Introduzione iii Nozioni preliminari. Fattoriali e binomiali..................................... Progressioni..........................................

Dettagli

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA DEFINIZIONE: Dato un numero reale a che sia a > 0 e a si definisce funzione esponenziale f(x) = a x la relazione che ad ogni valore di x associa uno e un solo

Dettagli

Dipendenza dai dati iniziali

Dipendenza dai dati iniziali Dipendenza dai dati iniziali Dopo aver studiato il problema dell esistenza e unicità delle soluzioni dei problemi di Cauchy, il passo successivo è vedere come le traiettorie di queste ultime dipendono

Dettagli

Analisi Matematica 3 appunti

Analisi Matematica 3 appunti Corso di Laurea in Statistica Matematica e trattamento Informatico dei Dati Analisi Matematica 3 appunti Francesca Astengo Università di Genova, A.A. 20/202 Indice Capitolo. Serie numeriche. Brevi richiami

Dettagli

Analisi matematica 3 Corso di Ingegneria online

Analisi matematica 3 Corso di Ingegneria online Funzioni di più variabili Analisi matematica 3 Corso di Ingegneria online Argomenti del programma limiti, continuità derivabilità, differenziabilità 3 punti critici, estremi liberi 4 il teorema delle funzioni

Dettagli

Note del corso di SISTEMI DINAMICI. Massimiliano Berti

Note del corso di SISTEMI DINAMICI. Massimiliano Berti Note del corso di SISTEMI DINAMICI Massimiliano Berti 16 Dicembre 2011 Versione preliminare Introduzione Va sotto il nome Sistemi Dinamici la teoria delle equazioni differenziali ordinarie, cioè di equazioni

Dettagli

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento:

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento: Capitolo 3 Serie 3. Definizione Sia { } una successione di numeri reali. Ci proponiamo di dare significato, quando possibile, alla somma a + a 2 +... + +... di tutti i termini della successione. Questa

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

1. I limiti delle funzioni.

1. I limiti delle funzioni. 1. I iti delle funzioni. 1.1. Considerazioni introduttive. La nozione di ite di una funzione reale di variabile reale costituisce una naturale generalizzazione della nozione di ite di una successione.

Dettagli

Quesiti di Analisi Matematica A

Quesiti di Analisi Matematica A Quesiti di Analisi Matematica A Presentiamo una raccolta di quesiti per la preparazione alla prova orale del modulo di Analisi Matematica A. Per una buona preparazione é consigliabile rispondere ad alta

Dettagli

1. Intorni di un punto. Punti di accumulazione.

1. Intorni di un punto. Punti di accumulazione. 1. Intorni di un punto. Punti di accumulazione. 1.1. Intorni circolari. Assumiamo come distanza di due numeri reali x e y il numero non negativo x y (che, come sappiamo, esprime la distanza tra i punti

Dettagli

Lezione 8. 8 Ottobre 2014 2 ore (La derivata, la tangente, calcolo delle derivate, massimi e minimi.)

Lezione 8. 8 Ottobre 2014 2 ore (La derivata, la tangente, calcolo delle derivate, massimi e minimi.) Laurea in Scienze e Tecnologie Biomolecolari, anno accademico 2014/15 Corso di Matematica e Statistica I Lezione 8. 8 Ottobre 2014 2 ore (La derivata, la tangente, calcolo delle derivate, massimi e minimi.)

Dettagli

1 Alcuni criteri di convergenza per serie a termini non negativi

1 Alcuni criteri di convergenza per serie a termini non negativi Alcuni criteri di convergenza per serie a termini non negativi (Criterio del rapporto.) Consideriamo la serie a (.) a termini positivi (ossia a > 0, =, 2,...). Supponiamo che esista il seguente ite a +

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Capitolo 4 Equazioni e sistemi non lineari 4.1 Introduzione Sia f(x):ir IR una funzione continua almeno su un certo intervallo I e si supponga che f(x) non sia della forma f(x) = a 1 x + a 0 con a 1 e

Dettagli

Studio del grafico di una funzione reale

Studio del grafico di una funzione reale Capitolo 1 Studio del grafico di una funzione reale Questo testo è una guida per lo studio del grafico di una funzione. Non è un testo completo ma solo una bozza che servirà agli studenti per arrivare

Dettagli

Funzioni. Parte prima. Daniele Serra

Funzioni. Parte prima. Daniele Serra Funzioni Parte prima Daniele Serra Nota: questi appunti non sostituiscono in alcun modo le lezioni del prof. Favilli, né alcun libro di testo. Sono piuttosto da intendersi a integrazione di entrambi. 1

Dettagli

Attenzione: i programmi sono cambiati negli anni. Non tutti gli esercizi nella presente raccolta riguardano argomenti trattati.

Attenzione: i programmi sono cambiati negli anni. Non tutti gli esercizi nella presente raccolta riguardano argomenti trattati. Si raccolgono qui temi d esame, esercizi e domande di teoria dati negli anni 3-4 nei corsi di Analisi Matematica I presso il DTG di Vicenza. Il materiale è stato reso disponibile dai docenti che hanno

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

ANALISI MATEMATICA I - Modulo Avanzato. Pamphlet sugli Studi Qualitativi di ODEs. Marco Squassina

ANALISI MATEMATICA I - Modulo Avanzato. Pamphlet sugli Studi Qualitativi di ODEs. Marco Squassina UNIVERSITÀ DEGLI STUDI DI VERONA Facoltà di Scienze Matematiche, Fisiche e Naturali ANALISI MATEMATICA I - Modulo Avanzato Pamphlet sugli Studi Qualitativi di ODEs Marco Squassina Anno Accademico 2006/2007

Dettagli

Metodi di Interpolazione Razionale e Applicazioni

Metodi di Interpolazione Razionale e Applicazioni UNIVERSITÁ DEGLI STUDI DI PADOVA Facoltá di Scienze MM. FF. NN. Laurea Triennale in Matematica Metodi di Interpolazione Razionale e Applicazioni Laureanda: Irene Federici Relatore: Dott. Fabio Marcuzzi

Dettagli

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012 Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 211/212 Ricordare: una funzione lipschitziana tra spazi metrici manda insiemi limitati in insiemi limitati; se il dominio di una funzione

Dettagli

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE. A. A. 2014-2015 L. Doretti

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE. A. A. 2014-2015 L. Doretti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE A. A. 2014-2015 L. Doretti 1 Il concetto di derivata di una funzione è uno dei più importanti e fecondi di tutta la matematica sia per

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equazioni differenziali ordinarie Denis Nardin January 2, 2010 1 Equazioni differenziali In questa sezione considereremo le proprietà delle soluzioni del problema di Cauchy. Da adesso in poi (PC) indicherà

Dettagli

Corso di Laurea in Ingegneria Civile Analisi Matematica I

Corso di Laurea in Ingegneria Civile Analisi Matematica I Corso di Laurea in Ingegneria Civile Analisi Matematica I Lezioni A.A. 2003/2004, prof. G. Stefani primo semiperiodo 22/9/03-8/11/03 Testo consigliato: Robert A. Adams - Calcolo differenziale 1 - Casa

Dettagli

Dispense di Algebra 1 - Gruppi

Dispense di Algebra 1 - Gruppi Dispense di Algebra 1 - Gruppi Dikran Dikranjan e Maria Silvia Lucido Dipartimento di Matematica e Informatica Università di Udine via delle Scienze 200, I-33100 Udine gennaio 2005 L algébre est généreuse,

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

Spazi di Banach e proprietà di Radon-Nikodym

Spazi di Banach e proprietà di Radon-Nikodym UNIVERITÀ DEGLI TUDI DI MILNO Facoltà di cienze Matematiche, Fisiche e Naturali Corso di Laurea in Matematica (triennale) pazi di Banach e proprietà di Radon-Nikodym Relatore: Prof. Clemente Zanco Elaborato

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

La funzione di Van der Waerden

La funzione di Van der Waerden G.Gorni 994/95 La funzione di Van der Waerden Definiamo la funzione a 0 : R R nel modo seguente: a 0 (x) : distanza di x dal numero intero più vicino. Che vuol dire? Dunque, per un corollario del principio

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Nota: Eventi meno probabili danno maggiore informazione

Nota: Eventi meno probabili danno maggiore informazione Entropia Informazione associata a valore x avente probabilitá p(x é i(x = log 2 p(x Nota: Eventi meno probabili danno maggiore informazione Entropia di v.c. X P : informazione media elementi di X H(X =

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

Un analisi sui sistemi di Reazione-Diffusione

Un analisi sui sistemi di Reazione-Diffusione Università degli Studi di Roma La Sapienza Anno Accademico 28-29 Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea Triennale in Matematica Un analisi sui sistemi di Reazione-Diffusione

Dettagli

Le derivate versione 4

Le derivate versione 4 Le derivate versione 4 Roberto Boggiani 2 luglio 2003 Riciami di geometria analitica Dalla geometria analitica sulla retta sappiamo ce dati due punti del piano A(x, y ) e B(x 2, y 2 ) con x x 2 la retta

Dettagli

NOME:... MATRICOLA:... Scienza dei Media e della Comunicazione, A.A. 2007/2008 Analisi Matematica 1, Esame scritto del 08.02.2008. x 1.

NOME:... MATRICOLA:... Scienza dei Media e della Comunicazione, A.A. 2007/2008 Analisi Matematica 1, Esame scritto del 08.02.2008. x 1. NOME:... MATRICOLA:.... Scienza dei Media e della Comunicazione, A.A. 007/008 Analisi Matematica, Esame scritto del 08.0.008 Indicare per quali R vale la seguente diseguaglianza : + >. Se y - - è il grafico

Dettagli

LIMITI E CONFRONTO LOCALE Esercizi svolti. b) lim. d) lim. h) lim x x + 1 x. l) lim. b) lim x cos x. x 0 sin 2 3x cos x p) lim.

LIMITI E CONFRONTO LOCALE Esercizi svolti. b) lim. d) lim. h) lim x x + 1 x. l) lim. b) lim x cos x. x 0 sin 2 3x cos x p) lim. LIMITI E CONFRONTO LOCALE Esercizi svolti. Calcolare i seguenti iti: a + 4 + b + 4 + 4 c 5 e ± g i + + sin 4 m sin o π q sin π + 4 + 7 d + 4 + + 5 4 + f 4 4 + 5 4 + 4 h + + l + + cos n sin cos p π π +

Dettagli

Successioni di funzioni reali

Successioni di funzioni reali E-school di Arrigo Amadori Analisi I Successioni di funzioni reali 01 Introduzione. In questo capitolo applicheremo i concetti di successione e di serie alle funzioni numeriche reali. Una successione di

Dettagli

Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI

Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Attività didattica ANALISI MATEMATICA [2000] Periodo di svolgimento:

Dettagli

ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali. www.vincenzoscudero.it novembre 2009

ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali. www.vincenzoscudero.it novembre 2009 ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali v.scudero www.vincenzoscudero.it novembre 009 1 1 Funzioni algebriche fratte 1.1 Esercizio svolto y = x 1 x 11x + 10 (generalizzazione)

Dettagli

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di Esercizi svolti. Si consideri la funzione f() 4. a) Verificare che la funzione F() 4 + arcsin è una primitiva di f() sull intervallo (, ). b) Verificare che la funzione G() 4 + arcsin π è la primitiva

Dettagli

Sulle funzioni di W 1,p (Ω) a traccia nulla

Sulle funzioni di W 1,p (Ω) a traccia nulla Sulle funzioni di W 1,p () a traccia nulla Sia u W 1,p (R n ) e supponiamo che il supp u, essendo un aperto di R n. Possiamo approssimare u con una successione di funzioni C il cui supporto è contenuto

Dettagli

Corso di Analisi Matematica. Funzioni reali di variabile reale

Corso di Analisi Matematica. Funzioni reali di variabile reale a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni reali di variabile reale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

Algebra Lineare e Geometria

Algebra Lineare e Geometria Algebra Lineare e Geometria Corso di Laurea in Ingegneria Elettronica A.A. 2013-2014 Prova d esame del 16/06/2014. 1) a) Determinare la matrice associata all applicazione lineare T : R 3 R 4 definita da

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

I tre concetti si possono descrivere in modo unitario dicendo che f e iniettiva, suriettiva, biiettiva se e solo se per ogni b B l equazione

I tre concetti si possono descrivere in modo unitario dicendo che f e iniettiva, suriettiva, biiettiva se e solo se per ogni b B l equazione Lezioni del 29 settembre e 1 ottobre. 1. Funzioni iniettive, suriettive, biiettive. Sia f : A B una funzione da un insieme A ad un insieme B. Sia a A e sia b = f (a) B l elemento che f associa ad a, allora

Dettagli

Parte 2. Metodi Matematici per la Meccanica Quantistica. Spazi di pre-hilbert e spazi di Hilbert. Gianpiero CATTANEO

Parte 2. Metodi Matematici per la Meccanica Quantistica. Spazi di pre-hilbert e spazi di Hilbert. Gianpiero CATTANEO Parte Metodi Matematici per la Meccanica Quantistica Spazi di pre-hilbert e spazi di Hilbert Gianpiero CATTANEO 10 giugno 008 Indice I - Spazi con Prodotto Interno e Spazi di Hilbert 5 1 Spazi con Prodotto

Dettagli

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24 Contenuto Endomorfismi auto-aggiunti. Matrici simmetriche. Il teorema spettrale Gli autovalori di una matrice simmetrica sono tutti reali. (Dimostrazione fatta usando i numeri complessi). Dimostrazione

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine

Dettagli

4. Operazioni binarie, gruppi e campi.

4. Operazioni binarie, gruppi e campi. 1 4. Operazioni binarie, gruppi e campi. 4.1 Definizione. Diremo - operazione binaria ovunque definita in A B a valori in C ogni funzione f : A B C - operazione binaria ovunque definita in A a valori in

Dettagli

Appunti e generalità sulle funzioni reali di variabili reali.

Appunti e generalità sulle funzioni reali di variabili reali. Appunti e generalità sulle funzioni reali di variabili reali. Premessa Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire solamente i concetti

Dettagli

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati.

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati. PROGRAMMA di Fondamenti di Analisi Matematica 2 (DEFINITIVO) A.A. 2010-2011, Paola Mannucci, Canale 2 Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.

Dettagli