Il primo volo. 17 dicembre Il primo volo del Flyer:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Il primo volo. 17 dicembre 1903 - Il primo volo del Flyer:"

Transcript

1 Stefanelli Cristian 3^E a. sc. 2007/2008

2 Il primo volo 17 dicembre Il primo volo del Flyer: 12" la durata, 36 metri il percorso di Orville Wright; Il fratello Wilbur sostenne l'ala prima del decollo. L'aereo, un biplano con 12 metri di apertura, alare era munito di un motore di 20 Hp che azionava due eliche propulsive. Nello stesso giorno, pilotato da Wilbur, il Flyer rimase in volo per 59" percorrendo 259 metri.

3 Perchè un aereo vola? Un aeroplano si regge in volo a causa del flusso dell'aria che scorre al di sopra e al di sotto delle sue ali. Questo flusso genera una "portanza", cioè una forza verso l'alto che si oppone alla gravità, impedendo che l'aereo cada. L'aereodinamica La portanza Forze esercitate sull'ala: effetto Venturi Cosa succede se si sale di quota? Quanto veloci si può volare? Le ali a freccia Il motore: elica o turbina, cosa cambia?

4 L'aerodinamica La sezione trasversale ("profilo") dell'ala di un aeroplano deve soddisfare due requisiti: primo, la sua parte posteriore si deve restringere verso il basso con un bordo sottile, come un cuneo. Questa è la zona dove i due flussi d'aria, quello proveniente dalla parte superiore dell'ala e quello dalla parte inferiore, si ricongiungono e questo "profilo aerodinamico" assicura che i flussi si incontrino in modo graduale, senza effetti di turbolenza che aumenterebbero la resistenza dell'aria. Contrariamente a quanto si potrebbe credere, la forma della parte anteriore è meno critica.

5 L'aerodinamica Il profilo aerodinamico riduce la resistenza dell'aria (cioè "l'attrito atmosferico"). Gli esperimenti hanno mostrato che la forza resistente D, aumenta con la velocità v -- in effetti, aumenta come v2. È anche proporzionale alla densità dell'aria d. Tutti gli altri fattori vengono raggruppati in un coefficiente A che è proporzionale all'area dell'ala e dipende dalla forma della sua sezione trasversale (ed è qui che entra in gioco l'aerodinamicità) e dall'angolo di attacco con cui l'ala incontra il flusso d'aria (angolo = zero quando l'ala è allineata con il flusso dell'aria). D = A d v 2

6 L'aerodinamica La proporzionalità di v 2 la si può ricavare dal seguente ragionamento: l'ala di un aeroplano investita da un flusso d'aria perde energia soprattutto per scansare lateralmente l'aria che si trova sul suo percorso. Se la configurazione delle linee di flusso attorno all'ala è la stessa, sia a bassa che ad alta velocità (il che è ragionevolmente vero), quando v raddoppia, la velocità dell'aria spostata lateralmente raddoppia anch'essa, e da questo processo l'energia (cinetica) ceduta all'aria, che è proporzionale a ½ mv 2 dovrebbe aumentare di due volte. Home

7 Ma cosa succede alla massa? La portanza Raddoppiando la velocità, l'ala avanza di una distanza doppia ogni secondo, rispetto a quello che avveniva prima, per cui la massa m di aria scansata dal suo percorso raddoppia anch'essa. La rapidità complessiva con cui l'energia è ceduta dall'ala all'aria circostante, quindi,aumenta di 4 volte. Questa rapidità con cui l'energia viene ceduta deve corrispondere al lavoro meccanico compiuto ogni secondo dalla forza D (cioè la potenza richiesta): anche questa potenza deve quindi aumentare di 4 volte. Poiché la distanza percorsa ogni secondo è v, il lavoro compiuto ogni secondo è Dv. Se v raddoppia e Dv aumenta di 4 volte, allora D deve crescere di 2 volte - - un aumento proporzionale a v 2. Home

8 La portanza Un aereo rimane in volo grazie a una forza diretta verso l'alto, detta portanza, che è applicata sulle ali dell'aereo ed è generata dall'aria attraverso cui le ali si muovono. La figura che si sta osservando è pensata nel sistema di riferimento in cui l'ala sia ferma e l'aria le scorre sopra e sotto. Home

9 La portanza Quindi possiamo dire che la portanza, una forza diretta verso l'alto generata dal flusso dell'aria che scorre attraverso le ali, è il secondo requisito per cui un aereo possa volare. Per generare una portanza, l'ala deve essere non simmetrica ossia piatta sulla parte inferiore, ma incurvata sulla parte superiore. Questa forma accelera il flusso d'aria sopra l'ala, riducendo in tale zona la pressione, per cui la pressione sulla parte inferiore dell'ala è maggiore di quella sulla parte superiore e il risultato è una forza verso l'alto.

10 La portanza Inoltre molti progettisti, grazie alla galleria del vento, sono riusciti a verificare che la portanza generata da un'ala è approssimativamente proporzionale alla densità d dell'aria e al quadrato della velocità v del flusso d'aria sopra l'ala stessa: L = B d v 2

11 La portanza In questa formula L è la portanza espressa in newton, d la densità dell'aria (circa 1,3 kg/metro3 al livello del mare) e v può essere espressa in metri/sec, km/ora o miglia/ora,comunque si preferisca. Il fattore B dipende dal profilo dell'ala, dalla sua lunghezza e dalla sua larghezza: un'ala più grande ovviamente genera una portanza maggiore.

12 La portanza Inoltre la portanza è proporzionale alla resistenza atmosferica: gli aeroplani generalmente volano con un "angolo di attacco" (definito precedentemente) che fornisce la prestazione più economica quando il rapporto portanza/resistenza atmosferica è al suo massimo. Il valore "migliore" dipende dalla configurazione dell'ala e può andare da 10 (o anche meno negli aerei militari) fino a 50 (negli alianti con le massime prestazioni).

13 La portanza Si può aumentare la portanza aumentando l'angolo di attacco (come si fa con un aquilone), ma a prezzo di una maggiore resistenza atmosferica. Inoltre, se l'angolo è troppo ripido, il flusso regolare al di sopra dell'ala diventa perturbato e l'ala va "in stallo", perdendo immediatamente quasi tutta la sua portanza. Si è scoperto che molti incidenti aerei sono stati causati da un improvviso stallo.

14 La portanza è uguale all'effetto Venturi In altre parole la portanza può essere considerata come la formula dell'effetto Venturi, ottenuta dalla formula di Bernoulli che afferma che: p+ ½ dv 2 + dgy = costante dove p=pressione d=densità del fluido g=acc. gravità y=quota v=velocità Home

15 La portanza è uguale all'effetto Venturi Infatti se noi chiamiamo con A la zona sotto l'ala e con B la zona sopra l'ala otteniamo: p A + ½ dv 2 A = p B + ½ dv2 B poichè eguagliando a con b i due membri dgy si eliminano. Se prendiamo in considerazione l'ala in un sistema di riferimento incui esse sia ferma e l'aria gli scorre sopra e sotto allora possiamo dire che v A = 0 e p è maggiore, mentre v B > 0 e p è minore. Ne risulta dunque che la pressione sotto l'ala sia maggiore di quella sopra, e quindi, essa è spinta verso l'alto, appunto da questa forza che viene denominata PORTANZA. Home

16 Cosa succede se si sale di quota? Supponiamo di voler progettare un aereo di linea che pesi W chilogrammi (circa10 W newton). In volo orizzontale, naturalmente, la portanza deve controbilanciare il peso dell'aeroplano L = W per cui B d v 2 = W Il valore di W è determinato da B --; in altre parole, l'ala deve essere abbastanza lunga, larga ed efficiente da sostenere il peso W dell'aereo in volo a pieno carico. Home

17 Cosa succede se si sale di quota? Quanto in alto e quanto veloce deve volare l'aereo di linea? I passeggeri vogliono raggiungere la loro destinazione rapidamente, per cui i progettisti devono proporsi un'alta "velocità di crociera". Tuttavia, i passeggeri gradiscono anche un atterraggio senza rischi, e quindi la velocità all'atterraggio deve essere bassa. Home

18 Cosa succede se si sale di quota? La velocità è anche il motivo principale per cui gli aerei di linea volano ad una quota vicina ai 10 mila metri. La densità dell'aria si dimezza per ogni aumento di 5 km di quota, per cui a 10 km, d è circa 1/4 del valore al livello del mare e un aeroplano può raddoppiare la sua velocità per ottenere la stessa portanza, con la stessa resistenza atmosferica D (che, come si è visto, aumenta anch'essa come dv 2 ). Home

19 Cosa succede se si sale di quota? La ragione principale per cui gli aerei di linea hanno la cabina pressurizzata è che in tal modo possono volare più in alto, per poter volare più veloci. Home

20 Quanto veloci possono volare? La Il limite pratico sembra essere attorno a 960 km/ora (600 miglia all'ora). Avvicinandosi di più alla velocità del suono (1224 km/ora, ma variabile con la temperatura), il flusso dell'aria sopra le ali genera delle onde d'urto che aumentano l'attrito atmosferico e diminuiscono la portanza. Per ottenere velocità così alte è necessario l'impiego di ali a freccia. Home

21 Quanto veloci possono volare? In foto un f-14 che supera la velocità del suono. Home

22 Le ali a freccia Le ali dei piccoli aeroplani, i quali volano a basse velocità, sono in genere ortogonali alla fusoliera, una configurazione che offre la migliore efficienza. Sui grandi aerei di linea, o sui veloci aviogetti militari, d'altra parte, le ali sono spesso configurate a freccia; alcuni aviogetti militari possono addirittura variare l'orientamento delle ali ortogonali per la migliore efficienza al decollo e all'atterraggio, e orientarle a freccia per il volo prossimo alla velocità del suono. Home

23 Le ali a freccia Alla velocità del suono, la resistenza dell'aria ("attrito atmosferico") aumenta fortemente, poiché l'aria non riesce a togliersi in tempo dal muso del velivolo, per cui viene compressa e riscaldata. Il calore è una forma di energia e per produrla qualcos'altro deve cedere la sua energia; in questo caso, è il moto, che così causa un crescente attrito per cui la "portanza" delle ali, quindi, soffre. In effetti, questi problemi cominciano parecchio prima che venga raggiunta la velocità del suono, poiché una parte del flusso d'aria al di sopra delle ali ha una velocità più alta e può quindi raggiungere la velocità del suono prima che sia l'aeroplano a raggiungerla. Home

24 Le ali a freccia Però si può un po' "giocare d'astuzia" piegando le ali all'indietro, di un certo angolo s. In questo modo, anche se l'aria colpisce l'aeroplano con velocità v, il vettore velocità può essere scomposto in due componenti perpendicolari tra loro, una velocità del flusso v sin s diretta lungo l'ala e una velocità del flusso v cos s diretta perpendicolarmente ad essa. Entrambe queste componenti sono minori di v, poiché entrambi (sin s) e (cos s) sono sempre minori di 1.

25 Le ali a freccia Si può ora dire che il flusso d'aria lungo l'ala non causa alcun effetto di accumulo, e non influisce sulla portanza né sull'attrito atmosferico, e si può quindi ignorare. Soltanto il flusso perpendicolare v cos s ha tali effetti, e, in una teoria grossolana, l'efficienza delle ali dipende solo da quanto è prossima alla velocità del suono la velocità della componente perpendicolare.

26 In questo modo le ali a freccia permettono all'aereo di volare a una velocità un po' più prossima a quella del suono, senza subire gli effetti negativi. Le ali a freccia

27 Eliche o turbine, cosa cambia? Nella turbina il primo elemento che incontriamo è la PRESA D ARIA, che, come dice il nome, ha il compito di captare l aria esterna e convogliarla verso le altre parti del motore; al suo interno avviene già una prima piccola compressione per effetto dinamico. Home

28 Eliche o turbine, cosa cambia? L aria così aspirata viene inviata al COMPRESSORE (che può essere o centrifugo o assiale: il primo in uso nei piccoli motori e nelle turboeliche, il secondo è generalizzato su tutti i grossi motori), dove l aria viene compressa fino a raggiungere rapporti di compressione molto elevati. In seguito l aria viene inviata alle CAMERE DI COMBUSTIONE, dove viene iniettato il combustibile (Jet-A1) e si ha quindi la combustione. Home

29 Eliche o turbine, cosa cambia? Non tutta l aria uscente dal compressore viene bruciata nelle camere, la maggior parte di quest aria non partecipa alla combustione: ad esempio, se la quantità di aria compressa è, in peso, 60 volte maggiore della quantità di combustibile, di queste 60 parti, 15 vengono utilizzate per la combustione (aria primaria e secondaria), le altre 45 parti in peso lambiscono esternamente la camera, raffreddandola, e si uniscono ai prodotti della combustione successivamente, prima dell entrata in turbina, diminuendo la temperatura del flusso. Home

30 Eliche o turbine, cosa cambia? La turbina sfrutta l energia dei gas (pressione e temperatura) per produrre il lavoro necessario all azionamento del compressore, alla quale è collegata mediante un albero. I gas uscenti dalla turbina vengono poi avviati all UGELLO DI SCARICO, nel quale subiscono una ulteriore espansione, uscendone ad elevata velocità andando a costituire il getto. Questo getto in uscita dal motore provoca, per reazione, una spinta in avanti, che è poi la spinta che provoca il movimento dell aereo.

31 Eliche o turbine, cosa cambia? Il principio per cui ciò accade è il seguente: supponiamo di dover far uscire una massa di gas da un ugello di un contenitore, imprimendole un'accelerazione; per far questo dovremmo applicare una forza F=m(U-V) (dove m è il flusso massico, una portata, cioè una massa al secondo, U la velocità del getto e V la velocità del contenitore). Tale espressione deriva dalla generica F=ma di Newton. Per il terzo principio della dinamica, se F è la forza applicata al gas per farlo uscire dall'ugello, sulla parete del contenitore opposta all'ugello, si eserciterà una reazione S, pari ad F come grandezza e direzione ma di verso opposto. Tale S è la spinta, e vale sempre m(u-v). La forza F e la spinta S si hanno anche nel vuoto: S si genera infatti per reazione al solo fenomeno della fuoriuscita del flusso m alla velocità (U-V).

32 Eliche o turbine, cosa cambia? Il mezzo esterno può influenzare la spinta in funzione della sua densità. Tutto quello che c'è dentro il contenitore, nel nostro caso il motore a getto, ha il solo scopo di accelerare la massa d'aria che lo attraversa. La spinta è quindi genericamente data dalla relazione: S=m(U-V) Dove m, come detto, è il flusso di massa nell unità di tempo (quindi una massa diviso tempo), U è la velocità di uscita del getto, V è la velocità di volo dell aeromobile.

33 Eliche o turbine, cosa cambia? Un po' diversa invece è la struttura dell'elica, che deve avere la stessa portanza lungo tutto il braccio, e quindi la medesima spinta. Premesso che la portanza è direttamente proporzionale all'angolo di incidenza e l'angolo di incidenza varia con la velocità; essendo la velocità periferica delle pale crescente dal mozzo verso l'estremità, per mantenere costante la portanza dovrà essere per forza modificato il calettamento.

34 Eliche o turbine, cosa cambia? Ed è per questa ragione che l'elica si presenta svergolata, cioè con un calettamento variabile dal mozzo verso l'estremità. Cioè il calettamento diminuisce man mano che aumenta sul profilo dell'elica la velocità periferica allontanandosi dal mozzo.

35 FINE

n matr.145817 23. 01. 2003 ore 8:30-10:30

n matr.145817 23. 01. 2003 ore 8:30-10:30 Matteo Vecchi Lezione del n matr.145817 23. 01. 2003 ore 8:30-10:30 Il Moto Esterno Con il termine moto esterno intendiamo quella branca della fluidodinamica che studia il moto dei fluidi attorno ad un

Dettagli

APPUNTI DI DINAMICA DEL VOLO. Roberto Speziali

APPUNTI DI DINAMICA DEL VOLO. Roberto Speziali APPUNTI DI DINAMICA DEL VOLO Roberto Speziali 1 LE FORZE E LE LEGGI DELLA DINAMICA...2 2 LE FORZE CHE AGISCONO SULL AEREO...3 2.1 LA FORZA PESO...3 2.2 LA PORTANZA...3 2.2.1 Il coefficiente di portanza...5

Dettagli

Lezione 4: I profili alari e le forze

Lezione 4: I profili alari e le forze Corso di MECCANICA DEL VOLO Modulo Prestazioni Lezione 4: I profili alari e le forze aerodinamiche Prof. D. P. Coiro coiro@unina.itit www.dias.unina.it/adag/ Corso di Meccanica del Volo - Mod. Prestazioni

Dettagli

Unità didattica 3. Il moto. Competenze. 1 Il moto è relativo. 2 La velocità scalare e la velocità vettoriale

Unità didattica 3. Il moto. Competenze. 1 Il moto è relativo. 2 La velocità scalare e la velocità vettoriale Unità didattica 3 Il moto Competenze Riconoscere e descrivere i principali tipi di moto. Definire la velocità scalare e vettoriale e l accelerazione scalare e vettoriale. Descrivere il moto rettilineo

Dettagli

Le macchine come sistemi tecnici

Le macchine come sistemi tecnici Le macchine come sistemi tecnici L industrializzazione dell Europa e iniziata grazie alla comparsa di macchine capaci di trasformare energia termica in energia meccanica. Un motore a vapore e un esempio

Dettagli

Questionario di esame per L'ATTESTATO DI VOLO DA DIP. O SPORT.

Questionario di esame per L'ATTESTATO DI VOLO DA DIP. O SPORT. Questionario di esame per L'ATTESTATO DI VOLO DA DIP. O SPORT. Parte 1 - AERODINAMICA 1 Il fenomeno aerodinamico della vite è caratterizzato da: A) semiala interna alla rotazione completamente stallata;

Dettagli

TRASFORMAZIONE DELL ENERGIA PRIMO PRINCIPIO DELLA TERMODINAMICA

TRASFORMAZIONE DELL ENERGIA PRIMO PRINCIPIO DELLA TERMODINAMICA TRASFORMAZIONE DELL ENERGIA PRIMO PRINCIPIO DELLA TERMODINAMICA L ENERGIA e IL LAVORO Non è facile dare una definizione semplice e precisa della parola energia, perché è un concetto molto astratto che

Dettagli

3. GLI AEROSTATI: CARATTERISTICHE FUNZIONALI I E STRUTTURALI

3. GLI AEROSTATI: CARATTERISTICHE FUNZIONALI I E STRUTTURALI 3. GLI AEROSTATI: CARATTERISTICHE FUNZIONALI I E STRUTTURALI L aerostato è un aeromobile che, per ottenere la portanza, ossia la forza necessaria per sollevarsi da terra e volare, utilizza gas più leggeri

Dettagli

LAVORO, ENERGIA E POTENZA

LAVORO, ENERGIA E POTENZA LAVORO, ENERGIA E POTENZA Nel linguaggio comune, la parola lavoro è applicata a qualsiasi forma di attività, fisica o mentale, che sia in grado di produrre un risultato. In fisica la parola lavoro ha un

Dettagli

Turbine idrauliche 1/8. Classificazione

Turbine idrauliche 1/8. Classificazione Classificazione Turbine idrauliche 1/8 Una turbina è una macchina che estrae energia da un fluido in possesso di un carico idraulico sufficientemente elevato. Tale carico (o caduta) è generato dal dislivello

Dettagli

h) Elementi di aerodinamica delle vele

h) Elementi di aerodinamica delle vele h) Elementi di aerodinamica delle vele L effetto del vento su un piano Poniamo un piano all azione del vento come indicato nella figura 1. Esso si sposterà sottovento muovendosi parallelamente a se stesso.

Dettagli

La fisica della vela. comprendere i meccanismi, migliorare le prestazioni e...divertirsi!!! Laura Romanò Dipartimento di Fisica Università di Parma

La fisica della vela. comprendere i meccanismi, migliorare le prestazioni e...divertirsi!!! Laura Romanò Dipartimento di Fisica Università di Parma La fisica della vela comprendere i meccanismi, migliorare le prestazioni e...divertirsi!!! laura.romano@fis.unipr.it Laura Romanò Dipartimento di Fisica Università di Parma Il gioco della simmetria Dal

Dettagli

A. Maggiore Appunti dalle lezioni di Meccanica Tecnica

A. Maggiore Appunti dalle lezioni di Meccanica Tecnica Il giunto idraulico Fra i dispositivi che consentono di trasmettere potenza nel moto rotatorio, con la possibilità di variare la velocità relativa fra movente e cedente, grande importanza ha il giunto

Dettagli

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 Lavoro, forza costante: W = F r Problema 1 Quanto lavoro viene compiuto dalla forza di

Dettagli

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg.

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg. Spingete per 4 secondi una slitta dove si trova seduta la vostra sorellina. Il peso di slitta+sorella è di 40 kg. La spinta che applicate F S è in modulo pari a 60 Newton. La slitta inizialmente è ferma,

Dettagli

Fondamenti di Trasporti. Meccanica della Locomozione Utilizzazione della potenza a bordo

Fondamenti di Trasporti. Meccanica della Locomozione Utilizzazione della potenza a bordo Università di Catania Facoltà di Ingegneria Corso di Laurea in Ingegneria Civile AA 1011 1 Fondamenti di Trasporti Meccanica della Locomozione Utilizzazione della potenza a bordo Giuseppe Inturri Dipartimento

Dettagli

BILANCIAMENTO. 8-1 Bilanciamento statico di un rotore

BILANCIAMENTO. 8-1 Bilanciamento statico di un rotore 8 BILANCIAMENTO Come si è visto al capitolo 7-3.3, quando il baricentro di un rotore non coincide con l asse di rotazione possono insorgere fenomeni vibratori di entità rilevante, talvolta tali, in condizioni

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

Utilizzo e caratteristiche dei motori aeronautici per impieghi civili

Utilizzo e caratteristiche dei motori aeronautici per impieghi civili Corso di Trasporti Aerei Anno Accademico 2008-2009 Prof. L. La Franca Utilizzo e caratteristiche dei motori aeronautici per impieghi civili A cura dell Ing. Antonino Pizzolo e dell Ing. Calogero Caccamo

Dettagli

www.interaviosup.it ias@interaviosup.it tel. +39 0831 555625 GALLERIA DEL VENTO SUBSONICA

www.interaviosup.it ias@interaviosup.it tel. +39 0831 555625 GALLERIA DEL VENTO SUBSONICA www.interaviosup.it ias@interaviosup.it tel. +39 0831 555625 GALLERIA DEL VENTO SUBSONICA L azienda Nata nel 1985 come fornitore internazionale di ricambi aeronautici, sia per il settore militare che per

Dettagli

Un aerorazzo reversibile (PATENT PENDING)

Un aerorazzo reversibile (PATENT PENDING) Un aerorazzo reversibile (PATENT PENDING) Riassunto Un aerorazzo reversibile che comprende una presa d'aria all'avancorpo, almeno uno scambiatore di calore posizionato nell'aerorazzo, un motore situato

Dettagli

A. 5 m / s 2. B. 3 m / s 2. C. 9 m / s 2. D. 2 m / s 2. E. 1 m / s 2. Soluzione: equazione oraria: s = s0 + v0

A. 5 m / s 2. B. 3 m / s 2. C. 9 m / s 2. D. 2 m / s 2. E. 1 m / s 2. Soluzione: equazione oraria: s = s0 + v0 1 ) Un veicolo che viaggia inizialmente alla velocità di 1 Km / h frena con decelerazione costante sino a fermarsi nello spazio di m. La sua decelerazione è di circa: A. 5 m / s. B. 3 m / s. C. 9 m / s.

Dettagli

CAPITOLO 18 I SISTEMI DELL AUTOGIRO

CAPITOLO 18 I SISTEMI DELL AUTOGIRO CAPITOLO 18 I SISTEMI DELL AUTOGIRO Di autogiri ne esistono di tutti i tipi e la gamma spazia dalle costruzioni amatoriali ai velivoli certificati. Parimenti è altrettanto vasta la gamma dei sistemi impiegati

Dettagli

ENERGIA. Trasferimento e trasformazione dell energia

ENERGIA. Trasferimento e trasformazione dell energia ENERGIA Trasferimento e trasformazione dell energia L energia L auto per muoversi ha bisogno di benzina, il treno di elettricità, l uomo di cibo: indipendentemente dal modo in cui viaggiamo abbiamo bisogno

Dettagli

AEROPORTO VALERIO CATULLO DI VERONA VILLAFRANCA RAMP SAFETY 1.0 1/30

AEROPORTO VALERIO CATULLO DI VERONA VILLAFRANCA RAMP SAFETY 1.0 1/30 AEROPORTO VALERIO CATULLO DI VERONA VILLAFRANCA RAMP SAFETY 1.0 1/30 DISCLAIMER Le immagini riprodotte in questo manuale sono a scopo puramente illustrativo e possono non riprodurre fedelmente reali distanze

Dettagli

RESISTENZA DEL MEZZO [W] [kw] Velocità m/s. Adimensionale Massa volumica kg/m 3. Sezione maestra m 2 POTENZA ASSORBITA DALLA RESISTENZA DEL MEZZO:

RESISTENZA DEL MEZZO [W] [kw] Velocità m/s. Adimensionale Massa volumica kg/m 3. Sezione maestra m 2 POTENZA ASSORBITA DALLA RESISTENZA DEL MEZZO: RSISTZA D MZZO R m 1 C X ρ A v Adimensionale Massa volumica kg/m 3 Velocità m/s Sezione maestra m Valori medi dei coefficienti: Superfici piane normali al moto: acqua: K9,81 60, aria: K9,81 0,08 1 K C

Dettagli

Esercizi non risolti

Esercizi non risolti Esercizi non risolti 69 Turbina idraulica (Pelton) Effettuare il dimensionamento di massima di una turbina idraulica con caduta netta di 764 m, portata di 2.9 m 3 /s e frequenza di rete 60 Hz. Turbina

Dettagli

. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d

. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d Esercizio 1 Un automobile viaggia a velocità v 0 su una strada inclinata di un angolo θ rispetto alla superficie terrestre, e deve superare un burrone largo d (si veda la figura, in cui è indicato anche

Dettagli

MECCANICA. 2. Un sasso cade da fermo da un grattacielo alto 100 m. Che distanza ha percorso dopo 2 secondi?

MECCANICA. 2. Un sasso cade da fermo da un grattacielo alto 100 m. Che distanza ha percorso dopo 2 secondi? MECCANICA Cinematica 1. Un oggetto che si muove di moto circolare uniforme, descrive una circonferenza di 20 cm di diametro e compie 2 giri al secondo. Qual è la sua accelerazione? 2. Un sasso cade da

Dettagli

FISICA DELLA BICICLETTA

FISICA DELLA BICICLETTA FISICA DELLA BICICLETTA Con immagini scelte dalla 3 SB PREMESSA: LEGGI FISICHE Velocità periferica (tangenziale) del moto circolare uniforme : v = 2πr / T = 2πrf Velocità angolare: ω = θ / t ; per un giro

Dettagli

Statica e dinamica dei fluidi. A. Palano

Statica e dinamica dei fluidi. A. Palano Statica e dinamica dei fluidi A. Palano Fluidi perfetti Un fluido perfetto e incomprimibile e indilatabile e non possiede attrito interno. Forza di pressione come la somma di tutte le forze di interazione

Dettagli

Unità didattica 4. 1 La prima legge di Newton

Unità didattica 4. 1 La prima legge di Newton Unità didattica 4 Forza e moto COMPETENZE Descrivere e spiegare le tre leggi di Newton. Spiegare la forza di attrito. Descrivere il moto circolare e spiegare la natura della forza centripeta. Enunciare

Dettagli

ELICOTTERO AB212. PDF created with pdffactory trial version www.pdffactory.com

ELICOTTERO AB212. PDF created with pdffactory trial version www.pdffactory.com ELICOTTERO AB212 Descrizione generale COSTRUTTORE AGUSTA su licenza della Bell Helicopter Company ( U.S.A. ). TIPOLOGIA DELLE MISSIONI Addestramento al volo; Concorso in operazioni S.A.R. ( Search And

Dettagli

AUTO DIESEL 2400 cc ANALISI

AUTO DIESEL 2400 cc ANALISI HOPE SERGIO BRONDIN DUE CARRARE PADOVA _ ITALIA AUTO DIESEL 2400 cc ANALISI FRATELLI UMANI pag 1 1) Analizziamo un' auto di alta cilindrata ciclo Diesel Volvo V 70 2.4 D5 Momentum Dati: a) Motore 5 cilindri

Dettagli

COMPONENTI TERMODINAMICI APERTI

COMPONENTI TERMODINAMICI APERTI CAPITOLO NONO COMPONENTI TERMODINAMICI APERTI Esempi applicativi Vengono di seguito esaminati alcuni componenti di macchine termiche che possono essere considerati come sistemi aperti A) Macchina termica

Dettagli

Forma Pressione Peso Combustione Aria calda e fredda Volo. A cura del responsabile del laboratorio di scienze Ins.

Forma Pressione Peso Combustione Aria calda e fredda Volo. A cura del responsabile del laboratorio di scienze Ins. Forma Pressione Peso Combustione Aria calda e fredda Volo A cura del responsabile del laboratorio di scienze Ins. Cristina Andrini Dove si trova l'aria? Una vaschetta Acqua Un bicchiere Un foglio di carta

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

Aspetti energetici. Capitolo 2

Aspetti energetici. Capitolo 2 Capitolo 2 Aspetti energetici 2.1 2.1 Introduzione Un impianto è costituito da componenti uniti fra di loro tramite collegamenti nei quali avviene un trasferimento di potenza esprimibile attraverso il

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA

UNIVERSITA DEGLI STUDI DI PADOVA UNIVERSITA DEGLI STUDI DI PADOVA Dipartimento di Ingegneria Industriale Corso di Laurea Magistrale in Ingegneria Aerospaziale CALCOLO DEI CARICHI AERODINAMICI E VERIFICA STRUTTURALE DI UN AEREO ULTRALEGGERO

Dettagli

Induzione magnetica. Corrente indotta. Corrente indotta. Esempio. Definizione di flusso magnetico INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE

Induzione magnetica. Corrente indotta. Corrente indotta. Esempio. Definizione di flusso magnetico INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE Induzione magnetica INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE Che cos è l induzione magnetica? Si parla di induzione magnetica quando si misura una intensità di corrente diversa da zero che attraversa

Dettagli

PRODUZIONE DI ENERGIA DA FONTI RINNOVABILI RISPARMIO ENERGETICO

PRODUZIONE DI ENERGIA DA FONTI RINNOVABILI RISPARMIO ENERGETICO IPIA C.A. DALLA CHIESA OMEGNA PROGETTO ALTERNANZA SCUOLA LAVORO classi 4 e 5 MANUTENTORI PRODUZIONE DI ENERGIA DA FONTI RINNOVABILI RISPARMIO ENERGETICO prof. Massimo M. Bonini MACCHINE A FLUIDO PER LA

Dettagli

IMPIANTI DI RISCALDAMENTO. Ing. Guglielmo Magri Dipartimento di Energetica-Ancona guglielmo.magri@alice.it

IMPIANTI DI RISCALDAMENTO. Ing. Guglielmo Magri Dipartimento di Energetica-Ancona guglielmo.magri@alice.it IMPIANTI DI RISCALDAMENTO Ing. Guglielmo Magri Dipartimento di Energetica-Ancona guglielmo.magri@alice.it SISTEMI DI GENERAZIONE Tipologie più diffuse o in sviluppo Generatori a combustione Caldaie

Dettagli

Attuatori oleodinamici

Attuatori oleodinamici Un sistema oleodinamico con regolazione di potenza utilizza come vettore di energia olio minerale, o sintetico, che in prima approssimazione può essere considerato incomprimibile. Un tale sistema comprende

Dettagli

ESERCITAZIONI FISICA TECNICA. Prof. Fabio Polonara Prof. Gianni Cesini. Corso di Ingegneria Meccanica

ESERCITAZIONI FISICA TECNICA. Prof. Fabio Polonara Prof. Gianni Cesini. Corso di Ingegneria Meccanica ESERCITAZIONI FISICA TECNICA Prof. Fabio Polonara Prof. Gianni Cesini Corso di Ingegneria Meccanica 2 TERMODINAMICA APPLICATA Termodinamica degli stati 3 ESERCIZIO TA-T8 Utilizzando il piano P-T e le tabelle

Dettagli

percorso fatto sul tratto orizzontale). Determinare il lavoro (minimo) e la potenza minima del motore per percorrere un tratto.

percorso fatto sul tratto orizzontale). Determinare il lavoro (minimo) e la potenza minima del motore per percorrere un tratto. Esercizio 1 Una pietra viene lanciata con una velocità iniziale di 20.0 m/s contro una pigna all'altezza di 5.0 m rispetto al punto di lancio. Trascurando ogni resistenza, calcolare la velocità della pietra

Dettagli

GAS NATURALE O METANO

GAS NATURALE O METANO Composto prevalentemente da un idrocarburo: metano da da cui prende il nome. GAS NATURALE O METANO Alto potere calorifico. Mancanza di tossicità e impurità. È un'ottima risorsa energetica. È l'energia

Dettagli

Progetto La fisica nelle attrazioni Attrazione NIAGARA Dati Utili

Progetto La fisica nelle attrazioni Attrazione NIAGARA Dati Utili Progetto La fisica nelle attrazioni Attrazione NIAGARA Dati Utili Angolo di risalita = 25 Altezza massima della salita = 25,87 m Altezza della salita nel tratto lineare (fino all ultimo pilone di metallo)

Dettagli

Meccanica del Volo. Il Volo in Salita. Prof. Giuliano Deledda

Meccanica del Volo. Il Volo in Salita. Prof. Giuliano Deledda Meccanica del Volo Prof. Giuliano Deledda Istituto Tecnico G. P. Chironi - Nuoro Indirizzo Trasporti e Logistica - Conduzione del Mezzo Aereo 21 marzo 2014 Prof. Giuliano Deledda Meccanica del Volo 21

Dettagli

Per dare una risposta al quesito che abbiamo posto, consideriamo il sistema schematizzato in figura.

Per dare una risposta al quesito che abbiamo posto, consideriamo il sistema schematizzato in figura. Verifica dei postulati di Einstein sulla velocità della luce, osservazioni sull esperimento di Michelson e Morley Abbiamo visto che la necessità di introdurre un mezzo come l etere nasceva dalle evidenze

Dettagli

X Figura 1. Ciclo termodinamico. >0 il calore assorbito e con Q 1 (3)

X Figura 1. Ciclo termodinamico. >0 il calore assorbito e con Q 1 (3) CICLI TERMODINAMICI Un ciclo termodinamico è un insieme di trasformazioni tali che lo stato iniziale del sistema coincide con lo stato finale. Un ciclo termodinamico è indivaduato nel diagramma XY generico

Dettagli

Prova Scritta Completa-Fisica 9 CFU Corso di Laurea in Tossicologia dell ambiente e degli alimenti Novembre 2013

Prova Scritta Completa-Fisica 9 CFU Corso di Laurea in Tossicologia dell ambiente e degli alimenti Novembre 2013 Prova Scritta Completa-Fisica 9 CFU Corso di Laurea in Tossicologia dell ambiente e degli alimenti Novembre 2013 Quesito 1 Due cubi A e B costruiti con lo stesso legno vengono trascinati sullo stesso pavimento.

Dettagli

SPECIFICA TECNICA DELLE PROVE DA ESEGUIRE PER CARATTERIZZARE UN PANTOGRAFO

SPECIFICA TECNICA DELLE PROVE DA ESEGUIRE PER CARATTERIZZARE UN PANTOGRAFO SPECIFICA TECNICA Codifica: RFI/DI/TC.TE/ ST TE 74-C Foglio 1 di 25 PER CARATTERIZZARE UN PANTOGRAFO Parte Titolo PARTE I I. GENERALITÀ PARTE II II. PROVE AL BANCO PARTE III III. PROVE IN LINEA PARTE IV

Dettagli

Facoltà di Farmacia e Medicina - A.A. 2012-2013 12 giugno 2013 Scritto di Fisica (Compito A)

Facoltà di Farmacia e Medicina - A.A. 2012-2013 12 giugno 2013 Scritto di Fisica (Compito A) Facoltà di Farmacia e Medicina - A.A. 2012-2013 12 giugno 2013 Scritto di Fisica (Compito A) Corso di Laurea: Laurea Magistrale in FARMACIA Nome: Matricola Canale: Cognome: Aula: Docente: Riportare sul

Dettagli

ANS Training Aeromobili

ANS Training Aeromobili CAPITOLO 5 STRUMENTI MOTORE Il monitoraggio continuo dell efficienza e della funzionalità dell apparato motopropulsore è prioritario rispetto a qualsiasi verifica sugli altri apparati di bordo. Tutto ciò

Dettagli

DIECI ESPERIMENTI SULL ARIA

DIECI ESPERIMENTI SULL ARIA ANNARITA RUBERTO http://scientificando.splinder.com DIECI ESPERIMENTI SULL ARIA per i piccoli Straws akimbo by Darwin Bell http://www.flickr.com/photos/darwinbell/313220327/ 1 http://scientificando.splinder.com

Dettagli

NOZIONI FONDAMENTALI SULL'ATMOSFERA TERRESTRE

NOZIONI FONDAMENTALI SULL'ATMOSFERA TERRESTRE - MECCANICA E MACCHINE III MODULO - Capitolo Nozioni fondamentali sull'atmosfera Terrestre Capitolo NOZIONI FONDAMENTALI SULL'ATMOSFERA TERRESTRE Esercizi proposti Esercizio : Determinare la Pressione,

Dettagli

Concetti basilari legati alla ventilazione

Concetti basilari legati alla ventilazione Concetti basilari legati alla ventilazione In questo capitolo è riportato il significato dei termini impiegati abitualmente in riferimento ai ventilatori o agli impianti di ventilazione. È la quantità

Dettagli

Legge di Faraday. x x x x x x x x x x E B. x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1

Legge di Faraday. x x x x x x x x x x E B. x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 B ds Legge di Faraday E x x x x x x x x x x E B x x x x x x x x x x R x x x x x x x x x x B 1 x x x x x x x x x x E x x x x x x x x x x E Schema Generale Elettrostatica moto di una carica q in un campo

Dettagli

/ * " 6 7 -" 1< " *,Ê ½, /, "6, /, Ê, 9Ê -" 1/ " - ÜÜÜ Ìi «V Ì

/ *  6 7 - 1<  *,Ê ½, /, 6, /, Ê, 9Ê - 1/  - ÜÜÜ Ìi «V Ì LA TRASMISSIONE DEL CALORE GENERALITÀ 16a Allorché si abbiano due corpi a differenti temperature, la temperatura del corpo più caldo diminuisce, mentre la temperatura di quello più freddo aumenta. La progressiva

Dettagli

13. Campi vettoriali

13. Campi vettoriali 13. Campi vettoriali 1 Il campo di velocità di un fluido Il concetto di campo in fisica non è limitato ai fenomeni elettrici. In generale il valore di una grandezza fisica assegnato per ogni punto dello

Dettagli

PERCHE LA POMPA DI CALORE E DA PREFERIRE RISPETTO AD UNA CALDAIA A COMBUSTIONE, OVVERO E TERMODINAMICAMENTE PIU EFFICIENTE?

PERCHE LA POMPA DI CALORE E DA PREFERIRE RISPETTO AD UNA CALDAIA A COMBUSTIONE, OVVERO E TERMODINAMICAMENTE PIU EFFICIENTE? PERCHE LA POMPA DI CALORE E DA PREFERIRE RISPETTO AD UNA CALDAIA A COMBUSTIONE, OVVERO E TERMODINAMICAMENTE PIU EFFICIENTE? La pompa di calore è costituita da un circuito chiuso, percorso da uno speciale

Dettagli

L AVVIAMENTO NEI MOTORI MARINI DI MEDIA E GRANDE POTENZA

L AVVIAMENTO NEI MOTORI MARINI DI MEDIA E GRANDE POTENZA L AVVIAMENTO NEI MOTORI MARINI DI MEDIA E GRANDE POTENZA Quando il motore è fermo, bisogna fornire dall'esterno l'energia necessaria per le prime compressioni, onde portare l'aria ad una temperatura sufficiente

Dettagli

1 Giochi d ombra [Punti 10] 2 Riscaldatore elettrico [Punti 10] AIF Olimpiadi di Fisica 2015 Gara di 2 Livello 13 Febbraio 2015

1 Giochi d ombra [Punti 10] 2 Riscaldatore elettrico [Punti 10] AIF Olimpiadi di Fisica 2015 Gara di 2 Livello 13 Febbraio 2015 1 Giochi d ombra [Punti 10] Una sorgente di luce rettangolare, di lati b e c con b > c, è fissata al soffitto di una stanza di altezza L = 3.00 m. Uno schermo opaco quadrato di lato a = 10cm, disposto

Dettagli

GIOCHI DI ANACLETO. DOMANDE E RISPOSTE 28 Aprile. Associazione per l Insegnamento della Fisica. Materiale elaborato dal Gruppo:

GIOCHI DI ANACLETO. DOMANDE E RISPOSTE 28 Aprile. Associazione per l Insegnamento della Fisica. Materiale elaborato dal Gruppo: Associazione per l Insegnamento della Fisica GIOCHI DI ANACLETO 2006 DOMANDE E RISPOSTE 28 Aprile I. Ti viene proposto un questionario comprendente 25 quesiti ordinati in modo casuale rispetto all argomento

Dettagli

Seconda Legge DINAMICA: F = ma

Seconda Legge DINAMICA: F = ma Seconda Legge DINAMICA: F = ma (Le grandezze vettoriali sono indicate in grassetto e anche in arancione) Fisica con Elementi di Matematica 1 Unità di misura: Massa m si misura in kg, Accelerazione a si

Dettagli

Capitolo 3 Flussaggio Stazionario di una Valvola Formula 1

Capitolo 3 Flussaggio Stazionario di una Valvola Formula 1 Capitolo 3 Flussaggio Stazionario di una Valvola Formula 1 3.1 Introduzione al problema In questa simulazione si vuole verificare il comportamento del fluido nel passaggio attraverso una valvola motoristica

Dettagli

Corso di Laurea in Scienze e Tecnologie Agrarie. Corso di Meccanica e. Meccanizzazione Agricola

Corso di Laurea in Scienze e Tecnologie Agrarie. Corso di Meccanica e. Meccanizzazione Agricola Corso di Laurea in Scienze e Tecnologie Agrarie Corso di Meccanica e Meccanizzazione Agricola Prof. S. Pascuzzi 1 Motori endotermici 2 Il motore endotermico L energia da legame chimico, posseduta dai combustibili

Dettagli

Pressione. Esempio. Definizione di pressione. Legge di Stevino. Pressione nei fluidi EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI

Pressione. Esempio. Definizione di pressione. Legge di Stevino. Pressione nei fluidi EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI Pressione EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI Cos è la pressione? La pressione è una grandezza che lega tra di loro l intensità della forza e l aerea della superficie su cui viene esercitata

Dettagli

L ENERGIA. L energia si trasforma. L energia compie lavoro. A cura di M. Aliberti

L ENERGIA. L energia si trasforma. L energia compie lavoro. A cura di M. Aliberti A cura di M. Aliberti L ENERGIA Spunti per la ricerca Che cos è l energia? Come si manifesta concretamente l energia? Quali forme può assumere? E possibile passare da una forma di energia all altra? Con

Dettagli

Attuatori Pneumatici

Attuatori Pneumatici Gli attuatori pneumatici sono organi che compiono un lavoro meccanico usando come vettore di energia l aria compressa con indubbi vantaggi in termini di pulizia, antideflagranza, innocuità e insensibilità

Dettagli

LE CENTRALI ELETTRICHE

LE CENTRALI ELETTRICHE Le centrali elettriche sono impianti industriali utilizzati per la produzione di corrente elettrica L 8 marzo 1833 è una data storica per la produzione di corrente elettrica in Italia, perché a Milano

Dettagli

Progettazione e calcolo di

Progettazione e calcolo di Nicola Taraschi Progettazione e calcolo di * Calcolo delle reti aerauliche con il software CANALI * Le trasformazioni dell aria umida ed il software PSICRO * I ventilatori * Le batterie alettate ed il

Dettagli

UNIVERSITÀ DEGLI STUDI DI PADOVA

UNIVERSITÀ DEGLI STUDI DI PADOVA UNIVERSITÀ DEGLI STUDI DI PADOVA DIPARTIMENTO DI INGEGNERIA INDUSTRIALE CORSO DI LAUREA MAGISTRALE IN INGEGNERIA ELETTRICA MORE ELECTRIC AIRCRAFT: STATO DELL ARTE E UN CASO DI STUDIO MORE ELECTRIC AIRCRAFT:

Dettagli

I generatori di calore

I generatori di calore Corso di IMPIANTI TECNICI per l EDILIZIAl I generatori di calore Prof. Paolo ZAZZINI Dipartimento INGEO Università G. D Annunzio Pescara www.lft.unich.it Generatore di calore: macchina comprendente le

Dettagli

Assicurazione sulla vita per Piloti Trainatori. (ovvero: come evitare che l incapace all altro capo del cavo possa rovinarvi la giornata.

Assicurazione sulla vita per Piloti Trainatori. (ovvero: come evitare che l incapace all altro capo del cavo possa rovinarvi la giornata. Assicurazione sulla vita per Piloti Trainatori (ovvero: come evitare che l incapace all altro capo del cavo possa rovinarvi la giornata.) CONSIDERAZIONI PRELIMINARI 1. Le prestazioni del vostro aeroplano

Dettagli

Politecnico di Bari I Facoltà di Ingegneria Corso di Laurea Specialistica in Ingegneria Meccanica ENERGIA EOLICA

Politecnico di Bari I Facoltà di Ingegneria Corso di Laurea Specialistica in Ingegneria Meccanica ENERGIA EOLICA Politecnico di Bari I Facoltà di Ingegneria Corso di Laurea Specialistica in Ingegneria Meccanica ENERGIA EOLICA turbine eoliche ad asse verticale VAWT A.A. 2008/09 Energie Alternative Prof.B.Fortunato

Dettagli

EQUILIBRIO DEI FLUIDI

EQUILIBRIO DEI FLUIDI ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ EQUILIBRIO DEI FLUIDI CLASSI III A, III B E IV A Prof. Erasmo Modica erasmo@galois.it SOLIDI, LIQUIDI E GAS La divisione della materia nei suoi tre

Dettagli

Fusar Bassini Astorre e C. Snc

Fusar Bassini Astorre e C. Snc BRUCIATORI DI GAS PER L INDUSTRIA E COMPONENTI PER IMPIANTI DI COMBUSTIONE Sezione 1: BRUCIATORI PRINCIPALI DI GAS * BRUCIATORI PRINICIPALI DI GAS * BRUCIATORI PRINCIPALI DI GAS NOZZLE MIX Pag. 2 POTENZIALITÀ

Dettagli

CORSO di. MACCHINE e SISTEMI ENERGETICI. per allievi meccanici (2 anno) Prof: Dossena, Osnaghi, Ferrari P. RACCOLTA DI ESERCIZI.

CORSO di. MACCHINE e SISTEMI ENERGETICI. per allievi meccanici (2 anno) Prof: Dossena, Osnaghi, Ferrari P. RACCOLTA DI ESERCIZI. CORSO di MACCHINE e SISTEMI ENERGETICI per allievi meccanici (2 anno) Prof: Dossena, Osnaghi, Ferrari P. RACCOLTA DI ESERCIZI con soluzione 5 Aprile 2004 AA: 2003-2004 DOMANDE TEORICHE 1. Descrivere molto

Dettagli

2. L ENERGIA MECCANICA

2. L ENERGIA MECCANICA . L ENERGIA MECCANICA.1 Il concetto di forza La forza può essere definita come «azione reciproca tra corpi che ne altera lo stato di moto o li deforma: essa é caratterizzata da intensità direzione e verso».

Dettagli

L=F x s lavoro motore massimo

L=F x s lavoro motore massimo 1 IL LAVORO Nel linguaggio scientifico la parola lavoro indica una grandezza fisica ben determinata. Un uomo che sposta un libro da uno scaffale basso ad uno più alto è un fenomeno in cui c è una forza

Dettagli

MANUALE DI INSTALLAZIONE Per Torri di raffreddamento, Condensatori evaporativi e Raffreddatori a circuito chiuso

MANUALE DI INSTALLAZIONE Per Torri di raffreddamento, Condensatori evaporativi e Raffreddatori a circuito chiuso Catalogo 311-I Metrico Nuovo! MANUALE DI INSTALLAZIONE Per Torri di raffreddamento, Condensatori evaporativi e Raffreddatori a circuito chiuso Spazio libero ridotto fra unità assiali con flusso in controcorrente

Dettagli

DINAMICA e LAVORO esercizi risolti Classi terze L.S.

DINAMICA e LAVORO esercizi risolti Classi terze L.S. DINAMICA e LAVORO esercizi risolti Classi terze L.S. In questa dispensa verrà riportato lo svolgimento di alcuni esercizi inerenti la dinamica dei sistemi materiali, nei quali vengono discusse le caratteristiche

Dettagli

CAPITOLO 4 IMPIANTI IDRAULICI

CAPITOLO 4 IMPIANTI IDRAULICI CAPITOLO 4 IMPIANTI IDRAULICI 4.1. Introduzione In questo paragrafo verranno trattate le problematiche relative agli impianti idraulici, limitatamente al caso degli impianti di sollevamento acqua. Si parlerà

Dettagli

POMPE DI CALORE. Introduzione

POMPE DI CALORE. Introduzione POMPE DI CALORE Introduzione In impianto tradizionale di riscaldamento si utilizza il potere calorifico di un combustibile (gasolio, metano, legno, carbone, ecc.) per riscaldare a bassa temperatura dei

Dettagli

> Principali nozioni tecniche <

> Principali nozioni tecniche < 2.1 DEFINIZIONE DI PORTATA La portata in volume è il volume di fluido che passa attraverso il ventilatore nell'unità di tempo. Di uso meno frequente è la portata in peso, definita come il peso di fluido

Dettagli

Proprieta meccaniche dei fluidi

Proprieta meccaniche dei fluidi Proprieta meccaniche dei fluidi 1. Definizione di fluido: liquido o gas 2. La pressione in un fluido 3. Equilibrio nei fluidi: legge di Stevino 4. Il Principio di Pascal 5. Il barometro di Torricelli 6.

Dettagli

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA Esercizio 1 Lezione 5 - Meccanica del punto materiale Un volano è costituito da un cilindro rigido omogeneo,

Dettagli

Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie

Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie Forze, leggi della dinamica, diagramma del corpo libero 1 FORZE Grandezza fisica definibile come l' agente in grado di modificare lo stato di quiete o di moto di un corpo. Ci troviamo di fronte ad una

Dettagli

MACCHINE Lezione 8 Impianti idroelettrici e Turbine Idrauliche

MACCHINE Lezione 8 Impianti idroelettrici e Turbine Idrauliche MACCHINE Lezione 8 Impianti idroelettrici e Turbine Idrauliche Dr. Paradiso Berardo Laboratorio Fluidodinamicadelle delle Macchine Dipartimento di Energia Politecnico di Milano Generalità Impianti idroelettrici

Dettagli

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Forza CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Cos è una forza? la forza è una grandezza che agisce su un corpo cambiando la sua velocità e provocando una deformazione sul corpo 2 Esempi

Dettagli

Unità didattica 2 Campo elettrico e potenziale elettrico. Competenze

Unità didattica 2 Campo elettrico e potenziale elettrico. Competenze Unità didattica 2 Campo elettrico e potenziale elettrico Competenze Definire il campo elettrico e descrivere come il campo elettrico è disegnato dalle linee di campo. Applicare l equazione dell intensità

Dettagli

RESISTENZA E PORTANZA. P. Di Marco Termofluidodinamica Appl. RP-1

RESISTENZA E PORTANZA. P. Di Marco Termofluidodinamica Appl. RP-1 RESISTENZA E PORTANZA P. Di Marco Termofluidodinamica Appl. RP-1 DISTACCO DELLO STRATO LIMITE Al di fuori dello strato limite: nelle zone in cui la pressione aumenta (gradiente di pressione avverso), il

Dettagli

Corso di Fisica tecnica e ambientale a.a. 2011/2012 - Docente: Prof. Carlo Isetti

Corso di Fisica tecnica e ambientale a.a. 2011/2012 - Docente: Prof. Carlo Isetti Corso di Fisica tecnica e ambientale a.a. 0/0 - Docente: Prof. Carlo Isetti LAVORO D NRGIA 5. GNRALITÀ In questo capitolo si farà riferimento a concetto quali lavoro ed energia termini che hanno nella

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Lezione 11: Forze e pressioni nei fluidi

Lezione 11: Forze e pressioni nei fluidi Lezione 11 - pag.1 Lezione 11: Forze e pressioni nei fluidi 11.1. Dalla forza alla pressione Abbiamo visto che la Terra attrae gli oggetti solidi con una forza, diretta verso il suo centro, che si chiama

Dettagli

La pressione atmosferica e i venti

La pressione atmosferica e i venti La pressione atmosferica e i venti Come ogni materia sottoposta all attrazione terrestre anche l atmosfera ha un peso Pressione = rapporto fra il peso dell aria e la superficie su cui agisce A livello

Dettagli

Il paracadute di Leonardo

Il paracadute di Leonardo Davide Russo Il paracadute di Leonardo Il sogno del volo dell'uomo si perde nella notte dei tempi. La storia è piena di miti e leggende di uomini che hanno sognato di librarsi nel cielo imitando il volo

Dettagli

Inizia presentazione

Inizia presentazione Inizia presentazione Che si misura in ampère può essere generata In simboli A da pile dal movimento di spire conduttrici all interno di campi magnetici come per esempio nelle dinamo e negli alternatori

Dettagli

Tecnologia degli impianti di aspirazione e ventilazione Tipologie di sorgenti e variabili di progetto

Tecnologia degli impianti di aspirazione e ventilazione Tipologie di sorgenti e variabili di progetto Tecnologia degli impianti di aspirazione e ventilazione di Renato Rota - Politecnico di Milano Dipartimento di Chimica, Materiali e Ingegneria chimica G. Natta Tra le numerose postazioni presenti negli

Dettagli