La struttura stellare

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "La struttura stellare"

Transcript

1 La struttura stellare

2 Brevi richiami su proprietà osservative Grandezze più importanti che permettono di caratterizzare le stelle sono: la distanza ( d ); Astronomia lo spettro della radiazione e.m. emessa ( Iν ); la luminosità totale o bolometrica ( L ); la temperatura superficiale ( T ); il raggio ( R ); la massa ( M ). Astronomia 2

3 Le Classi Spettrali All inizio del XX secolo le stelle venivano classificate in base a tipi spettrali definiti dalla forza (profondità) delle righe di assorbimento osservate. La sequenza di tipi spettrali è definita dalle classi O-B-A-F-G-K-M (Oh-Be-A-Fine-Girl/Guy-Kiss-Me). Ciascuna classe è divisa in sottoclassi numerate da a 9 (O-...-O9-B...) 3

4 Le Classi Spettrali = Temperatura Superficiale B5 O5 Classe T (K) Righe spettrali O 3-5 Atomi ionizzati, specialmente HeII, CIII A5 F5 Hβ Hβ Hα T=4 K T=154 K T=82 K B 11-3 He neutro, un po di H A HI forte (H quasi tutto neutro), Balmer Jump, alcuni metalli ionizzati G5 Ca + K5 C + Mg Na Na Hα T=645 K T=58 K T=435 K T=355 K TiO F G K M H e metalli ionizzati come Ca e Fe Metalli neutri e ionizzati, specialmente Ca Metalli neutri (4Å break) Ossido di Titanio forte (TiO) e del Ca neutro M2 Ca HI vuol dire primo spettro dell H, che è poi quello dell idrogeno neutro. Analogamente: HeII He +, CIII C +2 ecc.

5 Intensità della riga Intensità della riga e Temperatura L intensità di una riga dipende dalla temperatura dell atmosfera. Temperatura superficiale (K) Tipo spettrale 5

6 Il diagramma di Hertzsprung-Russel Abbiamo visto come stimare L, T, R, M delle stelle. Adesso cercheremo di capire la struttura fisica delle stelle a partire dalle relazioni osservate tra queste quantità. Ejnar Hertzsprung (1911) e Henry Norris Russel (1913) ottengono indipendentemente una diagramma L-T ovvero luminosità (nella banda 51-59Å) - classificazione spettrale (da cui la Temperatura superficiale) per le stelle. Quello riportato in figura è il diagramma HR (Hertzsprung-Russel) per le stelle nei dintorni del Sole: l asse Y è la magnitudine assoluta in banda [ M() = -2.5 log L +cost. ] l asse X è il colore B- = M(B)-M(), proporzionale al logaritmo del rapporto tra le luminosità [ B- = 2.5 log (L/LB)+cost. ]; come sappiamo questa grandezza è a sua volta legata alla temperatura per motivi storici, in figura T (temperatura superficiale, indicata anche come Teff o Te, temperatura efficace o del corpo nero equivalente) cresce verso sinistra. 6

7 Il diagramma 8 HR Chapter 1: Introductio Diagramma HR per circa ~1 4 stelle vicine (distanze da parallasse con il satellite Hipparcos)

8 Il diagramma HR

9 Il diagramma HR Le superfici delle stelle si possono approssimare come corpi neri di temperatura T allora L =4 r 2? T 4? nel diagramma HR in figura si ha logl vs logt ovvero log L = [log(4 ) + 2 log r? ] + 4 log T cioè le linee a raggio stellare costante sono delle rette con pendenza 4. Tutte le stelle sono in parti ben definite del diagramma: 8-9% delle stelle sono nella striscia diagonale detta Sequenza Principale (Main Sequence, MS) che corrisponde ad una relazione L T 8 e (Sequenza Principale) data la relazione di corpo nero sulla MS r ~ T 2 ovvero stelle più calde sono più grandi. Il Sole è una stella di MS. Stelle più fredde hanno T~.5 T ovvero r ~ 1/4 r ; Stelle più calde hanno T~ 5 T ovvero r ~ 25 r. 9

10 Il diagramma HR Esistono altri luoghi occupati nel diagramma HR. In alto a destra rispetto alla MS esiste una concentrazione di stelle fredde (più rosse) dette Giganti Rosse; L alcuni ordini di grandezza più grande rispetto alle stelle di MS con la stessa T; per L = 4πr 2 σt 4 queste stelle devono avere raggi più grandi fino a 1 r ~ 1 AU. Nella parte bassa del diagramma c è una sequenza di punti corrispondente alle stelle Nane Bianche; L alcuni ordini di grandezza più piccola rispetto alle stelle di MS con la stessa queste stelle hanno raggi ~ 1-2 r ~ 1 4 km. Inizialmente fu ipotizzato che la MS fosse una sequenza di raffreddamento da cui il nome Early Types per O-B e Late Types per F-G-K-M. Quando le masse divennero disponibili (dalle binarie) ci si rese conto che alte T corrispondevano a alte M e viceversa. Sulla MS si ha M ~.1-1 M e la relazione L-M è L ~ M α con α 3 per M > M e α 5 per stelle meno massicce; Le nane bianche hanno masse ~M ma sempre < 1.4 M. 1

11 Relazione Massa Luminosità

12 Il diagramma HR Come vedremo più in dettaglio una stella passa gran parte della sua vita sulla MS dove la sua collocazione dipende da M; in questa fase le stelle bruciano H nei nuclei (ovvero sono alimentate da reazioni di fusione nucleare che convertono H in He). Quando H nel nucleo è terminato si passa ad una breve fase in cui si brucia He in strati esterni al nucleo (fase di gigante rossa). Stelle con M < 8 M durante la fase di gigante rossa riescono a espellere gran parte degli strati esterni e diventano infine nane bianche. Le nane bianche non sono alimentate da reazioni nucleari ma irraggiano l energia residua fino a spegnersi come nane nere. Stelle con M > 8 M dopo essere passate da fase di gigante (super giganti dato L) vanno incontro a processo inarrestabile di collasso del nucleo che le porta a esplodere come Supernovae. Le Supernovae lasciano come resto stelle di neutroni o buchi neri. Le Stelle di neutroni sono più calde e compatte delle nane bianche; hanno r di alcuni km e M ~ M. Inoltre sono ~1-2 volte meno luminose delle nane bianche e non compaiono nel diagramma HR. 12

13 Classi di Luminosità Ia Supergiganti brillanti Ib Supergiganti II Giganti brillanti III Giganti I Sub-giganti Sequenza principale A parte la classificazione spettrale (es. G2) le stelle sono anche divise in classi di luminosità (I - ) in base alla loro collocazione nel diagramma HR. Il Sole è quindi una stella G2 ( sta per nana).

14 La struttura stellare Una stella è una sfera di gas tenuta insieme dall auto gravità ed il cui collasso è impedito dalla presenza di gradienti di pressione. Con ottima approssimazione una stella è un sistema a simmetria sferica, ovvero le grandezze fisiche sono funzione soltanto della distanza r dal centro della stella. Prima di procedere vediamo alcuni cenni di teoria del campo gravitazionale. Il campo gravitazionale in P generato da una massa puntiforme in P è ( x) = GM x x pertanto il campo generato da una distribuzione di massa è ( x) = G Z ( x )d x x d = d 3 x dm = ( x )d 14

15 La struttura stellare ediamo ora di ottenere l energia gravitazionale. Data una distribuzione di massa l elemento di massa in i è soggetto al campo gravitazionale generato dall elemento di massa in j ovvero l energia gravitazionale associata sarà W ij = m i j ( x i )= ( x i ) j ( x i ) i W = 1 2 dove ϕj(xi) è il potenziale gravitazionale generato dalla massa j in i ed il fattore 1/2 è necessario per non contare due volte l energia gravitazionale dell interazione ij ovvero ΔWij e ΔWji sono la stessa cosa e devono contribuire una sola volta a W. Infine, passando al limite per elementi di volume infinitesimi W = 1 2 Z ( x) ( x) d X che esprime l energia potenziale di una distribuzione di massa. i6=j ( x i ) j ( x i ) i 15

16 La struttura stellare sostituiamo ora l espressione del potenziale in W W = 1 2 Z = 1 2 G Z d 3 x ( x) 1 2 x x 2 = 1 2 = 1 2 = 1 2 d 3 x Z " Z G ( x )d 3 x x x # d 3 x ( x) ( x ) x x 3 x x 2 X (x i x i)(x i x i) i X i X i x i (x i x i) 1 2 x i (x i x i)+ 1 2 X j x j(x j x j) X x j(x j x j ) j 16

17 La struttura stellare ma siccome nell integrale le variabili x e x sono perfettamente interscambiabili allora posso scrivere (sempre e solo ai fini dell integrale) 1 2 x x 2 = X i x i (x i x i)=x (x x ) ovvero W = W = Z Z G d 3 x Z d 3 x ( x) x d 3 x ( x) ( x ) x x 3 x ( x x ) apple Z d 3 x G ( x ) x x 3 ( x x ) ma l espressione tra le parentesi quadre è quella del campo gravitazionale generato dalla stessa distribuzione di massa g( x) = Z G ( x )d 3 x x x 3 ( x x ) 17

18 Introduzione alla struttura stellare per cui si ottiene un altra espressione per l energia potenziale gravitazionale Per calcolare W si può adesso utilizzare una proprietà notevole della forza gravitazionale ovvero il teorema di Gauss secondo cui, data una superficie chiusa S, si ha W = Z S Z g nds = ( x) x gd 4 GM dove n è la normale all elemento di superficie ds, ed M è la massa contenuta all interno di S. Questo teorema è l analogo di quello visto nel corso di Fisica II per il campo elettrostatico. 18

19 Introduzione alla struttura stellare Con una distribuzione sferica di massa M(r), se S è superficie sferica di raggio r si ha ovvero g = g(r)u r n = u r Z Z Z 4 GM(r) = g nds = g(r) ds = g(r) S S pertanto g a distanza r dal centro dipende soltanto nella massa contenuta all'interno della sfera di raggio r ed è la stessa che si avrebbe se questa massa fosse concentrata nel centro della sfera stessa. Allora l energia potenziale di una distribuzione sferica di massa è W = W = Z Z g(r) = GM(r) r 2 ( x) x gd = GM(r) r Z (r) d (r) r u r S GM(r) r 2 ds = g(r)4 r 2 u r d 19

20 Il tempo di free fall edremo come questa relazione sarà utile tra poco, ma per adesso consideriamo solo la massa dm contenuta nell elemento di volume d a distanza r dal centro (shell sferica), la sua energia potenziale gravitazionale è dw = GM(r ) r dm = (r )d dm Supponiamo che questo elemento di massa sia in caduta libera allora dalla conservazione dell energia meccanica, al raggio r si avrà 1 2 dm dr dt 2 GM(r) r dm = 1 2 dm dr dt 2 GM(r ) r=r r Se tutta la massa è in caduta libera partendo da ferma si ha M(r) = M(r) e dr/dt = per r = r. r dm 2

21 Il tempo di free fall Si ottiene 1 2 dr dt dr dt = 2 = GM(r ) s r 2GM(r ) 1 r GM(r ) r 1 r il segno - è stato scelto dal fatto che il gas deve cadere verso il centro ( r= ) per cui dr/dt <. Separando le variabili ed integrando membro a membro si ottiene il tempo che la distribuzione di massa impiega a collassare nel centro Z ff dt = Z r apple 2GM(r ) 1 r 1 r 1/2 dr 21

22 Il tempo di free fall Ponendo x = r/r, dr = r dx si ottiene infine ff = apple 2GM(r ) r 3 1/2 Z 1 l integrale definito si calcola ponendo x 1 x 1/2 dx x =sin 2 dx =2sin cos d Z 1 1/2 Z x /2 sin 2 dx = 1 x cos 2 1/2 2 sin cos d = Z /2 2 sin 2 d = 2 Definendo la densità media = M(r ) 4 3 r3 22

23 Il tempo di free fall si può esprimere M(r)/r 3 in funzione di ρ ottenendo alla fine ff = 1/2 3 32G nel caso del Sole ff = cgs 1.4 g cm 3 1/2 = 18 s quindi, in assenza di supporto, il Sole collasserebbe nell arco di mezz ora. Questo non avviene perché il Sole è in equilibrio idrostatico. 23

24 L equilibrio idrostatico Nel caso di equilibrio idrostatico, si è visto nel corso di Fluidi che rp = g dove P è la pressione del gas, ρ la densità e g l accelerazione di gravità (il campo gravitazionale). Nel caso semplificato di simmetria sferica che si applica alle stelle, solo la componente radiale di quella equazione vettoriale non è identicamente nulla per cui si ha dp (r) dr = GM(r) r 2 (r) questa è l equazione dell equilibrio idrostatico ed è la prima equazione utilizzata per determinare la struttura delle stelle. Si noti come il gradiente di pressione è negativo, poiché la pressione deve aumentare verso l interno per bilanciare la forza di gravità che tenderebbe a far collassare gli strati esterni. 24

25 Il teorema del viriale Dall equazione dell equilibrio idrostatico è possibile imparare molte cose. Moltiplicando membro a membro per 4π r 3 dr ed integrando tra r = e r =r Z r? 4 r 3 dp dr dr = Z r? GM(r) (r) r 4 r 2 dr ricordando che l elemento di volume è d = 4πr 2 dr e l espressione per l energia potenziale gravitazionale W, si nota come il secondo membro è proprio pari a W. Integrando il primo membro per parti si ottiene Z r? 4 r 3 dp dr dr =3 apple 4 3 r3 P (r ) Z r? P 4 r 2 dr ma P(r )= poiché è la pressione alla superficie della stelle, inoltre definendo la pressione media P = R r? P d R r? d = R r? P d 25

26 Il teorema del viriale si ottiene Z r? 4 r 3 dp dr dr = 3 P quindi integrando l equazione dell equilibrio idrostatico si è giunti alla relazione 3 P = W che rappresenta una delle molte forme del Teorema del iriale che, in generale, si applica ai sistemi legati gravitazionalmente. Supponiamo che il gas sia ideale, non relativistico (v c) e composto di particelle uguali, allora P = nrt dove Δ è un volume di gas, P pressione, T temperatura e Δn il numero di moli. Ricordando che n = N/NA (NA numero Avogadro) e R/NA = k (k costante di Boltzmann) si ha P = NkT 26

27 Il teorema del viriale L energia cinetica per particella dovuta all agitazione termica è 3/2 kt (gas perfetto monoatomico) per cui l energia totale in Δ è E th =3/2 NkT ovvero P = 2 3 E th = 2 3 E th cioè per un gas ideale non relativistico la pressione è 2/3 della densità di energia termica. Questa relazione vale in ogni punto della stella, dove posso definire pressione e temperatura (equilibrio termodinamico locale). Moltiplicando membro a membro per d = 4π r 2 dr e integrando sul volume della stella otteniamo Z r? 4 r 2 P (r)dr = 2 3 Z r? E th d 27

28 Il teorema del viriale ovvero nella notazione di prima P = 2 3 ETOT th dove Eth TOT è l energia termica totale immagazzinata nella stella. Sostituendo nel teorema del viriale si ottiene infine E TOT th = 1 2 E grav forma alternativa del teorema del viriale. Ricordiamo che Egrav < poichè il sistema è legato. Se una stella si contrae, Egrav diminuisce (ovvero diventa più negativa) e, di conseguenza, la sua energia termica aumenta. In pratica una stella ha una capacità termica negativa, e questo fatto è alla base di tutta l'evoluzione stellare. 28

29 Il teorema del viriale Altre forme del teorema del viriale sono E TOT = Eth TOT + E grav = Eth TOT = 1 2 E grav Siccome tutte le stelle irraggiano (perdono) energia sono destinate prima o poi a collassare (Egrav diventa sempre più negativo). Consideriamo nuovamente P = 1 3 E TOT grav e supponiamo, in prima approssimazione, che ρ sia costante, allora si ha E grav = Z r? GM(r) 4 r 2 dr = r Z r? G 4 3 r r3 4 r 2 dr = G Z r? r 4 dr 29

30 Il teorema del viriale ovvero E grav = 3 5 G 4 3 r3 4 3 r3 r = 3 5 GM 2 r dove M è la massa della stella e ρ è costante. Se ρ decrescesse con r, Egrav sarebbe più negativo (sistema più legato) con un coefficiente > 3/5. In conclusione, a meno di una costante, il valore caratteristico dell energia gravitazionale di una stella è E grav = GM 2 r ovvero P = 1 3 E grav = GM 2 4 r 4 nel caso del Sole si avrebbe P = GM 2 4 r dyne cm 2 3

31 Il teorema del viriale ricordiamo che 1 dyne cm -2 = 1 g cm s -2 cm -2 = 1-1 (kg m s -2 ) m -2 = 1-1 Pa. Poichè 1 5 Pa 1 atm risulta infine P = 1 14 Pa = 1 9 atm ovvero la pressione media del Sole è 1 9 volte quella dell atmosfera terrestre Per stimare il valore tipico della temperatura E TOT th = 1 2 E grav 3 2 NkT vir 1 2 GM 2 r kt vir GM 2 3Nr con N numero totale di particelle nella stella. M = m N dove m è la massa media delle particelle. 31

32 Il teorema del viriale Se il gas è fatto di solo H, ad 1 protone corrisponde un elettrone ovvero m = m p + m e 2 = 1 2 m p 1+ m e m p ' 1 2 m p poiché me/mp ~ 1/2. Sostituendo per N si ottiene infine kt vir GM m p 6r Nel caso del Sole kt vir erg =.34 ke con k = erg K -1 si ha T vir K si ricorda che questa è una temperatura media (viriale) della struttura stellare ed è ovviamente diversa dalla temperature superficiali stimate dagli spettri stellari e che si utilizzano per ottenere la luminosità della stella con la formula del corpo nero. Come vedremo più avanti, a temperature di questo ordine di grandezza possono aver luogo le reazioni di fusione termonucleare. 32

Sistemi binari e accrescimento

Sistemi binari e accrescimento Sistemi binari e accrescimento Le Stelle Binarie Finora abbiamo considerato le stelle come oggetti luminosi e isolati; le stelle sono alimentate da reazioni di fusione nucleare non interagiscono con il

Dettagli

Istituto Nazionale di Astrofisica Osservatorio Astronomico di Palermo. Terza lezione. Antonio Maggio. INAF Osservatorio Astronomico di Palermo

Istituto Nazionale di Astrofisica Osservatorio Astronomico di Palermo. Terza lezione. Antonio Maggio. INAF Osservatorio Astronomico di Palermo Istituto Nazionale di Astrofisica Osservatorio Astronomico di Palermo Terza lezione Antonio Maggio INAF Osservatorio Astronomico di Palermo Argomenti e concetti già introdotti Fotometria: il concetto di

Dettagli

FISICA (modulo 1) PROVA SCRITTA 10/02/2014

FISICA (modulo 1) PROVA SCRITTA 10/02/2014 FISICA (modulo 1) PROVA SCRITTA 10/02/2014 ESERCIZI E1. Un proiettile del peso di m = 10 g viene sparato orizzontalmente con velocità v i contro un blocco di legno di massa M = 0.5 Kg, fermo su una superficie

Dettagli

STELLE VARIABILI. Capitolo 14

STELLE VARIABILI. Capitolo 14 Capitolo 14 STELLE VARIABILI Esistono stelle che cambiano periodicamente o irregolarmente o solo occasionalmente la loro luminosità: nell insieme sono chiamate stelle variabili. Già abbiamo citato la loro

Dettagli

La misura dei parametri fisici delle stelle

La misura dei parametri fisici delle stelle La misura dei parametri fisici delle stelle La misura dei parametri fisici delle stelle Grandezze più importanti che permettono di caratterizzare le stelle sono: la distanza ( d ); Astronomia lo spettro

Dettagli

La fisica di Feynmann Termodinamica

La fisica di Feynmann Termodinamica La fisica di Feynmann Termodinamica 3.1 TEORIA CINETICA Teoria cinetica dei gas Pressione Lavoro per comprimere un gas Compressione adiabatica Compressione della radiazione Temperatura Energia cinetica

Dettagli

LEZIONE 5-6 GAS PERFETTI, CALORE, ENERGIA TERMICA ESERCITAZIONI 1: SOLUZIONI

LEZIONE 5-6 GAS PERFETTI, CALORE, ENERGIA TERMICA ESERCITAZIONI 1: SOLUZIONI LEZIONE 5-6 G PERFETTI, CLORE, ENERGI TERMIC EERCITZIONI 1: OLUZIONI Gas Perfetti La temperatura è legata al movimento delle particelle. Un gas perfetto (ovvero che rispetta la legge dei gas perfetti PV

Dettagli

QUESITI A RISPOSTA APERTA

QUESITI A RISPOSTA APERTA QUESITI A RISPOSTA APERTA 1.Che cosa sono gli spettri stellari e quali informazioni si possono trarre dal loro studio? Lo spettro di un qualsiasi corpo celeste altro non è che l insieme di tutte le frequenze

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100

Dettagli

p atm 1. V B ; 2. T B ; 3. W A B 4. il calore specifico a volume costante c V

p atm 1. V B ; 2. T B ; 3. W A B 4. il calore specifico a volume costante c V 1 Esercizio (tratto dal Problema 13.4 del Mazzoldi 2) Un gas ideale compie un espansione adiabatica contro la pressione atmosferica, dallo stato A di coordinate, T A, p A (tutte note, con p A > ) allo

Dettagli

RIASSUNTO DI FISICA 3 a LICEO

RIASSUNTO DI FISICA 3 a LICEO RIASSUNTO DI FISICA 3 a LICEO ELETTROLOGIA 1) CONCETTI FONDAMENTALI Cariche elettriche: cariche elettriche dello stesso segno si respingono e cariche elettriche di segno opposto si attraggono. Conduttore:

Dettagli

SCIENZE. L Universo e le Stelle. Introduzione. il testo:

SCIENZE. L Universo e le Stelle. Introduzione. il testo: 01 Introduzione Noi viviamo su un pianeta che si chiama Terra. La Terra si trova in uno spazio grandissimo (spazio infinito). In questo spazio infinito ci sono tante cose (tante parti di materia). Come

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

INIZIO E FINE DI UNA STELLA. Osservatorio Astronomico di Pedaso

INIZIO E FINE DI UNA STELLA. Osservatorio Astronomico di Pedaso INIZIO E FINE DI UNA STELLA Osservatorio Astronomico di Pedaso Le stelle nascono dentro al grembo celeste che è la NEBULOSA. La nebulosa è un insieme di gas composto per la maggior parte di IDROGENO, ELIO,

Dettagli

C V. gas monoatomici 3 R/2 5 R/2 gas biatomici 5 R/2 7 R/2 gas pluriatomici 6 R/2 8 R/2

C V. gas monoatomici 3 R/2 5 R/2 gas biatomici 5 R/2 7 R/2 gas pluriatomici 6 R/2 8 R/2 46 Tonzig La fisica del calore o 6 R/2 rispettivamente per i gas a molecola monoatomica, biatomica e pluriatomica. Per un gas perfetto, il calore molare a pressione costante si ottiene dal precedente aggiungendo

Dettagli

Lunedì 20 dicembre 2010. Docente del corso: prof. V. Maiorino

Lunedì 20 dicembre 2010. Docente del corso: prof. V. Maiorino Lunedì 20 dicembre 2010 Docente del corso: prof. V. Maiorino Se la Terra si spostasse all improvviso su un orbita dieci volte più lontana dal Sole rispetto all attuale, di quanto dovrebbe variare la massa

Dettagli

Fisica Generale 1 per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 2011/12 Appello del 29/01/2013.

Fisica Generale 1 per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 2011/12 Appello del 29/01/2013. Fisica Generale per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 20/2 Appello del 29/0/203. Tempo a disposizione: 2h30. Scrivere solamente su fogli forniti Modalità di risposta: spiegare sempre il procedimento

Dettagli

Esercizi e Problemi di Termodinamica.

Esercizi e Problemi di Termodinamica. Esercizi e Problemi di Termodinamica. Dr. Yves Gaspar March 18, 2009 1 Problemi sulla termologia e sull equilibrio termico. Problema 1. Un pezzetto di ghiaccio di massa m e alla temperatura di = 250K viene

Dettagli

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA PROGRAMMA DI MATEMATICA E FISICA Classe VA scientifico MATEMATICA MODULO 1 ESPONENZIALI E LOGARITMI 1. Potenze con esponente reale; 2. La funzione esponenziale: proprietà e grafico; 3. Definizione di logaritmo;

Dettagli

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t;

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t; CAPITOLO CIRCUITI IN CORRENTE CONTINUA Definizioni Dato un conduttore filiforme ed una sua sezione normale S si definisce: Corrente elettrica i Q = (1) t dove Q è la carica che attraversa la sezione S

Dettagli

Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it. Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014

Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it. Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014 Astronomia Lezione 30/10/2014 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014 Cosa possiamo imparare sulle stelle

Dettagli

Indice PREFAZIONE. Capitolo 5 LE LEGGI DEL MOTO DI NEWTON 58 5.1 La terza legge di Newton 58

Indice PREFAZIONE. Capitolo 5 LE LEGGI DEL MOTO DI NEWTON 58 5.1 La terza legge di Newton 58 Indice PREFAZIONE XV Capitolo 1 RICHIAMI DI MATEMATICA 1 1.1 Simboli, notazione scientifica e cifre significative 1 1.2 Algebra 3 1.3 Geometria e trigonometria 5 1.4 Vettori 7 1.5 Sviluppi in serie e approssimazioni

Dettagli

LO SPETTRO. c ν. Sono da tener presente i seguenti parametri:

LO SPETTRO. c ν. Sono da tener presente i seguenti parametri: LO SPETTRO Se si fa passare un fascio luminoso prima attraverso una fenditura e poi attraverso un prisma si ottiene la scomposizione della luce nei colori semplici, cioè otteniamo lo spettro della luce.

Dettagli

L ENERGIA. L energia. pag.1

L ENERGIA. L energia. pag.1 L ENERGIA Lavoro Energia Conservazione dell energia totale Energia cinetica e potenziale Conservazione dell energia meccanica Forze conservative e dissipative Potenza Rendimento di una macchina pag.1 Lavoro

Dettagli

ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB

ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB ESERCIZI SVOLTI DAL PROF. GIANLUIGI TRIVIA 1. La Legge di Coulomb Esercizio 1. Durante la scarica a terra di un fulmine scorre una corrente di.5 10 4 A per

Dettagli

LE STELLE. G. Iafrate (a), M. Ramella (a) e V. Bologna (b) Informazioni e contatti: wwwas.oats.inaf.it/aidawp5 - aidawp5@oats.inaf.

LE STELLE. G. Iafrate (a), M. Ramella (a) e V. Bologna (b) Informazioni e contatti: wwwas.oats.inaf.it/aidawp5 - aidawp5@oats.inaf. LE STELLE G. Iafrate (a), M. Ramella (a) e V. Bologna (b) (a) INAF - Osservatorio Astronomico di Trieste (b) Istituto Comprensivo S. Giovanni Sc. Sec. di primo grado M. Codermatz" - Trieste Questo modulo

Dettagli

Tabella periodica degli elementi

Tabella periodica degli elementi Tabella periodica degli elementi Perchè ha questa forma? Ovvero, esiste una regola per l ordinamento dei singoli atomi? Le proprietà dei materiali hanno una relazione con la tabella? L applicazione dei

Dettagli

2. L ENERGIA MECCANICA

2. L ENERGIA MECCANICA . L ENERGIA MECCANICA.1 Il concetto di forza La forza può essere definita come «azione reciproca tra corpi che ne altera lo stato di moto o li deforma: essa é caratterizzata da intensità direzione e verso».

Dettagli

La volta celeste. SMS di Piancavallo 1

La volta celeste. SMS di Piancavallo 1 La volta celeste L Astronomia è la scienza che studia l Universo e le sue origini. Le origini dello studio della volta celeste si perdono nella notte dei tempi, perché l uomo è sempre stato attratto ed

Dettagli

Relazione sull incontro con. Massimo Volante. Esperto del Gruppo Astrofili Di Alessandria

Relazione sull incontro con. Massimo Volante. Esperto del Gruppo Astrofili Di Alessandria Relazione sull incontro con Massimo Volante Esperto del Gruppo Astrofili Di Alessandria Il ciclo della vita di una stella (1) Protostella (2b) Nana bruna (2a) Stella (3) Gigante rossa Sono esaurite le

Dettagli

Fisica Generale 1 per Chimica Formulario di Termodinamica e di Teoria Cinetica

Fisica Generale 1 per Chimica Formulario di Termodinamica e di Teoria Cinetica Fisica Generale 1 per Chimica Formulario di Termodinamica e di Teoria Cinetica Termodinamica Equazione di Stato: p = pressione ; V = volume ; T = temperatura assoluta ; n = numero di moli ; R = costante

Dettagli

ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica

ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTRODINAMICA + Correnti + Campi Magnetici + Induzione e Induttanza + Equazioni di Maxwell

Dettagli

I FENOMENI TERMICI. I fenomeni termici Fisica Medica Lauree triennali nelle Professioni Sanitarie. P.Montagna ott-07. pag.1

I FENOMENI TERMICI. I fenomeni termici Fisica Medica Lauree triennali nelle Professioni Sanitarie. P.Montagna ott-07. pag.1 I FENOMENI TERMICI Temperatura Calore Trasformazioni termodinamiche Gas perfetti Temperatura assoluta Gas reali Principi della Termodinamica Trasmissione del calore Termoregolazione del corpo umano pag.1

Dettagli

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. 4pe 0 r. Fisica II CdL Chimica

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. 4pe 0 r. Fisica II CdL Chimica Potenziale Elettrico Q V 4pe 0 R Q 4pe 0 r C R R R r r B q B r A A independenza dal cammino Superfici Equipotenziali Due modi per analizzare i problemi Con le forze o i campi (vettori) per determinare

Dettagli

Caratteristiche delle stelle ed evoluzione stellare

Caratteristiche delle stelle ed evoluzione stellare Caratteristiche delle stelle ed evoluzione stellare stelle Corpi celesti di grande massa, che producono al loro interno energia mediante fusione nucleare, e la emettono sotto forma di radiazioni elettromagnetiche.

Dettagli

IL NUCLEO ATOMICO E LA MOLE

IL NUCLEO ATOMICO E LA MOLE IL NUCLEO ATOMICO E LA MOLE Gli atomi sono costituiti da un nucleo, formato da protoni (carica elettrica positiva, massa 1,6724 x 10-24 g) e neutroni (nessuna carica elettrica, massa 1,6745 x 10-24 g),

Dettagli

LEZIONE 1. Materia: Proprietà e Misura

LEZIONE 1. Materia: Proprietà e Misura LEZIONE 1 Materia: Proprietà e Misura MISCELE, COMPOSTI, ELEMENTI SOSTANZE PURE E MISCUGLI La materia può essere suddivisa in sostanze pure e miscugli. Un sistema è puro solo se è formato da una singola

Dettagli

Nascita e morte delle stelle

Nascita e morte delle stelle Nascita e morte delle stelle Se la materia che componeva l universo primordiale fosse stata tutta perfettamente omogenea e diffusa in modo uguale, non esisterebbero né stelle né pianeti. C erano invece

Dettagli

Indice. Parte I Astrofisica osservativa

Indice. Parte I Astrofisica osservativa Parte I Astrofisica osservativa 1 Sistemi di riferimento astronomici... 3 1.1 Introduzione... 3 1.2 Il sistema di coordinate orizzontali o altazimutali................ 4 1.3 Ilsistemaequatoriale... 6 1.4

Dettagli

LA TERMOLOGIA. studia le variazioni di dimensione di un corpo a causa di una

LA TERMOLOGIA. studia le variazioni di dimensione di un corpo a causa di una LA TERMOLOGIA La termologia è la parte della fisica che si occupa dello studio del calore e dei fenomeni legati alle variazioni di temperatura subite dai corpi. Essa si può distinguere in: Termometria

Dettagli

IL LATO OSCURO DELL UNIVERSO dov e` la materia che non vediamo? Elena Zucca. INAF - Osservatorio Astronomico di Bologna

IL LATO OSCURO DELL UNIVERSO dov e` la materia che non vediamo? Elena Zucca. INAF - Osservatorio Astronomico di Bologna IL LATO OSCURO DELL UNIVERSO dov e` la materia che non vediamo? Elena Zucca INAF - Osservatorio Astronomico di Bologna Ma l Universo è costituito solo da materia luminosa? La forza di gravità Galileo

Dettagli

Emissione X da sistemi binari

Emissione X da sistemi binari Emissione X da sistemi binari Le binarie X sono sistemi in cui un oggetto compatto (una nana bianca, una stella di neutroni o un buco nero) cattura materia proveniente da una stella compagna in un orbita

Dettagli

L H 2 O nelle cellule vegetali e

L H 2 O nelle cellule vegetali e L H 2 O nelle cellule vegetali e il suo trasporto nella pianta H 2 O 0.96 Å H O 105 H 2s 2 2p 4 tendenza all ibridizzazione sp 3 H δ+ O δ- δ+ 1.75 Å H legame idrogeno O δ- H H δ+ δ+ energia del legame

Dettagli

ELEMENTI DI DI OTTICA E FISICA NUCLEARE INSEGNAMENTO COMPLEMENTARE (9 CFU) PER:

ELEMENTI DI DI OTTICA E FISICA NUCLEARE INSEGNAMENTO COMPLEMENTARE (9 CFU) PER: ELEMENTI DI DI OTTICA E FISICA NUCLEARE INSEGNAMENTO COMPLEMENTARE (9 CFU) PER: CORSO DI LAUREA TRIENNALE IN SCIENZE E TECNOLOGIE PER LO STUDIO E LA CONSERVAZIONE DEI BENI CULTURALI E DEI SUPPORTI DELLA

Dettagli

QUESITI DI FISICA RISOLTI A LEZIONE TERMODINAMICA

QUESITI DI FISICA RISOLTI A LEZIONE TERMODINAMICA QUESITI DI FISICA RISOLTI A LEZIONE TERMODINAMICA Un recipiente contiene gas perfetto a 27 o C, che si espande raggiungendo il doppio del suo volume iniziale a pressione costante. La temperatura finale

Dettagli

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. 1d (giorno) contiene all incirca (a) 8640 s; (b) 9 10 4 s; (c) 86 10 2 s; (d) 1.44 10 3 s; (e) nessuno di questi valori. 2. Sono

Dettagli

La morte delle stelle. Lezione 12

La morte delle stelle. Lezione 12 La morte delle stelle Lezione 12 Sommario Gli stadi finali dell evoluzione stellare per le stelle di piccola massa (nane rosse, perdite di massa e nebulose planetarie, nane bianche). Evoluzione dei sistemi

Dettagli

Modulo di Meccanica e Termodinamica

Modulo di Meccanica e Termodinamica Modulo di Meccanica e Termodinamica 1) Misure e unita di misura 2) Cinematica: + Moto Rettilineo + Moto Uniformemente Accelerato [+ Vettori e Calcolo Vettoriale] + Moti Relativi 3) Dinamica: + Forza e

Dettagli

MOTORI ENDOTERMICI di Ezio Fornero

MOTORI ENDOTERMICI di Ezio Fornero MOTORI ENDOTERMICI di Ezio Fornero Nei motori endotermici (m.e.t.) l energia termica è prodotta mediante combustione di sostanze liquide o gassose, generalmente dette carburanti. Si tratta di motori a

Dettagli

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA Esercizio 1 Lezione 5 - Meccanica del punto materiale Un volano è costituito da un cilindro rigido omogeneo,

Dettagli

LE LEGGI DEI GAS. Dalle prime teorie cinetiche dei gas simulazioni della dinamica molecolare. Lezioni d'autore

LE LEGGI DEI GAS. Dalle prime teorie cinetiche dei gas simulazioni della dinamica molecolare. Lezioni d'autore LE LEGGI DEI GAS Dalle prime teorie cinetiche dei gas simulazioni della dinamica molecolare. Lezioni d'autore alle Un video : Clic Un altro video : Clic Un altro video (in inglese): Clic Richiami sulle

Dettagli

2 R = mgr + 1 2 mv2 0 = E f

2 R = mgr + 1 2 mv2 0 = E f Esercizio 1 Un corpo puntiforme di massa m scivola lungo la pista liscia di raggio R partendo da fermo da un altezza h rispetto al fondo della pista come rappresentato in figura. Calcolare: a) Il valore

Dettagli

Secondo principio della termodinamica. Macchine termiche Rendimento Secondo principio della Termodinamica Macchina di Carnot Entropia

Secondo principio della termodinamica. Macchine termiche Rendimento Secondo principio della Termodinamica Macchina di Carnot Entropia Secondo principio della termodinamica Macchine termiche Rendimento Secondo principio della ermodinamica Macchina di arnot Entropia Introduzione al secondo principio della termodinamica Da quanto studiato

Dettagli

CORRENTE ELETTRICA Corso di Fisica per la Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2007

CORRENTE ELETTRICA Corso di Fisica per la Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2007 CORRENTE ELETTRICA INTRODUZIONE Dopo lo studio dell elettrostatica, nella quale abbiamo descritto distribuzioni e sistemi di cariche elettriche in quiete, passiamo allo studio di fenomeni nei quali le

Dettagli

N.1 N.2. x(t) = x 0 cos(ωt); y(t) = v 0 /ω sen(ωt); (1) Q 1 Q 3 4 π ɛ 0 (2 d) 2 = Q 2 Q 3 Q 1 4 d 2 = Q 2. 4 π ɛ 0 d 2. d 2 Q 1 = 4 10 9 C (3)

N.1 N.2. x(t) = x 0 cos(ωt); y(t) = v 0 /ω sen(ωt); (1) Q 1 Q 3 4 π ɛ 0 (2 d) 2 = Q 2 Q 3 Q 1 4 d 2 = Q 2. 4 π ɛ 0 d 2. d 2 Q 1 = 4 10 9 C (3) N. Tre particelle cariche sono poste come in gura ad una distanza d. Le cariche Q e Q 2 = 0 9 C sono tenute ferme mentre la carica Q 3, libera di muoversi, è in equilibrio. Calcolare il valore di Q Anchè

Dettagli

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Termologia Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Trasmissione del calore Legge di Wien Legge di Stefan-Boltzmann Gas

Dettagli

a t Esercizio (tratto dal problema 5.10 del Mazzoldi)

a t Esercizio (tratto dal problema 5.10 del Mazzoldi) 1 Esercizio (tratto dal problema 5.10 del Mazzoldi) Una guida semicircolare liscia verticale di raggio = 40 cm è vincolata ad una piattaforma orizzontale che si muove con accelerazione costante a t = 2

Dettagli

Energia potenziale L. P. Maggio 2007. 1. Campo di forze

Energia potenziale L. P. Maggio 2007. 1. Campo di forze Energia potenziale L. P. Maggio 2007 1. Campo di forze Consideriamo un punto materiale di massa m che si muove in una certa regione dello spazio. Si dice che esso è soggetto a un campo di forze, se ad

Dettagli

Il trasporto di materia. Principi di Ingegneria Chimica Ambientale

Il trasporto di materia. Principi di Ingegneria Chimica Ambientale Il trasporto di materia Principi di Ingegneria Chimica Ambientale 1 Considerazioni preliminari Il nostro studio sarà limitato a: miscele binarie miscele diluite (ossia in cui la frazione molare di uno

Dettagli

CAPITOLO 5 IDRAULICA

CAPITOLO 5 IDRAULICA CAPITOLO 5 IDRAULICA Cap. 5 1 FLUIDODINAMICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO FLUIDO CORPO MATERIALE CHE, A CAUSA DELLA ELEVATA MOBILITA' DELLE PARTICELLE CHE LO COMPONGONO, PUO'

Dettagli

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia Nome..Cognome.. Classe 4G 4 dicembre 8 VERIFIC DI FISIC: lavoro ed energia Domande ) Energia cinetica: (punti:.5) a) fornisci la definizione più generale possibile di energia cinetica, specificando l equazione

Dettagli

PROGRAMMA OPERATIVO NAZIONALE

PROGRAMMA OPERATIVO NAZIONALE PROGRAMMA OPERATIVO NAZIONALE Fondo Sociale Europeo "Competenze per lo Sviluppo" Obiettivo C-Azione C1: Dall esperienza alla legge: la Fisica in Laboratorio Termodinamica I FENOMENI TERMICI Temperatura

Dettagli

INDIRIZZO TECNOLOGICO CLASSE A033 n. 2

INDIRIZZO TECNOLOGICO CLASSE A033 n. 2 INDIRIZZO TECNOLOGICO CLASSE A033 n. 2 1) La tensione di rete domestica è in Italia di 230 V. In una stanza è accesa una lampada di 100W, in un altra stanza una lampada di 200W. L intensità di corrente

Dettagli

Indice generale 1 INTRODUZIONE, CINEMATICA IN DUE O TRE DIMENSIONI; VETTORI 71 DINAMICA: LE LEGGI DI NEWTON 115 MOTO: CINEMATICA IN UNA DIMENSIONE 25

Indice generale 1 INTRODUZIONE, CINEMATICA IN DUE O TRE DIMENSIONI; VETTORI 71 DINAMICA: LE LEGGI DI NEWTON 115 MOTO: CINEMATICA IN UNA DIMENSIONE 25 Indice generale PREFAZIONE ALLO STUDENTE TAVOLA DEI COLORI x xiv xvi 1 INTRODUZIONE, MISURE, STIME 1 1 1 La natura della scienza 2 1 2 Modelli, teorie e leggi 3 1 3 Misure ed errori; cifre significative

Dettagli

Formulario di Fisica Tecnica Matteo Guarnerio 1

Formulario di Fisica Tecnica Matteo Guarnerio 1 Formulario di Fisica Tecnica Matteo Guarnerio 1 CONVENZIONI DI NOTAZIONE Calore scambiato da 1 a 2. Calore entrante o di sorgente. Calore uscente o ceduto al pozzo. CONVERSIONI UNITÀ DI MISURA PIÙ FREQUENTI

Dettagli

Insegnare relatività. nel XXI secolo

Insegnare relatività. nel XXI secolo Insegnare relatività nel XXI secolo L ' i n e r z i a d e l l ' e n e r g i a L'inerzia dell'energia Questa è la denominazione più corretta, al posto della consueta equivalenza massa energia. Einstein

Dettagli

Simulazione test di ingresso Ingegneria Industriale Viterbo. Quesiti di Logica, Chimica e Fisica. Logica

Simulazione test di ingresso Ingegneria Industriale Viterbo. Quesiti di Logica, Chimica e Fisica. Logica Simulazione test di ingresso Ingegneria Industriale Viterbo Quesiti di Logica, Chimica e Fisica Logica L1 - Come continua questa serie di numeri? 1-4 - 10-22 - 46-94 -... A) 188 B) 190 C) 200 D) 47 L2

Dettagli

Ripasso sulla temperatura, i gas perfetti e il calore

Ripasso sulla temperatura, i gas perfetti e il calore Ripasso sulla temperatura, i gas perfetti e il calore Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia La temperatura Fenomeni non interpretabili con le leggi della meccanica Dilatazione

Dettagli

Temperatura termodinamica assoluta

Temperatura termodinamica assoluta Temperatura termodinamica assoluta Nuova definizione di temperatura Si sceglie come punto fisso fondamentale il punto triplo dell acqua, al quale si attribuisce la temperatura T 3 = 273.16 K. Per misurare

Dettagli

Temperatura e Calore

Temperatura e Calore Temperatura e Calore 1 Temperatura e Calore Stati di Aggregazione Temperatura Scale Termometriche Dilatazione Termica Il Calore L Equilibrio Termico La Propagazione del Calore I Passaggi di Stato 2 Gli

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

Liceo Scientifico Statale A. Volta, Torino Anno scolastico 2015 / 2016

Liceo Scientifico Statale A. Volta, Torino Anno scolastico 2015 / 2016 Liceo Scientifico Statale A. Volta, Torino Anno scolastico 2015 / 2016 FISICA ELETTROMAGNETISMO FISICA MODERNA classe 5 B MAG. 2016 Esercitazione di Fisica in preparazione all Esame di Stato A.S. 2015-2016

Dettagli

1. LE GRANDEZZE FISICHE

1. LE GRANDEZZE FISICHE 1. LE GRANDEZZE FISICHE La fisica (dal greco physis, natura ) è una scienza che ha come scopo guardare, descrivere e tentare di comprendere il mondo che ci circonda. La fisica si propone di descrivere

Dettagli

AC6 Misure della massa delle stelle

AC6 Misure della massa delle stelle AC6 Misure della massa delle stelle Stelle doppie e relative misure di parallasse. Ancora il satellite Hypparcos Doppie fotometriche Doppie eclissanti e misure fotometriche di massa Relazione empirica

Dettagli

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato gassoso

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato gassoso GLI STATI DI AGGREGAZIONE DELLA MATERIA Lo stato gassoso Classificazione della materia MATERIA Composizione Struttura Proprietà Trasformazioni 3 STATI DI AGGREGAZIONE SOLIDO (volume e forma propri) LIQUIDO

Dettagli

Dinamica II Lavoro di una forza costante

Dinamica II Lavoro di una forza costante Dinamica II Lavoro di una forza costante Se il punto di applicazione di una forza subisce uno spostamento ed esiste una componente della forza che sia parallela allo spostamento, la forza compie un lavoro.

Dettagli

EQUILIBRI - GENERALITA. Come si è visto trattando i tre princìpi della termodinamica, il criterio di spontaneità di una trasformazione è

EQUILIBRI - GENERALITA. Come si è visto trattando i tre princìpi della termodinamica, il criterio di spontaneità di una trasformazione è EQUILIBRI - GENERALIA Come si è visto trattando i tre princìpi della termodinamica, il criterio di spontaneità di una trasformazione è G < 0 Quando vale questo criterio, i reagenti si trasformano in prodotti.

Dettagli

Le Galassie: il mezzo interstellare. Lezione 7

Le Galassie: il mezzo interstellare. Lezione 7 Le Galassie: il mezzo interstellare Lezione 7 Il cooling time L cooling Molecole (mm) X 0, X + (FIR, Opt, UV) Righe proibite (Opt, IR) Righe risonanti (UV, soft X(< 2keV)) Free-free Righe risonanti Fe

Dettagli

I SISTEMI DI UNITA DI MISURA

I SISTEMI DI UNITA DI MISURA Provincia di Reggio Calabria Assessorato all Ambiente Corso di Energy Manager Maggio - Luglio 2008 I SISTEMI DI UNITA DI MISURA Ilario De Marco Il sistema internazionale di unità di misura Lo studio di

Dettagli

Corso di fisica generale con elementi di fisica tecnica

Corso di fisica generale con elementi di fisica tecnica Corso di fisica generale con elementi di fisica tecnica Aniello (Daniele) Mennella Dipartimento di Fisica Secondo modulo Parte prima (fondamenti di elettromagnetismo) Lezione 1 Carica elettrica, legge

Dettagli

A. 5 m / s 2. B. 3 m / s 2. C. 9 m / s 2. D. 2 m / s 2. E. 1 m / s 2. Soluzione: equazione oraria: s = s0 + v0

A. 5 m / s 2. B. 3 m / s 2. C. 9 m / s 2. D. 2 m / s 2. E. 1 m / s 2. Soluzione: equazione oraria: s = s0 + v0 1 ) Un veicolo che viaggia inizialmente alla velocità di 1 Km / h frena con decelerazione costante sino a fermarsi nello spazio di m. La sua decelerazione è di circa: A. 5 m / s. B. 3 m / s. C. 9 m / s.

Dettagli

POLITECNICO DI MILANO CORSO DI LAUREA ON LINE IN INGEGNERIA INFORMATICA ESAME DI FISICA

POLITECNICO DI MILANO CORSO DI LAUREA ON LINE IN INGEGNERIA INFORMATICA ESAME DI FISICA 1 POLITECNICO DI MILANO CORSO DI LAUREA ON LINE IN INGEGNERIA INFORMATICA ESAME DI FISICA Per ogni punto del programma d esame vengono qui di seguito indicate le pagine corrispondenti nel testo G. Tonzig,

Dettagli

Elettrostatica. 1. La carica elettrica 2. La legge di Coulomb 3. Il campo elettrostatico 4. Il potenziale elettrico 5. Condensatori e dielettrici

Elettrostatica. 1. La carica elettrica 2. La legge di Coulomb 3. Il campo elettrostatico 4. Il potenziale elettrico 5. Condensatori e dielettrici Elettrostatica 1. La carica elettrica 2. La legge di Coulomb 3. Il campo elettrostatico 4. Il potenziale elettrico 5. Condensatori e dielettrici Prof. Giovanni Ianne 1 L ELETTRIZZAZIONE PER STROFINIO Un

Dettagli

GRANDEZZE FISICHE E UNITA DI MISURA. G. Roberti

GRANDEZZE FISICHE E UNITA DI MISURA. G. Roberti GRANDEZZE FISICHE E UNITA DI MISURA G. Roberti 1. Quale dei seguenti gruppi di grandezze fisiche comprende solo grandezze fondamentali (e non derivate) del Sistema Internazionale? A) Corrente elettrica,

Dettagli

Riepilogo programma di Chimica Ginnasio Anno scolastico 2011/2012

Riepilogo programma di Chimica Ginnasio Anno scolastico 2011/2012 Riepilogo programma di Chimica Ginnasio Anno scolastico 2011/2012 Misure e grandezze Grandezze fondamentali Grandezza fisica Simbolo della grandezza Unità di misura Simbolo dell unità di misura lunghezza

Dettagli

/ * " 6 7 -" 1< " *,Ê ½, /, "6, /, Ê, 9Ê -" 1/ " - ÜÜÜ Ìi «V Ì

/ *  6 7 - 1<  *,Ê ½, /, 6, /, Ê, 9Ê - 1/  - ÜÜÜ Ìi «V Ì LA TRASMISSIONE DEL CALORE GENERALITÀ 16a Allorché si abbiano due corpi a differenti temperature, la temperatura del corpo più caldo diminuisce, mentre la temperatura di quello più freddo aumenta. La progressiva

Dettagli

Cenni di Teoria Cinetica dei Gas

Cenni di Teoria Cinetica dei Gas Cenni di Teoria Cinetica dei Gas Introduzione La termodinamica descrive i sistemi termodinamici tramite i parametri di stato (p, T,...) Sufficiente per le applicazioni: impostazione e progettazione di

Dettagli

FACOLTÀ DI INGEGNERIA. 2. Exergia. Roberto Lensi

FACOLTÀ DI INGEGNERIA. 2. Exergia. Roberto Lensi Roberto Lensi 2. Exergia Pag. 1 UNIVERSITÀ DEGLI STUDI DI PISA FACOLTÀ DI INGEGNERIA 2. Exergia Roberto Lensi DIPARTIMENTO DI ENERGETICA Anno Accademico 2002-03 Roberto Lensi 2. Exergia Pag. 2 REVERSIBILITÀ

Dettagli

Esercizi di fisica per Medicina C.Patrignani, Univ. Genova (rev: 9 Ottobre 2003) 1. Termodinamica

Esercizi di fisica per Medicina C.Patrignani, Univ. Genova (rev: 9 Ottobre 2003) 1. Termodinamica Esercizi di fisica per Medicina C.Patrignani, Univ. Genova (rev: 9 Ottobre 2003) 1 Termodinamica 1) In un recipiente di volume V = 20 l sono contenute 0.5 moli di N 2 (PM=28) alla temperatura di 27 0 C.

Dettagli

Gas, liquidi, solidi. Tutti i gas, tranne l'elio, solidificano a basse temperature (alcuni richiedono anche alte pressioni).

Gas, liquidi, solidi. Tutti i gas, tranne l'elio, solidificano a basse temperature (alcuni richiedono anche alte pressioni). Gas, liquidi, solidi Tutti i gas raffreddati liquefano Tutti i gas, tranne l'elio, solidificano a basse temperature (alcuni richiedono anche alte pressioni). Sostanza T L ( C) T E ( C) He - -269 H 2-263

Dettagli

63- Nel Sistema Internazionale SI, l unità di misura del calore latente di fusione è A) J / kg B) kcal / m 2 C) kcal / ( C) D) kcal * ( C) E) kj

63- Nel Sistema Internazionale SI, l unità di misura del calore latente di fusione è A) J / kg B) kcal / m 2 C) kcal / ( C) D) kcal * ( C) E) kj 61- Quand è che volumi uguali di gas perfetti diversi possono contenere lo stesso numero di molecole? A) Quando hanno uguale pressione e temperatura diversa B) Quando hanno uguale temperatura e pressione

Dettagli

Dinamica: Forze e Moto, Leggi di Newton

Dinamica: Forze e Moto, Leggi di Newton Dinamica: Forze e Moto, Leggi di Newton La Dinamica studia il moto dei corpi in relazione il moto con le sue cause: perché e come gli oggetti si muovono. La causa del moto è individuata nella presenza

Dettagli

Note a cura di M. Martellini e M. Zeni

Note a cura di M. Martellini e M. Zeni Università dell Insubria Corso di laurea Scienze Ambientali FISICA GENERALE Lezione 6 Energia e Lavoro Note a cura di M. Martellini e M. Zeni Queste note sono state in parte preparate con immagini tratte

Dettagli

Temperatura. V(t) = Vo (1+at) Strumento di misura: termometro

Temperatura. V(t) = Vo (1+at) Strumento di misura: termometro I FENOMENI TERMICI Temperatura Calore Trasformazioni termodinamiche Gas perfetti Temperatura assoluta Gas reali Principi della Termodinamica Trasmissione del calore Termoregolazione del corpo umano Temperatura

Dettagli

Capitolo 10 Il primo principio 113

Capitolo 10 Il primo principio 113 Capitolo 10 Il primo principio 113 QUESITI E PROBLEMI 1 Tenuto conto che, quando il volume di un gas reale subisce l incremento dv, il lavoro compiuto dalle forze intermolecolari di coesione è L = n 2

Dettagli

Indice. Introduzione 1

Indice. Introduzione 1 Indice Introduzione 1 1 MODELLI DELLA REALTÀ 7 1.1 La scienza: un particolare tipo di conoscenza........... 12 1.2 Sistema fisico; grandezze fisiche e loro misura. Il processo di astrazione nella scienza.......................

Dettagli

Unità Didattica 1. La radiazione di Corpo Nero

Unità Didattica 1. La radiazione di Corpo Nero Diapositiva 1 Unità Didattica 1 La radiazione di Corpo Nero Questa unità contiene informazioni sulle proprietà del corpo nero, fondamentali per la comprensione dei meccanismi di emissione delle sorgenti

Dettagli

Simulazione test di ingresso Ingegneria Industriale Viterbo. Quesiti di Logica, Chimica e Fisica. Logica

Simulazione test di ingresso Ingegneria Industriale Viterbo. Quesiti di Logica, Chimica e Fisica. Logica Simulazione test di ingresso Ingegneria Industriale Viterbo Quesiti di Logica, Chimica e Fisica Logica L1 - Come si conclude questa serie di numeri? 9, 16, 25, 36,... A) 47 B) 49 C) 48 D) 45 L2 - Quale

Dettagli

Corso di Laurea in TECNICHE DI RADIOLOGIA MEDICA, PER IMMAGINI E RADIOTERAPIA

Corso di Laurea in TECNICHE DI RADIOLOGIA MEDICA, PER IMMAGINI E RADIOTERAPIA Corso di Laurea in TECNICHE DI RADIOLOGIA MEDICA, PER IMMAGINI E RADIOTERAPIA Anno: 1 Semestre: 1 Corso integrato: MATEMATICA, FISICA, STATISTICA ED INFORMATICA Disciplina: FISICA MEDICA Docente: Prof.

Dettagli

Forze come grandezze vettoriali

Forze come grandezze vettoriali Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due

Dettagli